1
|
Singh G, Skibbens RV. Fdo1, Fkh1, Fkh2, and the Swi6-Mbp1 MBF complex regulate Mcd1 levels to impact eco1 rad61 cell growth in Saccharomyces cerevisiae. Genetics 2024; 228:iyae128. [PMID: 39110836 PMCID: PMC11457938 DOI: 10.1093/genetics/iyae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 10/09/2024] Open
Abstract
Cohesins promote proper chromosome segregation, gene transcription, genomic architecture, DNA condensation, and DNA damage repair. Mutations in either cohesin subunits or regulatory genes can give rise to severe developmental abnormalities (such as Robert Syndrome and Cornelia de Lange Syndrome) and also are highly correlated with cancer. Despite this, little is known about cohesin regulation. Eco1 (ESCO2/EFO2 in humans) and Rad61 (WAPL in humans) represent two such regulators but perform opposing roles. Eco1 acetylation of cohesin during S phase, for instance, stabilizes cohesin-DNA binding to promote sister chromatid cohesion. On the other hand, Rad61 promotes the dissociation of cohesin from DNA. While Eco1 is essential, ECO1 and RAD61 co-deletion results in yeast cell viability, but only within a limited temperature range. Here, we report that eco1rad61 cell lethality is due to reduced levels of the cohesin subunit Mcd1. Results from a suppressor screen further reveals that FDO1 deletion rescues the temperature-sensitive (ts) growth defects exhibited by eco1rad61 double mutant cells by increasing Mcd1 levels. Regulation of MCD1 expression, however, appears more complex. Elevated expression of MBP1, which encodes a subunit of the MBF transcription complex, also rescues eco1rad61 cell growth defects. Elevated expression of SWI6, however, which encodes the Mbp1-binding partner of MBF, exacerbates eco1rad61 cell growth and also abrogates the Mpb1-dependent rescue. Finally, we identify two additional transcription factors, Fkh1 and Fkh2, that impact MCD1 expression. In combination, these findings provide new insights into the nuanced and multi-faceted transcriptional pathways that impact MCD1 expression.
Collapse
Affiliation(s)
- Gurvir Singh
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
2
|
Doğan Ari AB, Ağlamiş Şenel Ö, Siyah Bilgin B, Kiliç E. Targeted genetic testing approach in a case with characteristic clinical and radiographic findings of Roberts phocomelia syndrome. Clin Dysmorphol 2024:00019605-990000000-00078. [PMID: 39321312 DOI: 10.1097/mcd.0000000000000508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Affiliation(s)
| | | | - Betül Siyah Bilgin
- Department of Pediatric Neonatology, University of Health Sciences, Ankara Bilkent City Children's Hospital, Ankara, Turkey
| | | |
Collapse
|
3
|
Strasser AS, Gonzalez-Reiche AS, Zhou X, Valdebenito-Maturana B, Ye X, Zhang B, Wu M, van Bakel H, Jabs EW. Limb reduction in an Esco2 cohesinopathy mouse model is mediated by p53-dependent apoptosis and vascular disruption. Nat Commun 2024; 15:7154. [PMID: 39168984 PMCID: PMC11339411 DOI: 10.1038/s41467-024-51328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Roberts syndrome (RBS) is an autosomal recessive disorder with profound growth deficiency and limb reduction caused by ESCO2 loss-of-function variants. Here, we elucidate the pathogenesis of limb reduction in an Esco2fl/fl;Prrx1-CreTg/0 mouse model using bulk- and single-cell-RNA-seq and gene co-expression network analyses during embryogenesis. Our results reveal morphological and vascular defects culminating in hemorrhage of mutant limbs at E12.5. Underlying this abnormal developmental progression is a pre-apoptotic, mesenchymal cell population specific to mutant limb buds enriched for p53-related signaling beginning at E9.5. We then characterize these p53-related processes of cell cycle arrest, DNA damage, cell death, and the inflammatory leukotriene signaling pathway in vivo. In utero treatment with pifithrin-α, a p53 inhibitor, rescued the hemorrhage in mutant limbs. Lastly, significant enrichments were identified among genes associated with RBS, thalidomide embryopathy, and other genetic limb reduction disorders, suggesting a common vascular etiology among these conditions.
Collapse
Affiliation(s)
- Arielle S Strasser
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Ana Silvia Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Braulio Valdebenito-Maturana
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xiaoqian Ye
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| |
Collapse
|
4
|
Tae SK, RA M, Thong MK. Case report: The evolving phenotype of ESCO2 spectrum disorder in a 15-year-old Malaysian child. Front Genet 2024; 14:1286489. [PMID: 38288163 PMCID: PMC10822947 DOI: 10.3389/fgene.2023.1286489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
ESCO2 spectrum disorder is an autosomal recessive developmental disorder characterized by growth retardation, symmetrical mesomelic limb malformation, and distinctive facies with microcephaly, with a wide phenotypic continuum that ranges from Roberts syndrome (MIM #268300) at the severe end to SC phocomelia (MIM #269000) at the milder end. ESCO2 encodes a 601-amino acid protein belonging to the Eco1/Ctf7 family of acetyltransferases that is involved in the establishment of sister chromatid cohesion, which is essential for accurate chromosome segregation and genomic stability and thus belongs to a group of disorders called "cohesinopathies". We describe a 15-year-old Malaysian female who presented with the characteristic triad of ESCO2 spectrum disorder, with an equivocal chromosomal breakage study and normal karyotyping findings. She was initially suspected to have mosaic Fanconi anemia but whole exome sequencing (WES) showed a likely pathogenic homozygous splice variant c.955 + 2_955+5del in the ESCO2 gene. During the 15-year diagnostic odyssey, she developed type 2 diabetes mellitus, primary ovarian insufficiency, increased optic cup-to-disc ratio with tortuous vessels bilaterally, and an evolving but distinct facial and skin hypopigmentation phenotype. Of note, there was an absence of learning disabilities. Our findings provide further evidence for ESCO2 spectrum disorder in an Asian child and contribute to defining the clinical and radiographic spectrum.
Collapse
Affiliation(s)
- Sok-Kun Tae
- Genetics and Metabolism Unit, Department of Paediatrics, Faculty of Medicine, Kuala Lumpur, Malaysia
- Genetic Medicine Unit, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Mazlan RA
- Genetic Medicine Unit, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Meow-Keong Thong
- Genetics and Metabolism Unit, Department of Paediatrics, Faculty of Medicine, Kuala Lumpur, Malaysia
- Genetic Medicine Unit, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Chen J, Floyd EN, Dawson DS, Rankin S. Cornelia de Lange Syndrome mutations in SMC1A cause cohesion defects in yeast. Genetics 2023; 225:iyad159. [PMID: 37650609 PMCID: PMC10550314 DOI: 10.1093/genetics/iyad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a developmental disorder characterized by limb truncations, craniofacial abnormalities, and cognitive delays. CdLS is caused mainly by mutations in genes encoding subunits or regulators of the cohesin complex. Cohesin plays 2 distinct roles in chromosome dynamics as follows: it promotes looping, organization, and compaction of individual chromosomes, and it holds newly replicated sister chromatids together until cell division. CdLS-associated mutations result in altered gene expression likely by affecting chromosome architecture. Whether CdLS mutations cause phenotypes through impact on sister chromatid cohesion is less clear. Here, we show that CdLS-associated mutations introduced into the SMC1A gene of budding yeast had measurable impacts on sister chromatid cohesion, mitotic progression, and DNA damage sensitivity. These data suggest that sister chromatid cohesion-related defects may contribute to phenotypes seen in CdLS affected individuals.
Collapse
Affiliation(s)
- Jingrong Chen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Erin N Floyd
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Fu J, Zhou S, Xu H, Liao L, Shen H, Du P, Zheng X. ATM-ESCO2-SMC3 axis promotes 53BP1 recruitment in response to DNA damage and safeguards genome integrity by stabilizing cohesin complex. Nucleic Acids Res 2023; 51:7376-7391. [PMID: 37377435 PMCID: PMC10415120 DOI: 10.1093/nar/gkad533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
53BP1 is primarily known as a key regulator in DNA double-strand break (DSB) repair. However, the mechanism of DSB-triggered cohesin modification-modulated chromatin structure on the recruitment of 53BP1 remains largely elusive. Here, we identified acetyltransferase ESCO2 as a regulator for DSB-induced cohesin-dependent chromatin structure dynamics, which promotes 53BP1 recruitment. Mechanistically, in response to DNA damage, ATM phosphorylates ESCO2 S196 and T233. MDC1 recognizes phosphorylated ESCO2 and recruits ESCO2 to DSB sites. ESCO2-mediated acetylation of SMC3 stabilizes cohesin complex conformation and regulates the chromatin structure at DSB breaks, which is essential for the recruitment of 53BP1 and the formation of 53BP1 microdomains. Furthermore, depletion of ESCO2 in both colorectal cancer cells and xenografted nude mice sensitizes cancer cells to chemotherapeutic drugs. Collectively, our results reveal a molecular mechanism for the ATM-ESCO2-SMC3 axis in DSB repair and genome integrity maintenance with a vital role in chemotherapy response in colorectal cancer.
Collapse
Affiliation(s)
- Jianfeng Fu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Siru Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Huilin Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Liming Liao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Centre for Life Sciences, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Centre for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Mfarej MG, Hyland CA, Sanchez AC, Falk MM, Iovine MK, Skibbens RV. Cohesin: an emerging master regulator at the heart of cardiac development. Mol Biol Cell 2023; 34:rs2. [PMID: 36947206 PMCID: PMC10162415 DOI: 10.1091/mbc.e22-12-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesinopathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Caitlin A. Hyland
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
8
|
Boer LL, Kircher SG, Rehder H, Behunova J, Winter E, Ringl H, Scharrer A, de Boer E, Oostra RJ. History and highlights of the teratological collection in the Narrenturm, Vienna (Austria). Am J Med Genet A 2023; 191:1301-1324. [PMID: 36806455 DOI: 10.1002/ajmg.a.63153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
The collection of the Narrenturm in Vienna houses and maintains more than 50,000 objects including approximately 1200 teratological specimens; making it one of the biggest collections of specimens from human origin in Europe. The existence of this magnificent collection-representing an important resource for dysmorphology research, mostly awaiting contemporary diagnoses-is not widely known in the scientific community. Here, we show that the Narrenturm harbors a wealth of specimens with (exceptionally) rare congenital anomalies. These museums can be seen as physical repositories of human malformation, covering hundreds of years of dedicated collecting and preserving, thereby creating unique settings that can be used to expand our knowledge of developmental conditions that have to be preserved for future generations of scientists.
