1
|
Murtinheira F, Farsetti E, Macedo L, Boasinha AS, Rodrigues MS, Fernandes A, Herrera F. A human microglial cell model of autosomal recessive spastic ataxia of Charlevoix-Saguenay. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167452. [PMID: 39111629 DOI: 10.1016/j.bbadis.2024.167452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Affiliation(s)
- Fernanda Murtinheira
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Elisa Farsetti
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Luana Macedo
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Sofia Boasinha
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mario S Rodrigues
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
| | - Federico Herrera
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
2
|
Azeem A, Ahmed AN, Khan N, Voutsina N, Ullah I, Ubeyratna N, Yasin M, Baple EL, Crosby AH, Rawlins LE, Saleha S. Investigating the genetic basis of hereditary spastic paraplegia and cerebellar Ataxia in Pakistani families. BMC Neurol 2024; 24:354. [PMID: 39304850 DOI: 10.1186/s12883-024-03855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Hereditary Spastic Paraplegias (HSPs) and Hereditary Cerebellar Ataxias (HCAs) are progressive neurodegenerative disorders encompassing a spectrum of neurogenetic conditions with significant overlaps of clinical features. Spastic ataxias are a group of conditions that have features of both cerebellar ataxia and spasticity, and these conditions are frequently clinically challenging to distinguish. Accurate genetic diagnosis is crucial but challenging, particularly in resource-limited settings. This study aims to investigate the genetic basis of HSPs and HCAs in Pakistani families. METHODS Families from Khyber Pakhtunkhwa with at least two members showing HSP or HCA phenotypes, and who had not previously been analyzed genetically, were included. Families were referred for genetic analysis by local neurologists based on the proband's clinical features and signs of a potential genetic neurodegenerative disorder. Whole Exome Sequencing (WES) and Sanger sequencing were then used to identify and validate genetic variants, and to analyze variant segregation within families to determine inheritance patterns. The mean age of onset and standard deviation were calculated to assess variability among affected individuals, and the success rate was compared with literature reports using differences in proportions and Cohen's h. RESULTS Pathogenic variants associated with these conditions were identified in five of eight families, segregating according to autosomal recessive inheritance. These variants included previously reported SACS c.2182 C > T, p.(Arg728*), FA2H c.159_176del, p.(Arg53_Ile58del) and SPG11 c.2146 C > T, p.(Gln716*) variants, and two previously unreported variants in SACS c.2229del, p.(Phe743Leufs*8) and ZFYVE26 c.1926_1941del, p.(Tyr643Metfs*2). Additionally, FA2H and SPG11 variants were found to have recurrent occurrences, suggesting a potential founder effect within the Pakistani population. Onset age among affected individuals ranged from 1 to 14 years (M = 6.23, SD = 3.96). The diagnostic success rate was 62.5%, with moderate effect sizes compared to previous studies. CONCLUSIONS The findings of this study expand the genotypic and phenotypic spectrum of HSPs and HCAs in Pakistan and emphasize the importance of utilizing exome/genome sequencing for accurate diagnosis or support accurate differential diagnosis. This approach can improve genetic counseling and clinical management, addressing the challenges of diagnosing neurodegenerative disorders in resource-limited settings.
Collapse
Affiliation(s)
- Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Nikol Voutsina
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Irfan Ullah
- Department of Neurology, Khyber Teaching Hospital, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Nishanka Ubeyratna
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Emma L Baple
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Lettie E Rawlins
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK.
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
3
|
Zhang H, Wang X. The Role of Protein Quantity Control in Polyglutamine Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01722-w. [PMID: 39052145 DOI: 10.1007/s12311-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) represent the most prevalent subtype of SCAs. The primary pathogenic mechanism is believed to be the gain-of-function neurotoxicity of polyQ proteins. Strategies such as enhancing the degradation or inhibiting the accumulation of these mutant proteins are pivotal for reducing their toxicity and slowing disease progression. The protein quality control (PQC) system, comprising primarily molecular chaperones and the ubiquitin‒proteasome system (UPS), is essential for maintaining protein homeostasis by regulating protein folding, trafficking, and degradation. Notably, polyQ proteins can disrupt the PQC system by sequestering its critical components and impairing its proteasomal functions. Therefore, restoring the PQC system through genetic or pharmacological interventions could potentially offer beneficial effects and alleviate the symptoms of the disease. Here, we will provide a review on the distribution, expression, and genetic or pharmacological intervention of protein quality control system in cellular or animal models of PolyQ SCAs.
Collapse
Affiliation(s)
- Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
4
|
De Ritis D, Ferrè L, De Winter J, Tremblay-Desbiens C, Blais M, Bassi MT, Dupré N, Baets J, Filippi M, Maltecca F. Reduction of sacsin levels in peripheral blood mononuclear cells as a diagnostic tool for spastic ataxia of Charlevoix-Saguenay. Brain Commun 2024; 6:fcae243. [PMID: 39091421 PMCID: PMC11291951 DOI: 10.1093/braincomms/fcae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay is a rare neurodegenerative disease caused by biallelic variants in the SACS gene encoding for sacsin. More than 200 pathogenic variants have been identified to date, most of which are missense. It is likely that the prevalence of autosomal recessive spastic ataxia of Charlevoix-Saguenay is underestimated due to the lack of an efficient diagnostic tool able to validate variants of uncertain significance. We have previously shown that sacsin is almost absent in fibroblasts of patients with autosomal recessive spastic ataxia of Charlevoix-Saguenay regardless of the type of SACS variant, because sacsin carrying missense variants is cotranslationally degraded. In this work, we aimed to establish the pathogenicity of SACS variants by quantifying sacsin protein in blood samples, with relevant implications for autosomal recessive spastic ataxia of Charlevoix-Saguenay diagnosis. We developed a protocol to assess sacsin protein levels by western blot using small amounts of peripheral blood mononuclear cells, which can be propagated in culture and cryopreserved. The study involves eight patients with autosomal recessive spastic ataxia of Charlevoix-Saguenay (including a novel case) carrying variants of different types and positions along the SACS gene and two parents who are carriers of heterozygous missense variants. We show that patients with autosomal recessive spastic ataxia of Charlevoix-Saguenay (carrying either missense or truncating variants) almost completely lacked sacsin in peripheral blood mononuclear cells. Moreover, both carriers of a SACS missense variant showed 50% reduction in sacsin protein levels compared to controls. We also describe a patient with uniparental isodisomy carrying a homozygous nonsense variant near the 3' end of the SACS gene. This resulted in a stable sacsin protein lacking the last 202 amino acids, probably due to escape of nonsense-mediated decay of mRNA. In conclusion, we have optimized a minimally invasive diagnostic tool for autosomal recessive spastic ataxia of Charlevoix-Saguenay in blood samples based on sacsin protein level assessment. Indeed, our results provide definite evidence that sacsin carrying missense pathogenic variants undergoes cotranslational degradation. The quantitative reduction in sacsin levels in the case of missense variants of uncertain significance allows defining them as pathogenic variants, something which cannot be predicted bioinformatically with high certainty.
Collapse
Affiliation(s)
- Daniele De Ritis
- Mitochondrial Dysfunctions in Neurodegeneration Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Laura Ferrè
- Department of Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Jonathan De Winter
- Institute Born-Bunge and Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, 2610 Antwerp, Belgium
| | | | - Mathieu Blais
- Neuroscience Axis, CHU de Québec, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Maria Teresa Bassi
- Laboratory of Medical Genetics, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Nicolas Dupré
- Neuroscience Axis, CHU de Québec, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Jonathan Baets
- Institute Born-Bunge and Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, 2610 Antwerp, Belgium
| | - Massimo Filippi
- Department of Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Francesca Maltecca
- Mitochondrial Dysfunctions in Neurodegeneration Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| |
Collapse
|
5
|
Perdiguero P, Jiménez-Barrios P, Morel E, Abós B, Tafalla C. Single-cell atlas of rainbow trout peripheral blood leukocytes and profiling of their early response to infectious pancreatic necrosis virus. Front Immunol 2024; 15:1404209. [PMID: 39035000 PMCID: PMC11258392 DOI: 10.3389/fimmu.2024.1404209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
The recent development of single cell sequencing technologies has revolutionized the state-of-art of cell biology, allowing the simultaneous measurement of thousands of genes in single cells. This technology has been applied to study the transcriptome of single cells in homeostasis and also in response to pathogenic exposure, greatly increasing our knowledge of the immune response to infectious agents. Yet the number of these studies performed in aquacultured fish species is still very limited. Thus, in the current study, we have used the 10x Genomics single cell RNA sequencing technology to study the response of rainbow trout (Oncorhynchus mykiss) peripheral blood leukocytes (PBLs) to infectious pancreatic necrosis virus (IPNV), an important trout pathogen. The study allowed us to obtain a transcriptomic profile of 12 transcriptionally distinct leukocyte cell subpopulations that included four different subsets of B cells, T cells, monocytes, two populations of dendritic-like cells (DCs), hematopoietic progenitor cells, non-specific cytotoxic cells (NCC), neutrophils and thrombocytes. The transcriptional pattern of these leukocyte subpopulations was compared in PBL cultures that had been exposed in vitro to IPNV for 24 h and mock-infected cultures. Our results revealed that monocytes and neutrophils showed the highest number of upregulated protein-coding genes in response to IPNV. Interestingly, IgM+IgD+ and IgT+ B cells also upregulated an important number of genes to the virus, but a much fainter response was observed in ccl4 + or plasma-like cells (irf4 + cells). A substantial number of protein-coding genes and genes coding for ribosomal proteins were also transcriptionally upregulated in response to IPNV in T cells and thrombocytes. Interestingly, although genes coding for ribosomal proteins were regulated in all affected PBL subpopulations, the number of such genes transcriptionally regulated was higher in IgM+IgD+ and IgT+ B cells. A further analysis dissected which of the regulated genes were common and which were specific to the different cell clusters, identifying eight genes that were transcriptionally upregulated in all the affected groups. The data provided constitutes a comprehensive transcriptional perspective of how the different leukocyte populations present in blood respond to an early viral encounter in fish.
