1
|
Nawn D, Hassan SS, Redwan EM, Bhattacharya T, Basu P, Lundstrom K, Uversky VN. Unveiling the genetic tapestry: Rare disease genomics of spinal muscular atrophy and phenylketonuria proteins. Int J Biol Macromol 2024; 269:131960. [PMID: 38697430 DOI: 10.1016/j.ijbiomac.2024.131960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/30/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Rare diseases, defined by their low prevalence, present significant challenges, including delayed detection, expensive treatments, and limited research. This study delves into the genetic basis of two noteworthy rare diseases in Saudi Arabia: Phenylketonuria (PKU) and Spinal Muscular Atrophy (SMA). PKU, resulting from mutations in the phenylalanine hydroxylase (PAH) gene, exhibits geographical variability and impacts intellectual abilities. SMA, characterized by motor neuron loss, is linked to mutations in the survival of motor neuron 1 (SMN1) gene. Recognizing the importance of unveiling signature genomics in rare diseases, we conducted a quantitative study on PAH and SMN1 proteins of multiple organisms by employing various quantitative techniques to assess genetic variations. The derived signature-genomics contributes to a deeper understanding of these critical genes, paving the way for enhanced diagnostics for disorders associated with PAH and SMN1.
Collapse
Affiliation(s)
- Debaleena Nawn
- Indian Research Institute for Integrated Medicine (IRIIM), Unsani, Howrah 711302, West Bengal, India.
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, West Bengal, India.
| | - Elrashdy M Redwan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab 21934, Alexandria, Egypt.
| | - Tanishta Bhattacharya
- Developmental Genetics (Dept III), Max Planck Institute for Heart and Lung Research, Ludwigstrabe 43, 61231, Bad Nauheim, Germany.
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein, 2000, South Africa; Adjunct Faculty, Woxsen School of Sciences, Woxsen University, Hyderabad 500 033, Telangana, India.
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Sun G, Wang G, Zhong H. Observational analysis of the immunogenicity and safety of various types of spinal muscular atrophy vaccines. Inflammopharmacology 2024; 32:1025-1038. [PMID: 38308795 DOI: 10.1007/s10787-023-01395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND This study aimed to evaluate the immunogenicity and safety of different types of poliovirus vaccines. METHODS A randomized, blinded, single-center, parallel-controlled design was employed, and 360 infants aged ≥ 2 months were selected as study subjects. They were randomly assigned to bOPV group (oral Sabin vaccine) and sIPV group (Sabin strain inactivated polio vaccine), with 180 infants in each group. Adverse reaction events in the vaccinated subjects were recorded. The micro-neutralization test using cell culture was conducted to determine the geometric mean titer (GMT) of neutralizing antibodies against poliovirus types I, II, and III in different groups, and the seroconversion rates were calculated. RESULTS Both groups exhibited a 100% seropositivity rate after booster immunization. The titers of neutralizing antibodies for the three types were predominantly distributed within the range of 1:128 to 1:512. The fold increase of type I antibodies differed markedly between the two groups (P < 0.05). Moreover, the fold increase of type II and type III antibodies for poliovirus differed slightly between the two groups (P > 0.05). The fourfold increase rate in sIPV group was drastically superior to that in bOPV group (P < 0.05). When comparing the post-immunization GMT levels of type I antibodies in individuals who completed the full course of spinal muscular atrophy vaccination, bOPV group showed greatly inferior levels to sIPV group (P < 0.05). For type II and type III antibodies, individuals in bOPV group demonstrated drastically superior post-immunization GMT levels to those in sIPV group (P < 0.05). The incidence of adverse reactions between the bOPV and sIPV groups differed slightly (P > 0.05). CONCLUSION These findings indicated that both the oral vaccine and inactivated vaccine had good safety and immunogenicity in infants aged ≥ 2 months. The sIPV group generated higher levels of neutralizing antibodies in serum, particularly evident in the post-immunization GMT levels for types II and III.
Collapse
Affiliation(s)
- Guojuan Sun
- Immunization Program Department, Daqing Center for Disease Control and Prevention, Daqing, 163000, Heilongjiang, China
| | - Guangzhi Wang
- Pathology Department, Daqing People's Hospital, Daqing, 163000, Heilongjiang, China
| | - Heng Zhong
- Endocrinology Department, Heilongjiang Provincial Hospital, Harbin, 150036, Heilongjiang, China.
| |
Collapse
|
3
|
Miller N, Xu Z, Quinlan KA, Ji A, McGivern JV, Feng Z, Shi H, Ko CP, Tsai LH, Heckman CJ, Ebert AD, Ma YC. Mitigating aberrant Cdk5 activation alleviates mitochondrial defects and motor neuron disease symptoms in spinal muscular atrophy. Proc Natl Acad Sci U S A 2023; 120:e2300308120. [PMID: 37976261 PMCID: PMC10666147 DOI: 10.1073/pnas.2300308120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/31/2023] [Indexed: 11/19/2023] Open
Abstract
Spinal muscular atrophy (SMA), the top genetic cause of infant mortality, is characterized by motor neuron degeneration. Mechanisms underlying SMA pathogenesis remain largely unknown. Here, we report that the activity of cyclin-dependent kinase 5 (Cdk5) and the conversion of its activating subunit p35 to the more potent activator p25 are significantly up-regulated in mouse models and human induced pluripotent stem cell (iPSC) models of SMA. The increase of Cdk5 activity occurs before the onset of SMA phenotypes, suggesting that it may be an initiator of the disease. Importantly, aberrant Cdk5 activation causes mitochondrial defects and motor neuron degeneration, as the genetic knockout of p35 in an SMA mouse model rescues mitochondrial transport and fragmentation defects, and alleviates SMA phenotypes including motor neuron hyperexcitability, loss of excitatory synapses, neuromuscular junction denervation, and motor neuron degeneration. Inhibition of the Cdk5 signaling pathway reduces the degeneration of motor neurons derived from SMA mice and human SMA iPSCs. Altogether, our studies reveal a critical role for the aberrant activation of Cdk5 in SMA pathogenesis and suggest a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Nimrod Miller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Zhaofa Xu
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Katharina A. Quinlan
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI02881
| | - Amy Ji
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Jered V. McGivern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI53226
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Han Shi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Charles J. Heckman
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI53226
| | - Yongchao C. Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
4
|
Biçer M, Kozan Ş, Öztürk F, Akçay AA. Surgical correction of a ventricular septal defect in a child with spinal muscular atrophy type 2 treated with nusinersen sodium: a case report. J Cardiothorac Surg 2023; 18:68. [PMID: 36759863 PMCID: PMC9909886 DOI: 10.1186/s13019-023-02170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a severe, inherited neuromuscular disorder characterized by progressive muscle weakness and atrophy. Cardiac pathology co-existence is reported more frequently in the severely affected patient groups. Structural heart anomalies, mainly septal, and outflow tract defects are commonly observed pathologies. CASE PRESENTATION We herein report the case of a 23 days-old female patient with the diagnosis of spinal muscular atrophy type 2 complicated with structural heart defects. Successful pulmonary banding, and at the age of 17 months, subsequent surgical atrial and ventricular septal defect closure were performed on our patient who was under treatment of Nusinersen Sodium. Post-operative recovery was uncomplicated. Cardiac assessments were normal, and the patient was neurologically improving in her recent follow-up. CONCLUSION In the literature, there are no reported cases of successful surgical repair of heart defects in spinal muscular atrophy patients. These patients can be perceived as risky surgical candidates with suboptimal postoperative recovery given the unfavorable disease prognosis of SMA in untreated patients. We report our promising experience with a SMA type 2 patient undergoing a disease-modifying medical treatment. The SMA patients under treatment may be potential candidates for successful surgical cardiac correction given their overall improved prognosis.
Collapse
Affiliation(s)
- Mehmet Biçer
- Department of Pediatric Cardiovascular Surgery, Koç University Hospital, Istanbul, Turkey
| | - Şima Kozan
- School of Medicine, Koç University, Koç University Hospital, Zeytinburnu, Istanbul, Turkey.
| | - Figen Öztürk
- Department of Anesthesia and Reanimation, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Ayfer Arduç Akçay
- Department of Pediatric Neurology, Koç University Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Agonist of growth hormone-releasing hormone improves the disease features of spinal muscular atrophy mice. Proc Natl Acad Sci U S A 2023; 120:e2216814120. [PMID: 36603028 PMCID: PMC9926281 DOI: 10.1073/pnas.2216814120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe autosomal recessive neuromuscular disease affecting children and young adults, caused by mutations of the survival motor neuron 1 gene (SMN1). SMA is characterized by the degeneration of spinal alpha motor neurons (αMNs), associated with muscle paralysis and atrophy, as well as other peripheral alterations. Both growth hormone-releasing hormone (GHRH) and its potent agonistic analog, MR-409, exert protective effects on muscle atrophy, cardiomyopathies, ischemic stroke, and inflammation. In this study, we aimed to assess the protective role of MR-409 in SMNΔ7 mice, a widely used model of SMA. Daily subcutaneous treatment with MR-409 (1 or 2 mg/kg), from postnatal day 2 (P2) to euthanization (P12), increased body weight and improved motor behavior in SMA mice, particularly at the highest dose tested. In addition, MR-409 reduced atrophy and ameliorated trophism in quadriceps and gastrocnemius muscles, as determined by an increase in fiber size, as well as upregulation of myogenic genes and inhibition of proteolytic pathways. MR-409 also promoted the maturation of neuromuscular junctions, by reducing multi-innervated endplates and increasing those mono-innervated. Finally, treatment with MR-409 delayed αMN death and blunted neuroinflammation in the spinal cord of SMA mice. In conclusion, the present study demonstrates that MR-409 has protective effects in SMNΔ7 mice, suggesting that GHRH agonists are promising agents for the treatment of SMA, possibly in combination with SMN-dependent strategies.
