1
|
Lv Z, Ren Y, Li Y, Niu F, Li Z, Li M, Li X, Li Q, Huang D, Yu Y, Xiong Y, Qian L. RNA-binding protein GIGYF2 orchestrates hepatic insulin resistance through STAU1/PTEN-mediated disruption of the PI3K/AKT signaling cascade. Mol Med 2024; 30:124. [PMID: 39138413 PMCID: PMC11323356 DOI: 10.1186/s10020-024-00889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated. METHODS In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo. RESULTS In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling. CONCLUSIONS Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Ziwei Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Fanglin Niu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710018, Shaanxi, P.R. China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Man Li
- Department of Endocrinology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Xiaofang Li
- Department of Gastroenterology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Qinhua Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Deqing Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Mental Health Center, Xi'an, 710100, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| |
Collapse
|
2
|
Liu P, Yu S, Zheng W, Zhang Q, Qiao J, Li Z, Deng Z, Zhang H. Identification and functional verification of Y-chromosome-specific gene typo-gyf in Bactrocera dorsalis. INSECT SCIENCE 2024; 31:1270-1284. [PMID: 38189161 DOI: 10.1111/1744-7917.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024]
Abstract
Genes on the Y chromosome play important roles in male sex determination and development. The identification of Y-chromosome-specific genes not only provides a theoretical basis for the study of male reproductive development, but also offers genetic control targets for agricultural pests. However, Y-chromosome genes are rarely characterized due to their high repeatability and high heterochromatinization, especially in the oriental fruit fly. In this study, 1 011 Y-chromosome-specific candidate sequences were screened from 2 to 4 h Bactrocera dorsalis embryo datasets with the chromosome quotient method, 6 of which were identified as Y-chromosome-specific sequences by polymerase chain reaction, including typo-gyf, a 19 126-bp DNA sequence containing a 575-amino acid open reading frame. Testicular deformation and a significant reduction in sperm number were observed after typo-gyf knockdown with RNA interference in embryos. After typo-gyf knockout with clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 in the embryonic stage, the sex ratio of the emergent adults was unbalanced, with far more females than males. A genotype analysis of these females with the Y-chromosome gene MoY revealed no sex reversal. Typo-gyf knockout led to the death of XY individuals in the embryonic stage. We conclude that typo-gyf is an essential gene for male survival, and is also involved in testicular development and spermatogenesis. The identification of typo-gyf and its functional verification provide insight into the roles of Y-chromosome genes in male development.
Collapse
Affiliation(s)
- Peipei Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuning Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenping Zheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiuyuan Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiao Qiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhurong Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
McGirr T, Onar O, Jafarnejad SM. Dysregulated ribosome quality control in human diseases. FEBS J 2024. [PMID: 38949989 DOI: 10.1111/febs.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.
Collapse
Affiliation(s)
- Tom McGirr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
- Department of Biology, Faculty of Science, Ankara University, Turkey
| | | |
Collapse
|
4
|
Lewitt MS, Boyd GW. Role of the Insulin-like Growth Factor System in Neurodegenerative Disease. Int J Mol Sci 2024; 25:4512. [PMID: 38674097 PMCID: PMC11049992 DOI: 10.3390/ijms25084512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The insulin-like growth factor (IGF) system has paracrine and endocrine roles in the central nervous system. There is evidence that IGF signalling pathways have roles in the pathophysiology of neurodegenerative disease. This review focusses on Alzheimer's disease and Parkinson's disease, the two most common neurodegenerative disorders that are increasing in prevalence globally in relation to the aging population and the increasing prevalence of obesity and type 2 diabetes. Rodent models used in the study of the molecular pathways involved in neurodegeneration are described. However, currently, no animal model fully replicates these diseases. Mice with triple mutations in APP, PSEN and MAPT show promise as models for the testing of novel Alzheimer's therapies. While a causal relationship is not proven, the fact that age, obesity and T2D are risk factors in both strengthens the case for the involvement of the IGF system in these disorders. The IGF system is an attractive target for new approaches to management; however, there are gaps in our understanding that first need to be addressed. These include a focus beyond IGF-I on other members of the IGF system, including IGF-II, IGF-binding proteins and the type 2 IGF receptor.
Collapse
Affiliation(s)
- Moira S. Lewitt
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Gary W. Boyd
- School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK;
| |
Collapse
|
5
|
Kwon HC, Bae Y, Lee SJV. The Role of mRNA Quality Control in the Aging of Caenorhabditis elegans. Mol Cells 2023; 46:664-671. [PMID: 37968980 PMCID: PMC10654458 DOI: 10.14348/molcells.2023.0103] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 11/17/2023] Open
Abstract
The proper maintenance of mRNA quality that is regulated by diverse surveillance pathways is essential for cellular homeostasis and is highly conserved among eukaryotes. Here, we review findings regarding the role of mRNA quality control in the aging and longevity of Caenorhabditis elegans, an outstanding model for aging research. We discuss the recently discovered functions of the proper regulation of nonsense-mediated mRNA decay, ribosome-associated quality control, and mRNA splicing in the aging of C. elegans. We describe how mRNA quality control contributes to longevity conferred by various regimens, including inhibition of insulin/insulin-like growth factor 1 (IGF-1) signaling, dietary restriction, and reduced mechanistic target of rapamycin signaling. This review provides valuable information regarding the relationship between the mRNA quality control and aging in C. elegans, which may lead to insights into healthy longevity in complex organisms, including humans.
Collapse
Affiliation(s)
- Hyunwoo C. Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yunkyu Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
6
|
Niu F, Li Z, Ren Y, Li Z, Guan H, Li Y, Zhang Y, Li Y, Yang J, Qian L, Shi W, Fan X, Li J, Shi L, Yu Y, Xiong Y. Aberrant hyper-expression of the RNA binding protein GIGYF2 in endothelial cells modulates vascular aging and function. Redox Biol 2023; 65:102824. [PMID: 37517320 PMCID: PMC10400931 DOI: 10.1016/j.redox.2023.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Vascular endothelial cells (ECs) senescence plays a crucial role in vascular aging that promotes the initiation and progression of cardiovascular disease. The mutation of Grb10-interacting GYF protein 2 (GIGYF2) is strongly associated with the pathogenesis of aging-related diseases, whereas its role in regulating ECs senescence and dysfunction still remains elusive. In this study, we found aberrant hyperexpression of GIGYF2 in senescent human ECs and aortas of old mice. Silencing GIGYF2 in senescent ECs suppressed eNOS-uncoupling, senescence, and endothelial dysfunction. Conversely, in nonsenescent cells, overexpressing GIGYF2 promoted eNOS-uncoupling, cellular senescence, endothelial dysfunction, and activation of the mTORC1-SK61 pathway, which were ablated by rapamycin or antioxidant N-Acetyl-l-cysteine (NAC). Transcriptome analysis revealed that staufen double-stranded RNA binding protein 1 (STAU1) is remarkably downregulated in the GIGYF2-depleted ECs. STAU1 depletion significantly attenuated GIGYF2-induced cellular senescence, dysfunction, and inflammation in young ECs. Furthermore, we disclosed that GIGYF2 acting as an RNA binding protein (RBP) enhances STAU1 mRNA stability, and that the intron region of the late endosomal/lysosomal adaptor MAPK and mTOR activator 4 (LAMTOR4) could bind to STAU1 protein to upregulate LAMTOR4 expression. Immunofluorescence staining showed that GIGYF2 overexpression promoted the translocation of mTORC1 to lysosome. In the mice model, GIGYF2flox/flox Cdh-Cre+ mice protected aged mice from aging-associated vascular endothelium-dependent relaxation and arterial stiffness. Our work discloses that GIGYF2 serving as an RBP enhances the mRNA stability of STAU1 that upregulates LAMTOR4 expression through binding with its intron region, which activates the mTORC1-S6K1 signaling via recruitment of mTORC1 to the lysosomal membrane, ultimately leading to ECs senescence, dysfunction, and vascular aging. Disrupting the GIGYF2-STAU1-mTORC1 signaling cascade may represent a promising therapeutic approach against vascular aging and aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710018, PR China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yirong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Junle Yang
- Department of Radiology, Xi' an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Lu Qian
- Department of Endocrinology, Xi' an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Wenzhen Shi
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Jinli Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Lele Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China.
| |
Collapse
|
7
|
Höpfler M, Hegde RS. Control of mRNA fate by its encoded nascent polypeptide. Mol Cell 2023; 83:2840-2855. [PMID: 37595554 PMCID: PMC10501990 DOI: 10.1016/j.molcel.2023.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Cells tightly regulate mRNA processing, localization, and stability to ensure accurate gene expression in diverse cellular states and conditions. Most of these regulatory steps have traditionally been thought to occur before translation by the action of RNA-binding proteins. Several recent discoveries highlight multiple co-translational mechanisms that modulate mRNA translation, localization, processing, and stability. These mechanisms operate by recognition of the nascent protein, which is necessarily coupled to its encoding mRNA during translation. Hence, the distinctive sequence or structure of a particular nascent chain can recruit recognition factors with privileged access to the corresponding mRNA in an otherwise crowded cellular environment. Here, we draw on both well-established and recent examples to provide a conceptual framework for how cells exploit nascent protein recognition to direct mRNA fate. These mechanisms allow cells to dynamically and specifically regulate their transcriptomes in response to changes in cellular states to maintain protein homeostasis.