Collapse
Affiliation(s)
- Lucas L Boer
- Department of Imaging, Section Anatomy and Museum for Anatomy and Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Gerit Kircher
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Helga Rehder
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Jana Behunova
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Eduard Winter
- Pathologisch-Anatomische Sammlung im Narrenturm-NHM, Vienna, Austria
| | - Helmut Ringl
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Anke Scharrer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Elke de Boer
- Department of Human Genetics, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Roelof-Jan Oostra
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
10
|
Okpala BC, Echendu ST, Ikechebelu JI, Eleje GU, Joe-Ikechebelu NN, Nwajiaku LA, Nwachukwu CE, Igbodike EP, Nnoruka MC, Okpala AN, Ofojebe CJ, Umeononihu OS. Roberts syndrome with tetraphocomelia: A case report and literature review. SAGE Open Med Case Rep 2022; 10:2050313X221094077. [PMID: 35495290 PMCID: PMC9039428 DOI: 10.1177/2050313x221094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Roberts syndrome is a rare genetic disorder characterized by symmetrical reductive limb malformation and craniofacial abnormalities. It is caused by mutation in the “Establishment of cohesion 1 homolog 2” genes, resulting in the loss of acetyltransferase activities and manifesting as premature centromere separation in metaphase chromosomes. The affected individual grows slowly during pregnancy and after birth with associated mild to severe intellectual impairment. We present a 35-year-old multiparous Nigerian lady who had emergency cesarean section at 35 weeks of gestation following abruptio placentae with a live fetus. The baby had poor Apgar score at birth and died shortly afterward. Tetraphocomelia was detected on prenatal ultrasound done at about 24 weeks of gestation with other features sonographically normal. However, clinical diagnosis of severe variant of Roberts syndrome with tetraphocomelia, growth restriction, and craniofacial abnormalities were noted at birth. This case exhibits a very rare variant of Roberts syndrome with tetraphocomelia, intrauterine growth restriction, and craniofacial abnormalities. It also highlights the crucial role of detailed clinical examination and the inherent challenges in making cytogenetic diagnosis in low-income countries.
Collapse
Affiliation(s)
- Boniface Chukwuneme Okpala
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
- Life International Hospital, Awka, Nigeria
| | | | - Joseph Ifeanyichukwu Ikechebelu
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
- Life International Hospital, Awka, Nigeria
| | - George Uchenna Eleje
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
| | - Ngozi Nneka Joe-Ikechebelu
- Life International Hospital, Awka, Nigeria
- Department of Community Medicine, Chukwuemeka Odumegwu Ojukwu University Teaching Hospital, Awka, Nigeria
| | - Louis Anayo Nwajiaku
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
| | - Cyril Emeka Nwachukwu
- Department of Anaesthesia, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Anaesthesia, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
| | - Emeka Philip Igbodike
- Department of Obstetrics and Gynecology, St Georges Hospital Memorial Centre, Lagos, Nigeria
| | | | - Augusta Nkiruka Okpala
- Department of Family Medicine, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
| | - Chukwuemeka Jude Ofojebe
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
| | - Osita Samuel Umeononihu
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Obstetrics and Gynaecology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
| |
Collapse
|
11
|
Osadska M, Selicky T, Kretova M, Jurcik J, Sivakova B, Cipakova I, Cipak L. The Interplay of Cohesin and RNA Processing Factors: The Impact of Their Alterations on Genome Stability. Int J Mol Sci 2022; 23:3939. [PMID: 35409298 PMCID: PMC8999970 DOI: 10.3390/ijms23073939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Michaela Osadska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| |
Collapse
|
12
|
Mfarej MG, Skibbens RV. Genetically induced redox stress occurs in a yeast model for Roberts syndrome. G3 (BETHESDA, MD.) 2022; 12:jkab426. [PMID: 34897432 PMCID: PMC9210317 DOI: 10.1093/g3journal/jkab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.
Collapse
Affiliation(s)
- Michael G Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
13
|
Sarcos B, Solano N, Sierralta M, Ramos S. A child with Roberts syndrome presenting severe craniofacial anomaly. JOURNAL OF CLEFT LIP PALATE AND CRANIOFACIAL ANOMALIES 2022. [DOI: 10.4103/jclpca.jclpca_32_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Kawasumi R, Abe T, Psakhye I, Miyata K, Hirota K, Branzei D. Vertebrate CTF18 and DDX11 essential function in cohesion is bypassed by preventing WAPL-mediated cohesin release. Genes Dev 2021; 35:1368-1382. [PMID: 34503989 PMCID: PMC8494208 DOI: 10.1101/gad.348581.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 01/26/2023]
Abstract
The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11 The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.
Collapse
Affiliation(s)
- Ryotaro Kawasumi
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Takuya Abe
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ivan Psakhye
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Keiji Miyata
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Dana Branzei
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| |
Collapse
|
15
|
Luque-Martin R, Angell DC, Kalxdorf M, Bernard S, Thompson W, Eberl HC, Ashby C, Freudenberg J, Sharp C, Van den Bossche J, de Jonge WJ, Rioja I, Prinjha RK, Neele AE, de Winther MPJ, Mander PK. IFN-γ Drives Human Monocyte Differentiation into Highly Proinflammatory Macrophages That Resemble a Phenotype Relevant to Psoriasis. THE JOURNAL OF IMMUNOLOGY 2021; 207:555-568. [PMID: 34233910 DOI: 10.4049/jimmunol.2001310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
As key cells of the immune system, macrophages coordinate the activation and regulation of the immune response. Macrophages present a complex phenotype that can vary from homeostatic, proinflammatory, and profibrotic to anti-inflammatory phenotypes. The factors that drive the differentiation from monocyte to macrophage largely define the resultant phenotype, as has been shown by the differences found in M-CSF- and GM-CSF-derived macrophages. We explored alternative inflammatory mediators that could be used for in vitro differentiation of human monocytes into macrophages. IFN-γ is a potent inflammatory mediator produced by lymphocytes in disease and infections. We used IFN-γ to differentiate human monocytes into macrophages and characterized the cells at a functional and proteomic level. IFN-γ alone was sufficient to generate macrophages (IFN-γ Mϕ) that were phagocytic and responsive to polarization. We demonstrate that IFN-γ Mϕ are potent activators of T lymphocytes that produce IL-17 and IFN-γ. We identified potential markers (GBP-1, IP-10, IL-12p70, and IL-23) of IFN-γ Mϕ and demonstrate that these markers are enriched in the skin of patients with inflamed psoriasis. Collectively, we show that IFN-γ can drive human monocyte to macrophage differentiation, leading to bona fide macrophages with inflammatory characteristics.
Collapse
Affiliation(s)
- Rosario Luque-Martin
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Davina C Angell
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | | | - Sharon Bernard
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - William Thompson
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | | | - Charlotte Ashby
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | | | - Catriona Sharp
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; and
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Inmaculada Rioja
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K Prinjha
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Annette E Neele
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Palwinder K Mander
- Immuno-Epigenetics, Adaptive Immunity Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom;
| |
Collapse
|
16
|
Labudina A, Horsfield JA. The three-dimensional genome in zebrafish development. Brief Funct Genomics 2021:elab008. [PMID: 33675363 DOI: 10.1093/bfgp/elab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
In recent years, remarkable progress has been made toward understanding the three-dimensional (3D) organisation of genomes and the influence of genome organisation on gene regulation. Although 3D genome organisation probably plays a crucial role in embryo development, animal studies addressing the developmental roles of chromosome topology are only just starting to emerge. Zebrafish, an important model system for early development, have already contributed important advances in understanding the developmental consequences of perturbation in 3D genome organisation. Zebrafish have been used to determine the effects of mutations in proteins responsible for 3D genome organisation: cohesin and CTCF. In this review, we highlight research to date from zebrafish that has provided insight into how 3D genome organisation contributes to tissue-specific gene regulation and embryo development.