Collapse
Affiliation(s)
- Pedro Perdiguero
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Pablo Jiménez-Barrios
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Esther Morel
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Beatriz Abós
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
6
|
Chille EE, Stephens TG, Misri D, Strand EL, Putnam HM, Bhattacharya D. Gene expression response under thermal stress in two Hawaiian corals is dominated by ploidy and genotype. Ecol Evol 2024; 14:e70037. [PMID: 39050655 PMCID: PMC11268936 DOI: 10.1002/ece3.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Transcriptome data are frequently used to investigate coral bleaching; however, the factors controlling gene expression in natural populations of these species are poorly understood. We studied two corals, Montipora capitata and Pocillopora acuta, that inhabit the sheltered Kāne'ohe Bay, Hawai'i. M. capitata colonies in the bay are outbreeding diploids, whereas P. acuta is a mixture of clonal diploids and triploids. Populations were sampled from six reefs and subjected to either control (no stress), thermal stress, pH stress, or combined pH and thermal stress treatments. RNA-seq data were generated to test two competing hypotheses: (1) gene expression is largely independent of genotype, reflecting a shared treatment-driven response (TDE) or, (2) genotype dominates gene expression, regardless of treatment (GDE). Our results strongly support the GDE model, even under severe stress. We suggest that post-transcriptional processes (e.g., control of translation, protein turnover) modify the signal from the transcriptome, and may underlie the observed differences in coral bleaching sensitivity via the downstream proteome and metabolome.
Collapse
Affiliation(s)
- Erin E. Chille
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Timothy G. Stephens
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Deeksha Misri
- Department of GeneticsRutgers UniversityNew BrunswickNew JerseyUSA
| | - Emma L. Strand
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
- Gloucester Marine Genomics InstituteGloucesterMassachusettsUSA
| | - Hollie M. Putnam
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | | |
Collapse
|
7
|
Sng KS, Sin YS, Alhawiti SMO. Jiao's style scalp acupuncture combined with physiotherapy for autosomal recessive spastic ataxia of Charlevoix-Saguenay type: A case report. Heliyon 2024; 10:e33046. [PMID: 39005899 PMCID: PMC11239588 DOI: 10.1016/j.heliyon.2024.e33046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
We present a case study of an 8-year-old girl with autosomal recessive spastic ataxia of Charlevoix-Saguenay, who experienced gait imbalance since the age of two. Magnetic resonance imaging of the brain and whole spine, as well as electroencephalography, revealed no abnormalities. However, genetic testing identified a likely pathogenic variant and an uncertain significance in the heterozygous state of the Sacsin Molecular Chaperone gene. Despite treatment with epileptic and antiparkinsonian medications, along with supplements, no significant improvements were observed. Subsequently, the patient underwent eight sessions of physiotherapy before starting with 14 sessions of combined Jiao's style scalp acupuncture targeting the motor and chorea-tremor areas with physiotherapy treatment. Positive changes were noted in the Trunk Control Measurement Scale (TCMS) and Pediatric Balance Scale (PBS) after three sessions of combined treatments from 25 to 36 and 21 to 43 respectively. Further combined treatments showed consistent improvements where the TCMS reached a peak of 57 out of 58 and PBS showed a peak of 54 out of 58 at the 6th month of combined treatment. This suggests that the combination of scalp acupuncture with physiotherapy treatment may provide improvement in the balance and gait of patients with ARSACS. More similar cases should be documented to better understand the potential benefits and synergies of both treatments of ARSACS.
Collapse
Affiliation(s)
- Kim Sia Sng
- Department of Chinese Medicine, School of Alternative and Complementary Medicine, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yen Suan Sin
- Department of Chinese Medicine, School of Alternative and Complementary Medicine, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Salma Musallam O Alhawiti
- Department of Chinese Medicine, School of Alternative and Complementary Medicine, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Pi BK, Chung YH, Kim HS, Nam SH, Lee AJ, Nam DE, Park HJ, Kim SB, Chung KW, Choi BO. Compound Heterozygous Mutations of SACS in a Korean Cohort Study of Charcot-Marie-Tooth Disease Concurrent Cerebellar Ataxia and Spasticity. Int J Mol Sci 2024; 25:6378. [PMID: 38928084 PMCID: PMC11204044 DOI: 10.3390/ijms25126378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Mutations in the SACS gene are associated with autosomal recessive spastic ataxia of Charlevoix-Saguenay disease (ARSACS) or complex clinical phenotypes of Charcot-Marie-Tooth disease (CMT). This study aimed to identify SACS mutations in a Korean CMT cohort with cerebellar ataxia and spasticity by whole exome sequencing (WES). As a result, eight pathogenic SACS mutations in four families were identified as the underlying causes of these complex phenotypes. The prevalence of CMT families with SACS mutations was determined to be 0.3%. All the patients showed sensory, motor, and gait disturbances with increased deep tendon reflexes. Lower limb magnetic resonance imaging (MRI) was performed in four patients and all had fatty replacements. Of note, they all had similar fatty infiltrations between the proximal and distal lower limb muscles, different from the neuromuscular imaging feature in most CMT patients without SACS mutations who had distal dominant fatty involvement. Therefore, these findings were considered a characteristic feature in CMT patients with SACS mutations. Although further studies with more cases are needed, our results highlight lower extremity MRI findings in CMT patients with SACS mutations and broaden the clinical spectrum. We suggest screening for SACS in recessive CMT patients with complex phenotypes of ataxia and spasticity.
Collapse
Affiliation(s)
- Byung Kwon Pi
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Yeon Hak Chung
- Department of Neurology, Korea University Guro Hospital, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea;
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Soo Hyun Nam
- Cell and Gene Therapy Institute, Samsung Medical Center, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Da Eun Nam
- Department of Domestic Business, Macrogen, Inc., 238 Teheran-ro, Gangnam-gu, Seoul 06221, Republic of Korea;
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, College of Medicine, Yonsei University, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Republic of Korea;
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea;
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Byung-Ok Choi
- Cell and Gene Therapy Institute, Samsung Medical Center, Gangnam-gu, Seoul 06351, Republic of Korea;
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwonr-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
9
|
Pandey M, Karmakar V, Majie A, Dwivedi M, Md S, Gorain B. The SH-SY5Y cell line: a valuable tool for Parkinson's disease drug discovery. Expert Opin Drug Discov 2024; 19:303-316. [PMID: 38112196 DOI: 10.1080/17460441.2023.2293158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Owing to limited efficient treatment strategies for highly prevalent and distressing Parkinson's disease (PD), an impending need emerged for deciphering new modes and mechanisms for effective management. SH-SY5Y-based in vitro neuronal models have emerged as a new possibility for the elucidation of cellular and molecular processes in the pathogenesis of PD. SH-SY5Y cells are of human origin, adhered to catecholaminergic neuronal attributes, which consequences in imparting wide acceptance and significance to this model over conventional in vitro PD models for high-throughput screening of therapeutics. AREAS COVERED Herein, the authors review the SH-SY5Y cell line and its value to PD research. The authors also provide the reader with their expert perspectives on how these developments can lead to the development of new impactful therapeutics. EXPERT OPINION Encouraged by recent research on SH-SY5Y cell lines, it was envisaged that this in vitro model can serve as a primary model for assessing efficacy and toxicity of new therapeutics as well as for nanocarriers' capacity in delivering therapeutic agents across BBB. Considering the proximity with human neuronal environment as in pathogenic PD conditions, SH-SY5Y cell lines vindicated consistency and reproducibility in experimental results. Accordingly, exploitation of this standardized SH-SY5Y cell line can fast-track the drug discovery and development path for novel therapeutics.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
10
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
- Federica Pilotto
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Andrea Del Bondio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
11
|
Kim D, Ryoo N, Park YH, Bagyinszky E, An SSA, Kim S. A Novel Mutation in Sacsin, p.Val1335IIe, May Cause Late-Onset Sacsinopathy Due to Haploinsufficiency. Curr Issues Mol Biol 2023; 45:9917-9925. [PMID: 38132465 PMCID: PMC10741900 DOI: 10.3390/cimb45120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Autosomal recessive spastic ataxia in Charlevoix-Saguenay (ARSACS) is a neurodegenerative disorder caused by mutations in the sacsin molecular chaperone protein (SACS) gene. Since the first report from Quebec in 1978, many pathogenic ARSACS variants with significantly reduced chaperone activities have been reported worldwide in adolescents, with presumably altered protein folding. In this study, a novel SACS mutation (p.Val1335IIe, Heterozygous) was identified in a Korean patient in their 50s with late-onset ARSACS characterized by cerebellar ataxia and spasticity without peripheral neuropathy. The mutation was confirmed via whole exome sequencing and Sanger sequencing and was predicted to likely cause disease using prediction software. RT-PCR and ELISA showed decreased SACS mRNA expression and sacsin protein concentrations in the proband, supporting its implications in diseases with pathogenicity and reduced chaperone function from haploinsufficiency. Our results revealed the pathogenicity of the SACS Val1335IIe mutation in the proband patient's disease manifestation, even though the symptoms had a limited correlation with the typical ARSACS clinical triad, which could be due to the reduced chaperon function from haploinsufficiency. Furthermore, our study suggests that variants of SACS heterozygosity may have diverse symptoms, with a wide range of disease onsets for late-onset sacsinopathy.
Collapse
Affiliation(s)
- Danyeong Kim
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Nayoung Ryoo
- Department of Neurology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea;
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Eva Bagyinszky
- Graduate School of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea;
| | | | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| |
Collapse
|
12
|
Ekenstedt KJ, Minor KM, Shelton GD, Hammond JJ, Miller AD, Taylor SM, Huang Y, Mickelson JR. A SACS deletion variant in Great Pyrenees dogs causes autosomal recessive neuronal degeneration. Hum Genet 2023; 142:1587-1601. [PMID: 37758910 PMCID: PMC10602964 DOI: 10.1007/s00439-023-02599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
ARSACS (autosomal recessive spastic ataxia of Charlevoix-Saguenay) is a human neurological disorder characterized by progressive cerebellar ataxia and peripheral neuropathy. A recently recognized disorder in Great Pyrenees dogs is similarly characterized by widespread central nervous system degeneration leading to progressive cerebellar ataxia and spasticity, combined with peripheral neuropathy. Onset of clinical signs occurred in puppies as young as 4 months of age, with slow progression over several years. A multi-generation pedigree suggested an autosomal recessive mode of inheritance. Histopathology revealed consistent cerebellar Purkinje cell degeneration, neuronal degeneration in brainstem nuclei, widespread spinal cord white matter degeneration, ganglion cell degeneration, inappropriately thin myelin sheaths or fully demyelinated peripheral nerve fibers, and normal or only mild patterns of denervation atrophy in skeletal muscles. Genome-wide single nucleotide polymorphism (SNP) genotype data was collected from 6 cases and 26 controls, where homozygosity mapping identified a 3.3 Mb region on CFA25 in which all cases were homozygous and all controls were either heterozygous or homozygous for alternate haplotypes. This region tagged the SACS gene where variants are known to cause ARSACS. Sanger sequencing of SACS in affected dogs identified a 4 bp deletion that causes a frame shift and truncates 343 amino acids from the C terminus of the encoded sacsin protein (p.Val4244AlafsTer32). Our clinical and histopathological descriptions of this canine disorder contribute to the description of human ARSACS and represents the first naturally occurring large animal model of this disorder.