Collapse
|
8
|
Zhang X, Qin L, Lu J, Xia Y, Tang X, Lu X, Xia S. Genome-Wide Identification of GYF-Domain Encoding Genes in Three Brassica Species and Their Expression Responding to Sclerotinia sclerotiorum in Brassica napus. Genes (Basel) 2023; 14:224. [PMID: 36672966 PMCID: PMC9858701 DOI: 10.3390/genes14010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
GYF (glycine-tyrosine-phenylalanine)-domain-containing proteins, which were reported to participate in many aspects of biological processes in yeast and animals, are highly conserved adaptor proteins existing in almost all eukaryotes. Our previous study revealed that GYF protein MUSE11/EXA1 is involved in nucleotide-binding leucine-rich repeat (NLR) receptor-mediated defense in Arabidopsis thaliana. However, the GYF-domain encoding homologous genes are still not clear in other plants. Here, we performed genome-wide identification of GYF-domain encoding genes (GYFs) from Brassica napus and its parental species, Brassica rapa and Brassica oleracea. As a result, 26 GYFs of B. napus (BnaGYFs), 11 GYFs of B. rapa (BraGYFs), and 14 GYFs of B. oleracea (BolGYFs) together with 10 A. thaliana (AtGYFs) were identified, respectively. We, then, conducted gene structure, motif, cis-acting elements, duplication, chromosome localization, and phylogenetic analysis of these genes. Gene structure analysis indicated the diversity of the exon numbers of these genes. We found that the defense and stress responsiveness element existed in 23 genes and also identified 10 motifs in these GYF proteins. Chromosome localization exhibited a similar distribution of BnaGYFs with BraGYFs or BolGYFs in their respective genomes. The phylogenetic and gene collinearity analysis showed the evolutionary conservation of GYFs among B. napus and its parental species as well as Arabidopsis. These 61 identified GYF domain proteins can be classified into seven groups according to their sequence similarity. Expression of BnaGYFs induced by Sclerotinia sclerotiorum provided five highly upregulated genes and five highly downregulated genes, which might be candidates for further research of plant-fungal interaction in B. napus.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing 400047, China
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xun Lu
- Agricultural Science Academy of Xiangxi Tujia and Miao Autonomous Prefecture, Xiangxi 416000, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
9
|
Christie M, Igreja C. eIF4E-homologous protein (4EHP): a multifarious cap-binding protein. FEBS J 2023; 290:266-285. [PMID: 34758096 DOI: 10.1111/febs.16275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
The cap-binding protein 4EHP/eIF4E2 has been a recent object of interest in the field of post-transcriptional gene regulation and translational control. From ribosome-associated quality control, to RNA decay and microRNA-mediated gene silencing, this member of the eIF4E protein family regulates gene expression through numerous pathways. Low in abundance but ubiquitously expressed, 4EHP interacts with different binding partners to form multiple protein complexes that regulate translation in a variety of biological contexts. Documented functions of 4EHP primarily relate to its role as a translational repressor, but recent findings indicate that it might also participate in the activation of translation in specific settings. In this review, we discuss the known functions, properties and mechanisms that involve 4EHP in the control of gene expression. We also discuss our current understanding of how 4EHP processes are regulated in eukaryotic cells, and the diseases implicated with dysregulation of 4EHP-mediated translational control.
Collapse
Affiliation(s)
- Mary Christie
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
10
|
Blok LER, Boon M, van Reijmersdal B, Höffler KD, Fenckova M, Schenck A. Genetics, molecular control and clinical relevance of habituation learning. Neurosci Biobehav Rev 2022; 143:104883. [PMID: 36152842 DOI: 10.1016/j.neubiorev.2022.104883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Habituation is the most fundamental form of learning. As a firewall that protects our brain from sensory overload, it is indispensable for cognitive processes. Studies in humans and animal models provide increasing evidence that habituation is affected in autism and related monogenic neurodevelopmental disorders (NDDs). An integrated application of habituation assessment in NDDs and their animal models has unexploited potential for neuroscience and medical care. With the aim to gain mechanistic insights, we systematically retrieved genes that have been demonstrated in the literature to underlie habituation. We identified 258 evolutionarily conserved genes across species, describe the biological processes they converge on, and highlight regulatory pathways and drugs that may alleviate habituation deficits. We also summarize current habituation paradigms and extract the most decisive arguments that support the crucial role of habituation for cognition in health and disease. We conclude that habituation is a conserved, quantitative, cognition- and disease-relevant process that can connect preclinical and clinical work, and hence is a powerful tool to advance research, diagnostics, and treatment of NDDs.
Collapse
Affiliation(s)
- Laura Elisabeth Rosalie Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Marina Boon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Kira Daniela Höffler
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands; Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Elevated GIGYF2 expression suppresses tumor migration and enhances sensitivity to temozolomide in malignant glioma. Cancer Gene Ther 2022; 29:750-757. [PMID: 34059782 DOI: 10.1038/s41417-021-00353-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Glioma is a common type of malignant and aggressive tumor in the brain. Despite progress on mechanistic studies, current understanding of the initiation and progression of glioma remains incomplete. GIGYF2 is a critical regulator in neural development and degeneration, however, its contribution in glioma is not yet elucidated. In this study, using an integrative approach spanning bioinformatic analysis and functional approaches, we explored the potential contribution of GIGYF2 in glioma. Bioinformatic data from public database and our cohort showed that GIGYF2 expression was closely associated with low glioma malignancy and better patient survival. Elevation of GIGYF2 expression impaired cell migration and enhanced temozolomide sensitivity of human glioma cells. We further establish its molecular mechanism by demonstrating that GIGYF2 inhibits MMP-9 mediated cell migration pathway and pro-survival AKT/Bax/Caspase-3 signaling. Our work identifies the suppressive role of GIGYF2 in gliomas, and clarifies the relationship between GIGYF2 expression and glioma malignancy, which may provide a potential target for future interventions.
Collapse
|
12
|
Sagehashi N, Obara Y, Maruyama O, Nakagawa T, Hosoi T, Ishii K. Insulin enhances gene expression of Midnolin, a novel genetic risk factor for Parkinson's disease, via ERK, PI3-kinase and multiple transcription factors in SH-SY5Y cells. J Pharmacol Exp Ther 2022; 381:68-78. [PMID: 35241633 DOI: 10.1124/jpet.121.001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Although many monogenic variants have been identified that cause familial PD, most cases are sporadic and the mechanisms of sporadic PD onset remain unclear. We previously identified Midnolin (MIDN) as a novel genetic risk factor for PD in Japanese population. MIDN copy number loss was strongly associated with sporadic PD, which was replicated in British population. Furthermore, suppression of MIDN expression in rat PC12 cells inhibits neurite outgrowth and expression of Parkin ubiquitin ligase. However, the detailed molecular mechanisms of MIDN expression are unknown. We, therefore, investigated the molecular mechanism of MIDN expression in human neuroblastoma SH-SY5Y cells. We found that MIDN expression was promoted by insulin via extracellular-signal regulated kinase (ERK)1/2 and PI3-kinase-dependent pathways. In addition, MIDN promoter activity was enhanced by mutations at transcription factor AP-2 consensus sequences and reduced by mutations at cAMP response element-binding protein (CREB) and activator protein 1 (AP-1) consensus sequences. The dominant-negative CREB mutant did not block MIDN promoter activity, but both the pharmacological inhibitor and decoy oligodeoxynucleotide for AP-1 significantly blocked its activity. Additionally, DNA binding of c-FOS and c-JUN to the AP-1 consensus sequence in the MIDN promoter was enhanced by insulin as determined by chromatin immunoprecipitation, which suggested that AP-1 positively regulated MIDN expression. Taken together, this study reveals molecular mechanisms of MIDN gene expression induced by insulin in neuronal cells, and drugs which promote MIDN expression may have potential to be a novel medicine for PD. Significance Statement We demonstrated that insulin promotes MIDN expression via ERK1/2 and PI3-kinase pathways. Furthermore, we identified the important region of the MIDN promoter and showed that transcription factors, including AP-1, positively regulate MIDN expression, whereas TFAP2 negatively regulates basal and insulin-induced MIDN expression. We believe that our observations are important and that they contribute to the development of novel drugs to treat Parkinson's disease.