Collapse
|
6
|
Rozza R, Janoš P, Spinello A, Magistrato A. Role of computational and structural biology in the development of small-molecule modulators of the spliceosome. Expert Opin Drug Discov 2022; 17:1095-1109. [PMID: 35983696 DOI: 10.1080/17460441.2022.2114452] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION RNA splicing is a pivotal step of eukaryotic gene expression during which the introns are excised from the precursor (pre-)RNA and the exons are joined together to form mature RNA products (i.e a protein-coding mRNA or long non-coding (lnc)RNAs). The spliceosome, a complex ribonucleoprotein machine, performs pre-RNA splicing with extreme precision. Deregulated splicing is linked to cancer, genetic, and neurodegenerative diseases. Hence, the discovery of small-molecules targeting core spliceosome components represents an appealing therapeutic opportunity. AREA COVERED Several atomic-level structures of the spliceosome and distinct splicing-modulators bound to its protein/RNA components have been solved. Here, we review recent advances in the discovery of small-molecule splicing-modulators, discuss opportunities and challenges for their therapeutic applicability, and showcase how structural data and/or all-atom simulations can illuminate key facets of their mechanism, thus contributing to future drug-discovery campaigns. EXPERT OPINION This review highlights the potential of modulating pre-RNA splicing with small-molecules, and anticipates how the synergy of computer and wet-lab experiments will enrich our understanding of splicing regulation/deregulation mechanisms. This information will aid future structure-based drug-discovery efforts aimed to expand the currently limited portfolio of selective splicing-modulators.
Collapse
Affiliation(s)
- Riccardo Rozza
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Pavel Janoš
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Magistrato
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| |
Collapse
|
7
|
Al Jumah M, Al Rajeh S, Eyaid W, Al‐Jedai A, Al Mudaiheem H, Al Shehri A, Hussein M, Al Abdulkareem I. Spinal muscular atrophy carrier frequency in Saudi Arabia. Mol Genet Genomic Med 2022; 10:e2049. [PMID: 36062320 PMCID: PMC9651606 DOI: 10.1002/mgg3.2049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Spinal Muscular Dystrophy (SMA) is one of the leading causes of death in infants and young children from heritable diseases. Although no large-scale popultion-based studies have been done in Saudi Arabia, it is reported that the incidence of SMA is higher in the Saudi population partly because of the high degree of consanguineous marriages. METHODS The final analysis included 4198 normal volunteers aged between 18 and 25 years old, 54.7% males, and 45.3% females. Whole blood was spotted directly from finger pricks onto IsoCode StixTM and genomic DNA was isolated using one triangle from the machine. To discern the SMN1 copy number independently from SMN2, Multiplex PCR with Dral restriction fragment analysis was completed. We used the carrier frequency and population-level data to estimate the prevalence of SMA in the population using the life-table method. RESULTS This data analysis showed the presence of one copy of the SMN1 gene in 108 samples and two copies in 4090 samples, which resulted from a carrier frequency of 2.6%. The carrier frequency was twofold in females reaching 3.7% compared to 1.6% in males. 27% of participants were children of first-cousin marriages. We estimated the birth incidence of SMA to be 32 per 100,000 birth and the total number of people living with SMA in the Kingdom of Saudi Arabia to be 2265 of which 188 are type I, 1213 are type II, and 8,64 are type III. CONCLUSION The SMA carrier rate of 2.6% in Saudi control subjects is slightly higher than the reported global frequency of 1.25 to 2% with links to the high degree of consanguinity.
Collapse
Affiliation(s)
- Mohammed Al Jumah
- King Abdullah International Medical Research CentreRiyadhSaudi Arabia,Neurology DepartmentKing Fahd Medical City HospitalRiyadhSaudi Arabia
| | - Saad Al Rajeh
- Neurology DivisionKing Saud UniversityRiyadhSaudi Arabia
| | - Wafaa Eyaid
- Department of Pediatrics, Genetics divisionKing Abdul Aziz Medical CityRiyadhSaudi Arabia
| | - Ahmed Al‐Jedai
- Deputyship of Therapeutic AffairsMinistry of HealthRiyadhSaudi Arabia
| | | | - Ali Al Shehri
- Neuromuscular Integrated practice Unit, Neuroscience CentreKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Mohammed Hussein
- Neurology DepartmentKing Fahd Medical City HospitalRiyadhSaudi Arabia
| | | |
Collapse
|
8
|
Chang WF, Lin TY, Peng M, Chang CC, Xu J, Hsieh-Li HM, Liu JL, Sung LY. SMN Enhances Pluripotent Genes Expression and Facilitates Cell Reprogramming. Stem Cells Dev 2022; 31:696-705. [PMID: 35848514 DOI: 10.1089/scd.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Survival motor neuron (SMN) plays important roles in snRNPs assembly and mRNA splicing. Deficiency of SMN causes spinal muscular atrophy (SMA), a leading genetic disease of childhood mortality. Previous studies have shown that SMN regulates stem cell self-renewal and pluripotency in Drosophila and in mouse, and is abundantly expressed in mouse embryonic stem cells (ESCs). However, whether SMN is required for the establishment of pluripotency is unclear. Herein, we show that SMN is gradually upregulated in pre-implantation mouse embryos and cultured cells undergoing cell reprogramming. Ectopic expression of SMN increased the cell reprogramming efficiency, whereas knockdown of SMN impeded iPSC colony formation. iPSCs could be derived from SMA model mice, but certain impairment in differentiation capacity may present. The ectopic overexpression of SMN in iPSCs can upregulate the expression levels of some pluripotent genes and restore the neuronal differentiation capacity of SMA-iPSCs. Taken together, our findings not only demonstrate the functional relevance of SMN and the establishment of cell pluripotency, but also propose its potential application in facilitating iPSC derivation.
Collapse
Affiliation(s)
- Wei-Fang Chang
- National Taiwan University, 33561, Institute of Biotechnology, Taipei, Taiwan;
| | - Tzu-Ying Lin
- National Taiwan University, 33561, Institute of Biotechnology, Taipei, Taiwan;
| | - Min Peng
- National Taiwan University, 33561, Institute of Biotechnology, Taipei, Taiwan;
| | - Chia-Chun Chang
- National Taiwan University, 33561, Institute of Biotechnology, Taipei, Taiwan;
| | - Jie Xu
- University of Michigan Medical Center, 166144, Ann Arbor, Michigan, United States;
| | - Hsiu Mei Hsieh-Li
- National Taiwan Normal University, 34879, Department of Life Science, Taipei, Taiwan;
| | - Ji-Long Liu
- ShanghaiTech University, 387433, Shanghai, China;
| | - Li-Ying Sung
- National Taiwan University, 33561, Institute of Biotechnology, Taipei, Taiwan, 10617;
| |
Collapse
|
9
|
Rad N, Cai H, Weiss MD. Management of Spinal Muscular Atrophy in the Adult Population. Muscle Nerve 2022; 65:498-507. [PMID: 35218574 DOI: 10.1002/mus.27519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022]
Abstract
Spinal muscular atrophy (SMA) is a group of neurodegenerative disorders resulting from the loss of spinal motor neurons. 95% of patients share a pathogenic mechanism of loss of survival motor neuron (SMN) 1 protein expression due to homozygous deletions or other mutations of the SMN1 gene, with the different phenotypes influenced by variable copy numbers of the SMN2 gene. Advances in supportive care, disease modifying treatment and novel gene therapies have led to an increase in the prevalence of SMA, with a third of SMA patients now represented by adults. Despite the growing number of adult patients, consensus on the management of SMA has focused primarily on the pediatric population. As the disease burden is vastly different in adult SMA, an approach to treatment must be tailored to their unique needs. This review will focus on the management of the adult SMA patient as they age and will discuss proper transition of care from a pediatric to adult center, including the need for continued monitoring for osteoporosis, scoliosis, malnutrition, and declining mobility and functioning. As in the pediatric population, multidisciplinary care remains the best approach to the management of adult SMA. Novel and emerging therapies such as nusinersen and risdiplam provide hope for these patients, though these medications are of uncertain efficacy in this population and require additional study.
Collapse
Affiliation(s)
- Nassim Rad
- Department of Physical Medicine and Rehabilitation, University of Washington, Seattle, Washington, USA
| | - Haibi Cai
- Department of Physical Medicine and Rehabilitation, University of Washington, Seattle, Washington, USA
| | - Michael D Weiss
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Hip Pain in Patients With Spinal Muscular Atrophy: Prevalence, Intensity, Interference, and Factors Associated With Moderate to Severe Pain. J Pediatr Orthop 2022; 42:273-279. [PMID: 35153285 DOI: 10.1097/bpo.0000000000002091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND A subset of patients with spinal muscular atrophy (SMA) develop hip pain. We analyzed (1) the characteristics of hip pain in patients with SMA (prevalence, intensity, interference with activities, and responsiveness to treatment) and (2) factors (patient, clinical, and radiographic) associated with moderate to severe pain. METHODS We performed a retrospective record review and telephone survey of 104 patients with SMA (77% response rate; 44% female; mean age, 22±13 y) who presented for treatment between 2010 and 2020. Patient, clinical, and radiographic characteristics (when available) were recorded. Patients with current or past hip pain were asked about pain characteristics. Pain intensity and interference were assessed with the Brief Pain Inventory, modified for SMA (scale, 0 to 10 with 0 indicating no pain/interference). We used univariate analysis and ordered logistic regression to determine associations between patient factors and hip pain (α=0.05). RESULTS Hip pain occurred in 60/104 patients (58%), with 15 (14%) indicating moderate to severe pain. Compared with patients with normal body mass index values, patients who were obese had 5.4 times the odds [95% confidence interval (CI), 1.3-23] of moderate to severe pain. Hip contractures [adjusted odds ratio (aOR), 3.2; 95% CI, 1.2-8.8] and dislocations (aOR, 2.9; 95% CI, 1.1-7.9) were associated with greater odds of pain compared with hips without these presentations. Surgical correction for scoliosis (aOR, 2.6; 95% CI, 1.1-6.5) was also associated with greater odds of moderate to severe pain. Femoral head migration percentage was the only radiographic parameter associated with pain. Mean modified Brief Pain Inventory pain intensity was 2.1±2.3. Prolonged sitting, sleep, and transfers (eg, bed to wheelchair) were the activities most affected by pain. CONCLUSIONS Hip pain was moderate to severe in 14% of patients with SMA. Obesity, hip contractures, surgical correction of scoliosis, and hip dislocations were independently associated with pain. Although mean pain intensity was low, hip pain interfered with daily activities, including prolonged sitting, sleep, and transfers. LEVEL OF EVIDENCE Level III.