Collapse
Affiliation(s)
- Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, Lynn Hall, 625 Harrison Street, West Lafayette, IN, 47907, USA.
| | - Katie M Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - James J Hammond
- Department of Neurology, Pieper Memorial Veterinary Center, Middletown, CT, 06457, USA
| | - Andrew D Miller
- Section of Anatomic Pathology, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Susan M Taylor
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Yanyun Huang
- Prairie Diagnostic Services, Inc., Saskatoon, SK, S7N 5B4, Canada
| | - James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
13
|
Zaman Q, Khan MA, Sahar K, Rehman G, Khan H, Rehman M, Najumuddin, Ahmad I, Tariq M, Muthaffar OY, Abdulkareem AA, Bibi F, Naseer MI, Faisal MS, Wasif N, Jelani M. Novel Variants in MPV17, PRX, GJB1, and SACS Cause Charcot-Marie-Tooth and Spastic Ataxia of Charlevoix-Saguenay Type Diseases. Genes (Basel) 2023; 14:328. [PMID: 36833258 PMCID: PMC9956329 DOI: 10.3390/genes14020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) and autosomal recessive spastic ataxia of Charlevoix-Saguenay type (ARSACS) are large heterogeneous groups of sensory, neurological genetic disorders characterized by sensory neuropathies, muscular atrophies, abnormal sensory conduction velocities, and ataxia. CMT2EE (OMIM: 618400) is caused by mutations in MPV17 (OMIM: 137960), CMT4F (OMIM: 614895) is caused by PRX (OMIM: 605725), CMTX1 (OMIM: 302800) is caused by mutations in GJB1 (OMIM: 304040), and ARSACS (OMIM: 270550) is caused by mutations in SACS (OMIM: 604490). In this study, we enrolled four families: DG-01, BD-06, MR-01, and ICP-RD11, with 16 affected individuals, for clinical and molecular diagnoses. One patient from each family was analyzed for whole exome sequencing and Sanger sequencing was done for the rest of the family members. Affected individuals of families BD-06 and MR-01 show complete CMT phenotypes and family ICP-RD11 shows ARSACS type. Family DG-01 shows complete phenotypes for both CMT and ARSACS types. The affected individuals have walking difficulties, ataxia, distal limb weakness, axonal sensorimotor neuropathies, delayed motor development, pes cavus, and speech articulations with minor variations. The WES analysis in an indexed patient of family DG-01 identified two novel variants: c.83G>T (p.Gly28Val) in MPV17 and c.4934G>C (p.Arg1645Pro) in SACS. In family ICP-RD11, a recurrent mutation that causes ARSACS, c.262C>T (p.Arg88Ter) in SACS, was identified. Another novel variant, c.231C>A (p.Arg77Ter) in PRX, which causes CMT4F, was identified in family BD-06. In family MR-01, a hemizygous missense variant c.61G>C (p.Gly21Arg) in GJB1 was identified in the indexed patient. To the best of our knowledge, there are very few reports on MPV17, SACS, PRX, and GJB1 causing CMT and ARSACS phenotypes in the Pakistani population. Our study cohort suggests that whole exome sequencing can be a useful tool in diagnosing complex multigenic and phenotypically overlapping genetic disorders such as Charcot-Marie-Tooth disease (CMT) and spastic ataxia of Charlevoix-Saguenay type.
Collapse
Affiliation(s)
- Qaiser Zaman
- Department of Zoology, Government Postgraduate College Dargai, Malakand 23060, Pakistan
- Higher Education Department, Government of Khyber Pakhtunkhwa, Peshawar 24550, Pakistan
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Abbas Khan
- Department of Zoology, Government Postgraduate College Dargai, Malakand 23060, Pakistan
- Higher Education Department, Government of Khyber Pakhtunkhwa, Peshawar 24550, Pakistan
| | - Kalsoom Sahar
- Department of Zoology, Government Postgraduate College Dargai, Malakand 23060, Pakistan
- Higher Education Department, Government of Khyber Pakhtunkhwa, Peshawar 24550, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Hamza Khan
- Department of Zoology, Government Postgraduate College Dargai, Malakand 23060, Pakistan
- Higher Education Department, Government of Khyber Pakhtunkhwa, Peshawar 24550, Pakistan
| | - Mehwish Rehman
- Department of Zoology, Government Postgraduate College Dargai, Malakand 23060, Pakistan
- Higher Education Department, Government of Khyber Pakhtunkhwa, Peshawar 24550, Pakistan
| | - Najumuddin
- National Center for Bioinformatics, Quid-I-Azam University, Islamabad 45320, Pakistan
| | - Ilyas Ahmad
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, and University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Muhmmad Tariq
- Rare Diseases Genetics and Genomics, Centre for Omic Sciences, Islamia College, Peshawar 25120, Pakistan
| | - Osama Yousef Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shah Faisal
- Rare Diseases Genetics and Genomics, Centre for Omic Sciences, Islamia College, Peshawar 25120, Pakistan
| | - Naveed Wasif
- Institute of Human Genetics, Ulm University Medical Center, Ulm University, 89081 Ulm, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Musharraf Jelani
- Rare Diseases Genetics and Genomics, Centre for Omic Sciences, Islamia College, Peshawar 25120, Pakistan
| |
Collapse
|
14
|
Perna L, Castelli M, Frasnetti E, Romano LEL, Colombo G, Prodromou C, Chapple JP. AlphaFold predicted structure of the Hsp90-like domains of the neurodegeneration linked protein sacsin reveals key residues for ATPase activity. Front Mol Biosci 2023; 9:1074714. [PMID: 36710881 PMCID: PMC9880540 DOI: 10.3389/fmolb.2022.1074714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The ataxia-linked protein sacsin has three regions of partial homology to Hsp90's N-terminal ATP binding domain. Although a crystal structure for this Hsp90-like domain has been reported the precise molecular interactions required for ATP-binding and hydrolysis are unclear and it is debatable whether ATP biding is compatible with these domains. Furthermore, the Identification of a sacsin domain(s) equivalent to the middle domain of Hsp90 has been elusive. Here we present the superimposition of an AlphaFold structure of sacsin with yeast Hsp90, which provides novel insights into sacsin's structure. We identify residues within the sacsin Hsp90-like domains that are required for ATP binding and hydrolysis, including the putative catalytic arginine residues equivalent to that of the Hsp90 middle domain. Importantly, our analysis allows comparison of the Hsp90 middle domain with corresponding sacsin regions and identifies a shorter lid segment, in the sacsin ATP-binding domains, than the one found in the N-terminal domain of Hsp90. Our results show how a realignment of residues in the lid segment of sacsin that are involved in ATP binding can better match equivalent residues seen in Hsp90, which we then corroborated using molecular dynamic simulations. We speculate, from a structural viewpoint, why some ATP competitive inhibitors of Hsp90 may not bind sacsin, while others would. Together our analysis supports the hypothesis that sacsin's function is ATP-driven and would be consistent with it having a role as a super molecular chaperone. We propose that the SR1 regions of sacsin be renamed as HSP-NRD (Hsp90 N-Terminal Repeat Domain; residues 84-324) and the fragment immediately after as HSP-MRD (Hsp90 Middle Repeat Domain; residues 325-518).
Collapse
Affiliation(s)
- Laura Perna
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | - Lisa E. L. Romano
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Chrisostomos Prodromou
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom,*Correspondence: J. Paul Chapple, ; Chrisostomos Prodromou,
| | - J. Paul Chapple
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom,*Correspondence: J. Paul Chapple, ; Chrisostomos Prodromou,
| |
Collapse
|
15
|
Zhang H, Yao G, He M. Transcriptome analysis of gene expression profiling from the deep sea in situ to the laboratory for the cold seep mussel Gigantidas haimaensis. BMC Genomics 2022; 23:828. [DOI: 10.1186/s12864-022-09064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The deep-sea mussel Gigantidas haimaensis is a representative species from the Haima cold seep ecosystem in the South China Sea that establishes endosymbiosis with chemotrophic bacteria. During long-term evolution, G. haimaensis has adapted well to the local environment of cold seeps. Until now, adaptive mechanisms responding to environmental stresses have remained poorly understood.
Results
In this study, transcriptomic analysis was performed for muscle tissue of G. haimaensis in the in situ environment (MH) and laboratory environment for 0 h (M0), 3 h (M3) and 9 h (M9), and 187,368 transcript sequences and 22,924 annotated differentially expressed genes (DEGs) were generated. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, these DEGs were enriched with a broad spectrum of biological processes and pathways, including those associated with antioxidants, apoptosis, chaperones, immunity and metabolism. Among these significantly enriched pathways, protein processing in the endoplasmic reticulum and metabolism were the most affected metabolic pathways. These results may imply that G. haimaensis struggles to support the life response to environmental change by changing gene expression profiles.
Conclusion
The present study provides a better understanding of the biological responses and survival strategies of the mussel G. haimaensis from deep sea in situ to the laboratory environment.
Collapse
|
16
|
The J Domain of Sacsin Disrupts Intermediate Filament Assembly. Int J Mol Sci 2022; 23:ijms232415742. [PMID: 36555380 PMCID: PMC9779362 DOI: 10.3390/ijms232415742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Autosomal Recessive Spastic Ataxia of the Charlevoix Saguenay (ARSACS) is caused by mutation in the SACS gene resulting in loss of function of the protein sacsin. A key feature is the formation of abnormal bundles of neurofilaments (NF) in neurons and vimentin intermediate filaments (IF) in cultured fibroblasts, suggesting a role of sacsin in IF homeostasis. Sacsin contains a J domain (SacsJ) homologous to Hsp40, that can interact with Hsp70 chaperones. The SacsJ domain resolved NF bundles in cultured Sacs-/- neurons. Having studied the mechanism using NF assembled in vitro from purified NF proteins, we report that the SacsJ domain interacts with NF proteins to disassemble NFL filaments, and to inhibit their initial assembly. A cell-penetrating peptide derived from this domain, SacsJ-myc-TAT was efficient in disassembling NF bundles in cultured Sacs-/- motor neurons, restoring the NF network; however, there was some loss of vimentin IF and NF in cultured Sacs+/+ fibroblasts and motor neurons, respectively. These results suggest that sacsin through its SacsJ domain is a key regulator of NF and vimentin IF networks in cells.
Collapse
|
17
|
Aly KA, Moutaoufik MT, Zilocchi M, Phanse S, Babu M. Insights into SACS pathological attributes in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS)☆. Curr Opin Chem Biol 2022; 71:102211. [PMID: 36126381 DOI: 10.1016/j.cbpa.2022.102211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare early-onset neurodegenerative disease caused by mutations in the SACS gene, encoding Sacsin. Initial functional annotation of Sacsin was based on sequence homology, with subsequent experiments revealing the Sacsin requirement for regulating mitochondrial dynamics, along with its domains involved in promoting neurofilament assembly or resolving their bundling accumulations. ARSACS phenotypes associated with SACS loss-of-function are discussed, and how advancements in ARSACS disease models and quantitative omics approaches can improve our understanding of ARSACS pathological attributes. Lastly in the perspectives section, we address gene correction strategies for monogenic disorders such as ARSACS, along with their common delivery methods, representing a hopeful area for ARSACS therapeutics development.