Collapse
|
13
|
Allen JR, Wilkinson EG, Strader LC. Creativity comes from interactions: modules of protein interactions in plants. FEBS J 2022; 289:1492-1514. [PMID: 33774929 PMCID: PMC8476656 DOI: 10.1111/febs.15847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey R. Allen
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Edward G. Wilkinson
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Dhanya SK, Hasan G. Deficits Associated With Loss of STIM1 in Purkinje Neurons Including Motor Coordination Can Be Rescued by Loss of Septin 7. Front Cell Dev Biol 2021; 9:794807. [PMID: 34993201 PMCID: PMC8724567 DOI: 10.3389/fcell.2021.794807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Septins are cytoskeletal proteins that can assemble to form heteromeric filamentous complexes and regulate a range of membrane-associated cellular functions. SEPT7, a member of the septin family, functions as a negative regulator of the plasma membrane–localized store-operated Ca2+ entry (SOCE) channel, Orai in Drosophila neurons, and in human neural progenitor cells. Knockdown of STIM, a Ca2+ sensor in the endoplasmic reticulum (ER) and an integral component of SOCE, leads to flight deficits in Drosophila that can be rescued by partial loss of SEPT7 in neurons. Here, we tested the effect of reducing and removing SEPT7 in mouse Purkinje neurons (PNs) with the loss of STIM1. Mice with the complete knockout of STIM1 in PNs exhibit several age-dependent changes. These include altered gene expression in PNs, which correlates with increased synapses between climbing fiber (CF) axons and Purkinje neuron (PN) dendrites and a reduced ability to learn a motor coordination task. Removal of either one or two copies of the SEPT7 gene in STIM1KO PNs restored the expression of a subset of genes, including several in the category of neuron projection development. Importantly, the rescue of gene expression in these animals is accompanied by normal CF-PN innervation and an improved ability to learn a motor coordination task in aging mice. Thus, the loss of SEPT7 in PNs further modulates cerebellar circuit function in STIM1KO animals. Our findings are relevant in the context of identifying SEPT7 as a putative therapeutic target for various neurodegenerative diseases caused by reduced intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- Sreeja Kumari Dhanya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- SASTRA University, Thanjavur, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- *Correspondence: Gaiti Hasan,
| |
Collapse
|
15
|
Park J, Park J, Lee J, Lim C. The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology. BMB Rep 2021. [PMID: 34488933 PMCID: PMC8505234 DOI: 10.5483/bmbrep.2021.54.9.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Translating ribosomes accompany co-translational regulation of nascent polypeptide chains, including subcellular targeting, protein folding, and covalent modifications. Ribosome-associated quality control (RQC) is a co-translational surveillance mechanism triggered by ribosomal collisions, an indication of atypical translation. The ribosome-associated E3 ligase ZNF598 ubiquitinates small subunit proteins at the stalled ribosomes. A series of RQC factors are then recruited to dissociate and triage aberrant translation intermediates. Regulatory ribosomal stalling may occur on endogenous transcripts for quality gene expression, whereas ribosomal collisions are more globally induced by ribotoxic stressors such as translation inhibitors, ribotoxins, and UV radiation. The latter are sensed by ribosome-associated kinases GCN2 and ZAKα, activating integrated stress response (ISR) and ribotoxic stress response (RSR), respectively. Hierarchical crosstalks among RQC, ISR, and RSR pathways are readily detectable since the collided ribosome is their common substrate for activation. Given the strong implications of RQC factors in neuronal physiology and neurological disorders, the interplay between RQC and ribosome-associated stress signaling may sustain proteostasis, adaptively determine cell fate, and contribute to neural pathogenesis. The elucidation of underlying molecular principles in relevant human diseases should thus provide unexplored therapeutic opportunities.
Collapse
Affiliation(s)
- Jumin Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jongmin Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jongbin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
16
|
Weber R, Chung MY, Keskeny C, Zinnall U, Landthaler M, Valkov E, Izaurralde E, Igreja C. 4EHP and GIGYF1/2 Mediate Translation-Coupled Messenger RNA Decay. Cell Rep 2021; 33:108262. [PMID: 33053355 DOI: 10.1016/j.celrep.2020.108262] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Current models of mRNA turnover indicate that cytoplasmic degradation is coupled with translation. However, our understanding of the molecular events that coordinate ribosome transit with the mRNA decay machinery is still limited. Here, we show that 4EHP-GIGYF1/2 complexes trigger co-translational mRNA decay. Human cells lacking these proteins accumulate mRNAs with prominent ribosome pausing. They include, among others, transcripts encoding secretory and membrane-bound proteins or tubulin subunits. In addition, 4EHP-GIGYF1/2 complexes fail to reduce mRNA levels in the absence of ribosome stalling or upon disruption of their interaction with the cap structure, DDX6, and ZNF598. We further find that co-translational binding of GIGYF1/2 to the mRNA marks transcripts with perturbed elongation to decay. Our studies reveal how a repressor complex linked to neurological disorders minimizes the protein output of a subset of mRNAs.
Collapse
Affiliation(s)
- Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Min-Yi Chung
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Csilla Keskeny
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Ulrike Zinnall
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany; IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany; IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany.
| |
Collapse
|
17
|
Mayya VK, Flamand MN, Lambert AM, Jafarnejad SM, Wohlschlegel JA, Sonenberg N, Duchaine TF. microRNA-mediated translation repression through GYF-1 and IFE-4 in C. elegans development. Nucleic Acids Res 2021; 49:4803-4815. [PMID: 33758928 PMCID: PMC8136787 DOI: 10.1093/nar/gkab162] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
microRNA (miRNA)-mediated gene silencing is enacted through the recruitment of effector proteins that direct translational repression or degradation of mRNA targets, but the relative importance of their activities for animal development remains unknown. Our concerted proteomic surveys identified the uncharacterized GYF-domain encoding protein GYF-1 and its direct interaction with IFE-4, the ortholog of the mammalian translation repressor 4EHP, as key miRNA effector proteins in Caenorhabditis elegans. Recruitment of GYF-1 protein to mRNA reporters in vitro or in vivo leads to potent translation repression without affecting the poly(A) tail or impinging on mRNA stability. Loss of gyf-1 is synthetic lethal with hypomorphic alleles of embryonic miR-35-42 and larval (L4) let-7 miRNAs, which is phenocopied through engineered mutations in gyf-1 that abolish interaction with IFE-4. GYF-1/4EHP function is cascade-specific, as loss of gyf-1 had no noticeable impact on the functions of other miRNAs, including lin-4 and lsy-6. Overall, our findings reveal the first direct effector of miRNA-mediated translational repression in C. elegans and its physiological importance for the function of several, but likely not all miRNAs.
Collapse
Affiliation(s)
- Vinay K Mayya
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Mathieu N Flamand
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Alice M Lambert
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast BT9 7AE UK
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| | - Thomas F Duchaine
- Goodman Cancer Research Center, McGill University, Montréal H3G 1Y6, Canada.,Department of Biochemistry, McGill University, Montréal H3G 1Y6, Canada
| |
Collapse
|
18
|
Purkinje Neurons with Loss of STIM1 Exhibit Age-Dependent Changes in Gene Expression and Synaptic Components. J Neurosci 2021; 41:3777-3798. [PMID: 33737457 DOI: 10.1523/jneurosci.2401-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The stromal interaction molecule 1 (STIM1) is an ER-Ca2+ sensor and an essential component of ER-Ca2+ store operated Ca2+ entry. Loss of STIM1 affects metabotropic glutamate receptor 1 (mGluR1)-mediated synaptic transmission, neuronal Ca2+ homeostasis, and intrinsic plasticity in Purkinje neurons (PNs). Long-term changes of intracellular Ca2+ signaling in PNs led to neurodegenerative conditions, as evident in individuals with mutations of the ER-Ca2+ channel, the inositol 1,4,5-triphosphate receptor. Here, we asked whether changes in such intrinsic neuronal properties, because of loss of STIM1, have an age-dependent impact on PNs. Consequently, we analyzed mRNA expression profiles and cerebellar morphology in PN-specific STIM1 KO mice (STIM1PKO ) of both sexes across ages. Our study identified a requirement for STIM1-mediated Ca2+ signaling in maintaining the expression of genes belonging to key biological networks of synaptic function and neurite development among others. Gene expression changes correlated with altered patterns of dendritic morphology and greater innervation of PN dendrites by climbing fibers, in aging STIM1PKO mice. Together, our data identify STIM1 as an important regulator of Ca2+ homeostasis and neuronal excitability in turn required for maintaining the optimal transcriptional profile of PNs with age. Our findings are significant in the context of understanding how dysregulated calcium signals impact cellular mechanisms in multiple neurodegenerative disorders.SIGNIFICANCE STATEMENT In Purkinje neurons (PNs), the stromal interaction molecule 1 (STIM1) is required for mGluR1-dependent synaptic transmission, refilling of ER Ca2+ stores, regulation of spike frequency, and cerebellar memory consolidation. Here, we provide evidence for a novel role of STIM1 in maintaining the gene expression profile and optimal synaptic connectivity of PNs. Expression of genes related to neurite development and synaptic organization networks is altered in PNs with persistent loss of STIM1. In agreement with these findings the dendritic morphology of PNs and climbing fiber innervations on PNs also undergo significant changes with age. These findings identify a new role for dysregulated intracellular calcium signaling in neurodegenerative disorders and provide novel therapeutic insights.
