1
|
Wiench L, Rizzo D, Sinay Z, Nacsa Z, Fuchs NV, König R. Role of PQBP1 in Pathogen Recognition-Impact on Innate Immunity. Viruses 2024; 16:1340. [PMID: 39205314 PMCID: PMC11360342 DOI: 10.3390/v16081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The intrinsically disordered polyglutamine-binding protein 1 (PQBP1) has been linked to various cellular processes including transcription, alternative splicing, translation and innate immunity. Mutations in PQBP1 are causative for neurodevelopmental conditions collectively termed as the Renpenning syndrome spectrum. Intriguingly, cells of Renpenning syndrome patients exhibit a reduced innate immune response against human immunodeficiency virus 1 (HIV-1). PQBP1 is responsible for the initiation of a two-step recognition process of HIV-1 reverse-transcribed DNA products, ensuring a type 1 interferon response. Recent investigations revealed that PQBP1 also binds to the p17 protein of avian reovirus (ARV) and is affected by the ORF52 of Kaposi's sarcoma-associated herpesvirus (KSHV), possibly also playing a role in the innate immune response towards these RNA- and DNA-viruses. Moreover, PQBP1-mediated microglia activation in the context of tauopathies has been reported, highlighting the role of PQBP1 in sensing exogenous pathogenic species and innate immune response in the central nervous system. Its unstructured nature, the promiscuous binding of various proteins and its presence in various tissues indicate the versatile roles of PQBP1 in cellular regulation. Here, we systematically review the available data on the structure of PQBP1 and its cellular functions and interactome, as well as possible implications for innate immune responses and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51–59, 63225 Langen, Germany
| |
Collapse
|
2
|
Tian X, Ai J, Tian X, Wei X. cGAS-STING pathway agonists are promising vaccine adjuvants. Med Res Rev 2024; 44:1768-1799. [PMID: 38323921 DOI: 10.1002/med.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.
Collapse
Affiliation(s)
- Xinyu Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jiayuan Ai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
3
|
Courraud J, Engel C, Quartier A, Drouot N, Houessou U, Plassard D, Sorlin A, Brischoux-Boucher E, Gouy E, Van Maldergem L, Rossi M, Lesca G, Edery P, Putoux A, Bilan F, Gilbert-Dussardier B, Atallah I, Kalscheuer VM, Mandel JL, Piton A. Molecular consequences of PQBP1 deficiency, involved in the X-linked Renpenning syndrome. Mol Psychiatry 2024; 29:287-296. [PMID: 38030819 DOI: 10.1038/s41380-023-02323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Mutations in the PQBP1 gene (polyglutamine-binding protein-1) are responsible for a syndromic X-linked form of neurodevelopmental disorder (XL-NDD) with intellectual disability (ID), named Renpenning syndrome. PQBP1 encodes a protein involved in transcriptional and post-transcriptional regulation of gene expression. To investigate the consequences of PQBP1 loss, we used RNA interference to knock-down (KD) PQBP1 in human neural stem cells (hNSC). We observed a decrease of cell proliferation, as well as the deregulation of the expression of 58 genes, comprising genes encoding proteins associated with neurodegenerative diseases, playing a role in mRNA regulation or involved in innate immunity. We also observed an enrichment of genes involved in other forms of NDD (CELF2, APC2, etc). In particular, we identified an increase of a non-canonical isoform of another XL-NDD gene, UPF3B, an actor of nonsense mRNA mediated decay (NMD). This isoform encodes a shorter protein (UPF3B_S) deprived from the domains binding NMD effectors, however no notable change in NMD was observed after PQBP1-KD in fibroblasts containing a premature termination codon. We showed that short non-canonical and long canonical UPF3B isoforms have different interactomes, suggesting they could play distinct roles. The link between PQBP1 loss and increase of UPF3B_S expression was confirmed in mRNA obtained from patients with pathogenic variants in PQBP1, particularly pronounced for truncating variants and missense variants located in the C-terminal domain. We therefore used it as a molecular marker of Renpenning syndrome, to test the pathogenicity of variants of uncertain clinical significance identified in PQPB1 in individuals with NDD, using patient blood mRNA and HeLa cells expressing wild-type or mutant PQBP1 cDNA. We showed that these different approaches were efficient to prove a functional effect of variants in the C-terminal domain of the protein. In conclusion, our study provided information on the pathological mechanisms involved in Renpenning syndrome, but also allowed the identification of a biomarker of PQBP1 deficiency useful to test variant effect.
Collapse
Affiliation(s)
- Jérémie Courraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Camille Engel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Angélique Quartier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Ursula Houessou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Arthur Sorlin
- National Center of Genetics, Laboratoire national de santé, Dudelange, Luxembourg
| | - Elise Brischoux-Boucher
- Centre de Génétique Humaine, CHU Besançon, Université de Franche-Comté, 25056, Besançon, France
| | - Evan Gouy
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, CHU Besançon, Université de Franche-Comté, 25056, Besançon, France
| | - Massimiliano Rossi
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Gaetan Lesca
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Patrick Edery
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Audrey Putoux
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Frederic Bilan
- Service de génétique médicale, CHU de Poitiers, 86 000, Poitiers, France
| | | | - Isis Atallah
- Department of Medical Genetics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.
- Université de Strasbourg, 67 400, Illkirch, France.