Collapse
Affiliation(s)
- Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada.
| |
Collapse
|
18
|
Truong AT, Luong ATL, Nguyen LH, Nguyen HV, Nguyen DN, Nguyen NTM. A novel single-point mutation of NEFH and biallelic SACS mutation presenting as intermediate form Charcot-Marie-Tooth: A case report in Vietnam. Surg Neurol Int 2022; 13:553. [PMID: 36600740 PMCID: PMC9805609 DOI: 10.25259/sni_803_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Background Charcot-Marie-Tooth disease (CMT) is among the most common group of inherited neuromuscular diseases. SACS mutations were demonstrated to cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). However, there have been few case reports regarding to NEFH and SACS gene mutation to CMT in Vietnamese patients, and the diagnosis of CMT and ARSACS in the clinical setting still overlapped. Case Description We report two patients presenting with sensorimotor neuropathy without cerebellar ataxia, spasticity and other neurological features, being diagnosed with intermediate form CMT by electrophysiological and clinical examination and neuroimaging. By whole-exome sequencing panel of two affected members, and PCR Sanger on NEFH and SACS genes to confirm the presence of selected variants on their parents, we identified a novel missense variant NEFH c.1925C>T (inherited from the mother) in an autosomal dominant heterozygous state, and two recessive SACS variants (SACS c.13174C>T, causing missense variant, and SACS c.11343del, causing frameshift variant) (inherited one from the mother and another from the father) in these two patients. Clinical and electrophysiological findings on these patients did not match classical ARSACS. To the best of our knowledge, this is the first case report of two affected siblings diagnosed with CMT carrying both a novel NEFH variant and biallelic SACS variants. Conclusion We concluded that this novel NEFH variant is likely benign, and biallelic SACS mutation (c.13174C>T and c.11343del) is likely pathogenic for intermediate form CMT. This study is also expected to emphasize the current knowledge of intermediate form CMT, ARSACS, and the phenotypic spectrum of NEFH-related and SACS-related disorders. We expect to give a new understanding of CMT; however, further research should be conducted to provide a more thorough knowledge of the pathogenesis of CMT in the future.
Collapse
Affiliation(s)
- Anh Tuan Truong
- Department of Clinical Medicine, Nam Dinh University of Nursing, Nam Dinh, Vietnam
| | - Anh Thi Lan Luong
- Department of Medical Biology and Genetics, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Hai Nguyen
- Department of Neurology, Hanoi Medical University, Hanoi, Vietnam.,Corresponding author: Linh Hai Nguyen, Department of Neurology, Hanoi Medical University, Hanoi, Vietnam.
| | - Huong Van Nguyen
- Department of Neurology, Hanoi Medical University, Hanoi, Vietnam
| | - Diep Ngoc Nguyen
- Institute of Theoretical and Applied Research (ITAR), School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Ngoc Thi Minh Nguyen
- Department of Medical Biology and Genetics, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
19
|
Cruz-González S, Quesada-Díaz E, Miranda-Negrón Y, García-Rosario R, Ortiz-Zuazaga H, García-Arrarás JE. The Stress Response of the Holothurian Central Nervous System: A Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232113393. [PMID: 36362181 PMCID: PMC9657328 DOI: 10.3390/ijms232113393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Injury to the central nervous system (CNS) results in permanent damage and lack of function in most vertebrate animals, due to their limited regenerative capacities. In contrast, echinoderms can fully regenerate their radial nerve cord (RNC) following transection, with little to no scarring. Investigators have associated the regenerative capacity of some organisms to the stress response and inflammation produced by the injury. Here, we explore the gene activation profile of the stressed holothurian CNS. To do this, we performed RNA sequencing on isolated RNC explants submitted to the stress of transection and enzyme dissection and compared them with explants kept in culture for 3 days following dissection. We describe stress-associated genes, including members of heat-shock families, ubiquitin-related pathways, transposons, and apoptosis that were differentially expressed. Surprisingly, the stress response does not induce apoptosis in this system. Other genes associated with stress in other animal models, such as hero proteins and those associated with the integrated stress response, were not found to be differentially expressed either. Our results provide a new viewpoint on the stress response in the nervous system of an organism with amazing regenerative capacities. This is the first step in deciphering the molecular processes that allow echinoderms to undergo fully functional CNS regeneration, and also provides a comparative view of the stress response in other organisms.
Collapse
Affiliation(s)
- Sebastián Cruz-González
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Eduardo Quesada-Díaz
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Yamil Miranda-Negrón
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Raúl García-Rosario
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - José E. García-Arrarás
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
- Correspondence:
| |
Collapse
|
20
|
Romano LEL, Aw WY, Hixson KM, Novoselova TV, Havener TM, Howell S, Taylor-Blake B, Hall CL, Xing L, Beri J, Nethisinghe S, Perna L, Hatimy A, Altadonna GC, Graves LM, Herring LE, Hickey AJ, Thalassinos K, Chapple JP, Wolter JM. Multi-omic profiling reveals the ataxia protein sacsin is required for integrin trafficking and synaptic organization. Cell Rep 2022; 41:111580. [PMID: 36323248 PMCID: PMC9647044 DOI: 10.1016/j.celrep.2022.111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/30/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset cerebellar ataxia caused by mutations in SACS, which encodes the protein sacsin. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament disorganization, and progressive death of cerebellar Purkinje neurons. It is unclear why the loss of sacsin causes these deficits or why they manifest as cerebellar ataxia. Here, we perform multi-omic profiling in sacsin knockout (KO) cells and identify alterations in microtubule dynamics and mislocalization of focal adhesion (FA) proteins, including multiple integrins. Deficits in FA structure, signaling, and function can be rescued by targeting PTEN, a negative regulator of FA signaling. ARSACS mice possess mislocalization of ITGA1 in Purkinje neurons and synaptic disorganization in the deep cerebellar nucleus (DCN). The sacsin interactome reveals that sacsin regulates interactions between cytoskeletal and synaptic adhesion proteins. Our findings suggest that disrupted trafficking of synaptic adhesion proteins is a causal molecular deficit in ARSACS.
Collapse
Affiliation(s)
- Lisa E L Romano
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wen Yih Aw
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn M Hixson
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tatiana V Novoselova
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK; Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London NW4 4BT, UK
| | - Tammy M Havener
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stefanie Howell
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Taylor-Blake
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charlotte L Hall
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lei Xing
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Josh Beri
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suran Nethisinghe
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Laura Perna
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ginevra Chioccioli Altadonna
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lee M Graves
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anthony J Hickey
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - J Paul Chapple
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Justin M Wolter
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Yao S, Li L, Guan X, He Y, Jouaux A, Xu F, Guo X, Zhang G, Zhang L. Pooled resequencing of larvae and adults reveals genomic variations associated with Ostreid herpesvirus 1 resistance in the Pacific oyster Crassostrea gigas. Front Immunol 2022; 13:928628. [PMID: 36059443 PMCID: PMC9437489 DOI: 10.3389/fimmu.2022.928628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
The Ostreid herpesvirus 1 (OsHV-1) is a lethal pathogen of the Pacific oyster (Crassostrea gigas), an important aquaculture species. To understand the genetic architecture of the defense against the pathogen, we studied genomic variations associated with herpesvirus-caused mortalities by pooled whole-genome resequencing of before and after-mortality larval samples as well as dead and surviving adults from a viral challenge. Analysis of the resequencing data identified 5,271 SNPs and 1,883 genomic regions covering 3,111 genes in larvae, and 18,692 SNPs and 28,314 regions covering 4,863 genes in adults that were significantly associated with herpesvirus-caused mortalities. Only 1,653 of the implicated genes were shared by larvae and adults, suggesting that the antiviral response or resistance in larvae and adults involves different sets of genes or differentiated members of expanded gene families. Combined analyses with previous transcriptomic data from challenge experiments revealed that transcription of many mortality-associated genes was also significantly upregulated by herpesvirus infection confirming their importance in antiviral response. Key immune response genes especially those encoding antiviral receptors such as TLRs and RLRs displayed strong association between variation in regulatory region and herpesvirus-caused mortality, suggesting they may confer resistance through transcriptional modulation. These results point to previously undescribed genetic mechanisms for disease resistance at different developmental stages and provide candidate polymorphisms and genes that are valuable for understanding antiviral immune responses and breeding for herpesvirus resistance.
Collapse
Affiliation(s)
- Shanshan Yao
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Li Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Xudong Guan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yan He
- Ministry of Education (MOE) Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Aude Jouaux
- UMR BOREA, “Biologie des Organismes et Ecosystèmes Aquatiques”, MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, Caen, France
| | - Fei Xu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, United States
- *Correspondence: Ximing Guo, ; Guofan Zhang, ; Linlin Zhang,
| | - Guofan Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
- *Correspondence: Ximing Guo, ; Guofan Zhang, ; Linlin Zhang,
| | - Linlin Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
- *Correspondence: Ximing Guo, ; Guofan Zhang, ; Linlin Zhang,
| |
Collapse
|
22
|
Francis V, Alshafie W, Kumar R, Girard M, Brais B, McPherson PS. The ARSACS disease protein sacsin controls lysosomal positioning and reformation by regulating microtubule dynamics. J Biol Chem 2022; 298:102320. [PMID: 35933016 PMCID: PMC9437860 DOI: 10.1016/j.jbc.2022.102320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 01/26/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay is a fatal brain disorder featuring cerebellar neurodegeneration leading to spasticity and ataxia. This disease is caused by mutations in the SACS gene that encodes sacsin, a massive 4579-amino acid protein with multiple modular domains. However, molecular details of the function of sacsin are not clear. Here, using live cell imaging and biochemistry, we demonstrate that sacsin binds to microtubules and regulates microtubule dynamics. Loss of sacsin function in various cell types, including knockdown and KO primary neurons and patient fibroblasts, leads to alterations in lysosomal transport, positioning, function, and reformation following autophagy. Each of these phenotypic changes is consistent with altered microtubule dynamics. We further show the effects of sacsin are mediated at least in part through interactions with JIP3, an adapter for microtubule motors. These data reveal a new function for sacsin that explains its previously reported roles and phenotypes.