Collapse
|
19
|
The eIF4E homolog 4EHP (eIF4E2) regulates hippocampal long-term depression and impacts social behavior. Mol Autism 2020; 11:92. [PMID: 33225984 PMCID: PMC7682028 DOI: 10.1186/s13229-020-00394-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022] Open
Abstract
Background The regulation of protein synthesis is a critical step in gene expression, and its dysfunction is implicated in autism spectrum disorder (ASD). The eIF4E homologous protein (4EHP, also termed eIF4E2) binds to the mRNA 5′ cap to repress translation. The stability of 4EHP is maintained through physical interaction with GRB10 interacting GYF protein 2 (GIGYF2). Gene-disruptive mutations in GIGYF2 are linked to ASD, but causality is lacking. We hypothesized that GIGYF2 mutations cause ASD by disrupting 4EHP function. Methods Since homozygous deletion of either gene is lethal, we generated a cell-type-specific knockout model where Eif4e2 (the gene encoding 4EHP) is deleted in excitatory neurons of the forebrain (4EHP-eKO). In this model, we investigated ASD-associated synaptic plasticity dysfunction, ASD-like behaviors, and global translational control. We also utilized mice lacking one copy of Gigyf2, Eif4e2 or co-deletion of one copy of each gene to further investigate ASD-like behaviors. Results 4EHP is expressed in excitatory neurons and synaptosomes, and its amount increases during development. 4EHP-eKO mice display exaggerated mGluR-LTD, a phenotype frequently observed in mouse models of ASD. Consistent with synaptic plasticity dysfunction, the mice displayed social behavior impairments without being confounded by deficits in olfaction, anxiety, locomotion, or motor ability. Repetitive behaviors and vocal communication were not affected by loss of 4EHP in excitatory neurons. Heterozygous deletion of either Gigyf2, Eif4e2, or both genes in mice did not result in ASD-like behaviors (i.e. decreases in social behavior or increases in marble burying). Interestingly, exaggerated mGluR-LTD and impaired social behaviors were not attributed to changes in hippocampal global protein synthesis, which suggests that 4EHP and GIGYF2 regulate the translation of specific mRNAs to mediate these effects. Limitations This study did not identify which genes are translationally regulated by 4EHP and GIGYF2. Identification of mistranslated genes in 4EHP-eKO mice might provide a mechanistic explanation for the observed impairment in social behavior and exaggerated LTD. Future experiments employing affinity purification of translating ribosomes and mRNA sequencing in 4EHP-eKO mice will address this relevant issue. Conclusions Together these results demonstrate an important role of 4EHP in regulating hippocampal plasticity and ASD-associated social behaviors, consistent with the link between mutations in GIGYF2 and ASD.
Collapse
|
20
|
Juszkiewicz S, Slodkowicz G, Lin Z, Freire-Pritchett P, Peak-Chew SY, Hegde RS. Ribosome collisions trigger cis-acting feedback inhibition of translation initiation. eLife 2020; 9:e60038. [PMID: 32657267 PMCID: PMC7381030 DOI: 10.7554/elife.60038] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Translation of aberrant mRNAs can cause ribosomes to stall, leading to collisions with trailing ribosomes. Collided ribosomes are specifically recognised by ZNF598 to initiate protein and mRNA quality control pathways. Here we found using quantitative proteomics of collided ribosomes that EDF1 is a ZNF598-independent sensor of ribosome collisions. EDF1 stabilises GIGYF2 at collisions to inhibit translation initiation in cis via 4EHP. The GIGYF2 axis acts independently of the ZNF598 axis, but each pathway's output is more pronounced without the other. We propose that the widely conserved and highly abundant EDF1 monitors the transcriptome for excessive ribosome density, then triggers a GIGYF2-mediated response to locally and temporarily reduce ribosome loading. Only when collisions persist is translation abandoned to initiate ZNF598-dependent quality control. This tiered response to ribosome collisions would allow cells to dynamically tune translation rates while ensuring fidelity of the resulting protein products.
Collapse
Affiliation(s)
- Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Greg Slodkowicz
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Zhewang Lin
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | | | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| |
Collapse
|
21
|
Ruscica V, Bawankar P, Peter D, Helms S, Igreja C, Izaurralde E. Direct role for the Drosophila GIGYF protein in 4EHP-mediated mRNA repression. Nucleic Acids Res 2020; 47:7035-7048. [PMID: 31114929 PMCID: PMC6648886 DOI: 10.1093/nar/gkz429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
The eIF4E-homologous protein (4EHP) is a translational repressor that competes with eIF4E for binding to the 5'-cap structure of specific mRNAs, to which it is recruited by protein factors such as the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins (GIGYF). Several experimental evidences suggest that GIGYF proteins are not merely facilitating 4EHP recruitment to transcripts but are actually required for the repressor activity of the complex. However, the underlying molecular mechanism is unknown. Here, we investigated the role of the uncharacterized Drosophila melanogaster (Dm) GIGYF protein in post-transcriptional mRNA regulation. We show that, when in complex with 4EHP, Dm GIGYF not only elicits translational repression but also promotes target mRNA decay via the recruitment of additional effector proteins. We identified the RNA helicase Me31B/DDX6, the decapping activator HPat and the CCR4-NOT deadenylase complex as binding partners of GIGYF proteins. Recruitment of Me31B and HPat via discrete binding motifs conserved among metazoan GIGYF proteins is required for downregulation of mRNA expression by the 4EHP-GIGYF complex. Our findings are consistent with a model in which GIGYF proteins additionally recruit decapping and deadenylation complexes to 4EHP-containing RNPs to induce translational repression and degradation of mRNA targets.