- Genetic diagnosis laboratory, Strasbourg University Hospital, 67 090, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
4
|
Leavenworth JD, Yusuf N, Hassan Q. K-Homology Type Splicing Regulatory Protein: Mechanism of Action in Cancer and Immune Disorders. Crit Rev Eukaryot Gene Expr 2024; 34:75-87. [PMID: 37824394 PMCID: PMC11003564 DOI: 10.1615/critreveukaryotgeneexpr.2023048085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
K homology-type splicing regulatory protein (KSRP) is emerging as a key player in cancer biology, and immunology. As a single-strand nucleic acid binding protein it functions in both transcriptional and post-transcriptional regulation, while facilitating multiple stages of RNA metabolism to affect proliferation and control cell fate. However, it must interact with other proteins to determine the fate of its bound substrate. Here we provide an minireview of this important regulatory protein and describe its complex subcellular functions to affect RNA metabolism, stability, miRNA biogenesis and maturation, stress granule function, metastasis, and inflammatory processes.
Collapse
Affiliation(s)
- Jonathan D. Leavenworth
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nabiha Yusuf
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
The role of PQBP1 in neural development and function. Biochem Soc Trans 2023; 51:363-372. [PMID: 36815699 DOI: 10.1042/bst20220920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 11/17/2022]
Abstract
Mutations in the polyglutamine tract-binding protein 1 (PQBP1) gene are associated with Renpenning syndrome, which is characterized by microcephaly, intellectual deficiency, short stature, small testes, and distinct facial dysmorphism. Studies using different models have revealed that PQBP1 plays essential roles in neural development and function. In this mini-review, we summarize recent findings relating to the roles of PQBP1 in these processes, including in the regulation of neural progenitor proliferation, neural projection, synaptic growth, neuronal survival, and cognitive function via mRNA transcription and splicing-dependent or -independent processes. The novel findings provide insights into the mechanisms underlying the pathogenesis of Renpenning syndrome and may advance drug discovery and treatment for this condition.
Collapse
|
6
|
Jin X, Tanaka H, Jin M, Fujita K, Homma H, Inotsume M, Yong H, Umeda K, Kodera N, Ando T, Okazawa H. PQBP5/NOL10 maintains and anchors the nucleolus under physiological and osmotic stress conditions. Nat Commun 2023; 14:9. [PMID: 36599853 PMCID: PMC9813255 DOI: 10.1038/s41467-022-35602-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Polyglutamine binding protein 5 (PQBP5), also called nucleolar protein 10 (NOL10), binds to polyglutamine tract sequences and is expressed in the nucleolus. Using dynamic imaging of high-speed atomic force microscopy, we show that PQBP5/NOL10 is an intrinsically disordered protein. Super-resolution microscopy and correlative light and electron microscopy method show that PQBP5/NOL10 makes up the skeletal structure of the nucleolus, constituting the granule meshwork in the granular component area, which is distinct from other nucleolar substructures, such as the fibrillar center and dense fibrillar component. In contrast to other nucleolar proteins, which disperse to the nucleoplasm under osmotic stress conditions, PQBP5/NOL10 remains in the nucleolus and functions as an anchor for reassembly of other nucleolar proteins. Droplet and thermal shift assays show that the biophysical features of PQBP5/NOL10 remain stable under stress conditions, explaining the spatial role of this protein. PQBP5/NOL10 can be functionally depleted by sequestration with polyglutamine disease proteins in vitro and in vivo, leading to the pathological deformity or disappearance of the nucleolus. Taken together, these findings indicate that PQBP5/NOL10 is an essential protein needed to maintain the structure of the nucleolus.
Collapse
Affiliation(s)
- Xiaocen Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Meihua Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maiko Inotsume
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Huang Yong
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kenichi Umeda
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
7
|
Li L, Garg M, Wang Y, Wang W, Godbout R. DEAD Box 1 (DDX1) protein binds to and protects cytoplasmic stress response mRNAs in cells exposed to oxidative stress. J Biol Chem 2022; 298:102180. [PMID: 35752363 PMCID: PMC9293777 DOI: 10.1016/j.jbc.2022.102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
The integrated stress response is a network of highly orchestrated pathways activated when cells are exposed to environmental stressors. While global repression of translation is a well-recognized hallmark of the integrated stress response, less is known about the regulation of mRNA stability during stress. DEAD box proteins are a family of RNA unwinding/remodeling enzymes involved in every aspect of RNA metabolism. We previously showed that DEAD box 1 (DDX1) protein accumulates at DNA double-strand breaks during genotoxic stress and promotes DNA double-strand break repair via homologous recombination. Here, we examine the role of DDX1 in response to environmental stress. We show that DDX1 is recruited to stress granules (SGs) in cells exposed to a variety of environmental stressors, including arsenite, hydrogen peroxide, and thapsigargin. We also show that DDX1 depletion delays resolution of arsenite-induced SGs. Using RNA immunoprecipitation sequencing, we identify RNA targets bound to endogenous DDX1, including RNAs transcribed from genes previously implicated in stress responses. We show the amount of target RNAs bound to DDX1 increases when cells are exposed to stress, and the overall levels of these RNAs are increased during stress in a DDX1-dependent manner. Even though DDX1’s RNA-binding property is critical for maintenance of its target mRNA levels, we found RNA binding is not required for localization of DDX1 to SGs. Furthermore, DDX1 knockdown does not appear to affect RNA localization to SGs. Taken together, our results reveal a novel role for DDX1 in maintaining cytoplasmic mRNA levels in cells exposed to oxidative stress.