Collapse
Affiliation(s)
- Vincent Francis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Walaa Alshafie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Rahul Kumar
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
Ashrafi MR, Mohammadi P, Tavasoli AR, Heidari M, Hosseinpour S, Rasulinejad M, Rohani M, Akbari MG, Malamiri RA, Badv RS, Fathi D, Dehnavi AZ, Savad S, Rabbani A, Synofzik M, Mahdieh N, Rezaei Z. Clinical and Molecular Findings of Autosomal Recessive Spastic Ataxia of Charlevoix Saguenay: an Iranian Case Series Expanding the Genetic and Neuroimaging Spectra. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01430-3. [PMID: 35731353 DOI: 10.1007/s12311-022-01430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS) is now increasingly identified from all countries over the world, possibly rendering it one of the most common autosomal recessive ataxias. Here, we selected patients harboring SACS variants, the causative gene for ARSACS, in a large cohort of 137 patients with early-onset ataxia recruited from May 2019 to May 2021 and were referred to the ataxia clinic. Genetic studies were performed for 111 out of 137 patients (81%) which led to a diagnostic rate of 72.9% (81 out of 111 cases). Ten patients with the molecular diagnosis of ARSACS were identified. We investigated the phenotypic and imaging spectra of all confirmed patients with ARSACS. We also estimated the frequency of ARSACS in this cohort and described their clinical and genetic findings including seven novel variants as well as novel neuroimaging findings. While the classic clinical triad of ARSACS is progressive cerebellar ataxia, spasticity, and sensorimotor polyneuropathy, it is not a constant feature in all patients. Sensorimotor axonal-demyelinating neuropathy was detected in all of our patients, but spasticity and extensor plantar reflex were absent in 50% (5/10). In all patients, brain magnetic resonance imaging (MRI) showed symmetric linear hypointensities in the pons (pontine stripes) and anterior superior cerebellar atrophy as well as a hyperintense rim around the thalami (thalamic rim). Although infratentorial arachnoid cyst has been reported in ARSACS earlier, we report anterior temporal arachnoid cyst in two patients for the first time, indicating that arachnoid cyst may be an associated imaging feature of ARSACS. We also extended molecular spectrum of ARSACS by presenting 8 pathogenic and one variant of unknown significance (VUS) sequence variants, which 7 of them have not been reported previously. MetaDome server confirmed that the identified VUS variant was in the intolerant regions of sacsin protein encoded by SACS.
Collapse
Affiliation(s)
- Mahmoud Reza Ashrafi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics Center, Growth and Development Research Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Medical Sciences, Department of Medical Genetics, Tarbiat Modares University, Tehran, Iran
| | - Ali Reza Tavasoli
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Morteza Heidari
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Sareh Hosseinpour
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatric Neurology, Vali-E-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinejad
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Ghahvechi Akbari
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Physical Medicine and Rehabilitation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizi Malamiri
- Division of Pediatric Neurology, Department of Pediatrics, Golestan Medical, Educational and Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Fathi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Savad
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rabbani
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics Center, Growth and Development Research Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Rezaei
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Discovery of Therapeutics Targeting Oxidative Stress in Autosomal Recessive Cerebellar Ataxia: A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15060764. [PMID: 35745683 PMCID: PMC9228961 DOI: 10.3390/ph15060764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of rare neurodegenerative inherited disorders. The resulting motor incoordination and progressive functional disabilities lead to reduced lifespan. There is currently no cure for ARCAs, likely attributed to the lack of understanding of the multifaceted roles of antioxidant defense and the underlying mechanisms. This systematic review aims to evaluate the extant literature on the current developments of therapeutic strategies that target oxidative stress for the management of ARCAs. We searched PubMed, Web of Science, and Science Direct Scopus for relevant peer-reviewed articles published from 1 January 2016 onwards. A total of 28 preclinical studies fulfilled the eligibility criteria for inclusion in this systematic review. We first evaluated the altered cellular processes, abnormal signaling cascades, and disrupted protein quality control underlying the pathogenesis of ARCA. We then examined the current potential therapeutic strategies for ARCAs, including aromatic, organic and pharmacological compounds, gene therapy, natural products, and nanotechnology, as well as their associated antioxidant pathways and modes of action. We then discussed their potential as antioxidant therapeutics for ARCAs, with the long-term view toward their possible translation to clinical practice. In conclusion, our current understanding is that these antioxidant therapies show promise in improving or halting the progression of ARCAs. Tailoring the therapies to specific disease stages could greatly facilitate the management of ARCAs.
Collapse
|
25
|
Biomarker Candidates for Alzheimer’s Disease Unraveled through In Silico Differential Gene Expression Analysis. Diagnostics (Basel) 2022; 12:diagnostics12051165. [PMID: 35626321 PMCID: PMC9139748 DOI: 10.3390/diagnostics12051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is neurodegeneration that accounts for 60–70% of dementia cases. Symptoms begin with mild memory difficulties and evolve towards cognitive impairment. The underlying risk factors remain primarily unclear for this heterogeneous disorder. Bioinformatics is a relevant research tool that allows for identifying several pathways related to AD. Open-access databases of RNA microarrays from the peripheral blood and brain of AD patients were analyzed after background correction and data normalization; the Limma package was used for differential expression analysis (DEA) through statistical R programming language. Data were corrected with the Benjamini and Hochberg approach, and genes with p-values equal to or less than 0.05 were considered to be significant. The direction of the change in gene expression was determined by its variation in the log2-fold change between healthy controls and patients. We performed the functional enrichment analysis of GO using goana and topGO-Limma. The functional enrichment analysis of DEGs showed upregulated (UR) pathways: behavior, nervous systems process, postsynapses, enzyme binding; downregulated (DR) were cellular component organization, RNA metabolic process, and signal transduction. Lastly, the intersection of DEGs in the three databases showed eight shared genes between brain and blood, with potential use as AD biomarkers for blood tests.
Collapse
|
26
|
Çakar A, İnci M, Özdağ Acarlı AN, Çomu S, Candayan A, Battaloğlu E, Tekgül Ş, Başak AN, Durmuş H, Parman Y. Phenotypical spectrum of SACS variants: Neuromuscular perspective of a complex neurodegenerative disorder. Acta Neurol Scand 2022; 145:619-626. [PMID: 35130357 DOI: 10.1111/ane.13592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by the SACS gene variants. Main clinical features include early-onset and progressive cerebellar ataxia, spasticity, sensorimotor polyneuropathy. However, the phenotypic spectrum expanded with the increased availability of next-generation sequencing methods. MATERIALS AND METHODS Herein, we describe the clinical features of nine patients from seven unrelated families with SACS variants from the cohort of the Neuromuscular Disorders Unit of the Neurology Department of the Istanbul University, Istanbul Faculty of Medicine. RESULTS Seven patients were male. Seven patients in our cohort had disease onset in the first decade of life. Eight patients were born to consanguineous marriages. Distal weakness in the lower limbs was a prominent feature in all of our patients. Seven patients had ataxia, and six patients had spasticity. Interestingly, one patient showed an isolated Charcot-Marie-Tooth-like phenotype. Five patients showed sensorimotor demyelinating polyneuropathy in the nerve conduction studies. Linear pontine hypointensity was the most frequent cranial magnetic resonance imaging (MRI) abnormality. Two patients with a later disease onset had a homozygous c.11542_11544delATT (p.Ile3848del) variant. The rest of the identified variants were scattered throughout the SACS gene. CONCLUSIONS Atypical clinical features in our patients highlight that the phenotypic spectrum of ARSACS can be observed in a wide range.
Collapse
Affiliation(s)
- Arman Çakar
- Neuromuscular Unit Department of Neurology Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Meltem İnci
- Neuromuscular Unit Department of Neurology Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Ayşe Nur Özdağ Acarlı
- Neuromuscular Unit Department of Neurology Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Sinan Çomu
- Department of Pediatrics Division of Pediatric Neurology Sisli, Memorial Hospital Istanbul Turkey
| | - Ayşe Candayan
- Department of Molecular Biology and Genetics Bogazici University Istanbul Turkey
| | - Esra Battaloğlu
- Department of Molecular Biology and Genetics Bogazici University Istanbul Turkey
| | - Şeyma Tekgül
- Suna and Inan Kıraç Foundation Neurodegeneration Research Laboratory KUTTAM Koc University School of Medicine Istanbul Turkey
| | - Ayşe Nazlı Başak
- Suna and Inan Kıraç Foundation Neurodegeneration Research Laboratory KUTTAM Koc University School of Medicine Istanbul Turkey
| | - Hacer Durmuş
- Neuromuscular Unit Department of Neurology Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Yeşim Parman
- Neuromuscular Unit Department of Neurology Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| |
Collapse
|
27
|
Molecular Characterization of Portuguese Patients with Hereditary Cerebellar Ataxia. Cells 2022; 11:cells11060981. [PMID: 35326432 PMCID: PMC8946949 DOI: 10.3390/cells11060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023] Open
Abstract
Hereditary cerebellar ataxia (HCA) comprises a clinical and genetic heterogeneous group of neurodegenerative disorders characterized by incoordination of movement, speech, and unsteady gait. In this study, we performed whole-exome sequencing (WES) in 19 families with HCA and presumed autosomal recessive (AR) inheritance, to identify the causal genes. A phenotypic classification was performed, considering the main clinical syndromes: spastic ataxia, ataxia and neuropathy, ataxia and oculomotor apraxia (AOA), ataxia and dystonia, and ataxia with cognitive impairment. The most frequent causal genes were associated with spastic ataxia (SACS and KIF1C) and with ataxia and neuropathy or AOA (PNKP). We also identified three families with autosomal dominant (AD) forms arising from de novo variants in KIF1A, CACNA1A, or ATP1A3, reinforcing the importance of differential diagnosis (AR vs. AD forms) in families with only one affected member. Moreover, 10 novel causal-variants were identified, and the detrimental effect of two splice-site variants confirmed through functional assays. Finally, by reviewing the molecular mechanisms, we speculated that regulation of cytoskeleton function might be impaired in spastic ataxia, whereas DNA repair is clearly associated with AOA. In conclusion, our study provided a genetic diagnosis for HCA families and proposed common molecular pathways underlying cerebellar neurodegeneration.
Collapse
|
28
|
Levy S, Mass T. The Skeleton and Biomineralization Mechanism as Part of the Innate Immune System of Stony Corals. Front Immunol 2022; 13:850338. [PMID: 35281045 PMCID: PMC8913943 DOI: 10.3389/fimmu.2022.850338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Stony corals are among the most important calcifiers in the marine ecosystem as they form the coral reefs. Coral reefs have huge ecological importance as they constitute the most diverse marine ecosystem, providing a home to roughly a quarter of all marine species. In recent years, many studies have shed light on the mechanisms underlying the biomineralization processes in corals, as characterizing the calicoblast cell layer and genes involved in the formation of the calcium carbonate skeleton. In addition, considerable advancements have been made in the research field of coral immunity as characterizing genes involved in the immune response to pathogens and stressors, and the revealing of specialized immune cells, including their gene expression profile and phagocytosis capabilities. Yet, these two fields of corals research have never been integrated. Here, we discuss how the coral skeleton plays a role as the first line of defense. We integrate the knowledge from both fields and highlight genes and proteins that are related to biomineralization and might be involved in the innate immune response and help the coral deal with pathogens that penetrate its skeleton. In many organisms, the immune system has been tied to calcification. In humans, immune factors enhance ectopic calcification which causes severe diseases. Further investigation of coral immune genes which are involved in skeleton defense as well as in biomineralization might shed light on our understanding of the correlation and the interaction of both processes as well as reveal novel comprehension of how immune factors enhance calcification.