Collapse
|
17
|
Mfarej MG, Skibbens RV. DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae. PLoS One 2020; 15:e0242968. [PMID: 33373396 PMCID: PMC7771704 DOI: 10.1371/journal.pone.0242968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast Eco1 (ESCO2 in humans) acetyltransferase converts chromatin-bound cohesins to a DNA tethering state, thereby establishing sister chromatid cohesion. Eco1 establishes cohesion during DNA replication, after which Eco1 is targeted for degradation by SCF E3 ubiquitin ligase. SCF E3 ligase, and sequential phosphorylations that promote Eco1 ubiquitination and degradation, remain active throughout the M phase. In this way, Eco1 protein levels are high during S phase, but remain low throughout the remaining cell cycle. In response to DNA damage during M phase, however, Eco1 activity increases-providing for a new wave of cohesion establishment (termed Damage-Induced Cohesion, or DIC) which is critical for efficient DNA repair. To date, little evidence exists as to the mechanism through which Eco1 activity increases during M phase in response to DNA damage. Possibilities include that either the kinases or E3 ligase, that target Eco1 for degradation, are inhibited in response to DNA damage. Our results reveal instead that the degradation machinery remains fully active during M phase, despite the presence of DNA damage. In testing alternate models through which Eco1 activity increases in response to DNA damage, the results reveal that DNA damage induces new transcription of ECO1 and at a rate that exceeds the rate of Eco1 turnover, providing for rapid accumulation of Eco1 protein. We further show that DNA damage induction of ECO1 transcription is in part regulated by Yap5-a stress-induced transcription factor. Given the role for mutated ESCO2 (homolog of ECO1) in human birth defects, this study highlights the complex nature through which mutation of ESCO2, and defects in ESCO2 regulation, may promote developmental abnormalities and contribute to various diseases including cancer.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
18
|
Mfarej MG, Skibbens RV. An ever-changing landscape in Roberts syndrome biology: Implications for macromolecular damage. PLoS Genet 2020; 16:e1009219. [PMID: 33382686 PMCID: PMC7774850 DOI: 10.1371/journal.pgen.1009219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Roberts syndrome (RBS) is a rare developmental disorder that can include craniofacial abnormalities, limb malformations, missing digits, intellectual disabilities, stillbirth, and early mortality. The genetic basis for RBS is linked to autosomal recessive loss-of-function mutation of the establishment of cohesion (ESCO) 2 acetyltransferase. ESCO2 is an essential gene that targets the DNA-binding cohesin complex. ESCO2 acetylates alternate subunits of cohesin to orchestrate vital cellular processes that include sister chromatid cohesion, chromosome condensation, transcription, and DNA repair. Although significant advances were made over the last 20 years in our understanding of ESCO2 and cohesin biology, the molecular etiology of RBS remains ambiguous. In this review, we highlight current models of RBS and reflect on data that suggests a novel role for macromolecular damage in the molecular etiology of RBS.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
19
|
Kantaputra PN, Dejkhamron P, Tongsima S, Ngamphiw C, Intachai W, Ngiwsara L, Sawangareetrakul P, Svasti J, Olsen B, Cairns JRK, Bumroongkit K. Juberg-Hayward syndrome and Roberts syndrome are allelic, caused by mutations in ESCO2. Arch Oral Biol 2020; 119:104918. [PMID: 32977150 DOI: 10.1016/j.archoralbio.2020.104918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Juberg-Hayward syndrome (JHS; MIM 216100) is a rare autosomal recessive malformation syndrome, characterized by cleft lip/palate, microcephaly, ptosis, hypoplasia or aplasia of thumbs, short stature, dislocation of radial head, and fusion of humerus and radius leading to elbow restriction. A homozygous mutation in ESCO2 has recently been reported to cause Juberg-Hayward syndrome. Our objective was to investigate the molecular etiology of Juberg-Hayward syndrome in two affected Lisu tribe brothers. MATERIALS AND METHODS Two patients, the unaffected parents, and two unaffected siblings were studied. Clinical and radiographic examination, whole exome sequencing, Sanger sequencing, Western blot analysis, and chromosome testing were performed. RESULTS Two affected brothers had characteristic features of Juberg-Hayward syndrome, except for the absence of microcephaly. The elder brother had bilateral cleft lip and palate, short stature, humeroradial synostosis, and simple partial seizure with secondary generalization. The younger brother had unilateral cleft lip and palate, short stature, and dislocation of radial heads. The homozygous (c.1654C > T; p.Arg552Ter) mutation in ESCO2 was identified in both patients. The other unaffected members of the family were heterozygous for the mutation. The presence of humeroradial synostosis and radial head dislocation in the same family is consistent with both being in the same spectrum of forearm malformations. Chromosome testing of the affected patients showed premature centromere separation. Western blot analysis showed reduced amount of truncated protein. CONCLUSION Our findings confirm that a homozygous mutation in ESCO2 is the underlying cause of Juberg-Hayward syndrome. Microcephaly does not appear to be a consistent feature of the syndrome.
Collapse
Affiliation(s)
- Piranit Nik Kantaputra
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Dentaland Clinic, Chiang Mai, Thailand.
| | - Prapai Dejkhamron
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Worrachet Intachai
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - James R Ketudat Cairns
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand; School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kanokkan Bumroongkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
20
|
Ajam T, De I, Petkau N, Whelan G, Pena V, Eichele G. Alternative catalytic residues in the active site of Esco acetyltransferases. Sci Rep 2020; 10:9828. [PMID: 32555289 PMCID: PMC7300003 DOI: 10.1038/s41598-020-66795-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Cohesin is a protein complex whose core subunits, Smc1, Smc3, Scc1, and SA1/SA2 form a ring-like structure encircling the DNA. Cohesins play a key role in the expression, repair, and segregation of eukaryotic genomes. Following a catalytic mechanism that is insufficiently understood, Esco1 and Esco2 acetyltransferases acetylate the cohesin subunit Smc3, thereby inducing stabilization of cohesin on DNA. As a prerequisite for structure-guided investigation of enzymatic activity, we determine here the crystal structure of the mouse Esco2/CoA complex at 1.8 Å resolution. We reconstitute cohesin as tri- or tetrameric assemblies and use those as physiologically-relevant substrates for enzymatic assays in vitro. Furthermore, we employ cell-based complementation studies in mouse embryonic fibroblast deficient for Esco1 and Esco2, as a means to identify catalytically-important residues in vivo. These analyses demonstrate that D567/S566 and E491/S527, located on opposite sides of the murine Esco2 active site cleft, are critical for catalysis. Our experiments support a catalytic mechanism of acetylation where residues D567 and E491 are general bases that deprotonate the ε-amino group of lysine substrate, also involving two nearby serine residues - S566 and S527- that possess a proton relay function.
Collapse
Affiliation(s)
- Tahereh Ajam
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Inessa De
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Nikolai Petkau
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Gabriela Whelan
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Vladimir Pena
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany. .,Structural Biology Division, The Institute of Cancer Research, SW3 6JB, London, United Kingdom.
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
21
|
Sezer A, Kayhan G, Zenker M, Percin EF. Hypopigmented patches in Roberts/SC phocomelia syndrome occur via aneuploidy susceptibility. Eur J Med Genet 2019; 62:103608. [DOI: 10.1016/j.ejmg.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
|
22
|
Ortega P, Gómez-González B, Aguilera A. Rpd3L and Hda1 histone deacetylases facilitate repair of broken forks by promoting sister chromatid cohesion. Nat Commun 2019; 10:5178. [PMID: 31729385 PMCID: PMC6858524 DOI: 10.1038/s41467-019-13210-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Genome stability involves accurate replication and DNA repair. Broken replication forks, such as those encountering a nick, lead to double strand breaks (DSBs), which are preferentially repaired by sister-chromatid recombination (SCR). To decipher the role of chromatin in eukaryotic DSB repair, here we analyze a collection of yeast chromatin-modifying mutants using a previously developed system for the molecular analysis of repair of replication-born DSBs by SCR based on a mini-HO site. We confirm the candidates through FLP-based systems based on a mutated version of the FLP flipase that causes nicks on either the leading or lagging DNA strands. We demonstrate that Rpd3L and Hda1 histone deacetylase (HDAC) complexes contribute to the repair of replication-born DSBs by facilitating cohesin loading, with no effect on other types of homology-dependent repair, thus preventing genome instability. We conclude that histone deacetylation favors general sister chromatid cohesion as a necessary step in SCR.
Collapse
Affiliation(s)
- Pedro Ortega
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
23
|
Piché J, Van Vliet PP, Pucéat M, Andelfinger G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 2019; 18:2828-2848. [PMID: 31516082 PMCID: PMC6791706 DOI: 10.1080/15384101.2019.1658476] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
Preservation and development of life depend on the adequate segregation of sister chromatids during mitosis and meiosis. This process is ensured by the cohesin multi-subunit complex. Mutations in this complex have been associated with an increasing number of diseases, termed cohesinopathies. The best characterized cohesinopathy is Cornelia de Lange syndrome (CdLS), in which intellectual and growth retardations are the main phenotypic manifestations. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably. Novel roles of the cohesin complex have emerged during the past decades, suggesting that important cell cycle regulators exert important biological effects through non-cohesion-related functions and broadening the potential pathomechanisms involved in cohesinopathies. This review focuses on non-cohesion-related functions of the cohesin complex, gene dosage effect, epigenetic regulation and TGF-β in cohesinopathy context, especially in comparison to Chronic Atrial and Intestinal Dysrhythmia (CAID) syndrome, a very distinct cohesinopathy caused by a homozygous Shugoshin-1 (SGO1) mutation (K23E) and characterized by pacemaker failure in both heart (sick sinus syndrome followed by atrial flutter) and gut (chronic intestinal pseudo-obstruction) with no intellectual or growth delay. We discuss the possible impact of SGO1 alterations in human pathologies and the potential impact of the SGO1 K23E mutation in the sinus node and gut development and functions. We suggest that the human phenotypes observed in CdLS, CAID syndrome and other cohesinopathies can inform future studies into the less well-known non-cohesion-related functions of cohesin complex genes. Abbreviations: AD: Alzheimer Disease; AFF4: AF4/FMR2 Family Member 4; ANKRD11: Ankyrin Repeat Domain 11; APC: Anaphase Promoter Complex; ASD: Atrial Septal Defect; ATRX: ATRX Chromatin Remodeler; ATRX: Alpha Thalassemia X-linked intellectual disability syndrome; BIRC5: Baculoviral IAP Repeat Containing 5; BMP: Bone Morphogenetic Protein; BRD4: Bromodomain Containing 4; BUB1: BUB1 Mitotic Checkpoint Serine/Threonine Kinase; CAID: Chronic Atrial and Intestinal Dysrhythmia; CDK1: Cyclin Dependent Kinase 1; CdLS: Cornelia de Lange Syndrome; CHD: Congenital Heart Disease; CHOPS: Cognitive impairment, coarse facies, Heart defects, Obesity, Pulmonary involvement, Short stature, and skeletal dysplasia; CIPO: Chronic Intestinal Pseudo-Obstruction; c-kit: KIT Proto-Oncogene Receptor Tyrosine Kinase; CoATs: Cohesin Acetyltransferases; CTCF: CCCTC-Binding Factor; DDX11: DEAD/H-Box Helicase 11; ERG: Transcriptional Regulator ERG; ESCO2: Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2; GJC1: Gap Junction Protein Gamma 1; H2A: Histone H2A; H3K4: Histone H3 Lysine 4; H3K9: Histone H3 Lysine 9; HCN4: Hyperpolarization Activated Cyclic Nucleotide Gated Potassium and Sodium Channel 4;p HDAC8: Histone deacetylases 8; HP1: Heterochromatin Protein 1; ICC: Interstitial Cells of Cajal; ICC-MP: Myenteric Plexus Interstitial cells of Cajal; ICC-DMP: Deep Muscular Plexus Interstitial cells of Cajal; If: Pacemaker Funny Current; IP3: Inositol trisphosphate; JNK: C-Jun N-Terminal Kinase; LDS: Loeys-Dietz Syndrome; LOAD: Late-Onset Alzheimer Disease; MAPK: Mitogen-Activated Protein Kinase; MAU: MAU Sister Chromatid Cohesion Factor; MFS: Marfan Syndrome; NIPBL: NIPBL, Cohesin Loading Factor; OCT4: Octamer-Binding Protein 4; P38: P38 MAP Kinase; PDA: Patent Ductus Arteriosus; PDS5: PDS5 Cohesin Associated Factor; P-H3: Phospho Histone H3; PLK1: Polo Like Kinase 1; POPDC1: Popeye Domain Containing 1; POPDC2: Popeye Domain Containing 2; PP2A: Protein Phosphatase 2; RAD21: RAD21 Cohesin Complex Component; RBS: Roberts Syndrome; REC8: REC8 Meiotic Recombination Protein; RNAP2: RNA polymerase II; SAN: Sinoatrial node; SCN5A: Sodium Voltage-Gated Channel Alpha Subunit 5; SEC: Super Elongation Complex; SGO1: Shogoshin-1; SMAD: SMAD Family Member; SMC1A: Structural Maintenance of Chromosomes 1A; SMC3: Structural Maintenance of Chromosomes 3; SNV: Single Nucleotide Variant; SOX2: SRY-Box 2; SOX17: SRY-Box 17; SSS: Sick Sinus Syndrome; STAG2: Cohesin Subunit SA-2; TADs: Topology Associated Domains; TBX: T-box transcription factors; TGF-β: Transforming Growth Factor β; TGFBR: Transforming Growth Factor β receptor; TOF: Tetralogy of Fallot; TREK1: TREK-1 K(+) Channel Subunit; VSD: Ventricular Septal Defect; WABS: Warsaw Breakage Syndrome; WAPL: WAPL Cohesin Release Factor.