Collapse
|
11
|
Tang Z, Hegde S, Zhao J, Zhu S, Johnson KA, Lorson CL, Wang J. CRISPR-mediated Enzyme Fragment Complementation Assay for Quantification of the Stability of Splice Isoforms. Chembiochem 2022; 23:e202200012. [PMID: 35235240 DOI: 10.1002/cbic.202200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Indexed: 11/06/2022]
Abstract
Small-molecule splicing modulators exemplified by an FDA-approved drug, risdiplam, are a new pharmacological modality for regulating the expression and stability of splice isoforms. We report a CRISPR-mediated enzyme fragment complementation (EFC) assay to quantify the splice isoform stability. The EFC assay harnessed a 42 amino acid split of a β-galactosidase (designate α-tag), which could be fused at the termini of the target genes using CRISPR/cas9. The α-tagged splice isoform would be quantified by measuring the enzymatic activity upon complementation with the rest of β-galactosidase. This EFC assay retained all the sequences of introns and exons of the target gene in the native genomic environment that recapitulates the cell biology of the diseases of interest. For a proof-of-concept, we developed a CRISPR-mediated EFC assay targeting the exon 7 of the survival of motor neuron 2 (SMN2) gene. The EFC assay compatible with 384-well plates robustly quantified the splicing modulation activity of small molecules. In this study, we also discovered that a coumarin derivative, compound 4, potently modulate SMN2 splicing at as low as 1.1 nM.
Collapse
Affiliation(s)
- Zhichao Tang
- University of Kansas School of Pharmacy, Medicinal Chemistry, UNITED STATES
| | - Shalakha Hegde
- University of Kansas School of Pharmacy, Medicinal Chemistry, UNITED STATES
| | - Junxing Zhao
- University of Kansas School of Pharmacy, Medicinal Chemistry, UNITED STATES
| | - Shoutian Zhu
- PhenoTarget BioSciences, Inc., Biology, UNITED STATES
| | | | | | - Jingxin Wang
- University of Kansas, Medicinal Chemistry, 2034 Becker Dr, 1050, 66047, Lawrence, UNITED STATES
| |
Collapse
|
12
|
Sergeeva OV, Shcherbinina EY, Shomron N, Zatsepin TS. Modulation of RNA Splicing by Oligonucleotides: Mechanisms of Action and Therapeutic Implications. Nucleic Acid Ther 2022; 32:123-138. [PMID: 35166605 DOI: 10.1089/nat.2021.0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of RNA splicing causes many diseases and disorders. Several therapeutic approaches have been developed to correct aberrant alternative splicing events for the treatment of cancers and hereditary diseases, including gene therapy and redirecting splicing, using small molecules or splice switching oligonucleotides (SSO). Significant advances in the chemistry and pharmacology of nucleic acid have led to the development of clinically approved SSO drugs for the treatment of spinal muscular dystrophy and Duchenne muscular dystrophy (DMD). In this review, we discuss the mechanisms of SSO action with emphasis on "less common" approaches to modulate alternative splicing, including bipartite and bifunctional SSO, oligonucleotide decoys for splice factors and SSO-mediated mRNA degradation via AS-NMD and NGD pathways. We briefly discuss the current progress and future perspectives of SSO therapy for rare and ultrarare diseases.
Collapse
Affiliation(s)
- Olga V Sergeeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Timofei S Zatsepin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry, Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Hepkaya E, Kılınç Sakallı AA, Ülkersoy İ, Başkan AK, Arslan H, Meral Ö, Dilek TD, Güler S, Saltık S, Çokuğraş H. The effects of nusinersen treatment on respiratory status of children with spinal muscular atrophy. Pediatr Int 2022; 64:e15310. [PMID: 36310036 DOI: 10.1111/ped.15310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Respiratory involvement is the main factor predicting the prognosis of spinal muscular atrophy (SMA). Significant responses in motor functions have been demonstrated with nusinersen, but pulmonary outcomes are still varied. We aimed to explore the effects of nusinersen on the respiratory functions of patients with SMA. METHODS Patients with SMA who were receiving regular nusinersen treatment in our tertiary care hospital were enrolled in this study. We evaluated the patients in terms of the necessity to ventilatory or nutritional support, presence of motor involvement and other comorbidities related with prognosis at three consecutive assessments. RESULTS The study group consisted of 43 patients (18 type 1, 12 type 2, and 13 type 3) with SMA with a mean age of 27.8 months at diagnosis and 60.8 months at the beginning of nusinersen treatment. The respiratory function improvements were noted in six patients at third assessment. Early initiation of nusinersen was significantly correlated with reduced hospital admissions (P = 0.026). Nutritional support and weight gain were remarkable in the ventilatory-supported group. Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders scores were significantly higher in the non-tracheostomized group in patients with SMA type 1 (P < 0.005). CONCLUSIONS We posit that nusinersen may change the natural prognosis of SMA and improve care of children with SMA. Following up children with SMA for longer periods under nusinersen may be beneficial for understanding the effects of treatment. Results of our study need to be supported by future long-term studies to reach a consensus on nusinersen, considering the overall genetic and environmental status as well as the cost-effectiveness of the treatment.
Collapse
Affiliation(s)
- Evrim Hepkaya
- Departments of 1Pediatric Pulmonology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayşe Ayzıt Kılınç Sakallı
- Departments of 1Pediatric Pulmonology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - İpek Ülkersoy
- Pediatrics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Azer Kılıç Başkan
- Departments of 1Pediatric Pulmonology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hüseyin Arslan
- Departments of 1Pediatric Pulmonology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Özge Meral
- Departments of 1Pediatric Pulmonology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tuğçe Damla Dilek
- Pediatric Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serhat Güler
- Department of Pediatric Neurology/Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Sema Saltık
- Pediatric Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Haluk Çokuğraş
- Departments of 1Pediatric Pulmonology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
14
|
Liu S, Kang WJ, Abrimian A, Xu J, Cartegni L, Majumdar S, Hesketh P, Bekker A, Pan YX. Alternative Pre-mRNA Splicing of the Mu Opioid Receptor Gene, OPRM1: Insight into Complex Mu Opioid Actions. Biomolecules 2021; 11:biom11101525. [PMID: 34680158 PMCID: PMC8534031 DOI: 10.3390/biom11101525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Most opioid analgesics used clinically, including morphine and fentanyl, as well as the recreational drug heroin, act primarily through the mu opioid receptor, a class A Rhodopsin-like G protein-coupled receptor (GPCR). The single-copy mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating multiple splice variants or isoforms via a variety of alternative splicing events. These OPRM1 splice variants can be categorized into three major types based on the receptor structure: (1) full-length 7 transmembrane (TM) C-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Increasing evidence suggests that these OPRM1 splice variants are pharmacologically important in mediating the distinct actions of various mu opioids. More importantly, the OPRM1 variants can be targeted for development of novel opioid analgesics that are potent against multiple types of pain, but devoid of many side-effects associated with traditional opiates. In this review, we provide an overview of OPRM1 alternative splicing and its functional relevance in opioid pharmacology.
Collapse
Affiliation(s)
- Shan Liu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Wen-Jia Kang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Anna Abrimian
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Luca Cartegni
- Department of Chemical Biology, Ernest Mario School of Pharmacy Rutgers University, Piscataway, NJ 08854, USA;
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Patrick Hesketh
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
- Correspondence: ; Tel.: +1-973-972-3213
| |
Collapse
|
15
|
Tang Z, Akhter S, Ramprasad A, Wang X, Reibarkh M, Wang J, Aryal S, Thota SS, Zhao J, Douglas JT, Gao P, Holmstrom ED, Miao Y, Wang J. Recognition of single-stranded nucleic acids by small-molecule splicing modulators. Nucleic Acids Res 2021; 49:7870-7883. [PMID: 34283224 PMCID: PMC8373063 DOI: 10.1093/nar/gkab602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Risdiplam is the first approved small-molecule splicing modulator for the treatment of spinal muscular atrophy (SMA). Previous studies demonstrated that risdiplam analogues have two separate binding sites in exon 7 of the SMN2 pre-mRNA: (i) the 5'-splice site and (ii) an upstream purine (GA)-rich binding site. Importantly, the sequence of this GA-rich binding site significantly enhanced the potency of risdiplam analogues. In this report, we unambiguously determined that a known risdiplam analogue, SMN-C2, binds to single-stranded GA-rich RNA in a sequence-specific manner. The minimum required binding sequence for SMN-C2 was identified as GAAGGAAGG. We performed all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method, which captured spontaneous binding of a risdiplam analogue to the target nucleic acids. We uncovered, for the first time, a ligand-binding pocket formed by two sequential GAAG loop-like structures. The simulation findings were highly consistent with experimental data obtained from saturation transfer difference (STD) NMR and structure-affinity-relationship studies of the risdiplam analogues. Together, these studies illuminate us to understand the molecular basis of single-stranded purine-rich RNA recognition by small-molecule splicing modulators with an unprecedented binding mode.
Collapse
Affiliation(s)
- Zhichao Tang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Sana Akhter
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Ankita Ramprasad
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Xiao Wang
- Analytical Research & Development, Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | - Mikhail Reibarkh
- Analytical Research & Development, Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Sadikshya Aryal
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Srinivas S Thota
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Justin T Douglas
- Nuclear Magnetic Resonance Lab, University of Kansas, Lawrence, KS 66045, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, KS 66047, USA
| | - Erik D Holmstrom
- Department of Molecular Biosciences and Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
16
|
Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr Neuropharmacol 2021; 20:158-178. [PMID: 34151764 PMCID: PMC9199543 DOI: 10.2174/1570159x19666210609160017] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative diseases are a group of pathological conditions that cause motor inc-ordination (jerking movements), cognitive and memory impairments result from degeneration of neurons in a specific area of the brain. Oxidative stress, mitochondrial dysfunction, excitotoxicity, neuroinflammation, neurochemical imbalance and histone deacetylase enzymes (HDAC) are known to play a crucial role in neurodegeneration. HDAC is classified into four categories (class I, II, III and class IV) depending upon their location and functions. HDAC1 and 2 are involved in neurodegeneration, while HDAC3-11 and class III HDACs are beneficial as neuroprotective. HDACs are localized in different parts of the brain- HDAC1 (hippocampus and cortex), HDAC2 (nucleus), HDAC3, 4, 5, 7 and 9 (nucleus and cytoplasm), HDAC6 & HDAC7 (cytoplasm) and HDAC11 (Nucleus, cornus ammonis 1 and spinal cord). In pathological conditions, HDAC up-regulates glutamate, phosphorylation of tau, and glial fibrillary acidic proteins while down-regulating BDNF, Heat shock protein 70 and Gelsolin. Class III HDACs are divided into seven sub-classes (SIRT1-SIRT7). Sirtuins are localized in the different parts of the brain and neuron -Sirt1 (nucleus), Sirt2 (cortex, striatum, hippocampus and spinal cord), Sirt3 (mitochondria and cytoplasm), Sirt4, Sirt5 & Sirt6 (mitochondria), Sirt7 (nucleus) and Sirt8 (nucleolus). SIRTs (1, 3, 4, and 6) are involved in neuronal survival, proliferation and modulating stress response, and SIRT2 is associated with Parkinsonism, Huntington’s disease and Alzheimer’s disease, whereas SIRT6 is only associated with Alzheimer’s disease. In this critical review, we have discussed the mechanisms and therapeutic targets of HDACs that would be beneficial for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vishal Kumar
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Satyabrata Kundu
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Arti Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
17
|
Singh A, Jain M, Kapadia R, Mahawar-Dhirendra K, Kakkar S, Dadhich J, Chandel-Ritesh K. Review of therapeutic options for spinal muscular atrophy. SCRIPTA MEDICA 2021. [DOI: 10.5937/scriptamed52-31529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is uncommon genetic (autosomal recessive) disease that deteriorates neuromuscular function of the affected person's body by causing lower motor neuron damage, progress in muscle atrophy and in advanced cases leads to paralysis of muscles. Mainly skeletal and respiratory muscles are involved. SMA is present due to lack of SMA proteins, which are encoded by survival motor neuron-1 (SMN-1) genes. In mutation of SMN-1 genes, deficiency of SMN proteins occurs. SMA affects all age groups, but mainly and most severely children younger than 6 months of age. At present, risdiplam is a treatment option and the drug has been approved by the US Food Drug and Administration on 7 August 2020. The availability of the drug has led to increased financial, ethical and medical problems. SMA affected populations are regularly challenged to these issues.