Collapse
Affiliation(s)
- Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| |
Collapse
|
29
|
Murtinheira F, Migueis M, Letra-Vilela R, Diallo M, Quezada A, Valente CA, Oliva A, Rodriguez C, Martin V, Herrera F. Sacsin Deletion Induces Aggregation of Glial Intermediate Filaments. Cells 2022; 11:299. [PMID: 35053415 PMCID: PMC8773934 DOI: 10.3390/cells11020299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disorder commonly diagnosed in infants and characterized by progressive cerebellar ataxia, spasticity, motor sensory neuropathy and axonal demyelination. ARSACS is caused by mutations in the SACS gene that lead to truncated or defective forms of the 520 kDa multidomain protein, sacsin. Sacsin function is exclusively studied on neuronal cells, where it regulates mitochondrial network organization and facilitates the normal polymerization of neuronal intermediate filaments (i.e., neurofilaments and vimentin). Here, we show that sacsin is also highly expressed in astrocytes, C6 rat glioma cells and N9 mouse microglia. Sacsin knockout in C6 cells (C6Sacs-/-) induced the accumulation of the glial intermediate filaments glial fibrillary acidic protein (GFAP), nestin and vimentin in the juxtanuclear area, and a concomitant depletion of mitochondria. C6Sacs-/- cells showed impaired responses to oxidative challenges (Rotenone) and inflammatory stimuli (Interleukin-6). GFAP aggregation is also associated with other neurodegenerative conditions diagnosed in infants, such as Alexander disease or Giant Axonal Neuropathy. Our results, and the similarities between these disorders, reinforce the possible connection between ARSACS and intermediate filament-associated diseases and point to a potential role of glia in ARSACS pathology.
Collapse
Affiliation(s)
- Fernanda Murtinheira
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (F.M.); (M.M.); (R.L.-V.); (M.D.); (A.Q.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Mafalda Migueis
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (F.M.); (M.M.); (R.L.-V.); (M.D.); (A.Q.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ricardo Letra-Vilela
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (F.M.); (M.M.); (R.L.-V.); (M.D.); (A.Q.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Mickael Diallo
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (F.M.); (M.M.); (R.L.-V.); (M.D.); (A.Q.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Instituto de Tecnologia Quimica e Biologica (ITQB-NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Andrea Quezada
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (F.M.); (M.M.); (R.L.-V.); (M.D.); (A.Q.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Cláudia A. Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Abel Oliva
- Instituto de Tecnologia Quimica e Biologica (ITQB-NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Carmen Rodriguez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain; (C.R.); (V.M.)
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Vanesa Martin
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain; (C.R.); (V.M.)
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Federico Herrera
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (F.M.); (M.M.); (R.L.-V.); (M.D.); (A.Q.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
30
|
Bagaria J, Bagyinszky E, An SSA. Genetics of Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) and Role of Sacsin in Neurodegeneration. Int J Mol Sci 2022; 23:552. [PMID: 35008978 PMCID: PMC8745260 DOI: 10.3390/ijms23010552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that was originally discovered in the population from the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region in Quebec. Although the disease progression of ARSACS may start in early childhood, cases with later onset have also been observed. Spasticity and ataxia could be common phenotypes, and retinal optic nerve hypermyelination is detected in the majority of patients. Other symptoms, such as pes cavus, ataxia and limb deformities, are also frequently observed in affected individuals. More than 200 mutations have been discovered in the SACS gene around the world. Besides French Canadians, SACS genetics have been extensively studied in Tunisia or Japan. Recently, emerging studies discovered SACS mutations in several other countries. SACS mutations could be associated with pathogenicity either in the homozygous or compound heterozygous stages. Sacsin has been confirmed to be involved in chaperon activities, controlling the microtubule balance or cell migration. Additionally, sacsin may also play a crucial role in regulating the mitochondrial functions. Through these mechanisms, it may share common mechanisms with other neurodegenerative diseases. Further studies are needed to define the exact functions of sacsin. This review introduces the genetic mutations discovered in the SACS gene and discusses its pathomechanisms and its possible involvement in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea;
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
31
|
Toscano Márquez B, Cook AA, Rice M, Smileski A, Vieira-Lomasney K, Charron F, McKinney RA, Watt AJ. Molecular Identity and Location Influence Purkinje Cell Vulnerability in Autosomal-Recessive Spastic Ataxia of Charlevoix-Saguenay Mice. Front Cell Neurosci 2022; 15:707857. [PMID: 34970120 PMCID: PMC8712330 DOI: 10.3389/fncel.2021.707857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Patterned cell death is a common feature of many neurodegenerative diseases. In patients with autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and mouse models of ARSACS, it has been observed that Purkinje cells in anterior cerebellar vermis are vulnerable to degeneration while those in posterior vermis are resilient. Purkinje cells are known to express certain molecules in a highly stereotyped, patterned manner across the cerebellum. One patterned molecule is zebrin, which is expressed in distinctive stripes across the cerebellar cortex. The different zones delineated by the expression pattern of zebrin and other patterned molecules have been implicated in the patterning of Purkinje cell death, raising the question of whether they contribute to cell death in ARSACS. We found that zebrin patterning appears normal prior to disease onset in Sacs–/– mice, suggesting that zebrin-positive and -negative Purkinje cell zones develop normally. We next observed that zebrin-negative Purkinje cells in anterior lobule III were preferentially susceptible to cell death, while anterior zebrin-positive cells and posterior zebrin-negative and -positive cells remained resilient even at late disease stages. The patterning of Purkinje cell innervation to the target neurons in the cerebellar nuclei (CN) showed a similar pattern of loss: neurons in the anterior CN, where inputs are predominantly zebrin-negative, displayed a loss of Purkinje cell innervation. In contrast, neurons in the posterior CN, which is innervated by both zebrin-negative and -positive puncta, had normal innervation. These results suggest that the location and the molecular identity of Purkinje cells determine their susceptibility to cell death in ARSACS.
Collapse
Affiliation(s)
| | - Anna A Cook
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Max Rice
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Alexia Smileski
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | - François Charron
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare progressive neurodegenerative disease caused by either homozygous or compound heterozygous mutations in the SACS gene. The original ARSACS cases found in Quebec showed very homogenous phenotypes characterized by cerebellar ataxia, spasticity, and polyneuropathy. However, many cases with atypical phenotypes have been found in other regions and ethnic groups. We herein present a Japanese patient with atypical ARSACS who showed cerebellar ataxia and polyneuropathy, but no spasticity. She carried novel compound heterozygous mutations (p.Lys4326Glu and p.Leu1412Lysfs*16) in the SACS gene. The brain MRI findings were useful for making a diagnosis of ARSACS.
Collapse
Affiliation(s)
- Izumi Aida
- Department of Neurology, National Hospital Organization Niigata National Hospital, Japan
| | - Tetsuo Ozawa
- Department of Internal Medicine, National Hospital Organization Niigata National Hospital, Japan
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
| | - Hidehiko Fujinaka
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
- Department of Pediatrics, National Hospital Organization Niigata National Hospital, Japan
- Department of Clinical Research, National Hospital Organization Niigata National Hospital, Japan
| | - Kiyoe Goto
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
| | - Kentaro Ohta
- Department of Neurology, National Hospital Organization Niigata National Hospital, Japan
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
| | - Takashi Nakajima
- Department of Neurology, National Hospital Organization Niigata National Hospital, Japan
| |
Collapse
|
33
|
Takahashi-Kariyazono S, Terai Y. Two divergent haplogroups of a sacsin-like gene in Acropora corals. Sci Rep 2021; 11:23018. [PMID: 34837037 PMCID: PMC8626496 DOI: 10.1038/s41598-021-02386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Reef-building corals are declining due to environmental changes. Sacsin is a member of the heat shock proteins and has been reported as a candidate protein associated with the stress response in Acropora corals. Recently, high nucleotide diversity and the persistence of two divergent haplogroups of sacsin-like genes in Acropora millepora have been reported. While it was not clear when the two haplogroups have split and whether the haplogroups have persisted in only A. millepora or the other lineages in the genus Acropora. In this study, we analyzed a genomic region containing a sacsin-like gene from Acropora and Montipora species. Higher nucleotide diversity in the sacsin-like gene compared with that of surrounding regions was also observed in A. digitifera. This nucleotide diversity is derived from two divergent haplogroups of a sacsin-like gene, which are present in at least three Acropora species. The origin of these two haplogroups can be traced back before the divergence of Acropora and Montipora (119 Ma). Although the link between exceptionally high genetic variation in sacsin-like genes and functional differences in sacsin-like proteins is not clear, the divergent haplogroups may respond differently to envionmental stressors and serve in the adaptive phsiological ecology of these keystone species.
Collapse
Affiliation(s)
- Shiho Takahashi-Kariyazono
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, 240-0193, Japan.
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, 240-0193, Japan.
| |
Collapse
|
34
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
35
|
Hsp90 Inhibition: A Promising Therapeutic Approach for ARSACS. Int J Mol Sci 2021; 22:ijms222111722. [PMID: 34769152 PMCID: PMC8584178 DOI: 10.3390/ijms222111722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disease caused by mutations in the SACS gene, encoding the 520 kDa modular protein sacsin, which comprises multiple functional sequence domains that suggest a role either as a scaffold in protein folding or in proteostasis. Cells from patients with ARSACS display a distinct phenotype including altered organisation of the intermediate filament cytoskeleton and a hyperfused mitochondrial network where mitochondrial respiration is compromised. Here, we used vimentin bundling as a biomarker of sacsin function to test the therapeutic potential of Hsp90 inhibition with the C-terminal-domain-targeted compound KU-32, which has demonstrated mitochondrial activity. This study shows that ARSACS patient cells have significantly increased vimentin bundling compared to control, and this was also present in ARSACS carriers despite them being asymptomatic. We found that KU-32 treatment significantly reduced vimentin bundling in carrier and patient cells. We also found that cells from patients with ARSACS were unable to maintain mitochondrial membrane potential upon challenge with mitotoxins, and that the electron transport chain function was restored upon KU-32 treatment. Our preliminary findings presented here suggest that targeting the heat-shock response by Hsp90 inhibition alleviates vimentin bundling and may represent a promising area for the development of therapeutics for ARSACS.