Collapse
Affiliation(s)
- Vincenzo Ruscica
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Praveen Bawankar
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany.,Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany.,European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Sigrun Helms
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| |
Collapse
|
22
|
Valera ET, Neder L, Queiroz RG, Santos AC, Sousa GR, Oliveira RS, Santos MV, Machado HR, Tone LG. Perinatal complex low- and high-grade glial tumor harboring a novel GIGYF2-ALK fusion. Pediatr Blood Cancer 2020; 67:e28015. [PMID: 31556208 DOI: 10.1002/pbc.28015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Elvis T Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luciano Neder
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rosane G Queiroz
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Antonio C Santos
- Department of Oncology and Image, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Graziella R Sousa
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ricardo S Oliveira
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcelo V Santos
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Hélio R Machado
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Wang M, Hou J, Müller-McNicoll M, Chen W, Schuman EM. Long and Repeat-Rich Intronic Sequences Favor Circular RNA Formation under Conditions of Reduced Spliceosome Activity. iScience 2019; 20:237-247. [PMID: 31590076 PMCID: PMC6817660 DOI: 10.1016/j.isci.2019.08.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 02/02/2023] Open
Abstract
Circular RNAs (circRNAs), an important class of regulatory RNAs, have been shown to be the most prevalent in the brain compared with other tissues. However the processes governing their biogenesis in neurons are still elusive. Moreover, little is known about whether and how different biogenesis factors work in synchrony to generate neuronal circRNAs. To address this question, we pharmacologically inhibited the spliceosome and profiled rat neuronal circRNAs using RNA sequencing. We identified over 100 circRNAs that were up-regulated and a few circRNAs that were down-regulated upon spliceosome inhibition. Bioinformatic analysis revealed that up-regulated circRNAs possess significantly longer flanking introns compared with the un-changed circRNA population. Moreover, the flanking introns of up-regulated circRNAs harbor a higher number of distinct repeat sequences and more reverse complementary motifs compared with the unchanged circRNAs. Taken together, our data demonstrate that the biogenesis of circRNAs containing distinct intronic features becomes favored under conditions of limited spliceosome activity. RNA-seq reveals changes of the neuronal circRNA landscape after spliceosome inhibition Hundreds of circRNAs are up-regulated under conditions of reduced spliceosome activity Long and repeat-rich flanking introns facilitate up-regulation of cognate circRNAs
Collapse
Affiliation(s)
- Mantian Wang
- Max Planck Institute for Brain Research, Max-von-Laue-Str.4, 60438 Frankfurt am Main, Germany
| | - Jingyi Hou
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max-von-Laue-Str.4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by selective and progressive loss of dopaminergic neurons. Genetic and environmental risk factors are associated with this disease. The genetic factors are composed of approximately 20 genes, such as SNCA, parkin, PTEN-induced kinase1 (pink1), leucine-rich repeat kinase 2 (LRRK2), ATP13A2, MAPT, VPS35, and DJ-1, whereas the environmental factors consist of oxidative stress-induced toxins such as 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), rotenone, and paraquat. The analyses of their functions and mechanisms have provided important insights into the disease process, which has demonstrated that these factors cause oxidative damage and mitochondrial dysfunction. The most invaluable studies have been performed using disease model organisms, such as mice, fruit flies, and worms. Among them, Drosophila melanogaster has emerged as an excellent model organism to study both environmental and genetic factors and provide insights to the pathways relevant for PD pathogenesis, facilitating development of therapeutic strategies. In this review, we have focused on the fly model organism to summarize recent progress, including pathogenesis, neuro-protective compounds, and newer approaches.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, BK21 PLUS Project, Seoul 02707, Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, BK21 PLUS Project, Seoul 02707, Korea
| |
Collapse
|
25
|
Amaya Ramirez CC, Hubbe P, Mandel N, Béthune J. 4EHP-independent repression of endogenous mRNAs by the RNA-binding protein GIGYF2. Nucleic Acids Res 2019; 46:5792-5808. [PMID: 29554310 PMCID: PMC6009589 DOI: 10.1093/nar/gky198] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/07/2018] [Indexed: 11/12/2022] Open
Abstract
Initially identified as a factor involved in tyrosine kinase receptor signaling, Grb10-interacting GYF protein 2 (GIGYF2) has later been shown to interact with the 5′ cap-binding protein 4EHP as part of a translation repression complex, and to mediate post-transcriptional repression of tethered reporter mRNAs. A current model proposes that GIGYF2 is indirectly recruited to mRNAs by specific RNA-binding proteins (RBPs) leading to translation repression through its association with 4EHP. Accordingly, we recently observed that GIGYF2 also interacts with the miRNA-induced silencing complex and probably modulates its translation repression activity. Here we have further investigated how GIGYF2 represses mRNA function. In a tethering reporter assay, we identify three independent domains of GIGYF2 with repressive activity. In this assay, GIGYF2-mediated repression is independent of 4EHP but largely dependent on the CCR4/NOT complex that GIGYF2 recruits through multiple interfaces. Importantly, we show that GIGYF2 is an RBP and identify for the first time endogenous mRNA targets that recapitulate 4EHP-independent repression. Altogether, we propose that GIGYF2 has two distinct mechanisms of repression: one depends on 4EHP binding and mainly affects translation; the other is 4EHP-independent and involves the CCR4/NOT complex and its deadenylation activity.
Collapse
Affiliation(s)
- Cinthia C Amaya Ramirez
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Petra Hubbe
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Nicolas Mandel
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Julien Béthune
- CellNetworks Junior Research Group Posttranscriptional Regulation of mRNA Expression and Localization, Heidelberg University, D-69120 Heidelberg, Germany.,Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Kochmanski J, VanOeveren SE, Patterson JR, Bernstein AI. Developmental Dieldrin Exposure Alters DNA Methylation at Genes Related to Dopaminergic Neuron Development and Parkinson's Disease in Mouse Midbrain. Toxicol Sci 2019; 169:593-607. [PMID: 30859219 PMCID: PMC6542339 DOI: 10.1093/toxsci/kfz069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human and animal studies have shown that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Despite previous work showing a link between developmental dieldrin exposure and increased neuronal susceptibility to MPTP toxicity in male C57BL/6 mice, the mechanism mediating this effect has not been identified. Here, we tested the hypothesis that developmental exposure to dieldrin increases neuronal susceptibility via genome-wide changes in DNA methylation. Starting at 8 weeks of age and prior to mating, female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin by feeding (every 3 days) throughout breeding, gestation, and lactation. At 12 weeks of age, pups were sacrificed and ventral mesencephalon, containing primarily substantia nigra, was microdissected. DNA was isolated and dieldrin-related changes in DNA methylation were assessed via reduced representation bisulfite sequencing. We identified significant, sex-specific differentially methylated CpGs (DMCs) and regions (DMRs) by developmental dieldrin exposure (false discovery rate < 0.05), including DMCs at the Nr4a2 and Lmx1b genes, which are involved in dopaminergic neuron development and maintenance. Developmental dieldrin exposure had distinct effects on the male and female epigenome. Together, our data suggest that developmental dieldrin exposure establishes sex-specific poised epigenetic states early in life. These poised epigenomes may mediate sensitivity to subsequent toxic stimuli and contribute to the development of late-life neurodegenerative disease, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Sarah E VanOeveren
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Joseph R Patterson
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Alison I Bernstein
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503
| |
Collapse
|
27
|
Liou CJ, Tong M, Vonsattel JP, de la Monte SM. Altered Brain Expression of Insulin and Insulin-Like Growth Factors in Frontotemporal Lobar Degeneration: Another Degenerative Disease Linked to Dysregulation of Insulin Metabolic Pathways. ASN Neuro 2019; 11:1759091419839515. [PMID: 31081340 PMCID: PMC6535914 DOI: 10.1177/1759091419839515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) is the third most common dementing neurodegenerative disease with nearly 80% having no known etiology. OBJECTIVE Growing evidence that neurodegeneration can be linked to dysregulated metabolism prompted us to measure a panel of trophic factors, receptors, and molecules that modulate brain metabolic function in FTLD. METHODS Postmortem frontal (Brodmann's area [BA]8/9 and BA24) and temporal (BA38) lobe homogenates were used to measure immunoreactivity to Tau, phosphorylated tau (pTau), ubiquitin, 4-hydroxynonenal (HNE), transforming growth factor-beta 1 (TGF-β1) and its receptor (TGF-β1R), brain-derived neurotrophic factor (BDNF), nerve growth factor, neurotrophin-3, neurotrophin-4, tropomyosin receptor kinase, and insulin and insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-2 (IGF-2) and their receptors by direct-binding enzyme-linked immunosorbent assay. RESULTS FTLD brains had significantly elevated pTau, ubiquitin, TGF-β1, and HNE immunoreactivity relative to control. In addition, BDNF and neurotrophin-4 were respectively reduced in BA8/9 and BA38, while neurotrophin-3 and nerve growth factor were upregulated in BA38, and tropomyosin receptor kinase was elevated in BA24. Lastly, insulin and insulin receptor expressions were elevated in the frontal lobe, IGF-1 was increased in BA24, IGF-1R was upregulated in all three brain regions, and IGF-2 receptor was reduced in BA24 and BA38. CONCLUSIONS Aberrantly increased levels of pTau, ubiquitin, HNE, and TGF-β1, marking neurodegeneration, oxidative stress, and neuroinflammation, overlap with altered expression of insulin/IGF signaling ligand and receptors in frontal and temporal lobe regions targeted by FTLD. Dysregulation of insulin-IGF signaling networks could account for brain hypometabolism and several characteristic neuropathologic features that characterize FTLD but overlap with Alzheimer's disease, Parkinson's disease, and Dementia with Lewy Body Disease.
Collapse
Affiliation(s)
- Connie J. Liou
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Division of Neuropathology, Departments of Pathology, Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, the Providence VA Medical Center, Providence, RI, USA
| | - Jean P. Vonsattel
- New York Brain Bank, Taub Institute, Columbia University, New York, NY, USA
| | - Suzanne M. de la Monte
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Division of Neuropathology, Departments of Pathology, Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, the Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
28
|
|
29
|
Chen YC, Chang YW, Huang YS. Dysregulated Translation in Neurodevelopmental Disorders: An Overview of Autism-Risk Genes Involved in Translation. Dev Neurobiol 2018; 79:60-74. [PMID: 30430754 DOI: 10.1002/dneu.22653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Regulated local translation-whereby specific mRNAs are transported and localized in subcellular domains where they are translated in response to regional signals-allows for remote control of gene expression to concentrate proteins in subcellular compartments. Neurons are highly polarized cells with unique features favoring local control for axonal pathfinding and synaptic plasticity, which are key processes involved in constructing functional circuits in the developing brain. Neurodevelopmental disorders are caused by genetic or environmental factors that disturb the nervous system's development during prenatal and early childhood periods. The growing list of genetic mutations that affect mRNA translation raises the question of whether aberrant translatomes in individuals with neurodevelopmental disorders share common molecular features underlying their stereotypical phenotypes and, vice versa, cause a certain degree of phenotypic heterogeneity. Here, we briefly give an overview of the role of local translation during neuronal development. We take the autism-risk gene list and discuss the molecules that (perhaps) are involved in mRNA transport and translation. Both exaggerated and suppressed translation caused by mutations in those genes have been identified or suggested. Finally, we discuss some proof-of-principle regimens for use in autism mouse models to correct dysregulated translation.