Collapse
Affiliation(s)
- Jessica Piché
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| | - Patrick Piet Van Vliet
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
| | - Michel Pucéat
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
- INSERM U-1251, MMG,Aix-Marseille University, Marseille, 13885, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
24
|
da Costa Almeida CB, Welter AT, Abech GD, Brandão GR, Flores JAM, Schüle B, Francke U, Fiegenbaum M, Zen PRG, Rosa RFM. Report of the Phenotype of a Patient with Roberts Syndrome and a Rare ESCO2 Variant. J Pediatr Genet 2019; 9:58-62. [PMID: 31976146 DOI: 10.1055/s-0039-1696636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Roberts syndrome is a rare autosomal recessive genetic disease. In this report, we report a Brazilian patient with a rare ESCO2 variant. The patient manifested a broad range of clinical findings including the significant, bilateral shortening of the extremities. He deteriorated and passed away at 20 days of age. High-resolution GTG-banded karyotype showed lack of centromeric constriction in some chromosomes, premature centromere separation in others, and repulsion of the heterochromatin regions. Molecular analysis of the ESCO2 gene revealed a deletion of 4 bp involving exon 4 in homozygosity (NM_00107420.2:c.875_878delACAG), which causes loss of ESCO2 function. We describe the clinical presentation caused by a rare ESCO2 variant.
Collapse
Affiliation(s)
| | - Amanda Thum Welter
- Department of Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel Dotta Abech
- Department of Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela Rangel Brandão
- Department of Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| | - José Antônio Monteiro Flores
- Pediatric Radiology Service, Hospital da Criança Santo Antônio/Santa Casa de Misericórdia de Porto Alegre, Rio Grande do Sul, Brazil
| | - Birgitt Schüle
- Department of Genetics and Pediatrics, Stanford University School of Medicine, California, United States
| | - Uta Francke
- Department of Genetics and Pediatrics, Stanford University School of Medicine, California, United States
| | - Marilu Fiegenbaum
- Department of Human Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ricardo Gazzola Zen
- Department of Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre and Santa Casa de Misericórdia de Porto Alegre, Rio Grande do Sul, Brazil.,Department of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Fabiano Machado Rosa
- Department of Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre and Santa Casa de Misericórdia de Porto Alegre, Rio Grande do Sul, Brazil.,Department of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Kruszka P, Berger SI, Casa V, Dekker MR, Gaesser J, Weiss K, Martinez AF, Murdock DR, Louie RJ, Prijoles EJ, Lichty AW, Brouwer OF, Zonneveld-Huijssoon E, Stephan MJ, Hogue J, Hu P, Tanima-Nagai M, Everson JL, Prasad C, Cereda A, Iascone M, Schreiber A, Zurcher V, Corsten-Janssen N, Escobar L, Clegg NJ, Delgado MR, Hajirnis O, Balasubramanian M, Kayserili H, Deardorff M, Poot RA, Wendt KS, Lipinski RJ, Muenke M. Cohesin complex-associated holoprosencephaly. Brain 2019; 142:2631-2643. [PMID: 31334757 PMCID: PMC7245359 DOI: 10.1093/brain/awz210] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21. Using whole mount in situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally, we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2, SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median forebrain development and X-linked inheritance patterns in holoprosencephaly.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth I Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Jenna Gaesser
- Department of Pediatrics, Division of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karin Weiss
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Murdock
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raymond J Louie
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Eloise J Prijoles
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Angie W Lichty
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Oebele F Brouwer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Stephan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jacob Hogue
- Division of Clinical Genetics, Department of Pediatrics, Madigan Army Hospital, Tacoma, WA, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Momoko Tanima-Nagai
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Chitra Prasad
- Children’s Health Research Institute, London, ON, Canada
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Vickie Zurcher
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luis Escobar
- Peyton Manning Children’s Hospital at St. Vincent, Medical Genetics and Neurodevelopment Center, Indianapolis, IN, USA
| | - Nancy J Clegg
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Mauricio R Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics UT Southwestern Medical Center Dallas, TX, USA
| | - Omkar Hajirnis
- Pediatric Neurology, Synapses Child Neurology and Development Centre, Thane, Maharashtra, India
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children’s, NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, University of Sheffield, Sheffield, UK
| | - Hülya Kayserili
- Medical Genetics, Medical Faculty, Koç University, Istanbul, Turkey
| | - Matthew Deardorff
- The Division of Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
McKay MJ, Craig J, Kalitsis P, Kozlov S, Verschoor S, Chen P, Lobachevsky P, Vasireddy R, Yan Y, Ryan J, McGillivray G, Savarirayan R, Lavin MF, Ramsay RG, Xu H. A Roberts Syndrome Individual With Differential Genotoxin Sensitivity and a DNA Damage Response Defect. Int J Radiat Oncol Biol Phys 2019; 103:1194-1202. [PMID: 30508616 DOI: 10.1016/j.ijrobp.2018.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/14/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Roberts syndrome (RBS) is a rare, recessively transmitted developmental disorder characterized by growth retardation, craniofacial abnormalities, and truncation of limbs. All affected individuals to date have mutations in the ESCO2 (establishment of cohesion 2) gene, a key regulator of the cohesin complex, which is involved in sister chromatid cohesion and DNA double-strand break (DSB) repair. Here we characterize DNA damage responses (DDRs) for the first time in an RBS-affected family. METHODS AND MATERIALS Lymphoblastoid cell lines were established from an RBS family, including the proband and parents carrying ESCO2 mutations. Various DDR assays were performed on these cells, including cell survival, chromosome break, and apoptosis assays; checkpoint activation indicators; and measures of DNA breakage and repair. RESULTS Cells derived from the RBS-affected individual showed sensitivity to ionizing radiation (IR) and mitomycin C-induced DNA damage. In this ESCO2 compound heterozygote, other DDRs were also defective, including enhanced IR-induced clastogenicity and apoptosis; increased DNA DSB induction; and a reduced capacity for repairing IR-induced DNA DSBs, as measured by γ-H2AX foci and the comet assay. CONCLUSIONS In addition to its developmental features, RBS can be, like ataxia telangiectasia, considered a DDR-defective syndrome, which contributes to its cellular, molecular, and clinical phenotype.
Collapse
Affiliation(s)
- Michael J McKay
- Olivia Newton-John Cancer Research Institute and Austin Health, Heidelberg, Victoria, Australia; Latrobe University, Bundoora, Victoria, Australia
| | - Jeffery Craig
- School of Medicine, Deakin University, Geelong Waurn Campus, Geelong, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paul Kalitsis
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Sergei Kozlov
- University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland, Australia
| | - Sandra Verschoor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Phillip Chen
- University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland, Australia
| | - Pavel Lobachevsky
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Raja Vasireddy
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yuqian Yan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jacinta Ryan
- School of Medicine, Flinders University, Adelaide, South Australia, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland, Australia
| | - Robert G Ramsay
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Huiling Xu
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia; College of Life Sciences, Shanxi Normal University, Linfen, Shanxi, China.
| |
Collapse
|
27
|
Colombo EA, Mutlu-Albayrak H, Shafeghati Y, Balasar M, Piard J, Gentilini D, Di Blasio AM, Gervasini C, Van Maldergem L, Larizza L. Phenotypic Overlap of Roberts and Baller-Gerold Syndromes in Two Patients With Craniosynostosis, Limb Reductions, and ESCO2 Mutations. Front Pediatr 2019; 7:210. [PMID: 31192177 PMCID: PMC6546804 DOI: 10.3389/fped.2019.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/08/2019] [Indexed: 11/19/2022] Open
Abstract
Baller-Gerold (BGS, MIM#218600) and Roberts (RBS, MIM#268300) syndromes are rare autosomal recessive disorders caused, respectively, by biallelic alterations in RECQL4 (MIM*603780) and ESCO2 (MIM*609353) genes. Common features are severe growth retardation, limbs shortening and craniofacial abnormalities which may include craniosynostosis. We aimed at unveiling the genetic lesions underpinning the phenotype of two unrelated children with a presumptive BGS diagnosis: patient 1 is a Turkish girl with short stature, microcephaly, craniosynostosis, seizures, intellectual disability, midface hemangioma, bilateral radial and thumb aplasia, tibial hypoplasia, and pes equinovarus. Patient 2 is an Iranian girl born to consanguineous parents with craniosynostosis, micrognathism, bilateral radial aplasia, thumbs, and foot deformity in the context of developmental delay. Upon negative RECQL4 test, whole exome sequencing (WES) analysis performed on the two trios led to the identification of two different ESCO2 homozygous inactivating variants: a previously described c.1131+1G>A transition in patient 1 and an unreported deletion, c.417del, in patient 2, thus turning the diagnosis into Roberts syndrome. The occurrence of a Baller-Gerold phenotype in two unrelated patients that were ultimately diagnosed with RBS demonstrates the strength of WES in redefining the nosological landscape of rare congenital malformation syndromes, a premise to yield optimized patients management and family counseling.