Collapse
|
36
|
Longo F, De Ritis D, Miluzio A, Fraticelli D, Baets J, Scarlato M, Santorelli FM, Biffo S, Maltecca F. Assessment of Sacsin Turnover in Patients With ARSACS: Implications for Molecular Diagnosis and Pathogenesis. Neurology 2021; 97:e2315-e2327. [PMID: 34649874 PMCID: PMC8665432 DOI: 10.1212/wnl.0000000000012962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/07/2021] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by variations in SACS gene encoding sacsin, a huge multimodular protein of unknown function. More than 200 SACS variations have been described worldwide to date. Because ARSACS presents phenotypic variability, previous empirical studies attempted to correlate the nature and position of SACS variations with the age at onset or with disease severity, although not considering the effect of the various variations on protein stability. In this work, we studied genotype-phenotype correlation in ARSACS at a functional level. Methods We analyzed a large set of skin fibroblasts derived from patients with ARSACS, including both new and already published cases, carrying variations of different types affecting diverse domains of the protein. Results We found that sacsin is almost absent in patients with ARSACS, regardless of the nature of the variation. As expected, we did not detect sacsin in patients with truncating variations. We found it strikingly reduced or absent also in compound heterozygotes carrying diverse missense variations. In this case, we excluded SACS mRNA decay, defective translation, or faster posttranslational degradation as possible causes of protein reduction. Conversely, our results demonstrate that nascent mutant sacsin protein undergoes cotranslational ubiquitination and degradation. Discussion Our results provide a mechanistic explanation for the lack of genotype-phenotype correlation in ARSACS. We also propose a new and unambiguous criterion for ARSACS diagnosis that is based on the evaluation of sacsin level. Last, we identified preemptive degradation of a mutant protein as a novel cause of a human disease.
Collapse
Affiliation(s)
- Fabiana Longo
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy
| | - Daniele De Ritis
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy
| | - Annarita Miluzio
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Davide Fraticelli
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Marina Scarlato
- Department of Neurology, Ospedale San Raffaele, Milan, Italy
| | | | - Stefano Biffo
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Maltecca
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy .,Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
37
|
Sahin I, Saat H. Hereditary spastic paraplegia: new insights into clinical variability and spasticity-ataxia phenotype, and novel mutations. Acta Neurol Belg 2021; 122:1529-1535. [PMID: 34420199 DOI: 10.1007/s13760-021-01779-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs), a genetically heterogeneous group of neurodegenerative diseases, have an incidence of around 3 to 9 individuals every 100,000. Due to the broad clinical and genetic variability of HSPs, it is challenging to diagnose the disorder quickly and precisely. Hereditary spastic ataxias (HSAs) and HSPs are overlapping diseases, and their intersection has been gradually identified by next-generation sequencing. The idea of the spasticity-ataxia phenotype (SAP) spectrum is further substantiated by the similarities in phenotypes and underlying genes in ataxias and inherited spastic paraplegias and the related cellular processes and disease mechanisms these disorders exhibit. METHODS Whole-exome sequencing was performed on the 25 spastic or spastic-ataxic gait patients. RESULTS Twenty-two specific HSPs-HSAs-SAP mutations, including 14 novel mutations, were found in 25 cases from 18 Turkish and 2 Syrian families. This research discovers many novel hereditary spastic paraplegia (HSP) mutations and shows a robust genotype-phenotype heterogeneity in the disease. CONCLUSIONS This research helped expand the clinical and molecular scope of HSP and clarified the concept of the spasticity-ataxia phenotype, further enhancing our understanding of the complicated form of HSP and its association with ataxia. Our data broadens the spectrum of HSPs and HSAs related gene mutations and provides insights for genotype-phenotype correlations for HSPs and HSAs.
Collapse
|
38
|
Samaha G, Wade CM, Mazrier H, Grueber CE, Haase B. Exploiting genomic synteny in Felidae: cross-species genome alignments and SNV discovery can aid conservation management. BMC Genomics 2021; 22:601. [PMID: 34362297 PMCID: PMC8348863 DOI: 10.1186/s12864-021-07899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background While recent advances in genomics has enabled vast improvements in the quantification of genome-wide diversity and the identification of adaptive and deleterious alleles in model species, wildlife and non-model species have largely not reaped the same benefits. This has been attributed to the resources and infrastructure required to develop essential genomic datasets such as reference genomes. In the absence of a high-quality reference genome, cross-species alignments can provide reliable, cost-effective methods for single nucleotide variant (SNV) discovery. Here, we demonstrated the utility of cross-species genome alignment methods in gaining insights into population structure and functional genomic features in cheetah (Acinonyx jubatas), snow leopard (Panthera uncia) and Sumatran tiger (Panthera tigris sumatrae), relative to the domestic cat (Felis catus). Results Alignment of big cats to the domestic cat reference assembly yielded nearly complete sequence coverage of the reference genome. From this, 38,839,061 variants in cheetah, 15,504,143 in snow leopard and 13,414,953 in Sumatran tiger were discovered and annotated. This method was able to delineate population structure but limited in its ability to adequately detect rare variants. Enrichment analysis of fixed and species-specific SNVs revealed insights into adaptive traits, evolutionary history and the pathogenesis of heritable diseases. Conclusions The high degree of synteny among felid genomes enabled the successful application of the domestic cat reference in high-quality SNV detection. The datasets presented here provide a useful resource for future studies into population dynamics, evolutionary history and genetic and disease management of big cats. This cross-species method of variant discovery provides genomic context for identifying annotated gene regions essential to understanding adaptive and deleterious variants that can improve conservation outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07899-2.
Collapse
Affiliation(s)
- Georgina Samaha
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| | - Claire M Wade
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hamutal Mazrier
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Bianca Haase
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Efficient Neuroprotective Rescue of Sacsin-Related Disease Phenotypes in Zebrafish. Int J Mol Sci 2021; 22:ijms22168401. [PMID: 34445111 PMCID: PMC8395086 DOI: 10.3390/ijms22168401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a multisystem hereditary ataxia associated with mutations in SACS, which encodes sacsin, a protein of still only partially understood function. Although mouse models of ARSACS mimic largely the disease progression seen in humans, their use in the validation of effective therapies has not yet been proposed. Recently, the teleost Danio rerio has attracted increasing attention as a vertebrate model that allows rapid and economical screening, of candidate molecules, and thus combines the advantages of whole-organism phenotypic assays and in vitro high-throughput screening assays. Through CRISPR/Cas9-based mutagenesis, we generated and characterized a zebrafish sacs-null mutant line that replicates the main features of ARSACS. The sacs-null fish showed motor impairment, hindbrain atrophy, mitochondrial dysfunction, and reactive oxygen species accumulation. As proof of principle for using these mutant fish in high-throughput screening studies, we showed that both acetyl-DL-leucine and tauroursodeoxycholic acid improved locomotor and biochemical phenotypes in sacs−/− larvae treated with these neuroprotective agents, by mediating significant rescue of the molecular functions altered by sacsin loss. Taken together, the evidence here reported shows the zebrafish to be a valuable model organism for the identification of novel molecular mechanisms and for efficient and rapid in vivo optimization and screening of potential therapeutic compounds. These findings may pave the way for new interventions targeting the earliest phases of Purkinje cell degeneration in ARSACS.
Collapse
|
40
|
Wang Z, Song Y, Wang X, Li X, Xu F, Si L, Dong Y, Yao T, Zhu J, Lai H, Li W, Lin F, Huang H, Wang C. Autosomal recessive spastic ataxia of Charlevoix-Saguenay caused by novel mutations in SACS gene: A report of two Chinese families. Neurosci Lett 2021; 752:135831. [PMID: 33746006 DOI: 10.1016/j.neulet.2021.135831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/27/2022]
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare hereditary disease characterized by cerebellar ataxia, pyramidal signs in lower limbs, and sensorimotor neuropathy. The disease is caused by bi-allelic mutations of the SACS gene encoding the sacsin protein. Over 200 mutations have been reported worldwide. Here, we report two unrelated Chinese ARSACS patients with novel mutations revealed by whole-exome sequencing (WES). One 36-year-old female patient exhibited classical ARSACS characteristics including cerebellar ataxia, pyramidal tract signs in the lower limbs and sensorimotor neuropathy, while the other 9-year-old male showed cerebellar ataxia and peripheral neuropathy. WES identified a compound heterozygous variant in the SACS gene (c.5692 G > T, p.E1898X; c.12673-12677 del TATCA, p.Y4225D fs*6) in the female patient and another compound heterozygous variant (c.1773C > A, p.S578X; c.8088-8089 in. CA, p.M2697Q fs*43) in the male patient. All of these novel mutations were predicted to be loss-of-function which affect the expression of the two important C-terminal domains (DnaJ and HEPN). These findings add new insights into the mutational and clinical spectrum of ARSACS.
Collapse
Affiliation(s)
- Zhanjun Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yang Song
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xianling Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xuying Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fanxi Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lianghao Si
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yue Dong
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Tingyan Yao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Junge Zhu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hong Lai
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
41
|
Cocozza S, Pontillo G, De Michele G, Di Stasi M, Guerriero E, Perillo T, Pane C, De Rosa A, Ugga L, Brunetti A. Conventional MRI findings in hereditary degenerative ataxias: a pictorial review. Neuroradiology 2021; 63:983-999. [PMID: 33733696 PMCID: PMC8213578 DOI: 10.1007/s00234-021-02682-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Purpose Cerebellar ataxias are a large and heterogeneous group of disorders. The evaluation of brain parenchyma via MRI plays a central role in the diagnostic assessment of these conditions, being mandatory to exclude the presence of other underlying causes in determining the clinical phenotype. Once these possible causes are ruled out, the diagnosis is usually researched in the wide range of hereditary or sporadic ataxias. Methods We here propose a review of the main clinical and conventional imaging findings of the most common hereditary degenerative ataxias, to help neuroradiologists in the evaluation of these patients. Results Hereditary degenerative ataxias are all usually characterized from a neuroimaging standpoint by the presence, in almost all cases, of cerebellar atrophy. Nevertheless, a proper assessment of imaging data, extending beyond the mere evaluation of cerebellar atrophy, evaluating also the pattern of volume loss as well as concomitant MRI signs, is crucial to achieve a proper diagnosis. Conclusion The integration of typical neuroradiological characteristics, along with patient’s clinical history and laboratory data, could allow the neuroradiologist to identify some conditions and exclude others, addressing the neurologist to the more appropriate genetic testing.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.,Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Martina Di Stasi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Elvira Guerriero
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
42
|
Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PM. Neurofilaments: neurobiological foundations for biomarker applications. Brain 2020; 143:1975-1998. [PMID: 32408345 DOI: 10.1093/brain/awaa098] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Arie R Gafson
- Department of Brain Sciences, Imperial College, London, UK
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, Montpellier University, Montpellier, France
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Heather D Durham
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada.,CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.,Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Henrik Zetterberg
- University College London Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College, London, UK.,UK Dementia Research Institute at Imperial College, London
| |
Collapse
|
43
|
Habibzadeh P, Tabatabaei Z, Inaloo S, Nashatizadeh MM, Synofzik M, Ostovan VR, Faghihi MA. Case Report: Expanding the Genetic and Phenotypic Spectrum of Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay. Front Genet 2020; 11:585136. [PMID: 33414805 PMCID: PMC7784631 DOI: 10.3389/fgene.2020.585136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/13/2020] [Indexed: 02/01/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix–Saguenay (ARSACS) is a rare neurodegenerative disorder caused by biallelic mutations in the SACS gene. Once thought to be limited to Charlevoix–Saguenay region of Quebec, recent evidence has indicated that this disorder is present worldwide. It is classically characterized by the triad of ataxia, pyramidal involvement, and axonal-demyelinating sensorimotor neuropathy. However, diverse clinical features have been reported to be associated with this disorder. In this report, we present the first Iranian family affected by ARSACS with unique clinical features (mirror movements, hypokinesia/bradykinesia, and rigidity) harboring a novel deletion mutation in the SACS gene. Our findings expand the genetic and phenotypic spectrum of this disorder.