Collapse
Affiliation(s)
- Yan-Chu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Wei Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
30
|
Pomytkin I, Costa‐Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch K, Ponomarev ED, Strekalova T. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 2018; 24:763-774. [PMID: 29691988 PMCID: PMC6489906 DOI: 10.1111/cns.12866] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - João P. Costa‐Nunes
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Faculdade de Medicina de LisboaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Vladimir Kasatkin
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
| | - Ekaterina Veniaminova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Anna Demchenko
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Alexey Lyundup
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Klaus‐Peter Lesch
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Division of Molecular PsychiatryCenter of Mental HealthClinical Research Unit on Disorders of Neurodevelopment and CognitionUniversity of WürzburgWürzburgGermany
| | - Eugene D. Ponomarev
- Faculty of MedicineSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Tatyana Strekalova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
31
|
Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR. Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process. Cell Mol Neurobiol 2018; 38:1153-1178. [PMID: 29700661 PMCID: PMC6061130 DOI: 10.1007/s10571-018-0587-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Parkinson disease (PD) is known as a common progressive neurodegenerative disease which is clinically diagnosed by the manifestation of numerous motor and nonmotor symptoms. PD is a genetically heterogeneous disorder with both familial and sporadic forms. To date, researches in the field of Parkinsonism have identified 23 genes or loci linked to rare monogenic familial forms of PD with Mendelian inheritance. Biochemical studies revealed that the products of these genes usually play key roles in the proper protein and mitochondrial quality control processes, as well as synaptic transmission and vesicular recycling pathways within neurons. Despite this, large number of patients affected with PD typically tends to show sporadic forms of disease with lack of a clear family history. Recent genome-wide association studies (GWAS) meta-analyses on the large sporadic PD case-control samples from European populations have identified over 12 genetic risk factors. However, the genetic etiology that underlies pathogenesis of PD is also discussed, since it remains unidentified in 40% of all PD-affected cases. Nowadays, with the emergence of new genetic techniques, international PD genomics consortiums and public online resources such as PDGene, there are many hopes that future large-scale genetics projects provide further insights into the genetic etiology of PD and improve diagnostic accuracy and therapeutic clinical trial designs.
Collapse
Affiliation(s)
- Amin Karimi-Moghadam
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Saeid Charsouei
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Benjamin Bell
- Human Genetics & Genomic Medicine, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Mohammad Reza Jabalameli
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran.
- Human Genetics & Genomic Medicine, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.
| |
Collapse
|
32
|
The genetics of Parkinson disease. Ageing Res Rev 2018; 42:72-85. [PMID: 29288112 DOI: 10.1016/j.arr.2017.12.007] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
About 15% of patients with Parkinson disease (PD) have family history and 5-10% have a monogenic form of the disease with Mendelian inheritance. To date, at least 23 loci and 19 disease-causing genes for parkinsonism have been found, but many more genetic risk loci and variants for sporadic PD phenotype have been identified in various association studies. Investigating the mutated protein products has uncovered potential pathogenic pathways that provide insights into mechanisms of neurodegeneration in familial and sporadic PD. To commemorate the 200th anniversary of Parkinson's publication of An Essay on the Shaking Palsy, we provide a comprehensive and critical overview of the current clinical, neuropathological, and genetic understanding of genetic forms of PD. We also discuss advances in screening for genetic PD-related risk factors and how they impact genetic counseling and contribute to the development of potential disease-modifying therapies.
Collapse
|
33
|
Regulation of insulin-like growth factor receptors by Ubiquilin1. Biochem J 2017; 474:4105-4118. [PMID: 29054976 DOI: 10.1042/bcj20170620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
Insulin-like growth factor-1 receptor (IGF1R) is a receptor tyrosine kinase that mediates growth, proliferation and survival. Dysregulation of IGF pathway contributes to the initiation, progression and metastasis of cancer and is also involved in diseases of glucose metabolism, such as diabetes. We have identified Ubiquilin1 (UBQLN1) as a novel interaction partner of IGF1R, IGF2R and insulin receptor (INSR). UBQLN family of proteins have been studied primarily in the context of protein quality control and in the field of neurodegenerative disorders. Our laboratory discovered a link between UBQLN1 function and tumorigenesis, such that UBQLN1 is lost and underexpressed in 50% of human lung adenocarcinoma cases. We demonstrate here that UBQLN1 regulates the expression and activity of IGF1R. Following loss of UBQLN1 in lung adenocarcinoma cells, there is accelerated loss of IGF1R. Despite decreased levels of total receptors, the ratio of active : total receptors is higher in cells that lack UBQLN1. UBQLN1 also regulates INSR and IGF2R post-stimulation with ligand. We conclude that UBQLN1 is essential for normal regulation of IGF receptors. UBQLN-1-deficient cells demonstrate increased cell viability compared with control when serum-starved and stimulation of IGF pathway in these cells increased their migratory potential by 3-fold. As the IGF pathway is involved in processes of normal growth, development, metabolism and cancer progression, understanding its regulation by Ubiquilin1 can be of tremendous value to many disciplines.
Collapse
|
34
|
Abstract
Idiopathic infertility, an etiology not identified as part of standard clinical assessment, represents approximately 20% of all infertility cases. Current male infertility diagnosis focuses on the concentration, motility, and morphology of spermatozoa. This is of limited value when predicting birth success and of limited utility when selecting the optimum treatment. At fertilization, spermatozoa provide their genomic contribution, as well as a set of RNAs and proteins that have distinct roles in development. The potential of spermatozoal RNAs to be used as a prognostic of live birth has been shown [Jodar et al. (2015) Science Translational Medicine 7(295):295re6]. This relied on a set of 648 sperm RNA elements derived from 285 genes that are perhaps indicative of future health status. To address this tenet, the present study correlated the levels of each transcript among all samples to assess linkage between transcript absence, birth success, and possible disease association. Correlations between transcript levels of the 285 genes were analyzed amongst themselves, and within the context of the entire transcript population for these samples. The transcripts ACE, GIGYF2, and ODF2 had many negative correlations and form the majority of correlations, suggesting an important function for these transcripts. Eleven of the 285 queried genes had disease-associated variants within a sperm RNA element. Three genes, GPX4, NDRG1, and RPS24 had SREs were absent in at least one individual from the test cohort. GPX4 and RPS24 are associated with developmental defects and/or neonatal lethality. This leaves the intriguing possibility that, while sperm RNAs delivered to the oocyte inform the success of live birth, they may also be predictors of human health. ABBREVIATIONS GO: Gene Ontology; ART: assisted reproductive technology; IVF: in vitro fertilization; ICSI: intra-cytoplasmic sperm injection; RNA-seq: RNA-sequencing; TIC: timed intercourse; IUI: intrauterine insemination; SRE: sperm RNA elements; HPA: Human Protein Atlas; SMDS: sedaghatian-type spondylometaphyseal dysplasia; DBA: Diamond-Blackfan anemia; RPKM: reads per kilobase per million; TPM: transcripts per million; IPA: Ingenuity Pathway Analysis; OMIM: Online Mendelian Inheritance in Man.
Collapse
Affiliation(s)
- Rayanne B Burl
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine
| | | | - Edward Sendler
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine
| | - Molly Estill
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine.,c Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Stephen A Krawetz
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine.,c Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
35
|
Peter D, Weber R, Sandmeir F, Wohlbold L, Helms S, Bawankar P, Valkov E, Igreja C, Izaurralde E. GIGYF1/2 proteins use auxiliary sequences to selectively bind to 4EHP and repress target mRNA expression. Genes Dev 2017; 31:1147-1161. [PMID: 28698298 PMCID: PMC5538437 DOI: 10.1101/gad.299420.117] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/01/2017] [Indexed: 01/16/2023]
Abstract
The eIF4E homologous protein (4EHP) is thought to repress translation by competing with eIF4E for binding to the 5' cap structure of specific mRNAs to which it is recruited through interactions with various proteins, including the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins 1 and 2 (GIGYF1/2). Despite its similarity to eIF4E, 4EHP does not interact with eIF4G and therefore fails to initiate translation. In contrast to eIF4G, GIGYF1/2 bind selectively to 4EHP but not eIF4E. Here, we present crystal structures of the 4EHP-binding regions of GIGYF1 and GIGYF2 in complex with 4EHP, which reveal the molecular basis for the selectivity of the GIGYF1/2 proteins for 4EHP. Complementation assays in a GIGYF1/2-null cell line using structure-based mutants indicate that 4EHP requires interactions with GIGYF1/2 to down-regulate target mRNA expression. Our studies provide structural insights into the assembly of 4EHP-GIGYF1/2 repressor complexes and reveal that rather than merely facilitating 4EHP recruitment to transcripts, GIGYF1/2 proteins are required for repressive activity.