Collapse
Affiliation(s)
- Lei Li
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Mansi Garg
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Weiwei Wang
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
8
|
PQBP1: The Key to Intellectual Disability, Neurodegenerative Diseases, and Innate Immunity. Int J Mol Sci 2022; 23:ijms23116227. [PMID: 35682906 PMCID: PMC9180999 DOI: 10.3390/ijms23116227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The idea that a common pathology underlies various neurodegenerative diseases and dementias has attracted considerable attention in the basic and medical sciences. Polyglutamine binding protein-1 (PQBP1) was identified in 1998 after a molecule was predicted to bind to polyglutamine tract amino acid sequences, which are associated with a family of neurodegenerative disorders called polyglutamine diseases. Hereditary gene mutations of PQBP1 cause intellectual disability, whereas acquired loss of function of PQBP1 contributes to dementia pathology. PQBP1 functions in innate immune cells as an intracellular receptor that recognizes pathogens and neurodegenerative proteins. It is an intrinsically disordered protein that generates intracellular foci, similar to other neurodegenerative disease proteins such as TDP43, FUS, and hnRNPs. The knowledge accumulated over more than 20 years has given rise to a new concept that shifts in the equilibrium between physiological and pathological processes have their basis in the dysregulation of common protein structure-linked molecular mechanisms.
Collapse
|
9
|
Savulescu AF, Brackin R, Bouilhol E, Dartigues B, Warrell JH, Pimentel MR, Beaume N, Fortunato IC, Dallongeville S, Boulle M, Soueidan H, Agou F, Schmoranzer J, Olivo-Marin JC, Franco CA, Gomes ER, Nikolski M, Mhlanga MM. Interrogating RNA and protein spatial subcellular distribution in smFISH data with DypFISH. CELL REPORTS METHODS 2021; 1:100068. [PMID: 35474672 PMCID: PMC9017151 DOI: 10.1016/j.crmeth.2021.100068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/15/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Advances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial distribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate the subcellular localization of RNA and protein. We introduce a range of analytical techniques to interrogate single-molecule RNA fluorescence in situ hybridization (smFISH) data in combination with protein immunolabeling. DypFISH is suited to study patterns of clustering of molecules, the association of mRNA-protein subcellular localization with microtubule organizing center orientation, and interdependence of mRNA-protein spatial distributions. We showcase how our analytical tools can achieve biological insights by utilizing cell micropatterning to constrain cellular architecture, which leads to reduction in subcellular mRNA distribution variation, allowing for the characterization of their localization patterns. Furthermore, we show that our method can be applied to physiological systems such as skeletal muscle fibers.
Collapse
Affiliation(s)
- Anca F. Savulescu
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7295 Cape Town, South Africa
| | - Robyn Brackin
- Advanced Medical Bioimaging, Charité – Universitätsmedizin, 10-117 Berlin, Germany
| | - Emmanuel Bouilhol
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, 33077 Bordeaux, France
| | - Benjamin Dartigues
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
| | - Jonathan H. Warrell
- Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mafalda R. Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Nicolas Beaume
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7295 Cape Town, South Africa
| | - Isabela C. Fortunato
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | - Mikaël Boulle
- Chemogenomic and Biological Screening Core Facility, C2RT, Department of Structural Biology and Chemistry, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Hayssam Soueidan
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
| | - Fabrice Agou
- Chemogenomic and Biological Screening Core Facility, C2RT, Department of Structural Biology and Chemistry, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
- Department of Structural Biology and Chemistry, URA 2185, Pasteur Institute, Paris, France
| | - Jan Schmoranzer
- Advanced Medical Bioimaging, Charité – Universitätsmedizin, 10-117 Berlin, Germany
| | | | - Claudio A. Franco
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Edgar R. Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Macha Nikolski
- Université de Bordeaux, Bordeaux Bioinformatics Center, 33000 Bordeaux, France
- Université de Bordeaux, CNRS, IBGC, UMR 5095, 33077 Bordeaux, France
| | - Musa M. Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud University, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
10
|
Lopez-Martín S, Albert J, Peña Vila-Belda MDM, Liu X, Zhang ZC, Han J, Jiménez de Domingo A, Fernández-Mayoralas DM, Fernández-Perrone AL, Calleja-Pérez B, Álvarez S, Fernández-Jaén A. A mild clinical and neuropsychological phenotype of Renpenning syndrome: A new case report with a maternally inherited PQBP1 missense mutation. APPLIED NEUROPSYCHOLOGY-CHILD 2021; 11:921-927. [PMID: 34470565 DOI: 10.1080/21622965.2021.1970551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mutations in the PQBP1 gene are associated with Renpenning syndrome (RENS1, MIM# 309500). Most cases are characterized by intellectual disability, but a detailed neuropsychological profile has not yet been established. The present case study of a 8.5 years-old male child with a missense novel mutation in the PQBP1 gene expands existing understanding of this syndrome by presenting a milder clinical and neuropsychological phenotype. Whole exome trio analysis sequencing revealed a maternally inherited PQBP1 missense mutation in chromosome X [NM_001032383.1, c.727C > T (p.Arg243Trp)]. Variant functional studies demonstrated a significant reduction in the interaction between PQBP1 and the component of the nuclear pre-mRNA splicing machinery, U5-15KD. A comprehensive neuropsychological assessment revealed marked deficits in processing speed, attention and executive functioning (including planning, inhibitory control and working memory) without intellectual disability. Several components of language processing were also impaired. These results support that this mutation partially disrupts the function of this gene, which is known to play critical roles in embryonic and neural development. As most of the genomic PQBP1 abnormalities associated with intellectual disability have been found to be loss-of-function mutations, we hypothesize that a partial loss-of-function of this variant is associated with a mild behavioral and neuropsychological phenotype.