Collapse
|
18
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2021. [DOI: 10.1016/j.preteyeres.2020.100874
expr 921883647 + 833887994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
19
|
Yuzawa T, Matsuoka M, Sumitani M, Aoki F, Sezutsu H, Suzuki MG. Transgenic and knockout analyses of Masculinizer and doublesex illuminated the unique functions of doublesex in germ cell sexual development of the silkworm, Bombyx mori. BMC DEVELOPMENTAL BIOLOGY 2020; 20:19. [PMID: 32957956 PMCID: PMC7504827 DOI: 10.1186/s12861-020-00224-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 01/24/2023]
Abstract
Background Masculinizer (Masc) plays a pivotal role in male sex determination in the silkworm, Bombyx mori. Masc is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. The male isoform of Bmdsx (BmdsxM) induces male differentiation in somatic cells, while females express the female isoform of Bmdsx (BmdsxF), which promotes female differentiation in somatic cells. Our previous findings suggest that Masc could direct the differentiation of genetically female (ZW) germ cells into sperms. However, it remains unclear whether Masc directly induces spermatogenesis or if it promotes male differentiation in germ cells indirectly by inducing the expression of BmdsxM. Results In this study, we performed genetic analyses using the transgenic line that expressed Masc, as well as various Bmdsx knockout lines. We found that Masc-expressing females with a homozygous mutation in BmdsxM showed normal development in ovaries. The formation of testis-like tissues was abolished in these females. On the other hand, Masc-expressing females carrying a homozygous mutation in BmdsxF exhibited almost complete male-specific development in gonads and germ cells. These results suggest that BmdsxM has an ability to induce male development in germ cells as well as internal genital organs, while BmdsxF inhibits BmdsxM activity and represses male differentiation. To investigate whether MASC directly controls male-specific splicing of Bmdsx and identify RNAs that form complexes with MASC in testes, we performed RNA immunoprecipitation (RIP) using an anti-MASC antibody. We found that MASC formed a complex with AS1 lncRNA, which is a testis-specific factor involved in the male-specific splicing of Bmdsx pre-mRNA. Conclusions Taken together, our findings suggest that Masc induces male differentiation in germ cells by enhancing the production of BmdsxM. Physical interaction between MASC and AS1 lncRNA may be important for the BmdsxM expression in the testis. Unlike in the Drosophila dsx, BmdsxM was able to induce spermatogenesis in genetically female (ZW) germ cells. To the best of our knowledge, this is the first report that the role of dsx in germ cell sexual development is different between insect species.
Collapse
Affiliation(s)
- Tomohisa Yuzawa
- AIR WATER INC, 4-9-4 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Misato Matsuoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.,SHINYUSHA, 1-12 Kanda Jimbocho, Chiyoda-ku, Tokyo, 101-0051, Japan
| | - Megumi Sumitani
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, 305-8634, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Hideki Sezutsu
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, 305-8634, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.
| |
Collapse
|
20
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2020; 80:100874. [PMID: 32553897 DOI: 10.1016/j.preteyeres.2020.100874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Mutations which induce aberrant transcript splicing represent a distinct class of disease-causing genetic variants in retinal disease genes. Such mutations may either weaken or erase regular splice sites or create novel splice sites which alter exon recognition. While mutations affecting the canonical GU-AG dinucleotides at the splice donor and splice acceptor site are highly predictive to cause a splicing defect, other variants in the vicinity of the canonical splice sites or those affecting additional cis-acting regulatory sequences within exons or introns are much more difficult to assess or even to recognize and require additional experimental validation. Splicing mutations are unique in that the actual outcome for the transcript (e.g. exon skipping, pseudoexon inclusion, intron retention) and the encoded protein can be quite different depending on the individual mutation. In this article, we present an overview on the current knowledge about and impact of splicing mutations in inherited retinal diseases. We introduce the most common sub-classes of splicing mutations including examples from our own work and others and discuss current strategies for the identification and validation of splicing mutations, as well as therapeutic approaches, open questions, and future perspectives in this field of research.
Collapse
|
21
|
Shababi M, Smith CE, Kacher M, Alrawi Z, Villalon E, Davis D, Bryda EC, Lorson CL. Development of a novel severe mouse model of spinal muscular atrophy with respiratory distress type 1: FVB-nmd. Biochem Biophys Res Commun 2019; 520:341-346. [PMID: 31604525 PMCID: PMC6936219 DOI: 10.1016/j.bbrc.2019.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 11/29/2022]
Abstract
Spinal Muscular Atrophy with Respiratory Distress type 1 (SMARD1) is an autosomal recessive disease that develops early during infancy. The gene responsible for disease development is immunoglobulin helicase μ-binding protein 2 (IGHMBP2). IGHMBP2 is a ubiquitously expressed gene but its mutation results in the loss of alpha-motor neurons and subsequent muscle atrophy initially of distal muscles. The current SMARD1 mouse model arose from a spontaneous mutation originally referred to as neuromuscular degeneration (nmd). The nmd mice have the C57BL/6 genetic background and contain an A to G mutation in intron 4 of the endogenous Ighmbp2 gene. This mutation causes aberrant splicing, resulting in only 20-25% of full-length functional protein. Several congenital conditions including hydrocephalus are common in the C57BL/6 background, consistent with our previous observations when developing a gene therapy approach for SMARD1. Additionally, a modifier allele exists on chromosome 13 in nmd mice that can partially suppress the phenotype, resulting in some animals that have extended life spans (up to 200 days). To eliminate the intrinsic complications of the C57BL/6 background and the variation in survival due to the genetic modifier effect, we created a new SMARD1 mouse model that contains the same intron 4 mutation in Ighmbp2 as nmd mice but is now on a FVB congenic background. FVB-nmd are consistently more severe than the original nmd mice with respect to survival, weigh and motor function. The relatively short life span (18-21 days) of FVB-nmd mice allows us to monitor therapeutic efficacy for a variety of novel therapeutics in a timely manner without the complication of the small percentage of longer-lived animals that were observed in our colony of nmd mice.
Collapse
Affiliation(s)
- Monir Shababi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Caley E. Smith
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA,Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Mona Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Zayd Alrawi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Eric Villalon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Daniel Davis
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Elizabeth C. Bryda
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA,Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
22
|
Becker D, Hirsch AG, Bender L, Lingner T, Salinas G, Krebber H. Nuclear Pre-snRNA Export Is an Essential Quality Assurance Mechanism for Functional Spliceosomes. Cell Rep 2019; 27:3199-3214.e3. [PMID: 31189105 DOI: 10.1016/j.celrep.2019.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023] Open
Abstract
Removal of introns from pre-mRNAs is an essential step in eukaryotic gene expression, mediated by spliceosomes that contain snRNAs as key components. Although snRNAs are transcribed in the nucleus and function in the same compartment, all except U6 shuttle to the cytoplasm. Surprisingly, the physiological relevance for shuttling is unclear, in particular because the snRNAs in Saccharomyces cerevisiae were reported to remain nuclear. Here, we show that all yeast pre-snRNAs including U6 undergo a stepwise maturation process after nuclear export by Mex67 and Xpo1. Sm- and Lsm-ring attachment occurs in the cytoplasm and is important for the snRNA re-import, mediated by Cse1 and Mtr10. Finally, nuclear pre-snRNA cleavage and trimethylation of the 5'-cap finalizes shuttling. Importantly, preventing pre-snRNAs from being exported or processed results in faulty spliceosome assembly and subsequent genome-wide splicing defects. Thus, pre-snRNA export is obligatory for functional splicing and resembles an essential evolutionarily conserved quality assurance step.
Collapse
Affiliation(s)
- Daniel Becker
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Lysann Bender
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
23
|
Castillo-Iglesias MS, Berciano MT, Narcis JO, Val-Bernal JF, Rodriguez-Rey JC, Tapia O, Lafarga M. Reorganization of the nuclear compartments involved in transcription and RNA processing in myonuclei of type I spinal muscular atrophy. Histochem Cell Biol 2019; 152:227-237. [PMID: 31183542 DOI: 10.1007/s00418-019-01792-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by the loss or mutation of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to the degeneration of motor neurons and muscular atrophy. In this study, we analyzed the nuclear reorganization in human skeletal myofibers from a type I SMA patient carrying a deletion of exons 7 and 8 in the SMN1 gene and two SMN2 gene copies and showing reduced SMN protein levels in the muscle compared with those in control samples. The morphometric analysis of myofiber size revealed the coexistence of atrophic and hypertrophic myofibers in SMA samples. Compared with controls, both nuclear size and the nuclear shape factor were significantly reduced in SMA myonuclei. Nuclear reorganization in SMA myonuclei was characterized by extensive heterochromatinization, the aggregation of splicing factors in large interchromatin granule clusters, and nucleolar alterations with the accumulation of the granular component and a loss of fibrillar center/dense fibrillar component units. These nuclear alterations reflect a severe perturbation of global pre-mRNA transcription and splicing, as well as nucleolar dysfunction, in SMA myofibers. Moreover, the finding of similar nuclear reorganization in both atrophic and hypetrophic myofibers provides additional support that the SMN deficiency in SMA patients may primarily affect the skeletal myofibers.