Collapse
Affiliation(s)
- Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Felix Sandmeir
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Lara Wohlbold
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Sigrun Helms
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Praveen Bawankar
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Le Gallo M, Lozy F, Bell DW. Next-Generation Sequencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:119-148. [DOI: 10.1007/978-3-319-43139-0_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Requejo-Aguilar R, Bolaños JP. Mitochondrial control of cell bioenergetics in Parkinson's disease. Free Radic Biol Med 2016; 100:123-137. [PMID: 27091692 PMCID: PMC5065935 DOI: 10.1016/j.freeradbiomed.2016.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra. The earliest biochemical signs of the disease involve failure in mitochondrial-endoplasmic reticulum cross talk and lysosomal function, mitochondrial electron chain impairment, mitochondrial dynamics alterations, and calcium and iron homeostasis abnormalities. These changes are associated with increased mitochondrial reactive oxygen species (mROS) and energy deficiency. Recently, it has been reported that, as an attempt to compensate for the mitochondrial dysfunction, neurons invoke glycolysis as a low-efficient mode of energy production in models of PD. Here, we review how mitochondria orchestrate the maintenance of cellular energetic status in PD, with special focus on the switch from oxidative phosphorylation to glycolysis, as well as the implication of endoplasmic reticulum and lysosomes in the control of bioenergetics.
Collapse
Affiliation(s)
- Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Cordoba, Institute Maimonides of Biomedical Investigation of Cordoba (IMIBIC), Cordoba, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, Zacarias Gonzalez, 2, 37007 Salamanca, Spain.
| |
Collapse
|
38
|
Kim M, Semple I, Kim B, Kiers A, Nam S, Park HW, Park H, Ro SH, Kim JS, Juhász G, Lee JH. Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 2016; 11:1358-72. [PMID: 26086452 DOI: 10.1080/15548627.2015.1063766] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Autophagy is an essential process for eliminating ubiquitinated protein aggregates and dysfunctional organelles. Defective autophagy is associated with various degenerative diseases such as Parkinson disease. Through a genetic screening in Drosophila, we identified CG11148, whose product is orthologous to GIGYF1 (GRB10-interacting GYF protein 1) and GIGYF2 in mammals, as a new autophagy regulator; we hereafter refer to this gene as Gyf. Silencing of Gyf completely suppressed the effect of Atg1-Atg13 activation in stimulating autophagic flux and inducing autophagic eye degeneration. Although Gyf silencing did not affect Atg1-induced Atg13 phosphorylation or Atg6-Pi3K59F (class III PtdIns3K)-dependent Fyve puncta formation, it inhibited formation of Atg13 puncta, suggesting that Gyf controls autophagy through regulating subcellular localization of the Atg1-Atg13 complex. Gyf silencing also inhibited Atg1-Atg13-induced formation of Atg9 puncta, which is accumulated upon active membrane trafficking into autophagosomes. Gyf-null mutants also exhibited substantial defects in developmental or starvation-induced accumulation of autophagosomes and autolysosomes in the larval fat body. Furthermore, heads and thoraxes from Gyf-null adults exhibited strongly reduced expression of autophagosome-associated Atg8a-II compared to wild-type (WT) tissues. The decrease in Atg8a-II was directly correlated with an increased accumulation of ubiquitinated proteins and dysfunctional mitochondria in neuron and muscle, which together led to severe locomotor defects and early mortality. These results suggest that Gyf-mediated autophagy regulation is important for maintaining neuromuscular homeostasis and preventing degenerative pathologies of the tissues. Since human mutations in the GIGYF2 locus were reported to be associated with a type of familial Parkinson disease, the homeostatic role of Gyf-family proteins is likely to be evolutionarily conserved.
Collapse
Affiliation(s)
- Myungjin Kim
- a Department of Molecular and Integrative Physiology ; University of Michigan ; Ann Arbor , MI USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The contribution of GIGYF2 to Parkinson's disease: a meta-analysis. Neurol Sci 2015; 36:2073-9. [PMID: 26152800 DOI: 10.1007/s10072-015-2316-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/30/2015] [Indexed: 01/11/2023]
Abstract
The contribution of the gene of GIGYF2, Grb10-Interacting GYF Protein 2, to Parkinson's disease (PD) is still ambiguous. To explore the contribution of GIGYF2 to PD at the genetic level, we analyzed the relationship between all reported GIGYF2 variants (including mutations and polymorphisms) and PD through a meta-analysis. Databases including Medline, Embase, etc., were searched to find relevant studies. All eligible publications have to meet the strict inclusion and exclusion criteria listed. Two authors independently selected trials, assessed the article's quality and extracted data. Odds ratios (ORs) and relative risks with 95 % confidence intervals (CIs) were used to evaluate the strength of associations. All analyses were carried out by using the Review Manager software package v.5.2. More than 100 variants of GIGYF2 were reported either or both in patients and controls in 10 included publications. The 10 publications totally included 5466 patients and 6517 controls. We conducted meta-analyses for the following variants: N56S, N457T, Del LPQQQQQQ 1209-1216, Del Q 1210 (rs10555297), rs12328151, rs2289912, rs2305138, rs3816334, A572A and H1171R. The ORs for N56S were 2.86 (95 % CI 1.10, 7.41) for PD and 4.75 (95 % CI 1.35, 16.68) for FPD. And the OR for N457T in FPD was 4.53 (95 % CI 1.04, 19.66). On the other hand, other variants involved in meta-analyses were not related to PD. This research results suggest that the N56S and N457T of GIGYF2 are risk factors for PD in Caucasians, but not in Asians.
Collapse
|
40
|
Xiao J, Vemula S, Yue Z. Rodent Models of Autosomal Dominant Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Tissue-specific regulation and function of Grb10 during growth and neuronal commitment. Proc Natl Acad Sci U S A 2014; 112:6841-7. [PMID: 25368187 DOI: 10.1073/pnas.1411254111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth-factor receptor bound protein 10 (Grb10) is a signal adapter protein encoded by an imprinted gene that has roles in growth control, cellular proliferation, and insulin signaling. Additionally, Grb10 is critical for the normal behavior of the adult mouse. These functions are paralleled by Grb10's unique tissue-specific imprinted expression; the paternal copy of Grb10 is expressed in a subset of neurons whereas the maternal copy is expressed in most other adult tissues in the mouse. The mechanism that underlies this switch between maternal and paternal expression is still unclear, as is the role for paternally expressed Grb10 in neurons. Here, we review recent work and present complementary data that contribute to the understanding of Grb10 gene regulation and function, with specific emphasis on growth and neuronal development. Additionally, we show that in vitro differentiation of mouse embryonic stem cells into alpha motor neurons recapitulates the switch from maternal to paternal expression observed during neuronal development in vivo. We postulate that this switch in allele-specific expression is related to the functional role of Grb10 in motor neurons and other neuronal tissues.
Collapse
|
42
|
Xie J, Wei Q, Deng H, Li G, Ma L, Zeng H. Negative regulation of Grb10 Interacting GYF Protein 2 on insulin-like growth factor-1 receptor signaling pathway caused diabetic mice cognitive impairment. PLoS One 2014; 9:e108559. [PMID: 25268761 PMCID: PMC4182477 DOI: 10.1371/journal.pone.0108559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/25/2014] [Indexed: 12/28/2022] Open
Abstract
Heterozygous Gigyf2⁺/⁻ mice exhibits histopathological evidence of neurodegeneration such as motor dysfunction. Several lines of evidence have demonstrated the important role of insulin-like growth factor-1 receptor (IGF1R) signaling pathway in the neuropathogenic process of cognitive impairment, while decreased Grb10-Interacting GYF Protein 2 (GIGYF2) expression can alter IGF1R trafficking and its downstream signaling pathways. Growth factor receptor-bound protein 10 (Grb10), a suppressor of IGF1R pathway, has been shown to play a critical role in regulating diabetes-associated cognitive impairment. It remains unknown whether endogenous GIGYF2 expression contributes to the development of diabetes-associated cognitive impairment. Using streptozotocin (STZ)-induced diabetic mice model, we first demonstrated that a significantly increased level of GIGYF2 expression was correlated with a significant decrease in the expression of phosphorylated IGF1R as well as the phosphorylation of AKT and ERK1/2, two signaling pathways downstream of IGF1R, in the hippocampus of diabetic mice. On the contrary, in situ knockdown of GIGYF2 expression in hippocampus resulted in increased expression of phosphorylated IGF1R expression and correspondingly reversed the down-regulation of ERK1/2 phsophorylation but had no obvious effect on Grb10 expression. Functionally, knockdown of GIGYF2 expression markedly ameliorated diabetes-associated cognitive dysfunction as well as the ultrastructural pathology and abnormal neurobehavioral changes. These results suggest that increased expression of GIGYF2 might contribute to the development of diabetes-associated cognitive disorder via negatively regulating IGF1R signaling pathway. Therefore, down-regulation of GIGYF2 expression may provide a potential novel approach to treat diabetes-associated cognitive impairment caused by aberrant IGF1R signaling pathway.