Collapse
Affiliation(s)
- Sara Lopez-Martín
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain.,Neuromottiva, Madrid, Spain
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Xian Liu
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Zi-Chao Zhang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Junhai Han
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | | | | | | | | | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain.,School of Medicine, Universidad Europea, Madrid, Spain
| |
Collapse
|
11
|
Shen Y, Han J, Zhang ZC. Novel regulation of the eEF2K/eEF2 pathway: prospects of 'PQBP1 promotes translational elongation and regulates hippocampal mGluR-LTD by suppressing eEF2 phosphorylation'. J Mol Cell Biol 2021; 13:392-394. [PMID: 33734395 PMCID: PMC8373267 DOI: 10.1093/jmcb/mjab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yuqian Shen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zi Chao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
12
|
Shen Y, Zhang ZC, Cheng S, Liu A, Zuo J, Xia S, Liu X, Liu W, Jia Z, Xie W, Han J. PQBP1 promotes translational elongation and regulates hippocampal mGluR-LTD by suppressing eEF2 phosphorylation. Mol Cell 2021; 81:1425-1438.e10. [PMID: 33662272 DOI: 10.1016/j.molcel.2021.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/07/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.
Collapse
Affiliation(s)
- Yuqian Shen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Shanshan Cheng
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - An Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Jian Zuo
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Shuting Xia
- Institute of Neuroscience, Soochow University, Suzhou 215000, China
| | - Xian Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenhua Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Wei Xie
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
13
|
Canet-Pons J, Sen NE, Arsović A, Almaguer-Mederos LE, Halbach MV, Key J, Döring C, Kerksiek A, Picchiarelli G, Cassel R, René F, Dieterlé S, Fuchs NV, König R, Dupuis L, Lütjohann D, Gispert S, Auburger G. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis 2021; 152:105289. [PMID: 33577922 DOI: 10.1016/j.nbd.2021.105289] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
Collapse
Affiliation(s)
- Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Melanie V Halbach
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Gina Picchiarelli
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Raphaelle Cassel
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Frédérique René
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Stéphane Dieterlé
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Luc Dupuis
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
15
|
Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, Görg B, Fujii M, Lang PA, Häussinger D, Piekorz RP, Stühler K, Ahmadian MR. Novel FMRP interaction networks linked to cellular stress. FEBS J 2020; 288:837-860. [PMID: 32525608 DOI: 10.1111/febs.15443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.
Collapse
Affiliation(s)
- Mohamed S Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Research on Children with Special Needs Department, Medical Research Branch, National Research Centre, Cairo, Egypt
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Phillip A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
16
|
Hu S, Sun H, Yin L, Li J, Mei S, Xu F, Wu C, Liu X, Zhao F, Zhang D, Huang Y, Ren L, Cen S, Wang J, Liang C, Guo F. PKR-dependent cytosolic cGAS foci are necessary for intracellular DNA sensing. Sci Signal 2019; 12:12/609/eaav7934. [PMID: 31772125 DOI: 10.1126/scisignal.aav7934] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a major sensor of cytosolic DNA from invading pathogens and damaged cellular organelles. Activation of cGAS promotes liquid-like phase separation and formation of membraneless cytoplasmic structures. Here, we found that cGAS bound G3BP1, a double-stranded nucleic acid helicase involved in the formation of stress granules. Loss of G3BP1 blocked subcellular cGAS condensation and suppressed the interferon response to intracellular DNA and DNA virus particles in cells. Furthermore, an RNA-dependent association with PKR promoted G3BP1 foci formation and cGAS-dependent interferon responses. Together, these results indicate that PKR promotes the formation of G3BP1-dependent, membraneless cytoplasmic structures necessary for the DNA-sensing function of cGAS in human cells. These data suggest that there is a previously unappreciated link between nucleic acid sensing pathways, which requires the formation of specialized subcellular structures.
Collapse
Affiliation(s)
- Siqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Hong Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Lijuan Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Jian Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Chao Wu
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Di Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P. R. China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China.
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal H3T 1E2, Canada.
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China.