Collapse
Affiliation(s)
- María S Castillo-Iglesias
- Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria-IDIVAL, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - María T Berciano
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - J Oriol Narcis
- Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria-IDIVAL, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - J Fernando Val-Bernal
- Unidad de Patología, Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - José C Rodriguez-Rey
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Olga Tapia
- Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria-IDIVAL, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain.
| | - Miguel Lafarga
- Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria-IDIVAL, Avd. Cardenal Herrera Oria s/n, 39011, Santander, Spain.
| |
Collapse
|
24
|
Dahlqvist JR, Oestergaard ST, Poulsen NS, Knak KL, Thomsen C, Vissing J. Muscle contractility in spinobulbar muscular atrophy. Sci Rep 2019; 9:4680. [PMID: 30886222 PMCID: PMC6423126 DOI: 10.1038/s41598-019-41240-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Spinobulbar muscular atrophy (SBMA) is caused by a trinucleotide repeat expansion in the androgen receptor gene on the X chromosome. There is a toxic effect of the mutant receptor on muscle and neurons resulting in muscle weakness and atrophy. The weakness can be explained by wasting due to loss of muscle cells, but it is unknown whether weakness also relates to poor muscle contractility of the remaining musculature. In this study, we investigated the muscle contractility in SBMA. We used stationary dynamometry and quantitative MRI to assess muscle strength and absolute and fat-free, cross-sectional areas. Specific muscle force (strength per cross-sectional area) and contractility (strength per fat-free cross-sectional area) were compared with healthy controls and their relation to walking distance and disease severity was investigated. Specific force was reduced by 14-49% in SBMA patients compared to healthy controls. Contractility was reduced by 22-39% in elbow flexion, knee extension, ankle dorsi- and plantarflexion in SBMA patients. The contractility decreased with increasing muscle fat content in muscles with affected contractility in SBMA. The decreased muscle contractility in SBMA may relate to motor neuron degeneration and changed fibre type distribution and muscle architecture.
Collapse
Affiliation(s)
- Julia R Dahlqvist
- Copenhagen Neuromuscular Center, section 3342 Department of Neurology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Sofie T Oestergaard
- Copenhagen Neuromuscular Center, section 3342 Department of Neurology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Nanna S Poulsen
- Copenhagen Neuromuscular Center, section 3342 Department of Neurology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kirsten Lykke Knak
- Copenhagen Neuromuscular Center, section 3342 Department of Neurology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Carsten Thomsen
- Department of Radiology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, section 3342 Department of Neurology, Rigshospitalet, University of Copenhagen Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
25
|
Jadhav S, Avila J, Schöll M, Kovacs GG, Kövari E, Skrabana R, Evans LD, Kontsekova E, Malawska B, de Silva R, Buee L, Zilka N. A walk through tau therapeutic strategies. Acta Neuropathol Commun 2019; 7:22. [PMID: 30767766 PMCID: PMC6376692 DOI: 10.1186/s40478-019-0664-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Tau neuronal and glial pathologies drive the clinical presentation of Alzheimer's disease and related human tauopathies. There is a growing body of evidence indicating that pathological tau species can travel from cell to cell and spread the pathology through the brain. Throughout the last decade, physiological and pathological tau have become attractive targets for AD therapies. Several therapeutic approaches have been proposed, including the inhibition of protein kinases or protein-3-O-(N-acetyl-beta-D-glucosaminyl)-L-serine/threonine Nacetylglucosaminyl hydrolase, the inhibition of tau aggregation, active and passive immunotherapies, and tau silencing by antisense oligonucleotides. New tau therapeutics, across the board, have demonstrated the ability to prevent or reduce tau lesions and improve either cognitive or motor impairment in a variety of animal models developing neurofibrillary pathology. The most advanced strategy for the treatment of human tauopathies remains immunotherapy, which has already reached the clinical stage of drug development. Tau vaccines or humanised antibodies target a variety of tau species either in the intracellular or extracellular spaces. Some of them recognise the amino-terminus or carboxy-terminus, while others display binding abilities to the proline-rich area or microtubule binding domains. The main therapeutic foci in existing clinical trials are on Alzheimer's disease, progressive supranuclear palsy and non-fluent primary progressive aphasia. Tau therapy offers a new hope for the treatment of many fatal brain disorders. First efficacy data from clinical trials will be available by the end of this decade.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 845 10, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Jesus Avila
- Centro de Biologia Molecular "Severo Ochoa", Consejo Superior de Investigaciones, Cientificas, Universidad Autonoma de Madrid, C/ Nicolas Cabrera, 1. Campus de Cantoblanco, 28049, Madrid, Spain
- Networking Research Center on Neurodegenerative, Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of, Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Dementia Research Centre, University College London, London, UK
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Enikö Kövari
- Department of Mental Health and Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Rostislav Skrabana
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Lewis D Evans
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Eva Kontsekova
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Cracow, Poland
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Luc Buee
- Universite of Lille, Inserm, CHU-Lille, UMRS1172, Alzheimer & Tauopathies, Place de Verdun, 59045, Lille cedex, France.
| | - Norbert Zilka
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia.
| |
Collapse
|
26
|
Mohseni R, Ashrafi MR, Ai J, Nikougoftar M, Mohammadi M, Ghahvechi-Akbari M, Shoae-Hassani A, Hamidieh AA. Overexpression of SMN2 Gene in Motoneuron-Like Cells Differentiated from Adipose-Derived Mesenchymal Stem Cells by Ponasterone A. J Mol Neurosci 2018; 67:247-257. [PMID: 30535775 DOI: 10.1007/s12031-018-1232-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/25/2018] [Indexed: 01/25/2023]
Abstract
Cell therapy and stem cell transplantation strategies have provided potential therapeutic approaches for the treatment of neurological disorders. Adipose-derived mesenchymal stem cells (ADMSCs) are abundant adult stem cells with low immunogenicity, which can be used for allogeneic cell replacement therapies. Differentiation of ADMSCs into acetylcholine-secreting motoneurons (MNs) is a promising treatment for MN diseases, such as spinal muscular atrophy (SMA), which is associated with the level of SMN1 gene expression. The SMN2 gene plays an important role in MN disorders, as it can somewhat compensate for the lack of SMN1 expression in SMA patients. Although the differentiation potential of ADMSCs into MNs has been previously established, overexpression of SMN2 gene in a shorter period with a longer survival has yet to be elucidated. Ponasterone A (PNA), an ecdysteroid hormone activating the PI3K/Akt pathway, was studied as a new steroid to promote SMN2 overexpression in MNs differentiated from ADMSCs. After induction with retinoic acid, sonic hedgehog, forskolin, and PNA, MN phenotypes were differentiated from ADMSCs, and immunochemical staining, specific for β-tubulin, neuron-specific enolase, and choline acetyltransferase, was performed. Also, the results of real-time PCR assay indicated nestin, Pax6, Nkx2.2, Hb9, Olig2, and SMN2 expression in the differentiated cells. After 2 weeks of treatment, cultures supplemented with PNA showed a longer survival and a 1.2-fold increase in the expression of SMN2 (an overall 5.6-fold increase; *P ≤ 0.05), as confirmed by the Western blot analysis. The PNA treatment increased the levels of ChAT, Isl1, Hb9, and Nkx2 expression in MN-like cells. Our findings highlight the role of PNA in the upregulation of SMN2 genes from MSC-derived MN-like cells, which may serve as a potential candidate in cellular therapy for SMA patients.