Collapse
MESH Headings
- Animals
- Carrier Proteins/agonists
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cognition
- Cognition Disorders/complications
- Cognition Disorders/genetics
- Cognition Disorders/physiopathology
- Cognition Disorders/therapy
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- GRB10 Adaptor Protein/genetics
- GRB10 Adaptor Protein/metabolism
- Gene Expression Regulation
- Genetic Therapy
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Somatomedin/genetics
- Receptors, Somatomedin/metabolism
- Signal Transduction
- Streptozocin
Collapse
Affiliation(s)
- Jing Xie
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianping Wei
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huacong Deng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Li
- Department of Mental Health, The Mental Health Center of Jiulongpo District, Chongqing, China
| | - Lingli Ma
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zeng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Schneider JF, Rempel LA, Snelling WM, Wiedmann RT, Nonneman DJ, Rohrer GA. Genome-wide association study of swine farrowing traits. Part II: Bayesian analysis of marker data1,2. J Anim Sci 2012; 90:3360-7. [DOI: 10.2527/jas.2011-4759] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- J. F. Schneider
- U.S. Meat Animal Research Center, USDA-ARS,4 Clay Center, NE 68933
| | - L. A. Rempel
- U.S. Meat Animal Research Center, USDA-ARS,4 Clay Center, NE 68933
| | - W. M. Snelling
- U.S. Meat Animal Research Center, USDA-ARS,4 Clay Center, NE 68933
| | - R. T. Wiedmann
- U.S. Meat Animal Research Center, USDA-ARS,4 Clay Center, NE 68933
| | - D. J. Nonneman
- U.S. Meat Animal Research Center, USDA-ARS,4 Clay Center, NE 68933
| | - G. A. Rohrer
- U.S. Meat Animal Research Center, USDA-ARS,4 Clay Center, NE 68933
| |
Collapse
|
44
|
A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol Cell Biol 2012; 32:3585-93. [PMID: 22751931 DOI: 10.1128/mcb.00455-12] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of the eukaryotic initiation factor 4E (eIF4E) to the mRNA 5' cap structure is a rate-limiting step in mRNA translation initiation. eIF4E promotes ribosome recruitment to the mRNA. In Drosophila, the eIF4E homologous protein (d4EHP) forms a complex with binding partners to suppress the translation of distinct mRNAs by competing with eIF4E for binding the 5' cap structure. This repression mechanism is essential for the asymmetric distribution of proteins and normal embryonic development in Drosophila. In contrast, the physiological role of the mammalian 4EHP (m4EHP) was not known. In this study, we have identified the Grb10-interacting GYF protein 2 (GIGYF2) and the zinc finger protein 598 (ZNF598) as components of the m4EHP complex. GIGYF2 directly interacts with m4EHP, and this interaction is required for stabilization of both proteins. Disruption of the m4EHP-GIGYF2 complex leads to increased translation and perinatal lethality in mice. We propose a model by which the m4EHP-GIGYF2 complex represses translation of a subset of mRNAs during embryonic development, as was previously reported for d4EHP.
Collapse
|
45
|
Sonntag KC, Woo TUW, Krichevsky AM. Converging miRNA functions in diverse brain disorders: a case for miR-124 and miR-126. Exp Neurol 2012; 235:427-35. [PMID: 22178324 PMCID: PMC3335933 DOI: 10.1016/j.expneurol.2011.11.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/27/2011] [Accepted: 11/27/2011] [Indexed: 01/16/2023]
Abstract
A growing body of information on the biology of miRNAs has revealed new insight into their roles in normal homeostasis and pathology of disease. miRNAs control all steps of the cellular expression machinery acting through a "single miRNA/multiple targets" or "multiple miRNAs/single target" mechanism. They have profound impact on the regulation of signaling pathways, which govern common and specific functions across different cellular phenotypes. There is increasing evidence that various diseases share similar disturbances in gene expression networks. Since miRNAs have both common and varying effects in different cellular contexts, they might also influence overlapping signaling pathways in different organs and disease entities. Here, we review this concept for two miRNAs highly abundant in the brain, miR-124 and miR-126, and their potential role in diseases of the brain.
Collapse
Affiliation(s)
- Kai C. Sonntag
- Department of Psychiatry, Mailman Research Center, McLean Hospital, Belmont, MA 02478
| | - Tsung-Ung W. Woo
- Department of Psychiatry, Mailman Research Center, McLean Hospital, Belmont, MA 02478
- Laboratory of Cellular Neuropathology, Mailman Research Center, McLean Hospital, Belmont, MA 02478
| | - Anna M. Krichevsky
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115
| |
Collapse
|
46
|
Notch signaling is antagonized by SAO-1, a novel GYF-domain protein that interacts with the E3 ubiquitin ligase SEL-10 in Caenorhabditis elegans. Genetics 2012; 190:1043-57. [PMID: 22209900 DOI: 10.1534/genetics.111.136804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Notch signaling pathways can be regulated through a variety of cellular mechanisms, and genetically compromised systems provide useful platforms from which to search for the responsible modulators. The Caenorhabditis elegans gene aph-1 encodes a component of γ-secretase, which is essential for Notch signaling events throughout development. By looking for suppressors of the incompletely penetrant aph-1(zu147) mutation, we identify a new gene, sao-1 (suppressor of aph-one), that negatively regulates aph-1(zu147) activity in the early embryo. The sao-1 gene encodes a novel protein that contains a GYF protein-protein interaction domain and interacts specifically with SEL-10, an Fbw7 component of SCF E3 ubiquitin ligases. We demonstrate that the embryonic lethality of aph-1(zu147) mutants can be suppressed by removing sao-1 activity or by mutations that disrupt the SAO-1-SEL-10 protein interaction. Decreased sao-1 activity also influences Notch signaling events when they are compromised at different molecular steps of the pathway, such as at the level of the Notch receptor GLP-1 or the downstream transcription factor LAG-1. Combined analysis of the SAO-1-SEL-10 protein interaction and comparisons of sao-1 and sel-10 genetic interactions suggest a possible role for SAO-1 as an accessory protein that participates with SEL-10 in downregulation of Notch signaling. This work provides the first mutant analysis of a GYF-domain protein in either C. elegans or Drosophila and introduces a new type of Fbw7-interacting protein that acts in a subset of Fbw7 functions.
Collapse
|
47
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
48
|
Antony PMA, Diederich NJ, Balling R. Parkinson's disease mouse models in translational research. Mamm Genome 2011; 22:401-19. [PMID: 21559878 PMCID: PMC3151483 DOI: 10.1007/s00335-011-9330-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022]
Abstract
Animal models with high predictive power are a prerequisite for translational research. The closer the similarity of a model to Parkinson’s disease (PD), the higher is the predictive value for clinical trials. An ideal PD model should present behavioral signs and pathology that resemble the human disease. The increasing understanding of PD stratification and etiology, however, complicates the choice of adequate animal models for preclinical studies. An ultimate mouse model, relevant to address all PD-related questions, is yet to be developed. However, many of the existing models are useful in answering specific questions. An appropriate model should be chosen after considering both the context of the research and the model properties. This review addresses the validity, strengths, and limitations of current PD mouse models for translational research.
Collapse
Affiliation(s)
- Paul M A Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg.
| | | | | |
Collapse
|
49
|
|
50
|
Li L, Funayama M, Tomiyama H, Li Y, Yoshino H, Sasaki R, Kokubo Y, Kuzuhara S, Mizuno Y, Hattori N. No evidence for pathogenic role of GIGYF2 mutation in Parkinson disease in Japanese patients. Neurosci Lett 2010; 479:245-8. [PMID: 20641165 DOI: 10.1016/j.neulet.2010.05.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Grb10-Interacting GYF Protein-2 (GIGYF2) is a candidate gene for PARK11 locus. To date, seven different GIGYF2 missense mutations have been identified in patients with familial Parkinson disease (PD) of European descent. To clarify the pathogenic role of GIGYF2 in PD, we analyzed the frequency of GIGYF2 mutations in 389 Japanese patients with PD (including 93 patients with late-onset familial PD, 276 with sporadic PD, and 20 with a single heterozygous mutation in the PD-associated genes), and 336 Japanese normal controls, by direct sequencing and/or high-resolution melting analysis. None of the reported GIGYF2 mutations or digenic mutations were detected. Two novel non-synonymous variants were identified (p.Q1211delQ and p.H1023Q), however, we could not determine their roles in PD. In summary, we found no evidence for PD-associated roles of GIGYF2 mutations. Our data suggest that GIGYF2 is unlikely to play a major role in PD in Japanese patients, similar to other populations.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|