| |
Collapse
|
17
|
Hildebrandt MR, Wang Y, Li L, Yasmin L, Glubrecht DD, Godbout R. Cytoplasmic aggregation of DDX1 in developing embryos: Early embryonic lethality associated with Ddx1 knockout. Dev Biol 2019; 455:420-433. [DOI: 10.1016/j.ydbio.2019.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 01/12/2023]
|
18
|
Segregation and potential functional impact of a rare stop-gain PABPC4L variant in familial atypical Parkinsonism. Sci Rep 2019; 9:13576. [PMID: 31537871 PMCID: PMC6753086 DOI: 10.1038/s41598-019-50102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/03/2019] [Indexed: 01/23/2023] Open
Abstract
Atypical parkinsonian disorders (APDs) comprise a group of neurodegenerative diseases with heterogeneous clinical and pathological features. Most APDs are sporadic, but rare familial forms have also been reported. Epidemiological and post-mortem studies associated APDs with oxidative stress and cellular protein aggregates. Identifying molecular mechanisms that translate stress into toxic protein aggregation and neurodegeneration in APDs is an active area of research. Recently, ribonucleic acid (RNA) stress granule (SG) pathways were discussed to be pathogenically relevant in several neurodegenerative disorders including APDs. Using whole genome sequencing, mRNA expression analysis, transfection assays and cell imaging, we investigated the genetic and molecular basis of a familial neurodegenerative atypical parkinsonian disorder. We investigated a family with six living members in two generations exhibiting clinical symptoms consistent with atypical parkinsonism. Two affected family members suffered from parkinsonism that was associated with ataxia. Magnetic resonance imaging (MRI) of these patients showed brainstem and cerebellar atrophy. Whole genome sequencing identified a heterozygous stop-gain variant (c.C811T; p.R271X) in the Poly(A) binding protein, cytoplasmic 4-like (PABPC4L) gene, which co-segregated with the disease in the family. In situ hybridization showed that the murine pabpc4l is expressed in several brain regions and in particular in the cerebellum and brainstem. To determine the functional impact of the stop-gain variant in the PABPC4L gene, we investigated the subcellular localization of PABPC4L in heterologous cells. Wild-type PABPC4L protein localized predominantly to the cell nucleus, in contrast to the truncated protein encoded by the stop-gain variant p.R271X, which was found homogeneously throughout the cell. Interestingly, the wild-type, but not the truncated protein localized to RasGAP SH3 domain Binding Protein (G3BP)-labeled cytoplasmic granules in response to oxidative stress induction. This suggests that the PABPC4L variant alters intracellular distribution and possibly the stress granule associated function of the protein, which may underlie APD in this family. In conclusion, we present genetic and molecular evidence supporting the role of a stop-gain PABPC4L variant in a rare familial APD. Our data shows that the variant results in cellular mislocalization and inability of the protein to associate with stress granules.
Collapse
|
19
|
Rahman SK, Okazawa H, Chen YW. Frameshift PQBP-1 mutants K192S fs*7 and R153S fs*41 implicated in X-linked intellectual disability form stable dimers. J Struct Biol 2019; 206:305-313. [PMID: 30951824 DOI: 10.1016/j.jsb.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022]
Abstract
Polyglutamine tract-binding protein-1 (PQBP-1) is a nuclear intrinsically disordered protein playing important roles in transcriptional regulation and RNA splicing during embryonic and postembryonic development. In human, its mutations lead to severe cognitive impairment known as the Renpenning syndrome, a form of X-linked intellectual disability (XLID). Here, we report a combined biophysical study of two PQBP-1 frameshift mutants, K192Sfs*7 and R153Sfs*41. Both mutants are dimeric in solution, in contrast to the monomeric wild-type protein. These mutants contain more folded contents and have increased thermal stabilities. Using small-angle X-ray scattering data, we generated three-dimensional envelopes which revealed their overall flat shapes. We also described each mutant using an ensemble model based on a native-like initial pool with a dimeric structural core. PQBP-1 is known to repress transcription by way of interacting with the C-terminal domain of RNA polymerase II, which consists of 52 repeats of a consensus heptapeptide sequence YSPTSPS. We studied the binding of PQBP-1 variants to the labelled peptide which is phosphorylated at positions 2 and 5 (YpSPTpSPS) and found that this interaction is significantly weakened in the two mutants.
Collapse
Affiliation(s)
- Shah Kamranur Rahman
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom.
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yu Wai Chen
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom.
| |
Collapse
|
20
|
Hsu YW, Juan CT, Wang CM, Jauh GY. Mitochondrial Heat Shock Protein 60s Interact with What's This Factor 9 to Regulate RNA Splicing of ccmFC and rpl2. PLANT & CELL PHYSIOLOGY 2019; 60:116-125. [PMID: 30289547 DOI: 10.1093/pcp/pcy199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Mitochondrial intron splicing is a plant-specific feature that was acquired during the co-evolution of eukaryotic host cells and a-proteobacteria. The elimination of these introns is facilitated by mitochondrial-targeted proteins encoded by its host, nucleus. What's this factor 9 (WTF9), a nuclear-encoded plant organelle RNA recognition (PORR) protein, is involved in the splicing of the mitochondrial group II introns rpl2 and ccmFC. Disruption of WTF9 causes developmental defects associated with the loss of Cyt c and Cyt c1 in Arabidopsis. In the present study, using a co-immunoprecipitation assay, we found that HSP60s interacted with WTF9, which was further confirmed by a pull-down assay. HSP60s are molecular chaperones that assist with protein folding in both eukaryotic and prokaryotic cells. However, accumulating evidence suggests that HSP60s also participate in other biological functions such as RNA metabolism and RNA protection. In this study, we found that consistently with their interaction with WTF9, HSP60s interacted with 48 nucleotides of the ccmFC intron. In mutant studies, the double mutant hsp60-3a1hsp60-3b1 exhibited a small stature phenotype and reduced splicing efficiency for rpl2 and ccmFC. These observations were similar to those in wtf9 mutants and suggest that HSP60s are involved in the RNA splicing of rpl2 and ccmFC introns in mitochondria. Our findings suggest that HSP60s participate in mitochondrial RNA splicing through their RNA-binding ability.