Collapse
Affiliation(s)
- Rashin Mohseni
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Reza Ashrafi
- Pediatric Neurology Division, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Ghahvechi-Akbari
- Pediatric Neurology Division, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoae-Hassani
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Pediatric Hematology, Oncology and Stem Cell Transplantation Department, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Schellino R, Boido M, Borsello T, Vercelli A. Pharmacological c-Jun NH 2-Terminal Kinase (JNK) Pathway Inhibition Reduces Severity of Spinal Muscular Atrophy Disease in Mice. Front Mol Neurosci 2018; 11:308. [PMID: 30233310 PMCID: PMC6131195 DOI: 10.3389/fnmol.2018.00308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neurodegenerative disorder that occurs in early childhood. The disease is caused by the deletion/mutation of the survival motor neuron 1 (SMN1) gene resulting in progressive skeletal muscle atrophy and paralysis, due to the degeneration of spinal motor neurons (MNs). Currently, the cellular and molecular mechanisms underlying MN death are only partly known, although recently it has been shown that the c-Jun NH2-terminal kinase (JNK)-signaling pathway might be involved in the SMA pathogenesis. After confirming the activation of JNK in our SMA mouse model (SMN2+/+; SMNΔ7+/+; Smn−/−), we tested a specific JNK-inhibitor peptide (D-JNKI1) on these mice, by chronic administration from postnatal day 1 to 10, and histologically analyzed the spinal cord and quadriceps muscle at age P12. We observed that D-JNKI1 administration delayed MN death and decreased inflammation in spinal cord. Moreover, the inhibition of JNK pathway improved the trophism of SMA muscular fibers and the size of the neuromuscular junctions (NMJs), leading to an ameliorated innervation of the muscles that resulted in improved motor performances and hind-limb muscular tone. Finally, D-JNKI1 treatment slightly, but significantly increased lifespan in SMA mice. Thus, our results identify JNK as a promising target to reduce MN cell death and progressive skeletal muscle atrophy, providing insight into the role of JNK-pathway for developing alternative pharmacological strategies for the treatment of SMA.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| |
Collapse
|
28
|
Falsaperla R, Vitaliti G, Collotta AD, Fiorillo C, Pulvirenti A, Alaimo S, Romano C, Ruggieri M. Electrocardiographic Evaluation in Patients With Spinal Muscular Atrophy: A Case-Control Study. J Child Neurol 2018; 33:487-492. [PMID: 29687752 DOI: 10.1177/0883073818767170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND This study aimed to show the impairment of autonomic cardiac conduction causing bradycardia and/or electrocardiographic alterations in children affected by spinal muscular atrophy type 1 and 2 (SMA 1 and 2). METHODS We included 25 spinal muscular atrophy patients, admitted from November 2016 to May 2017. All patients underwent an electrocardiographic examination and we studied PR and QRS intervals, P-waves and QRS amplitudes, and heart rate in spinal muscular atrophy patients compared to a control group. RESULTS In all patients, we found longer PRi and QRSi ( P < .05), lower P-wave and QRS complex amplitudes ( P < .01), and a decreased heart rate ( P < .01) with respect to controls. When we divided our patients into SMA1 and SMA2 subgroups, we found that statistical differences were maintained for P-wave and QRS complex amplitudes and heart rate, but not for PRi and QRSi with respect to controls. CONCLUSION We suggest the hypothesis of SMN expression on cardiac tissue condition and/or autonomic cardiac conduction.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- 1 General Pediatrics and Pediatric Acute and Emergency Complex Unit, Policlinico-Vittorio-Emanuele University Hospital, University of Catania, Italy
| | - Giovanna Vitaliti
- 1 General Pediatrics and Pediatric Acute and Emergency Complex Unit, Policlinico-Vittorio-Emanuele University Hospital, University of Catania, Italy
| | - Ausilia Desiree Collotta
- 1 General Pediatrics and Pediatric Acute and Emergency Complex Unit, Policlinico-Vittorio-Emanuele University Hospital, University of Catania, Italy
| | - Chiara Fiorillo
- 2 Unit of Paediatric Neurology and Muscle Diseases, G. Gaslini Institute, Genoa, Italy
| | - Alfredo Pulvirenti
- 3 Department of Clinical and Experimental Medicine, Section of Bioinformatics, University of Catania, Italy
| | - Salvatore Alaimo
- 3 Department of Clinical and Experimental Medicine, Section of Bioinformatics, University of Catania, Italy
| | - Catia Romano
- 1 General Pediatrics and Pediatric Acute and Emergency Complex Unit, Policlinico-Vittorio-Emanuele University Hospital, University of Catania, Italy
| | - Martino Ruggieri
- 4 Unit of Rare Diseases of the Nervous System in Childhood, Policlinico-Vittorio-Emanuele University Hospital, University of Catania, Italy
| |
Collapse
|
29
|
Thomas EA, D'Mello SR. Complex neuroprotective and neurotoxic effects of histone deacetylases. J Neurochem 2018; 145:96-110. [PMID: 29355955 DOI: 10.1111/jnc.14309] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
By their ability to shatter quality of life for both patients and caregivers, neurodegenerative diseases are the most devastating of human disorders. Unfortunately, there are no effective or long-terms treatments capable of slowing down the relentless loss of neurons in any of these diseases. One impediment is the lack of detailed knowledge of the molecular mechanisms underlying the processes of neurodegeneration. While some neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are mostly sporadic in nature, driven by both environment and genetic susceptibility, many others, including Huntington's disease, spinocerebellar ataxias, and spinal-bulbar muscular atrophy, are genetically inherited disorders. Surprisingly, given their different roots and etiologies, both sporadic and genetic neurodegenerative disorders have been linked to disease mechanisms involving histone deacetylase (HDAC) proteins, which consists of 18 family members with diverse functions. While most studies have implicated certain HDAC subtypes in promoting neurodegeneration, a substantial body of literature suggests that other HDAC proteins can preserve neuronal viability. Of particular interest, however, is the recent realization that a single HDAC subtype can have both neuroprotective and neurotoxic effects. Diverse mechanisms, beyond transcriptional regulation have been linked to these effects, including deacetylation of non-histone proteins, protein-protein interactions, post-translational modifications of the HDAC proteins themselves and direct interactions with disease proteins. The roles of these HDACs in both sporadic and genetic neurodegenerative diseases will be discussed in the current review.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
30
|
Bora G, Subaşı-Yıldız Ş, Yeşbek-Kaymaz A, Bulut N, Alemdaroğlu İ, Tunca-Yılmaz Ö, Topaloğlu H, Karaduman AA, Erdem-Yurter H. Effects of Arm Cycling Exercise in Spinal Muscular Atrophy Type II Patients: A Pilot Study. J Child Neurol 2018; 33:209-215. [PMID: 29327642 DOI: 10.1177/0883073817750500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exercise studies in neuromuscular diseases like spinal muscular atrophy (SMA), a devastating disease caused by survival of motor neuron 1 ( SMN1) gene mutations, are drawing attention due to its beneficial effects. In this study, we presented a constructed arm cycling exercise protocol and evaluated the benefits on SMA patients. Five SMA type II patients performed 12 weeks of supervised arm cycling exercise. The physical functions were evaluated together with the SMN2 copy numbers, SMN protein levels, insulin-like growth factor 1(IGF1) and binding protein 3 (IGFBP3) levels. The active cycling distance and duration of patients significantly improved. Significant changes could not have detected either SMN or IGF1 and IGFBP3 levels in response to exercise. The findings demonstrated that the patients tolerated the exercise protocol and gained a benefit from arm cycling but benefits could not be associated with SMN2 copy number, SMN protein level, IGF1, or IGFBP3 levels.
Collapse
Affiliation(s)
- Gamze Bora
- 1 Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Şulenur Subaşı-Yıldız
- 2 Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Ayşe Yeşbek-Kaymaz
- 1 Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Numan Bulut
- 2 Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - İpek Alemdaroğlu
- 2 Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Öznur Tunca-Yılmaz
- 2 Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Haluk Topaloğlu
- 3 Faculty of Medicine, Department of Pediatrics, Neurology Unit, Hacettepe University, Ankara, Turkey
| | - Aynur Ayşe Karaduman
- 2 Faculty of Health Sciences, Department of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Hayat Erdem-Yurter
- 1 Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
31
|
Boido M, De Amicis E, Valsecchi V, Trevisan M, Ala U, Ruegg MA, Hettwer S, Vercelli A. Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy. Front Cell Neurosci 2018; 12:17. [PMID: 29440993 PMCID: PMC5797594 DOI: 10.3389/fncel.2018.00017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/11/2018] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a pediatric genetic disease, characterized by motor neuron (MN) death, leading to progressive muscle weakness, respiratory failure, and, in the most severe cases, to death. Abnormalities at the neuromuscular junction (NMJ) have been reported in SMA, including neurofilament (NF) accumulation at presynaptic terminals, immature and smaller than normal endplates, reduced transmitter release, and, finally, muscle denervation. Here we have studied the role of agrin in SMAΔ7 mice, the experimental model of SMAII. We observed a 50% reduction in agrin expression levels in quadriceps of P10 SMA mice compared to age-matched WT controls. To counteract such condition, we treated SMA mice from birth onwards with therapeutic agrin biological NT-1654, an active splice variant of agrin retaining synaptogenic properties, which is also resistant to proteolytic cleavage by neurotrypsin. Mice were analyzed for behavior, muscle and NMJ histology, and survival. Motor behavior was significantly improved and survival was extended by treatment of SMA mice with NT-1654. At P10, H/E-stained sections of the quadriceps, a proximal muscle early involved in SMA, showed that NT-1654 treatment strongly prevented the size decrease of muscle fibers. Studies of NMJ morphology on whole-mount diaphragm preparations revealed that NT-1654-treated SMA mice had more mature NMJs and reduced NF accumulation, compared to vehicle-treated SMA mice. We conclude that increasing agrin function in SMA has beneficial outcomes on muscle fibers and NMJs as the agrin biological NT-1654 restores the crosstalk between muscle and MNs, delaying muscular atrophy, improving motor performance and extending survival.
Collapse
Affiliation(s)
- Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Elena De Amicis
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Valeria Valsecchi
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Marco Trevisan
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | | | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy.,Department of Neuroscience Rita Levi Montalcini, National Institute of Neuroscience, Turin, Italy
| |
Collapse
|
32
|
Gray KM, Kaifer KA, Baillat D, Wen Y, Bonacci TR, Ebert AD, Raimer AC, Spring AM, Have ST, Glascock JJ, Gupta K, Van Duyne GD, Emanuele MJ, Lamond AI, Wagner EJ, Lorson CL, Matera AG. Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF Slmb degron. Mol Biol Cell 2018; 29:96-110. [PMID: 29167380 PMCID: PMC5909936 DOI: 10.1091/mbc.e17-11-0627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1 Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers.
Collapse
Affiliation(s)
- Kelsey M Gray
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program in Biological and Genome Sciences, Department of Biology and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Kevin A Kaifer
- Molecular Pathogenesis and Therapeutics Program, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211
| | - David Baillat
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550
| | - Ying Wen
- Integrative Program in Biological and Genome Sciences, Department of Biology and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Thomas R Bonacci
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Amanda C Raimer
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program in Biological and Genome Sciences, Department of Biology and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Ashlyn M Spring
- Integrative Program in Biological and Genome Sciences, Department of Biology and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | - Jacqueline J Glascock
- Molecular Pathogenesis and Therapeutics Program, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Gregory D Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Michael J Emanuele
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550
| | - Christian L Lorson
- Molecular Pathogenesis and Therapeutics Program, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program in Biological and Genome Sciences, Department of Biology and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
33
|
Feng M, Liu C, Xia Y, Liu B, Zhou M, Li Z, Sun Q, Hu Z, Wang Y, Wu L, Liu X, Liang D. Restoration of SMN expression in mesenchymal stem cells derived from gene-targeted patient-specific iPSCs. J Mol Histol 2017; 49:27-37. [DOI: 10.1007/s10735-017-9744-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
|
34
|
Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2017; 28:197-207. [PMID: 29305137 DOI: 10.1016/j.nmd.2017.11.004] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023]
Abstract
This is the second half of a two-part document updating the standard of care recommendations for spinal muscular atrophy published in 2007. This part includes updated recommendations on pulmonary management and acute care issues, and topics that have emerged in the last few years such as other organ involvement in the severe forms of spinal muscular atrophy and the role of medications. Ethical issues and the choice of palliative versus supportive care are also addressed. These recommendations are becoming increasingly relevant given recent clinical trials and the prospect that commercially available therapies will likely change the survival and natural history of this disease.