Collapse
Affiliation(s)
- Elisa Adele Colombo
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Hatice Mutlu-Albayrak
- Department of Pediatric Genetics, Cengiz Gökcek Maternity and Children's Hospital, Gaziantep, Turkey
| | - Yousef Shafeghati
- Sarem Cell Research Center and Medical Genetics Department, Sarem Women Hospital, Tehran, Iran
| | - Mine Balasar
- Department of Medical Genetics, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Juliette Piard
- Centre de génétique humaine CHU, Université de Franche-Comté, Besançon, France
| | - Davide Gentilini
- Laboratorio di Biologia Molecolare, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Anna Maria Di Blasio
- Laboratorio di Biologia Molecolare, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Cristina Gervasini
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | | | - Lidia Larizza
- Laboratorio di Citogenetica e Genetica Molecolare Umana, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
28
|
Ivanov MP, Ladurner R, Poser I, Beveridge R, Rampler E, Hudecz O, Novatchkova M, Hériché JK, Wutz G, van der Lelij P, Kreidl E, Hutchins JR, Axelsson-Ekker H, Ellenberg J, Hyman AA, Mechtler K, Peters JM. The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J 2018; 37:e97150. [PMID: 29930102 PMCID: PMC6068434 DOI: 10.15252/embj.201797150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2-7 subcomplex of the replicative Cdc45-MCM-GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.
Collapse
Affiliation(s)
| | - Rene Ladurner
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Evelyn Rampler
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Otto Hudecz
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | | | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | - Jan Ellenberg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna, Austria
- Institute of Molecular Biotechnology, Vienna, Austria
| | | |
Collapse
|
29
|
Vanlerberghe C, Boutry N, Petit F. Genetics of patella hypoplasia/agenesis. Clin Genet 2018; 94:43-53. [PMID: 29322497 DOI: 10.1111/cge.13209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
The patella is a sesamoid bone, crucial for knee stability. When absent or hypoplastic, recurrent knee subluxations, patellofemoral dysfunction and early gonarthrosis may occur. Patella hypoplasia/agenesis may be isolated or observed in syndromic conditions, either as the main clinical feature (Nail-patella syndrome, small patella syndrome), as a clue feature which can help diagnosis assessment, or as a background feature that may be disregarded. Even in the latter, the identification of patella anomalies is important for an appropriate patient management. We review the clinical characteristics of these rare diseases, provide guidance to facilitate the diagnosis and discuss how the genes involved could affect patella development.
Collapse
Affiliation(s)
- C Vanlerberghe
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Clinique de Génétique Médicale, Lille, France
| | - N Boutry
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Service de Radiopédiatrie, Lille, France
| | - F Petit
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Clinique de Génétique Médicale, Lille, France
| |
Collapse
|
30
|
Abe T, Kawasumi R, Arakawa H, Hori T, Shirahige K, Losada A, Fukagawa T, Branzei D. Chromatin determinants of the inner-centromere rely on replication factors with functions that impart cohesion. Oncotarget 2018; 7:67934-67947. [PMID: 27636994 PMCID: PMC5356530 DOI: 10.18632/oncotarget.11982] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/06/2016] [Indexed: 01/08/2023] Open
Abstract
Replication fork-associated factors promote genome integrity and protect against cancer. Mutations in the DDX11 helicase and the ESCO2 acetyltransferase also cause related developmental disorders classified as cohesinopathies. Here we generated vertebrate model cell lines of these disorders and cohesinopathies-related genes. We found that vertebrate DDX11 and Tim-Tipin are individually needed to compensate for ESCO2 loss in chromosome segregation, with DDX11 also playing complementary roles with ESCO2 in centromeric cohesion. Our study reveals that overt centromeric cohesion loss does not necessarily precede chromosome missegregation, while both these problems correlate with, and possibly originate from, inner-centromere defects involving reduced phosphorylation of histone H3T3 (pH3T3) in the region. Interestingly, the mitotic pH3T3 mark was defective in all analyzed replication-related mutants with functions in cohesion. The results pinpoint mitotic pH3T3 as a postreplicative chromatin mark that is sensitive to replication stress and conducts with different kinetics to robust centromeric cohesion and correct chromosome segregation.
Collapse
Affiliation(s)
- Takuya Abe
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Ryotaro Kawasumi
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy.,Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa, Hachioji-shi, Tokyo, Japan
| | - Hiroshi Arakawa
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi Bunkyo-Ku, Tokyo, Japan
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Dana Branzei
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| |
Collapse
|
31
|
Banerji R, Skibbens RV, Iovine MK. Cohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome. Biol Open 2017; 6:1802-1813. [PMID: 29084713 PMCID: PMC5769645 DOI: 10.1242/bio.026013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Robert syndrome (RBS) and Cornelia de Lange syndrome (CdLS) are human developmental disorders characterized by craniofacial deformities, limb malformation and mental retardation. These birth defects are collectively termed cohesinopathies as both arise from mutations in cohesion genes. CdLS arises due to autosomal dominant mutations or haploinsufficiencies in cohesin subunits (SMC1A, SMC3 and RAD21) or cohesin auxiliary factors (NIPBL and HDAC8) that result in transcriptional dysregulation of developmental programs. RBS arises due to autosomal recessive mutations in cohesin auxiliary factor ESCO2, the gene that encodes an N-acetyltransferase which targets the SMC3 subunit of the cohesin complex. The mechanism that underlies RBS, however, remains unknown. A popular model states that RBS arises due to mitotic failure and loss of progenitor stem cells through apoptosis. Previous findings in the zebrafish regenerating fin, however, suggest that Esco2-knockdown results in transcription dysregulation, independent of apoptosis, similar to that observed in CdLS patients. Previously, we used the clinically relevant CX43 to demonstrate a transcriptional role for Esco2. CX43 is a gap junction gene conserved among all vertebrates that is required for direct cell-cell communication between adjacent cells such that cx43 mutations result in oculodentodigital dysplasia. Here, we show that morpholino-mediated knockdown of smc3 reduces cx43 expression and perturbs zebrafish bone and tissue regeneration similar to those previously reported for esco2 knockdown. Also similar to Esco2-dependent phenotypes, Smc3-dependent bone and tissue regeneration defects are rescued by transgenic Cx43 overexpression, suggesting that Smc3 and Esco2 cooperatively act to regulate cx43 transcription. In support of this model, chromatin immunoprecipitation assays reveal that Smc3 binds to a discrete region of the cx43 promoter, suggesting that Esco2 exerts transcriptional regulation of cx43 through modification of Smc3 bound to the cx43 promoter. These findings have the potential to unify RBS and CdLS as transcription-based mechanisms.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
32
|
Zhou J, Yang X, Jin X, Jia Z, Lu H, Qi Z. Long-term survival after corrective surgeries in two patients with severe deformities due to Roberts syndrome: A Case report and review of the literature. Exp Ther Med 2017; 15:1702-1711. [PMID: 29434756 DOI: 10.3892/etm.2017.5592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/25/2017] [Indexed: 11/06/2022] Open
Abstract
Roberts syndrome (RBS; OMIM 268300) is a rare autosomal recessive disease characterized by retardation before and after birth, cranial and maxillofacial deformities, limb anomalies and intellectual disability. Mutations in the establishment of cohesion 1 homologue 2 (ESCO2) gene on chromosome 8p21.1 have been found to be causative for RBS. We describe two patients with RBS with physical deformities and ll. One is an 8-year-old Yemeni male, and the other is his 13-year-old sister. These patients were diagnosed with RBS and underwent surgeries during their first to third years of life. Here, we present the cases for the two patients, focusing specifically on their surgical management and outcomes. Additionally, by reviewing the literature on RBS, we also summarize the proper surgical interventions for this rare disease. This paper describes the long-term follow-up of two patients with severe deformities who benefitted from corrective surgeries. The findings of this study indicate that patients who survive infancy and reach adulthood, even patients who present with severe disease symptoms, can benefit from corrective surgeries and lead better lives.