Collapse
Affiliation(s)
- Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Tabatabaei
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soroor Inaloo
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Mahdi Nashatizadeh
- Parkinson's Disease and Movement Disorder Center, Department of Neurology, University of Kansas School of Medicine, Kansas, KS, United States
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Vahid Reza Ostovan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
44
|
Fuller ZL, Mocellin VJL, Morris LA, Cantin N, Shepherd J, Sarre L, Peng J, Liao Y, Pickrell J, Andolfatto P, Matz M, Bay LK, Przeworski M. Population genetics of the coral Acropora millepora: Toward genomic prediction of bleaching. Science 2020; 369:369/6501/eaba4674. [PMID: 32675347 DOI: 10.1126/science.aba4674] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Although reef-building corals are declining worldwide, responses to bleaching vary within and across species and are partly heritable. Toward predicting bleaching response from genomic data, we generated a chromosome-scale genome assembly for the coral Acropora millepora We obtained whole-genome sequences for 237 phenotyped samples collected at 12 reefs along the Great Barrier Reef, among which we inferred little population structure. Scanning the genome for evidence of local adaptation, we detected signatures of long-term balancing selection in the heat-shock co-chaperone sacsin We conducted a genome-wide association study of visual bleaching score for 213 samples, incorporating the polygenic score derived from it into a predictive model for bleaching in the wild. These results set the stage for genomics-based approaches in conservation strategies.
Collapse
Affiliation(s)
- Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | | | - Luke A Morris
- Australian Institute of Marine Science, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Neal Cantin
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Jihanne Shepherd
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Luke Sarre
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Julie Peng
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Yi Liao
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | | | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, QLD, Australia.
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, NY, USA. .,Department of Systems Biology, Columbia University, New York, NY, USA.,Program for Mathematical Genomics, Columbia University, New York, NY, USA
| |
Collapse
|
45
|
Ma Y, Wang L, Jia R. The role of mitochondrial dynamics in human cancers. Am J Cancer Res 2020; 10:1278-1293. [PMID: 32509379 PMCID: PMC7269774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023] Open
Abstract
Mitochondria are crucial cellular organelles. Under extracellular stimulations, mitochondria undergo constant fusion and fission dynamics to meet different cellular demands. Mitochondrial dynamics is regulated by specialized proteins and lipids. Dysregulated mitochondrial dynamics has been linked to the initiation and progression of diverse human cancers, affecting aspects such as cancer metastasis, drug resistance and cancer stem cell survival, suggesting that targeting mitochondrial dynamics is a potential therapeutic strategy. In the present review, we summarize the molecular mechanisms underlying fusion and fission dynamics and discuss the effects of mitochondrial dynamics on the development of human cancers.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai, China
| | - Lihua Wang
- Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai, China
| |
Collapse
|
46
|
Al-Ajmi A, Shamsah S, Janicijevic A, Williams M, Al-Mulla F. Novel frameshift mutation in the SACS gene causing spastic ataxia of charlevoix-saguenay in a consanguineous family from the Arabian Peninsula: A case report and review of literature. World J Clin Cases 2020; 8:1477-1488. [PMID: 32368540 PMCID: PMC7190960 DOI: 10.12998/wjcc.v8.i8.1477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Familial cases of autosomal recessive spastic ataxia of charlevoix-saguenay have not been reported in the Arabian Peninsula, although the consanguineous marriage rate is very high. We report the first family from the Arabian Peninsula harboring a novel frameshift mutation in the SACS gene.
CASE SUMMARY A 33-year-old man presented to our neurology clinic with balance problems and weakness of distal upper and lower limbs. He was previously clinically diagnosed with Friedreich's ataxia. However, the severity of polyneuropathy and the electrodiagnostic studies (EDX) findings are atypical features of Friedreich’s ataxia, and the deterioration was attributed to diabetic neuropathy. Close examination of other family members identified cerebellar ataxia, lower-limb pyramidal signs, peripheral neuropathy, and magnetic resonance imaging findings characterized by pontine linear hypointensities. Genetic testing for Friedreich’s ataxia did not yield a diagnosis. Whole exome sequencing identified a novel frameshift germline mutation in the SACS gene termed c.5824_5827delTACT using the transcript NM_014363.5, which is predicted to cause premature termination of the sacsin protein at amino acid position 1942 (p.Tyr1942Metfs*9) and disrupts the sacsin SRR3 and domains downstream from it. The mutation segregated with the disease in the family.
CONCLUSION Our data add to the spectrum of mutations in the SACS gene and argues for a need to implement suitably integrated clinical and diagnostic services, including next generation sequencing technology, to better classify ataxia in this area of the world.
Collapse
Affiliation(s)
| | - Sarah Shamsah
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Michayla Williams
- Department of Genetics, Genatak Center for Genomic Medicine, Kuwait City 12000, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics, Genatak Center for Genomic Medicine, Kuwait City 12000, Kuwait
| |
Collapse
|
47
|
Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, Sun K. Microcystin-LR-induced changes of hepatopancreatic transcriptome, intestinal microbiota, and histopathology of freshwater crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134549. [PMID: 31810700 DOI: 10.1016/j.scitotenv.2019.134549] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
As a hepatotoxin, microcystin-LR (MC-LR) poses a great threat to aquatic organisms. In this research, the hepatopancreatic transcriptome, intestinal microbiota, and histopathology of Procambarus clarkii (P. clarkii) in response to acute MC-LR exposure were studied. RNA-seq analysis of hepatopancreas identified 372 and 781 differentially expressed genes (DEGs) after treatment with 10 and 40 μg/L MC-LR, respectively. Among the DEGs, 23 genes were immune-related and 21 genes were redox-related. GO functional enrichment analysis revealed that MC-LR could impact nuclear-transcribed mRNA catabolic process, cobalamin- and heme-related processes, and sirohydrochlorin cobaltochelatase activity of P. clarkii. In addition, the only significantly enriched KEGG pathway induced by MC-LR was galactose metabolism pathway. Meanwhile, sequencing of the bacterial 16S rRNA gene demonstrated that MC-LR decreased bacterial richness and diversity, and altered the intestinal microbiota composition. At the phylum level, after 96 h, the abundance of Verrucomicrobia decreased after treatment with 10 and 40 μg/L MC-LR, while Firmicutes increased in the 40 μg/L MC-LR-treated group. At the genus level, the abundances of 15 genera were significantly altered after exposure to MC-LR. Our research demonstrated that MC-LR exposure caused histological alterations such as structural damage of hepatopancreas and intestines. This research provides an insight into the mechanisms associated with MC-LR toxicity in aquatic crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zheyu Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sergey Kholodkevich
- Institute of Earth Sciences, Saint-Petersburg State University, Saint-Petersburg 199034, Russia; Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia
| | - Andrey Sharov
- Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia; Papanin Institute for Biology of the Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Yujie Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
48
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
49
|
Pandey M, Nabi J, Tabassum N, Pottoo FH, Khatik R, Ahmad N. Molecular Chaperones in Neurodegeneration. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular chaperones are essential players to this protein quality control network that functions to prevent protein misfolding, refold misfolded proteins, or degrade them, thereby maintaining neuronal proteostasis. Moreover, overexpression of cellular chaperones is considered to inhibit protein aggregation and apoptosis in various experimental models of neurodegeneration. Alterations or downregulation of chaperone machinery by age-related decline, molecular crowding, or genetic mutations are regarded as key pathological hallmarks of neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Prion diseases. Therefore, chaperones may serve as potential therapeutic targets in these diseases. This chapter presents a generalized view of misfolding and aggregation of proteins in neurodegeneration and then critically analyses some of the known cellular chaperones and their role in several neurodegenerative disorders.
Collapse
Affiliation(s)
- Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, India
| | - Jahangir Nabi
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Renuka Khatik
- Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Saudi Arabia
| |
Collapse
|
50
|
Functional Transcriptome Analysis in ARSACS KO Cell Model Reveals a Role of Sacsin in Autophagy. Sci Rep 2019; 9:11878. [PMID: 31417125 PMCID: PMC6695435 DOI: 10.1038/s41598-019-48047-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare early-onset neurological disease caused by mutations in SACS, which encodes sacsin. The complex architecture of sacsin suggests that it could be a key player in cellular protein quality control system. Molecular chaperones that operate in protein folding/unfolding and assembly/disassembly patterns have been described as essential modulators of selectivity during the autophagy process. We performed RNA-sequencing analysis to generate a whole-genome molecular signature profile of sacsin knockout cells. Using data analysis of biological processes significantly disrupted due to loss of sacsin, we confirmed the presence of decreased mitochondrial function associated with increased oxidative stress, and also provided a demonstration of a defective autophagic pathway in sacsin-depleted cells. Western blotting assays revealed decreased expression of LC3 and increased levels of p62 even after treatment with the lysosomal inhibitor bafilomycin A1, indicating impairment of the autophagic flux. Moreover, we found reduced co-immunolocalization of the autophagosome marker LC3 with lysosomal and mitochondrial markers suggesting fusion inhibition of autophagic compartments and subsequent failed cargo degradation, in particular failed degradation of damaged mitochondria. Pharmacological up-regulation of autophagy restored correct autophagic flux in sacsin knockout cells. These results corroborate the hypothesis that sacsin may play a role in autophagy. Chemical manipulation of this pathway might represent a new target to alleviate clinical and pathological symptoms, delaying the processes of neurodegeneration in ARSACS.
Collapse
|