Collapse
|
35
|
Abstract
More than 15% of all disease-causing mutations result in mRNA splicing defects. U1 snRNA binds to the 5' splice site (5'ss) through base pairing. Mutation-adapted U1 snRNA (with compensatory U1 snRNA changes) and exon-specific U1 snRNA (complementary to intronic sequences) have been shown to suppress 5'ss mutations in cellular and animal models. Areas covered: The history, mechanism of action, and efficacy of U1 snRNA-mediated gene therapy are covered. The clinical utility of this technology and its limitations will be discussed. Expert commentary: Recently, gene therapies with mutation-adapted U1 snRNAs have been conducted on animal models, including aromatic l-amino acid decarboxylase deficiency and spinal muscular atrophy. However, although U1-mediated therapy has the advantage of maintaining the regulated expression of defective genes, its accuracy and efficacy needs to be improved before clinical application of this technique is possible.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- a Department of Pediatrics and Medical Genetics , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Yu-May Lee
- a Department of Pediatrics and Medical Genetics , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Ni-Chung Lee
- a Department of Pediatrics and Medical Genetics , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
36
|
Wijngaarde CA, Blank AC, Stam M, Wadman RI, van den Berg LH, van der Pol WL. Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet J Rare Dis 2017; 12:67. [PMID: 28399889 PMCID: PMC5387385 DOI: 10.1186/s13023-017-0613-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/14/2017] [Indexed: 01/09/2023] Open
Abstract
Background Hereditary proximal spinal muscular atrophy (SMA) is a severe neuromuscular disease of childhood caused by homozygous loss of function of the survival motor neuron (SMN) 1 gene. The presence of a second, nearly identical SMN gene (SMN2) in the human genome ensures production of residual levels of the ubiquitously expressed SMN protein. Alpha-motor neurons in the ventral horns of the spinal cord are most vulnerable to reduced SMN concentrations but the development or function of other tissues may also be affected, and cardiovascular abnormalities have frequently been reported both in patients and SMA mouse models. Methods We systematically reviewed reported cardiac pathology in relation to SMN deficiency. To investigate the relevance of the possible association in more detail, we used clinical classification systems to characterize structural cardiac defects and arrhythmias. Conclusions Seventy-two studies with a total of 264 SMA patients with reported cardiac pathology were identified, along with 14 publications on SMA mouse models with abnormalities of the heart. Structural cardiac pathology, mainly septal defects and abnormalities of the cardiac outflow tract, was reported predominantly in the most severely affected patients (i.e. SMA type 1). Cardiac rhythm disorders were most frequently reported in patients with milder SMA types (e.g. SMA type 3). All included studies lacked control groups and a standardized approach for cardiac evaluation. The convergence to specific abnormalities of cardiac structure and function may indicate vulnerability of specific cell types or developmental processes relevant for cardiogenesis. Future studies would benefit from a controlled and standardized approach for cardiac evaluation in patients with SMA. Electronic supplementary material The online version of this article (doi:10.1186/s13023-017-0613-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C A Wijngaarde
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| | - A C Blank
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Stam
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - R I Wadman
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - L H van den Berg
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - W L van der Pol
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Alberti S, Mateju D, Mediani L, Carra S. Granulostasis: Protein Quality Control of RNP Granules. Front Mol Neurosci 2017; 10:84. [PMID: 28396624 PMCID: PMC5367262 DOI: 10.3389/fnmol.2017.00084] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Ribonucleoprotein (RNP) granules transport, store, or degrade messenger RNAs, thereby indirectly regulating protein synthesis. Normally, RNP granules are highly dynamic compartments. However, because of aging or severe environmental stress, RNP granules, in particular stress granules (SGs), convert into solid, aggregate-like inclusions. There is increasing evidence that such RNA-protein inclusions are associated with several age-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), fronto-temporal dementia (FTD) and Alzheimer's disease (AD). Thus, understanding what triggers the conversion of RNP granules into aggregates and identifying the cellular players that control RNP granules will be critical to develop treatments for these diseases. In this review article, we discuss recent insight into RNP and SG formation. More specifically, we examine the evidence for liquid-liquid phase separation (LLPS) as an organizing principle of RNP granules and the role of aggregation-prone RNA-binding proteins (RBPs) in this process. We further discuss recent findings that liquid-like SGs can sequester misfolded proteins, which promote an aberrant conversion of liquid SGs into solid aggregates. Importantly, very recent studies show that a specific protein quality control (PQC) process prevents the accumulation of misfolding-prone proteins in SGs and, by doing so, maintains the dynamic state of SGs. This quality control process has been referred to as granulostasis and it relies on the specific action of the HSPB8-BAG3-HSP70 complex. Additional players such as p97/valosin containing protein (VCP) and other molecular chaperones (e.g., HSPB1) participate, directly or indirectly, in granulostasis, and ensure the timely elimination of defective ribosomal products and other misfolded proteins from SGs. Finally, we discuss recent findings that, in the stress recovery phase, SGs are preferentially disassembled with the assistance of chaperones, and we discuss evidence for a back-up system that targets aberrant SGs to the aggresome for autophagy-mediated clearance. Altogether the findings discussed here provide evidence for an intricate network of interactions between RNP granules and various components of the PQC machinery. Molecular chaperones in particular are emerging as key players that control the composition and dynamics of RNP granules, which may be important to protect against age-related diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Alberti Lab, Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Daniel Mateju
- Alberti Lab, Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia Modena, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia Modena, Italy
| |
Collapse
|
38
|
Gama-Carvalho M, L Garcia-Vaquero M, R Pinto F, Besse F, Weis J, Voigt A, Schulz JB, De Las Rivas J. Linking amyotrophic lateral sclerosis and spinal muscular atrophy through RNA-transcriptome homeostasis: a genomics perspective. J Neurochem 2017; 141:12-30. [PMID: 28054357 DOI: 10.1111/jnc.13945] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/02/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
In this review, we present our most recent understanding of key biomolecular processes that underlie two motor neuron degenerative disorders, amyotrophic lateral sclerosis, and spinal muscular atrophy. We focus on the role of four multifunctional proteins involved in RNA metabolism (TDP-43, FUS, SMN, and Senataxin) that play a causal role in these diseases. Recent results have led to a novel scenario of intricate connections between these four proteins, bringing transcriptome homeostasis into the spotlight as a common theme in motor neuron degeneration. We review reported functional and physical interactions between these four proteins, highlighting their common association with nuclear bodies and small nuclear ribonucleoprotein particle biogenesis and function. We discuss how these interactions are turning out to be particularly relevant for the control of transcription and chromatin homeostasis, including the recent identification of an association between SMN and Senataxin required to ensure the resolution of DNA-RNA hybrid formation and proper termination by RNA polymerase II. These connections strongly support the existence of common pathways underlying the spinal muscular atrophy and amyotrophic lateral sclerosis phenotype. We also discuss the potential of genome-wide expression profiling, in particular RNA sequencing derived data, to contribute to unravelling the underlying mechanisms. We provide a review of publicly available datasets that have addressed both diseases using these approaches, and highlight the value of investing in cross-disease studies to promote our understanding of the pathways leading to neurodegeneration.
Collapse
Affiliation(s)
- Margarida Gama-Carvalho
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marina L Garcia-Vaquero
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | - Francisco R Pinto
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Aaron Voigt
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
39
|
Jaiswal MK. Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease. Neural Regen Res 2017; 12:723-736. [PMID: 28616022 PMCID: PMC5461603 DOI: 10.4103/1673-5374.206635] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and motor neuron diseases (MNDs) are progressive neurodegenerative diseases that affect nerve cells in the brain affecting upper and lower motor neurons (UMNs/LMNs), brain stem and spinal cord. The clinical phenotype is characterized by loss of motor neurons (MNs), muscular weakness and atrophy eventually leading to paralysis and death due to respiratory failure within 3-5 years after disease onset. No effective treatment or cure is currently available that halts or reverses ALS and MND except FDA approved drug riluzole that only modestly slows the progression of ALS in some patients. Recent advances in human derived induced pluripotent stem cells have made it possible for the first time to obtain substantial amounts of human cells to recapitulate in vitro "disease in dish" and test some of the underlying pathogenetic mechanisms involved in ALS and MNDs. In this review, I discussed the opportunities and challenges of induced pluropotent stem cells-derived motor neurons for treatment of ALS and MND patients with special emphasis on their implications in finding a cure for ALS and MNDs.
Collapse
Affiliation(s)
- Manoj Kumar Jaiswal
- Molecular Imaging and Neuropathology Division, New York State Psychiatry Institute, Columbia University, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
40
|
Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs). BioDrugs 2016; 30:49-74. [PMID: 26886021 DOI: 10.1007/s40259-016-0157-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12% of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.
Collapse
|
41
|
Khan F, Oloketuyi SF. A future perspective on neurodegenerative diseases: nasopharyngeal and gut microbiota. J Appl Microbiol 2016; 122:306-320. [PMID: 27740729 DOI: 10.1111/jam.13327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/23/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are considered a serious life-threatening issue regardless of age. Resulting nerve damage progressively affects important activities, such as movement, coordination, balance, breathing, speech and the functioning of vital organs. Reports on the subject have concluded that neurodegenerative disease can be caused by mutations of susceptible genes, alcohol consumption, toxins, chemicals and other unknown environmental factors. Although several diagnostic techniques can be used to determine aetiologies, the process is difficult and often fails. Research shows that nasopharyngeal and gut microbiota play important roles in brain to spinal cord coordination. However, no conclusive epidemiologic evidence is available on the roles played by respiratory and gut microbiota in the development of neurodegenerative diseases. Thus, understanding the connection between respiratory and gut microbiota and the nervous system could provide information on causal links. The present review describes future perspectives on the role played by nasopharyngeal and gut microbiota in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- F Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, India
| | - S F Oloketuyi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, India
| |
Collapse
|
42
|
Abstract
Spinal muscular atrophy is an autosomal-recessive disorder characterized by degeneration of motor neurons in the spinal cord and caused by mutations in the survival motor neuron 1 gene, SMN1. The severity of SMA is variable. The SMN2 gene produces a fraction of the SMN messenger RNA (mRNA) transcript produced by the SMN1 gene. There is an inverse correlation between SMN2 gene copy number and clinical severity. Clinical management focuses on multidisciplinary care. Preclinical models of SMA have led to an explosion of SMA clinical trials that hold great promise of effective therapy in the future.