Collapse
Affiliation(s)
- Jing Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, P.R. China
| | - Xiaonan Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, P.R. China
| | - Xiaolei Jin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, P.R. China
| | - Zhenhua Jia
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, P.R. China
| | - Haibin Lu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, P.R. China
| | - Zuoliang Qi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, P.R. China
| |
Collapse
|
33
|
Banerji R, Skibbens RV, Iovine MK. How many roads lead to cohesinopathies? Dev Dyn 2017; 246:881-888. [PMID: 28422453 DOI: 10.1002/dvdy.24510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 12/16/2023] Open
Abstract
Genetic mapping studies reveal that mutations in cohesion pathways are responsible for multispectrum developmental abnormalities termed cohesinopathies. These include Roberts syndrome (RBS), Cornelia de Lange Syndrome (CdLS), and Warsaw Breakage Syndrome (WABS). The cohesinopathies are characterized by overlapping phenotypes ranging from craniofacial deformities, limb defects, and mental retardation. Though these syndromes share a similar suite of phenotypes and arise due to mutations in a common cohesion pathway, the underlying mechanisms are currently believed to be distinct. Defects in mitotic failure and apoptosis i.e. trans DNA tethering events are believed to be the underlying cause of RBS, whereas the underlying cause of CdLS is largely modeled as occurring through defects in transcriptional processes i.e. cis DNA tethering events. Here, we review recent findings described primarily in zebrafish, paired with additional studies in other model systems, including human patient cells, which challenge the notion that cohesinopathies represent separate syndromes. We highlight numerous studies that illustrate the utility of zebrafish to provide novel insights into the phenotypes, genes affected and the possible mechanisms underlying cohesinopathies. We propose that transcriptional deregulation is the predominant mechanism through which cohesinopathies arise. Developmental Dynamics 246:881-888, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
34
|
Lu Y, Dai X, Zhang M, Miao Y, Zhou C, Cui Z, Xiong B. Cohesin acetyltransferase Esco2 regulates SAC and kinetochore functions via maintaining H4K16 acetylation during mouse oocyte meiosis. Nucleic Acids Res 2017; 45:9388-9397. [PMID: 28934466 PMCID: PMC5766191 DOI: 10.1093/nar/gkx563] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 01/11/2023] Open
Abstract
Sister chromatid cohesion, mediated by cohesin complex and established by the acetyltransferases Esco1 and Esco2, is essential for faithful chromosome segregation. Mutations in Esco2 cause Roberts syndrome, a developmental disease characterized by severe prenatal retardation as well as limb and facial abnormalities. However, its exact roles during oocyte meiosis have not clearly defined. Here, we report that Esco2 localizes to the chromosomes during oocyte meiotic maturation. Depletion of Esco2 by morpholino microinjection leads to the precocious polar body extrusion, the escape of metaphase I arrest induced by nocodazole treatment and the loss of BubR1 from kinetochores, indicative of inactivated SAC. Furthermore, depletion of Esco2 causes a severely impaired spindle assembly and chromosome alignment, accompanied by the remarkably elevated incidence of defective kinetochore-microtubule attachments which consequently lead to the generation of aneuploid eggs. Notably, we find that the involvement of Esco2 in SAC and kinetochore functions is mediated by its binding to histone H4 and acetylation of H4K16 both in vivo and in vitro. Thus, our data assign a novel meiotic function to Esco2 beyond its role in the cohesion establishment during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
35
|
Chao WCH, Wade BO, Bouchoux C, Jones AW, Purkiss AG, Federico S, O’Reilly N, Snijders AP, Uhlmann F, Singleton MR. Structural Basis of Eco1-Mediated Cohesin Acetylation. Sci Rep 2017; 7:44313. [PMID: 28290497 PMCID: PMC5349539 DOI: 10.1038/srep44313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
Sister-chromatid cohesion is established by Eco1-mediated acetylation on two conserved tandem lysines in the cohesin Smc3 subunit. However, the molecular basis of Eco1 substrate recognition and acetylation in cohesion is not fully understood. Here, we discover and rationalize the substrate specificity of Eco1 using mass spectrometry coupled with in-vitro acetylation assays and crystallography. Our structures of the X. laevis Eco2 (xEco2) bound to its primary and secondary Smc3 substrates demonstrate the plasticity of the substrate-binding site, which confers substrate specificity by concerted conformational changes of the central β hairpin and the C-terminal extension.
Collapse
Affiliation(s)
- William C. H. Chao
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin O. Wade
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrew W. Jones
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrew G. Purkiss
- Structural Biology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefania Federico
- Peptide Chemistry Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicola O’Reilly
- Peptide Chemistry Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P. Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Martin R. Singleton
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
36
|
Borrie MS, Campor JS, Joshi H, Gartenberg MR. Binding, sliding, and function of cohesin during transcriptional activation. Proc Natl Acad Sci U S A 2017; 114:E1062-E1071. [PMID: 28137853 PMCID: PMC5320966 DOI: 10.1073/pnas.1617309114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ring-shaped cohesin complex orchestrates long-range DNA interactions to mediate sister chromatid cohesion and other aspects of chromosome structure and function. In the yeast Saccharomyces cerevisiae, the complex binds discrete sites along chromosomes, including positions within and around genes. Transcriptional activity redistributes the complex to the 3' ends of convergently oriented gene pairs. Despite the wealth of information about where cohesin binds, little is known about cohesion at individual chromosomal binding sites and how transcription affects cohesion when cohesin complexes redistribute. In this study, we generated extrachromosomal DNA circles to study cohesion in response to transcriptional induction of a model gene, URA3. Functional cohesin complexes loaded onto the locus via a poly(dA:dT) tract in the gene promoter and mediated cohesion before induction. Upon transcription, the fate of these complexes depended on whether the DNA was circular or not. When gene activation occurred before DNA circularization, cohesion was lost. When activation occurred after DNA circularization, cohesion persisted. The presence of a convergently oriented gene also prevented transcription-driven loss of functional cohesin complexes, at least in M phase-arrested cells. The results are consistent with cohesin binding chromatin in a topological embrace and with transcription mobilizing functional complexes by sliding them along DNA.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Binding Sites
- Cell Cycle Proteins/metabolism
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Fungal/metabolism
- Chromosomes, Fungal/ultrastructure
- DNA, Circular/metabolism
- DNA, Fungal/genetics
- DNA-Binding Proteins/metabolism
- Extrachromosomal Inheritance
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genes, Reporter
- Genes, Synthetic
- Metaphase
- Multiprotein Complexes/metabolism
- Poly dA-dT/pharmacology
- Promoter Regions, Genetic/genetics
- Protein Binding
- Regulatory Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transcriptional Activation/physiology
- Cohesins
Collapse
Affiliation(s)
- Melinda S Borrie
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - John S Campor
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Hansa Joshi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Marc R Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854;
- The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
37
|
Hopfner KP. Invited review: Architectures and mechanisms of ATP binding cassette proteins. Biopolymers 2017; 105:492-504. [PMID: 27037766 DOI: 10.1002/bip.22843] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/29/2022]
Abstract
ATP binding cassette (ABC) ATPases form chemo-mechanical engines and switches that function in a broad range of biological processes. Most prominently, a very large family of integral membrane NTPases-ABC transporters-catalyzes the import or export of a diverse molecules across membranes. ABC proteins are also important components of the chromosome segregation, recombination, and DNA repair machineries and regulate or catalyze critical steps of ribosomal protein synthesis. Recent structural and mechanistic studies draw interesting architectural and mechanistic parallels between diverse ABC proteins. Here, I review this state of our understanding how NTP-dependent conformational changes of ABC proteins drive diverse biological processes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 492-504, 2016.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.,Center for Integrated Protein Science Munich, Ludwigs-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
38
|
Rivera-Colón Y, Maguire A, Liszczak GP, Olia AS, Marmorstein R. Molecular Basis for Cohesin Acetylation by Establishment of Sister Chromatid Cohesion N-Acetyltransferase ESCO1. J Biol Chem 2016; 291:26468-26477. [PMID: 27803161 PMCID: PMC5159507 DOI: 10.1074/jbc.m116.752220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Protein acetylation is a prevalent posttranslational modification that is regulated by diverse acetyltransferase enzymes. Although histone acetyltransferases (HATs) have been well characterized both structurally and mechanistically, far less is known about non-histone acetyltransferase enzymes. The human ESCO1 and ESCO2 paralogs acetylate the cohesin complex subunit SMC3 to regulate the separation of sister chromatids during mitosis and meiosis. Missense mutations within the acetyltransferase domain of these proteins correlate with diseases, including endometrial cancers and Roberts syndrome. Despite their biological importance, the mechanisms underlying acetylation by the ESCO proteins are not understood. Here, we report the X-ray crystal structure of the highly conserved zinc finger-acetyltransferase moiety of ESCO1 with accompanying structure-based mutagenesis and biochemical characterization. We find that the ESCO1 acetyltransferase core is structurally homologous to the Gcn5 HAT, but contains unique additional features including a zinc finger and an ∼40-residue loop region that appear to play roles in protein stability and SMC3 substrate binding. We identify key residues that play roles in substrate binding and catalysis, and rationalize the functional consequences of disease-associated mutations. Together, these studies reveal the molecular basis for SMC3 acetylation by ESCO1 and have broader implications for understanding the structure/function of non-histone acetyltransferases.
Collapse
Affiliation(s)
- Yadilette Rivera-Colón
- From the Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Andrew Maguire
- From the Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
- the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Glen P Liszczak
- From the Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
- the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Adam S Olia
- From the Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Ronen Marmorstein
- From the Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
- the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
39
|
Billon P, Li J, Lambert JP, Chen Y, Tremblay V, Brunzelle JS, Gingras AC, Verreault A, Sugiyama T, Couture JF, Côté J. Acetylation of PCNA Sliding Surface by Eco1 Promotes Genome Stability through Homologous Recombination. Mol Cell 2016; 65:78-90. [PMID: 27916662 DOI: 10.1016/j.molcel.2016.10.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/09/2016] [Accepted: 10/24/2016] [Indexed: 11/19/2022]
Abstract
During DNA replication, proliferating cell nuclear antigen (PCNA) adopts a ring-shaped structure to promote processive DNA synthesis, acting as a sliding clamp for polymerases. Known posttranslational modifications function at the outer surface of the PCNA ring to favor DNA damage bypass. Here, we demonstrate that acetylation of lysine residues at the inner surface of PCNA is induced by DNA lesions. We show that cohesin acetyltransferase Eco1 targets lysine 20 at the sliding surface of the PCNA ring in vitro and in vivo in response to DNA damage. Mimicking constitutive acetylation stimulates homologous recombination and robustly suppresses the DNA damage sensitivity of mutations in damage tolerance pathways. In comparison to the unmodified trimer, structural differences are observed at the interface between protomers in the crystal structure of the PCNA-K20ac ring. Thus, acetylation regulates PCNA sliding on DNA in the presence of DNA damage, favoring homologous recombination linked to sister-chromatid cohesion.