Collapse
Affiliation(s)
- Ya-Wen Hsu
- Institute of Plant and Microbial Biology,Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, Taiwan, ROC
| | - Chien-Ta Juan
- Institute of Plant and Microbial Biology,Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, Taiwan, ROC
| | - Chung-Min Wang
- Institute of Plant and Microbial Biology,Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, Taiwan, ROC
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology,Academia Sinica, 128 Sec. 2, Academia Rd, Nankang, Taipei, Taiwan, ROC
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| |
Collapse
|
21
|
Calil IP, Quadros IPS, Araújo TC, Duarte CEM, Gouveia-Mageste BC, Silva JCF, Brustolini OJB, Teixeira RM, Oliveira CN, Milagres RWMM, Martins GS, Chory J, Reis PAB, Machado JPB, Fontes EPB. A WW Domain-Containing Protein Forms Immune Nuclear Bodies against Begomoviruses. MOLECULAR PLANT 2018; 11:1449-1465. [PMID: 30296599 DOI: 10.1016/j.molp.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/27/2018] [Accepted: 09/28/2018] [Indexed: 05/23/2023]
Abstract
The bipartite begomoviruses (Geminiviridae family), which are DNA viruses that replicate in the nucleus of infected cells, encode the nuclear shuttle protein (NSP) to facilitate the translocation of viral DNA from the nucleus to the cytoplasm via nuclear pores. This intracellular trafficking of NSP-DNA complexes is accessorized by the NSP-interacting guanosine triphosphatase (NIG) at the cytosolic side. Here, we report the nuclear redistribution of NIG by AtWWP1, a WW domain-containing protein that forms immune nuclear bodies (NBs) against begomoviruses. We demonstrated that AtWWP1 relocates NIG from the cytoplasm to the nucleus where it is confined to AtWWP1-NBs, suggesting that the NIG-AtWWP1 interaction may interfere with the NIG pro-viral function associated with its cytosolic localization. Consistent with this assumption, loss of AtWWP1 function cuased plants more susceptible to begomovirus infection, whereas overexpression of AtWWP1 enhanced plant resistance to begomovirus. Furthermore, we found that a mutant version of AtWWP1 defective for NB formation was no longer capable of interacting with and relocating NIG to the nucleus and lost its immune function against begomovirus. The antiviral function of AtWWP1-NBs, however, could be antagonized by viral infection that induced either the disruption or a decrease in the number of AtWWP1-NBs. Collectively, these results led us to propose that AtWWP1 organizes nuclear structures into nuclear foci, which provide intrinsic immunity against begomovirus infection.
Collapse
Affiliation(s)
- Iara P Calil
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Iana P S Quadros
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Thais C Araújo
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Christiane E M Duarte
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Bianca C Gouveia-Mageste
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - José Cleydson F Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Otávio J B Brustolini
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Ruan M Teixeira
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Cauê N Oliveira
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Rafael W M M Milagres
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Gilberto S Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; Departament of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | - Pedro A B Reis
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Joao Paulo B Machado
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; Agronomy Institute, Universidade Federal de Viçosa, Campus Florestal, Florestal, Minas Gerais 35690-000, Brazil.
| | - Elizabeth P B Fontes
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil.
| |
Collapse
|
22
|
Okazawa H. PQBP1, an intrinsically disordered/denatured protein at the crossroad of intellectual disability and neurodegenerative diseases. Neurochem Int 2018. [DOI: 10.1016/j.neuint.2017.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder. Am J Hum Genet 2017; 101:716-724. [PMID: 29100085 DOI: 10.1016/j.ajhg.2017.09.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022] Open
Abstract
DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation. All amino acid changes are located within highly conserved helicase motifs and were found to either impair ATPase activity or RNA recognition in different in vitro assays. Moreover, protein variants exhibit an increased propensity to trigger stress granule (SG) formation resulting in global translation inhibition. Thus, our findings highlight the prominent role of translation control in development and function of the central nervous system and also provide molecular insight into how DHX30 dysfunction might cause a neurodevelopmental disorder.
Collapse
|
24
|
Kunde SA, Rademacher N, Zieger H, Shoichet SA. Protein kinase C regulates AMPA receptor auxiliary protein Shisa9/CKAMP44 through interactions with neuronal scaffold PICK1. FEBS Open Bio 2017; 7:1234-1245. [PMID: 28904854 PMCID: PMC5586339 DOI: 10.1002/2211-5463.12261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
Synaptic α‐amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazole‐propionate (AMPA) receptors are essential mediators of neurotransmission in the central nervous system. Shisa9/cysteine‐knot AMPAR modulating protein 44 (CKAMP44) is a transmembrane protein recently found to be present in AMPA receptor‐associated protein complexes. Here, we show that the cytosolic tail of Shisa9/CKAMP44 interacts with multiple scaffold proteins that are important for regulating synaptic plasticity in central neurons. We focussed on the interaction with the scaffold protein PICK1, which facilitates the formation of a tripartite complex with the protein kinase C (PKC) and thereby regulates phosphorylation of Shisa9/CKAMP44 C‐terminal residues. This work has implications for our understanding of how PICK1 modulates AMPAR‐mediated transmission and plasticity and also highlights a novel function of PKC.