Collapse
|
43
|
Powis RA, Mutsaers CA, Wishart TM, Hunter G, Wirth B, Gillingwater TH. Increased levels of UCHL1 are a compensatory response to disrupted ubiquitin homeostasis in spinal muscular atrophy and do not represent a viable therapeutic target. Neuropathol Appl Neurobiol 2015; 40:873-87. [PMID: 25041530 DOI: 10.1111/nan.12168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/25/2014] [Indexed: 12/21/2022]
Abstract
AIM Levels of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) are robustly increased in spinal muscular atrophy (SMA) patient fibroblasts and mouse models. We therefore wanted to establish whether changes in UCHL1 contribute directly to disease pathogenesis, and to assess whether pharmacological inhibition of UCHL1 represents a viable therapeutic option for SMA. METHODS SMA mice and control littermates received a pharmacological UCHL1 inhibitor (LDN-57444) or DMSO vehicle. Survival and weight were monitored daily, a righting test of motor performance was performed, and motor neurone loss, muscle fibre atrophy and neuromuscular junction pathology were all quantified. Ubiquitin-like modifier activating enzyme 1 (Uba1) was then pharmacologically inhibited in neurones in vitro to examine the relationship between Uba1 levels and UCHL1 in SMA. RESULTS Pharmacological inhibition of UCHL1 failed to improve survival, motor symptoms or neuromuscular pathology in SMA mice and actually precipitated the onset of weight loss. LDN-57444 treatment significantly decreased spinal cord mono-ubiquitin levels, further exacerbating ubiquitination defects in SMA mice. Pharmacological inhibition of Uba1, levels of which are robustly reduced in SMA, was sufficient to induce accumulation of UCHL1 in primary neuronal cultures. CONCLUSION Pharmacological inhibition of UCHL1 exacerbates rather than ameliorates disease symptoms in a mouse model of SMA. Thus, pharmacological inhibition of UCHL1 is not a viable therapeutic target for SMA. Moreover, increased levels of UCHL1 in SMA likely represent a downstream consequence of decreased Uba1 levels, indicative of an attempted supportive compensatory response to defects in ubiquitin homeostasis caused by low levels of SMN protein.
Collapse
Affiliation(s)
- Rachael A Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
44
|
Vai S, Bianchi ML, Moroni I, Mastella C, Broggi F, Morandi L, Arnoldi MT, Bussolino C, Baranello G. Bone and Spinal Muscular Atrophy. Bone 2015; 79:116-20. [PMID: 26055105 DOI: 10.1016/j.bone.2015.05.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 12/27/2022]
Abstract
Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disease, leading to progressive denervation atrophy in the involved skeletal muscles. Bone status has been poorly studied. We assessed bone metabolism, bone mineral density (BMD) and fractures in 30 children (age range 15-171 months) affected by SMA types 2 and 3. Eighteen children (60%) had higher than normal levels of CTx (bone resorption marker); 25-OH vitamin D was in the lower range of normal (below 20 ng/ml in 9 children and below 12 ng/ml in 2). Lumbar spine BMAD (bone mineral apparent density) Z-score was below -1.5 in 50% of children. According to clinical records, four children had sustained four peripheral fractures; on spine X-rays, we observed 9 previously undiagnosed vertebral fractures in 7 children. There was a significant inverse regression between PTH and 25-OH D levels, and a significant regression between BMC and BMAD values and the scores of motor-functional tests. Even if this study could not establish the pathogenesis of bone derangements in SMA, its main findings - reduced bone density, low 25OH vitamin D levels, increased bone resorption markers and asymptomatic vertebral fractures also in very young patients - strongly suggest that even young subjects affected by SMA should be considered at risk of osteopenia and even osteoporosis and fractures.
Collapse
Affiliation(s)
- Silvia Vai
- Experimental Laboratory for Children's Bone Metabolism Research, Bone Metabolism Unit, Institute Auxologico Italiano IRCCS, Milan, Italy.
| | - Maria Luisa Bianchi
- Experimental Laboratory for Children's Bone Metabolism Research, Bone Metabolism Unit, Institute Auxologico Italiano IRCCS, Milan, Italy
| | - Isabella Moroni
- Child Neurology Unit, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Chiara Mastella
- S.A.PRE., Ospedale Policlinico Maggiore Mangiagalli, and Regina Elena Foundation, Milan, Italy
| | - Francesca Broggi
- Experimental Laboratory for Children's Bone Metabolism Research, Bone Metabolism Unit, Institute Auxologico Italiano IRCCS, Milan, Italy
| | - Lucia Morandi
- Neuromuscular Disease and Immunology Unit, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Maria Teresa Arnoldi
- Developmental Neurology Unit, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Chiara Bussolino
- Developmental Neurology Unit, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Giovanni Baranello
- Developmental Neurology Unit, Carlo Besta Neurological Institute Foundation, Milan, Italy
| |
Collapse
|
45
|
McGovern VL, Iyer CC, Arnold WD, Gombash SE, Zaworski PG, Blatnik AJ, Foust KD, Burghes AHM. SMN expression is required in motor neurons to rescue electrophysiological deficits in the SMNΔ7 mouse model of SMA. Hum Mol Genet 2015; 24:5524-41. [PMID: 26206889 PMCID: PMC4572068 DOI: 10.1093/hmg/ddv283] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/10/2015] [Accepted: 07/13/2015] [Indexed: 12/23/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA) is the most frequent cause of hereditary infant mortality. SMA is an autosomal recessive neuromuscular disorder that results from the loss of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The SMN2 gene produces an insufficient amount of full-length SMN protein that results in loss of motor neurons in the spinal cord and subsequent muscle paralysis. Previously we have shown that overexpression of human SMN in neurons in the SMA mouse ameliorates the SMA phenotype while overexpression of human SMN in skeletal muscle had no effect. Using Cre recombinase, here we show that either deletion or replacement of Smn in motor neurons (ChAT-Cre) significantly alters the functional output of the motor unit as measured with compound muscle action potential and motor unit number estimation. However ChAT-Cre alone did not alter the survival of SMA mice by replacement and did not appreciably affect survival when used to deplete SMN. However replacement of Smn in both neurons and glia in addition to the motor neuron (Nestin-Cre and ChAT-Cre) resulted in the greatest improvement in survival of the mouse and in some instances complete rescue was achieved. These findings demonstrate that high expression of SMN in the motor neuron is both necessary and sufficient for proper function of the motor unit. Furthermore, in the mouse high expression of SMN in neurons and glia, in addition to motor neurons, has a major impact on survival.
Collapse
Affiliation(s)
- Vicki L McGovern
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Chitra C Iyer
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA and
| | - Sara E Gombash
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA and
| | | | - Anton J Blatnik
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kevin D Foust
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA and
| | - Arthur H M Burghes
- Department of Molecular and Cellular Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
46
|
Mueller WF, Larsen LSZ, Garibaldi A, Hatfield GW, Hertel KJ. The Silent Sway of Splicing by Synonymous Substitutions. J Biol Chem 2015; 290:27700-11. [PMID: 26424794 DOI: 10.1074/jbc.m115.684035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing diversifies mRNA transcripts in human cells. This sequence-driven process can be influenced greatly by mutations, even those that do not change the protein coding potential of the transcript. Synonymous mutations have been shown to alter gene expression through modulation of splicing, mRNA stability, and translation. Using a synonymous position mutation library in SMN1 exon 7, we show that 23% of synonymous mutations across the exon decrease exon inclusion, suggesting that nucleotide identity across the entire exon has been evolutionarily optimized to support a particular exon inclusion level. Although phylogenetic conservation scores are insufficient to identify synonymous positions important for exon inclusion, an alignment of organisms filtered based on similar exon/intron architecture is highly successful. Although many of the splicing neutral mutations are observed to occur, none of the exon inclusion reducing mutants was found in the filtered alignment. Using the modified phylogenetic comparison as an approach to evaluate the impact on pre-mRNA splicing suggests that up to 45% of synonymous SNPs are likely to alter pre-mRNA splicing. These results demonstrate that coding and pre-mRNA splicing pressures co-evolve and that a modified phylogenetic comparison based on the exon/intron architecture is a useful tool in identifying splice altering SNPs.
Collapse
Affiliation(s)
| | - Liza S Z Larsen
- the Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California 92619
| | | | - G Wesley Hatfield
- From the Department of Microbiology and Molecular Genetics and the Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California 92619
| | - Klemens J Hertel
- From the Department of Microbiology and Molecular Genetics and the Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California 92619
| |
Collapse
|
47
|
In vitro gene manipulation of spinal muscular atrophy fibroblast cell line using gene-targeting fragment for restoration of SMN protein expression. Gene Ther 2015; 23:10-7. [DOI: 10.1038/gt.2015.92] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 06/17/2015] [Accepted: 08/05/2015] [Indexed: 11/08/2022]
|
48
|
Farooq F, MacKenzie AE. Current and emerging treatment options for spinal muscular atrophy. Degener Neurol Neuromuscul Dis 2015; 5:75-81. [PMID: 32669914 PMCID: PMC7337203 DOI: 10.2147/dnnd.s48420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022] Open
Abstract
Spinal muscular atrophy is one of the most common inherited neuromuscular conditions; our understanding of the genetic pathology and translational research coming from this insight has made significant progress over the past decade. This short review provides the background of the disease along with the bench to bedside progress of some promising treatment options to develop better understanding of the present state of the disease.
Collapse
Affiliation(s)
- Faraz Farooq
- Science Education Division, Emirates College for Advanced Education, Abu Dhabi, United Arab Emirates.,Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada.,University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
49
|
Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 2015; 87:90-103. [PMID: 25797014 DOI: 10.1016/j.addr.2015.03.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.
Collapse
|
50
|
Corti S, Faravelli I, Cardano M, Conti L. Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery. Expert Opin Drug Discov 2015; 10:615-29. [PMID: 25891144 DOI: 10.1517/17460441.2015.1037737] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Although intensive efforts have been made, effective treatments for neurodegenerative and neurodevelopmental diseases have not been yet discovered. Possible reasons for this include the lack of appropriate disease models of human neurons and a limited understanding of the etiological and neurobiological mechanisms. Recent advances in pluripotent stem cell (PSC) research have now opened the path to the generation of induced pluripotent stem cells (iPSCs) starting from somatic cells, thus offering an unlimited source of patient-specific disease-relevant neuronal cells. AREAS COVERED In this review, the authors focus on the use of human PSC-derived cells in modeling neurological disorders and discovering of new drugs and provide their expert perspectives on the field. EXPERT OPINION The advent of human iPSC-based disease models has fuelled renewed enthusiasm and enormous expectations for insights of disease mechanisms and identification of more disease-relevant and novel molecular targets. Human PSCs offer a unique tool that is being profitably exploited for high-throughput screening (HTS) platforms. This process can lead to the identification and optimization of molecules/drugs and thus move forward new pharmacological therapies for a wide range of neurodegenerative and neurodevelopmental conditions. It is predicted that improvements in the production of mature neuronal subtypes, from patient-specific human-induced pluripotent stem cells and their adaptation to culture, to HTS platforms will allow the increased exploitation of human pluripotent stem cells in drug discovery programs.
Collapse
Affiliation(s)
- Stefania Corti
- University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico , via Francesco Sforza 35, Milan 20122 , Italy +39 02 55033817 ;
| | | | | | | |
Collapse
|