Collapse
Affiliation(s)
- Pierre Billon
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Quebec City, QC G1R 3S3, Canada
| | - Jian Li
- Department of Biological Sciences and Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA
| | - Jean-Philippe Lambert
- The Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Yizhang Chen
- Department of Biological Sciences and Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA
| | - Véronique Tremblay
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Joseph S Brunzelle
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anne-Claude Gingras
- The Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Tomohiko Sugiyama
- Department of Biological Sciences and Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA
| | - Jean-Francois Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Quebec City, QC G1R 3S3, Canada.
| |
Collapse
|
40
|
Afifi HH, Abdel-Salam GMH, Eid MM, Tosson AMS, Shousha WG, Abdel Azeem AA, Farag MK, Mehrez MI, Gaber KR. Expanding the mutation and clinical spectrum of Roberts syndrome. Congenit Anom (Kyoto) 2016; 56:154-62. [PMID: 26710928 DOI: 10.1111/cga.12151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 11/07/2015] [Accepted: 12/08/2015] [Indexed: 11/28/2022]
Abstract
Roberts syndrome and SC phocomelia syndrome are rare autosomal recessive genetic disorders representing the extremes of the spectrum of severity of the same condition, caused by mutations in ESCO2 gene. We report three new patients with Roberts syndrome from three unrelated consanguineous Egyptian families. All patients presented with growth retardation, mesomelic shortening of the limbs more in the upper than in the lower limbs and microcephaly. Patients were subjected to clinical, cytogenetic and radiologic examinations. Cytogenetic analysis showed the characteristic premature separation of centromeres and puffing of heterochromatic regions. Further, sequencing of the ESCO2 gene identified a novel mutation c.244_245dupCT (p.T83Pfs*20) in one family besides two previously reported mutations c.760_761insA (p.T254Nfs*27) and c.764_765delTT (p.F255Cfs*25). All mutations were in homozygous state, in exon 3. The severity of the mesomelic shortening of the limbs and craniofacial anomalies showed variability among patients. Interestingly, patient 1 had abnormal skin hypopigmentation. Serial fetal ultrasound examinations and measurements of long bones diagnosed two affected fetuses in two of the studied families. A literature review and case comparison was performed. In conclusion, we report a novel ESCO2 mutation and expand the clinical spectrum of Roberts syndrome.
Collapse
Affiliation(s)
- Hanan H Afifi
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Maha M Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Angie M S Tosson
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Wafaa Gh Shousha
- Chemistry Department, Biochemistry Unit, Faculty of Science, Helwan University, Cairo, Egypt
| | - Amira A Abdel Azeem
- Ophthalmic Genetics Department, Research Institute of Ophthalmology, Cairo, Egypt
| | - Mona K Farag
- Prenatal Diagnosis and Fetal Medicine Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Mennat I Mehrez
- Orodental Genetics Department, Oral and Dental Research Division, National Research Centre, Cairo, Egypt
| | - Khaled R Gaber
- Prenatal Diagnosis and Fetal Medicine Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
41
|
Malla TM, Pandith AA, Dar FA, Zargar MH. Cytogenetic diagnosis of Roberts SC phocomelia syndrome: First report from Kashmir. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Singh VP, Gerton JL. Cohesin and human disease: lessons from mouse models. Curr Opin Cell Biol 2015; 37:9-17. [PMID: 26343989 DOI: 10.1016/j.ceb.2015.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Cohesin is an evolutionarily conserved large ring-like multi-subunit protein structure that can encircle DNA. Cohesin affects many processes that occur on chromosomes such as segregation, DNA replication, double-strand break repair, condensation, chromosome organization, and gene expression. Mutations in the genes that encode cohesin and its regulators cause human developmental disorders and cancer. Several mouse models have been established with the aim of understanding the cohesin mediated processes that are disrupted in these diseases. Mouse models support the idea that cohesin is essential for cell division, but partial loss of function can alter gene expression, DNA replication and repair, gametogenesis, and nuclear organization.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|
43
|
Banerji R, Eble DM, Iovine MK, Skibbens RV. Esco2 regulates cx43 expression during skeletal regeneration in the zebrafish fin. Dev Dyn 2015; 245:7-21. [PMID: 26434741 DOI: 10.1002/dvdy.24354] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/09/2015] [Accepted: 09/24/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Roberts syndrome (RBS) is a rare genetic disorder characterized by craniofacial abnormalities, limb malformation, and often severe mental retardation. RBS arises from mutations in ESCO2 that encodes an acetyltransferase and modifies the cohesin subunit SMC3. Mutations in SCC2/NIPBL (encodes a cohesin loader), SMC3 or other cohesin genes (SMC1, RAD21/MCD1) give rise to a related developmental malady termed Cornelia de Lange syndrome (CdLS). RBS and CdLS exhibit overlapping phenotypes, but RBS is thought to arise through mitotic failure and limited progenitor cell proliferation while CdLS arises through transcriptional dysregulation. Here, we use the zebrafish regenerating fin model to test the mechanism through which RBS-type phenotypes arise. RESULTS esco2 is up-regulated during fin regeneration and specifically within the blastema. esco2 knockdown adversely affects both tissue and bone growth in regenerating fins-consistent with a role in skeletal morphogenesis. esco2-knockdown significantly diminishes cx43/gja1 expression which encodes the gap junction connexin subunit required for cell-cell communication. cx43 mutations cause the short fin (sof(b123) ) phenotype in zebrafish and oculodentodigital dysplasia (ODDD) in humans. Importantly, miR-133-dependent cx43 overexpression rescues esco2-dependent growth defects. CONCLUSIONS These results conceptually link ODDD to cohesinopathies and provide evidence that ESCO2 may play a transcriptional role critical for human development.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Diane M Eble
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
44
|
Zakari M, Yuen K, Gerton JL. Etiology and pathogenesis of the cohesinopathies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:489-504. [PMID: 25847322 PMCID: PMC6680315 DOI: 10.1002/wdev.190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/12/2023]
Abstract
Cohesin is a chromosome-associated protein complex that plays many important roles in chromosome function. Genetic screens in yeast originally identified cohesin as a key regulator of chromosome segregation. Subsequently, work by various groups has identified cohesin as critical for additional processes such as DNA damage repair, insulator function, gene regulation, and chromosome condensation. Mutations in the genes encoding cohesin and its accessory factors result in a group of developmental and intellectual impairment diseases termed 'cohesinopathies.' How mutations in cohesin genes cause disease is not well understood as precocious chromosome segregation is not a common feature in cells derived from patients with these syndromes. In this review, the latest findings concerning cohesin's function in the organization of chromosome structure and gene regulation are discussed. We propose that the cohesinopathies are caused by changes in gene expression that can negatively impact translation. The similarities and differences between cohesinopathies and ribosomopathies, diseases caused by defects in ribosome biogenesis, are discussed. The contribution of cohesin and its accessory proteins to gene expression programs that support translation suggests that cohesin provides a means of coupling chromosome structure with the translational output of cells.
Collapse
Affiliation(s)
- Musinu Zakari
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Universite Pierre et Marie Curie, Paris, France
| | - Kobe Yuen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
45
|
Lamikanra AA, Merryweather-Clarke AT, Tipping AJ, Roberts DJ. Distinct mechanisms of inadequate erythropoiesis induced by tumor necrosis factor alpha or malarial pigment. PLoS One 2015; 10:e0119836. [PMID: 25781011 PMCID: PMC4363658 DOI: 10.1371/journal.pone.0119836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022] Open
Abstract
The role of infection in erythropoietic dysfunction is poorly understood. In children with P. falciparum malaria, the by-product of hemoglobin digestion in infected red cells (hemozoin) is associated with the severity of anemia which is independent of circulating levels of the inflammatory cytokine tumor necrosis alpha (TNF-α). To gain insight into the common and specific effects of TNF-α and hemozoin on erythropoiesis, we studied the gene expression profile of purified primary erythroid cultures exposed to either TNF-α (10ng/ml) or to hemozoin (12.5μg/ml heme units) for 24 hours. Perturbed gene function was assessed using co-annotation of associated gene ontologies and expression of selected genes representative of the profile observed was confirmed by real time PCR (rtPCR). The changes in gene expression induced by each agent were largely distinct; many of the genes significantly modulated by TNF-α were not affected by hemozoin. The genes modulated by TNF-α were significantly enriched for those encoding proteins involved in the control of type 1 interferon signalling and the immune response to viral infection. In contrast, genes induced by hemozoin were significantly enriched for functional roles in regulation of transcription and apoptosis. Further analyses by rtPCR revealed that hemozoin increases expression of transcription factors that form part of the integrated stress response which is accompanied by reduced expression of genes involved in DNA repair. This study confirms that hemozoin induces cellular stress on erythroblasts that is additional to and distinct from responses to inflammatory cytokines and identifies new genes that may be involved in the pathogenesis of severe malarial anemia. More generally the respective transcription profiles highlight the varied mechanisms through which erythropoiesis may be disrupted during infectious disease.