Collapse
Affiliation(s)
- Stella-Amrei Kunde
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Nils Rademacher
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Hanna Zieger
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| | - Sarah A Shoichet
- Neuroscience Research Center/Institute of Biochemistry Charité - Universitätsmedizin Berlin Germany
| |
Collapse
|
25
|
Li L, Poon HY, Hildebrandt MR, Monckton EA, Germain DR, Fahlman RP, Godbout R. Role for RIF1-interacting partner DDX1 in BLM recruitment to DNA double-strand breaks. DNA Repair (Amst) 2017; 55:47-63. [DOI: 10.1016/j.dnarep.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/13/2023]
|
26
|
Jeon SJ, Ryu JH, Bahn GH. Altered Translational Control of Fragile X Mental Retardation Protein on Myelin Proteins in Neuropsychiatric Disorders. Biomol Ther (Seoul) 2017; 25:231-238. [PMID: 27829268 PMCID: PMC5424632 DOI: 10.4062/biomolther.2016.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 06/28/2016] [Accepted: 07/28/2016] [Indexed: 01/07/2023] Open
Abstract
Myelin is a specialized structure of the nervous system that both enhances electrical conductance and insulates neurons from external risk factors. In the central nervous system, polarized oligodendrocytes form myelin by wrapping processes in a spiral pattern around neuronal axons through myelin-related gene regulation. Since these events occur at a distance from the cell body, post-transcriptional control of gene expression has strategic advantage to fine-tune the overall regulation of protein contents in situ. Therefore, many research interests have been focused to identify RNA binding proteins and their regulatory mechanism in myelinating compartments. Fragile X mental retardation protein (FMRP) is one such RNA binding protein, regulating its target expression by translational control. Although the majority of works on FMRP have been performed in neurons, it is also found in the developing or mature glial cells including oligodendrocytes, where its function is not well understood. Here, we will review evidences suggesting abnormal translational regulation of myelin proteins with accompanying white matter problem and neurological deficits in fragile X syndrome, which can have wider mechanistic and pathological implication in many other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Se Jin Jeon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
27
|
Epilepsy and intellectual disability linked protein Shrm4 interaction with GABA BRs shapes inhibitory neurotransmission. Nat Commun 2017; 8:14536. [PMID: 28262662 PMCID: PMC5343488 DOI: 10.1038/ncomms14536] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
Shrm4, a protein expressed only in polarized tissues, is encoded by the KIAA1202 gene, whose mutations have been linked to epilepsy and intellectual disability. However, a physiological role for Shrm4 in the brain is yet to be established. Here, we report that Shrm4 is localized to synapses where it regulates dendritic spine morphology and interacts with the C terminus of GABAB receptors (GABABRs) to control their cell surface expression and intracellular trafficking via a dynein-dependent mechanism. Knockdown of Shrm4 in rat severely impairs GABABR activity causing increased anxiety-like behaviour and susceptibility to seizures. Moreover, Shrm4 influences hippocampal excitability by modulating tonic inhibition in dentate gyrus granule cells, in a process involving crosstalk between GABABRs and extrasynaptic δ-subunit-containing GABAARs. Our data highlights a role for Shrm4 in synaptogenesis and in maintaining GABABR-mediated inhibition, perturbation of which may be responsible for the involvement of Shrm4 in cognitive disorders and epilepsy. Mutations in the gene encoding Shrm4 are associated with epilepsy and intellectual disability. The authors show that Shrm4 interacts with GABAB receptors and regulates tonic inhibition in the hippocampus, and knockdown of Shrm4 in rats leads to anxiety-like behaviour and seizures.
Collapse
|
28
|
Pucheta-Martinez E, D’Amelio N, Lelli M, Martinez-Torrecuadrada JL, Sudol M, Saladino G, Gervasio FL. Changes in the folding landscape of the WW domain provide a molecular mechanism for an inherited genetic syndrome. Sci Rep 2016; 6:30293. [PMID: 27456546 PMCID: PMC4960638 DOI: 10.1038/srep30293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/01/2016] [Indexed: 10/25/2022] Open
Abstract
WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function.
Collapse
Affiliation(s)
| | - Nicola D’Amelio
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Moreno Lelli
- University of Florence, Department of Chemistry, Magnetic Resonance Center (CERM), 50019 Sesto Fiorentino (FI), Italy
| | - Jorge L. Martinez-Torrecuadrada
- Crystallography and Protein Engineering Unit, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Marius Sudol
- Institute of Molecular and Cell Biology A*STAR, 61 Biopolis, Singapore 138673, Republic of Singapore
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore
- National University of Singapore, Department of Physiology, The Yong Loo Li School of Medicine, 2 Medical Drive, Singapore 117597, Republic of Singapore
| | - Giorgio Saladino
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
29
|
Cosker KE, Fenstermacher SJ, Pazyra-Murphy MF, Elliott HL, Segal RA. The RNA-binding protein SFPQ orchestrates an RNA regulon to promote axon viability. Nat Neurosci 2016; 19:690-696. [PMID: 27019013 PMCID: PMC5505173 DOI: 10.1038/nn.4280] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
To achieve accurate spatiotemporal patterns of gene expression, RNA-binding proteins (RBPs) guide nuclear processing, intracellular trafficking and local translation of target mRNAs. In neurons, RBPs direct transport of target mRNAs to sites of translation in remote axons and dendrites. However, it is not known whether an individual RBP coordinately regulates multiple mRNAs within these morphologically complex cells. Here we identify SFPQ (splicing factor, poly-glutamine rich) as an RBP that binds and regulates multiple mRNAs in dorsal root ganglion sensory neurons and thereby promotes neurotrophin-dependent axonal viability. SFPQ acts in nuclei, cytoplasm and axons to regulate functionally related mRNAs essential for axon survival. Notably, SFPQ is required for coassembly of LaminB2 (Lmnb2) and Bclw (Bcl2l2) mRNAs in RNA granules and for axonal trafficking of these mRNAs. Together these data demonstrate that SFPQ orchestrates spatial gene expression of a newly identified RNA regulon essential for axonal viability.