Collapse
Affiliation(s)
- Abigail A. Lamikanra
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9BQ, United Kingdom
- National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford OX3 9BQ, United Kingdom
- * E-mail:
| | - Alison T. Merryweather-Clarke
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9BQ, United Kingdom
- National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford OX3 9BQ, United Kingdom
| | - Alex J. Tipping
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9BQ, United Kingdom
- National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford OX3 9BQ, United Kingdom
| | - David J. Roberts
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9BQ, United Kingdom
- National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford OX3 9BQ, United Kingdom
| |
Collapse
|
46
|
Dupont C, Bucourt M, Guimiot F, Kraoua L, Smiljkovski D, Le Tessier D, Lebugle C, Gerard B, Spaggiari E, Bourdoncle P, Tabet AC, Benzacken B, Dupont JM. 3D-FISH analysis reveals chromatid cohesion defect during interphase in Roberts syndrome. Mol Cytogenet 2014; 7:59. [PMID: 25320640 PMCID: PMC4197286 DOI: 10.1186/s13039-014-0059-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/21/2014] [Indexed: 01/12/2023] Open
Abstract
Background Roberts syndrome (RBS) is a rare autosomal recessive disorder mainly characterized by growth retardation, limb defects and craniofacial anomalies. Characteristic cytogenetic findings are “railroad track” appearance of chromatids and premature centromere separation in metaphase spreads. Mutations in the ESCO2 (establishment of cohesion 1 homolog 2) gene located in 8p21.1 have been found in several families. ESCO2, a member of the cohesion establishing complex, has a role in the effective cohesion between sister chromatids. In order to analyze sister chromatids topography during interphase, we performed 3D-FISH using pericentromeric heterochromatin probes of chromosomes 1, 4, 9 and 16, on preserved nuclei from a fetus with RBS carrying compound heterozygous null mutations in the ESCO2 gene. Results Along with the first observation of an abnormal separation between sister chromatids in heterochromatic regions, we observed a statistically significant change in the intranuclear localization of pericentromeric heterochromatin of chromosome 1 in cells of the fetus compared to normal cells, demonstrating for the first time a modification in the spatial arrangement of chromosome domains during interphase. Conclusion We hypothesize that the disorganization of nuclear architecture may result in multiple gene deregulations, either through disruption of DNA cis interaction –such as modification of chromatin loop formation and gene insulation - mediated by cohesin complex, or by relocation of chromosome territories. These changes may modify interactions between the chromatin and the proteins associated with the inner nuclear membrane or the pore complexes. This model offers a link between the molecular defect in cohesion and the complex phenotypic anomalies observed in RBS. Electronic supplementary material The online version of this article (doi:10.1186/s13039-014-0059-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Celine Dupont
- Unité fonctionnelle de Cytogénétique-Département de Génétique- APHP, Hôpital Robert Debré, 48 Bd Sérurier, 75935 Paris, France
| | - Martine Bucourt
- Laboratoire de Fœtopathologie- APHP, Hôpital Jean Verdier, Bondy, France
| | - Fabien Guimiot
- Service de Biologie du Développement- APHP, Hôpital Robert Debré, Paris, France ; Université Paris Diderot Sorbonne Paris Cité, UMR 1141, F-75019 Paris, France
| | - Lilia Kraoua
- Unité fonctionnelle de Génétique moléculaire - Département de Génétique- APHP, Hôpital Robert Debré, Paris, France
| | - Daniel Smiljkovski
- Génomique, Epigénétique et Physiopathologie de la Reproduction, U1016 INSERM-UMR 8104 CNRS (Institut Cochin), Université Paris Descartes, Faculté de Médecine, Paris, France ; Laboratoire de Cytogénétique- APHP, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Dominique Le Tessier
- Laboratoire de Cytogénétique- APHP, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Camille Lebugle
- Institut Cochin, Plateforme d'imagerie cellulaire, Paris, France
| | - Benedicte Gerard
- Unité fonctionnelle de Génétique moléculaire - Département de Génétique- APHP, Hôpital Robert Debré, Paris, France
| | - Emmanuel Spaggiari
- Service de Biologie du Développement- APHP, Hôpital Robert Debré, Paris, France
| | | | - Anne-Claude Tabet
- Unité fonctionnelle de Cytogénétique-Département de Génétique- APHP, Hôpital Robert Debré, 48 Bd Sérurier, 75935 Paris, France
| | - Brigitte Benzacken
- Unité fonctionnelle de Cytogénétique-Département de Génétique- APHP, Hôpital Robert Debré, 48 Bd Sérurier, 75935 Paris, France ; Service d'Histologie, Embryologie et Cytogénétique, Biologie de la Reproduction- APHP, Hôpital Jean Verdier, Bondy, France; UFR-SMBH, Paris, XIII France
| | - Jean-Michel Dupont
- Génomique, Epigénétique et Physiopathologie de la Reproduction, U1016 INSERM-UMR 8104 CNRS (Institut Cochin), Université Paris Descartes, Faculté de Médecine, Paris, France ; Laboratoire de Cytogénétique- APHP, Hôpitaux Universitaires Paris Centre, Paris, France
| |
Collapse
|
47
|
Lu S, Lee KK, Harris B, Xiong B, Bose T, Saraf A, Hattem G, Florens L, Seidel C, Gerton JL. The cohesin acetyltransferase Eco1 coordinates rDNA replication and transcription. EMBO Rep 2014; 15:609-17. [PMID: 24631914 PMCID: PMC4210108 DOI: 10.1002/embr.201337974] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 12/13/2022] Open
Abstract
Eco1 is the acetyltransferase that establishes sister-chromatid cohesion during DNA replication. A budding yeast strain with an eco1 mutation that genocopies Roberts syndrome has reduced ribosomal DNA (rDNA) transcription and a transcriptional signature of starvation. We show that deleting FOB1--a gene that encodes a replication fork-blocking protein specific for the rDNA region--rescues rRNA production and partially rescues transcription genome-wide. Further studies show that deletion of FOB1 corrects the genome-wide replication defects, nucleolar structure, and rDNA segregation that occur in the eco1 mutant. Our study highlights that the presence of cohesin at the rDNA locus has a central role in controlling global DNA replication and gene expression.
Collapse
Affiliation(s)
- Shuai Lu
- Stowers Institute for Medical ResearchKansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas City, KS, USA
| | - Kenneth K Lee
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Bethany Harris
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Bo Xiong
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Tania Bose
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Anita Saraf
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Gaye Hattem
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | | | - Chris Seidel
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical ResearchKansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas City, KS, USA
| |
Collapse
|
48
|
Xu B, Lu S, Gerton JL. Roberts syndrome: A deficit in acetylated cohesin leads to nucleolar dysfunction. Rare Dis 2014; 2:e27743. [PMID: 25054091 PMCID: PMC4091327 DOI: 10.4161/rdis.27743] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/10/2013] [Accepted: 01/06/2014] [Indexed: 12/26/2022] Open
Abstract
All living organisms must go through cycles of replicating their genetic information and then dividing the copies between two new cells. This cyclical process, in cells from bacteria and human alike, requires a protein complex known as cohesin. Cohesin is a structural maintenance of chromosomes (SMC) complex. While bacteria have one form of this complex, yeast have several SMC complexes, and humans have at least a dozen cohesin complexes alone. Therefore the ancient structure and function of SMC complexes has been both conserved and specialized over the course of evolution. These complexes play roles in replication, repair, organization, and segregation of the genome. Mutations in the genes that encode cohesin and its regulatory factors are associated with developmental disorders such as Roberts syndrome, Cornelia de Lange syndrome, and cancer. In this review, we focus on how acetylation of cohesin contributes to its function. In Roberts syndrome, the lack of cohesin acetylation contributes to nucleolar defects and translational inhibition. An understanding of basic SMC complex function will be essential to unraveling the molecular etiology of human diseases associated with defective SMC function.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research; Kansas City, MO USA
| | - Shuai Lu
- Stowers Institute for Medical Research; Kansas City, MO USA ; Department of Biochemistry and Molecular Biology; University of Kansas School of Medicine; Kansas City, KS USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research; Kansas City, MO USA ; Department of Biochemistry and Molecular Biology; University of Kansas School of Medicine; Kansas City, KS USA
| |
Collapse
|
49
|
Skibbens RV, Colquhoun JM, Green MJ, Molnar CA, Sin DN, Sullivan BJ, Tanzosh EE. Cohesinopathies of a feather flock together. PLoS Genet 2013; 9:e1004036. [PMID: 24367282 PMCID: PMC3868590 DOI: 10.1371/journal.pgen.1004036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Roberts Syndrome (RBS) and Cornelia de Lange Syndrome (CdLS) are severe developmental maladies that present with nearly an identical suite of multi-spectrum birth defects. Not surprisingly, RBS and CdLS arise from mutations within a single pathway--here involving cohesion. Sister chromatid tethering reactions that comprise cohesion are required for high fidelity chromosome segregation, but cohesin tethers also regulate gene transcription, promote DNA repair, and impact DNA replication. Currently, RBS is thought to arise from elevated levels of apoptosis, mitotic failure, and limited progenitor cell proliferation, while CdLS is thought to arise, instead, from transcription dysregulation. Here, we review new information that implicates RBS gene mutations in altered transcription profiles. We propose that cohesin-dependent transcription dysregulation may extend to other developmental maladies; the diagnoses of which are complicated through multi-functional proteins that manifest a sliding scale of diverse and severe phenotypes. We further review evidence that cohesinopathies are more common than currently posited.
Collapse
Affiliation(s)
- Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Jennifer M. Colquhoun
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Megan J. Green
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Merck, Sharp & Dohme, West Point, Pennsylvania, United States of America
| | - Cody A. Molnar
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Danielle N. Sin
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Brian J. Sullivan
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Eden E. Tanzosh
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Janssen R&D, LLC, Raritan, New Jersey, United States of America
| |
Collapse
|
50
|
Xu B, Lee KK, Zhang L, Gerton JL. Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome. PLoS Genet 2013; 9:e1003857. [PMID: 24098154 PMCID: PMC3789817 DOI: 10.1371/journal.pgen.1003857] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022] Open
Abstract
Roberts syndrome (RBS) is a human disease characterized by defects in limb and craniofacial development and growth and mental retardation. RBS is caused by mutations in ESCO2, a gene which encodes an acetyltransferase for the cohesin complex. While the essential role of the cohesin complex in chromosome segregation has been well characterized, it plays additional roles in DNA damage repair, chromosome condensation, and gene expression. The developmental phenotypes of Roberts syndrome and other cohesinopathies suggest that gene expression is impaired during embryogenesis. It was previously reported that ribosomal RNA production and protein translation were impaired in immortalized RBS cells. It was speculated that cohesin binding at the rDNA was important for nucleolar form and function. We have explored the hypothesis that reduced ribosome function contributes to RBS in zebrafish models and human cells. Two key pathways that sense cellular stress are the p53 and mTOR pathways. We report that mTOR signaling is inhibited in human RBS cells based on the reduced phosphorylation of the downstream effectors S6K1, S6 and 4EBP1, and this correlates with p53 activation. Nucleoli, the sites of ribosome production, are highly fragmented in RBS cells. We tested the effect of inhibiting p53 or stimulating mTOR in RBS cells. The rescue provided by mTOR activation was more significant, with activation rescuing both cell division and cell death. To study this cohesinopathy in a whole animal model we used ESCO2-mutant and morphant zebrafish embryos, which have developmental defects mimicking RBS. Consistent with RBS patient cells, the ESCO2 mutant embryos show p53 activation and inhibition of the TOR pathway. Stimulation of the TOR pathway with L-leucine rescued many developmental defects of ESCO2-mutant embryos. Our data support the idea that RBS can be attributed in part to defects in ribosome biogenesis, and stimulation of the TOR pathway has therapeutic potential.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Kenneth K. Lee
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Lily Zhang
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| |
Collapse
|