Collapse
Affiliation(s)
- Katharina E Cosker
- Department of Neurobiology, Harvard Medical School, Department of Cancer
Biology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| | - Sara J Fenstermacher
- Department of Neurobiology, Harvard Medical School, Department of Cancer
Biology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| | - Maria F Pazyra-Murphy
- Department of Neurobiology, Harvard Medical School, Department of Cancer
Biology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| | - Hunter L Elliott
- Image and Data Analysis Core, Harvard Medical School, Boston, MA 02115,
USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Department of Cancer
Biology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| |
Collapse
|
30
|
Briata P, Bordo D, Puppo M, Gorlero F, Rossi M, Perrone-Bizzozero N, Gherzi R. Diverse roles of the nucleic acid-binding protein KHSRP in cell differentiation and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:227-40. [PMID: 26708421 DOI: 10.1002/wrna.1327] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/15/2022]
Abstract
The single-stranded nucleic acid-binding protein KHSRP (KH-type splicing regulatory protein) modulates RNA life and gene expression at various levels. KHSRP controls important cellular functions as different as proliferation, differentiation, metabolism, and response to infectious agents. We summarize and discuss experimental evidence providing a potential link between changes in KHSRP expression/function and human diseases including neuromuscular disorders, obesity, type II diabetes, and cancer.
Collapse
Affiliation(s)
- Paola Briata
- Gene Expression Regulation Laboratory, IRCCS AOU San Martino-IST, Genova, Italy
| | - Domenico Bordo
- Gene Expression Regulation Laboratory, IRCCS AOU San Martino-IST, Genova, Italy
| | - Margherita Puppo
- Gene Expression Regulation Laboratory, IRCCS AOU San Martino-IST, Genova, Italy
| | - Franco Gorlero
- S.C. Ginecologia e Ostetricia Galliera Hospital, Genova, Italy.,School of Medicine, DINOGMI, University of Genova, Genova, Italy
| | - Martina Rossi
- Gene Expression Regulation Laboratory, IRCCS AOU San Martino-IST, Genova, Italy
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Roberto Gherzi
- Gene Expression Regulation Laboratory, IRCCS AOU San Martino-IST, Genova, Italy
| |
Collapse
|
31
|
Wang G, Yang H, Yan S, Wang CE, Liu X, Zhao B, Ouyang Z, Yin P, Liu Z, Zhao Y, Liu T, Fan N, Guo L, Li S, Li XJ, Lai L. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain. Mol Neurodegener 2015; 10:42. [PMID: 26334913 PMCID: PMC4557629 DOI: 10.1186/s13024-015-0036-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
Background TAR DNA-binding protein 43 (TDP-43) is a nuclear protein, but it is redistributed in the neuronal cytoplasm in both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Because small transgenic animal models often lack cytoplasmic TDP-43, how the cytoplasmic accumulation of TDP-43 contributes to these diseases remains unclear. The current study is aimed at studying the mechanism of cytoplasmic pathology of TDP-43. Results We established transgenic pigs expressing mutant TDP-43 (M337V). This pig model shows severe phenotypes and early death. We found that transgenic TDP-43 is also distributed in the cytoplasm of neuronal cells in the spinal cord and brain. Transgenic TDP-43 interacts with PSF, an RNA splicing factor that associates with NeuN to regulate neuronal RNA splicing. The interaction of TDP-43, PSF and NeuN causes PSF and NeuN mislocalize into the neuronal cytoplasm in transgenic pigs. Consistently, abnormal PSF-related neuronal RNA splicing is seen in TDP-43 transgenic pigs. The cytoplasmic localization of PSF and NeuN as well as abnormal PSF-related neuronal RNA splicing was also found in ALS patient brains. Conclusion Our findings from a large mammalian model suggest that cytoplasmic mutant TDP-43 could reduce the nuclear function of RNA splicing factors, contributing to neuropathology.
Collapse
Affiliation(s)
- Guohao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqiang Yang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Sen Yan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Chuan-En Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Xudong Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bentian Zhao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Zhen Ouyang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Peng Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhaoming Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Yu Zhao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Tao Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Nana Fan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Lin Guo
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Xiao-Jiang Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
32
|
Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC, De Jesus PD, Ruan C, de Castro E, Ruiz PA, Germanaud D, des Portes V, García-Sastre A, König R, Chanda SK. PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1. Cell 2015; 161:1293-1305. [PMID: 26046437 DOI: 10.1016/j.cell.2015.04.050] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/06/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs) play a critical role in the immune response to viral infection through the facilitation of cell-intrinsic antiviral activity and the activation of adaptive immunity. HIV-1 infection of DCs triggers an IRF3-dependent innate immune response, which requires the activity of cyclic GAMP synthase (cGAS). We report the results of a targeted RNAi screen utilizing primary human monocyte-derived DCs (MDDCs) to identify immune regulators that directly interface with HIV-1-encoded features to initiate this innate response. Polyglutamine binding protein 1 (PQBP1) emerged as a strong candidate through this analysis. We found that PQBP1 directly binds to reverse-transcribed HIV-1 DNA and interacts with cGAS to initiate an IRF3-dependent innate response. MDDCs derived from Renpenning syndrome patients, who harbor mutations in the PQBP1 locus, possess a severely attenuated innate immune response to HIV-1 challenge, underscoring the role of PQBP1 as a proximal innate sensor of a HIV-1 infection.
Collapse
Affiliation(s)
- Sunnie M Yoh
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Monika Schneider
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Janna Seifried
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Stephen Soonthornvacharin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Rana E Akleh
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Kevin C Olivieri
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Paul D De Jesus
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Chunhai Ruan
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109
| | - Elisa de Castro
- Department of Microbiology, and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029
| | - Pedro A Ruiz
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - David Germanaud
- APHP, Hôpital Robert Debré, DHU PROTECT, Service de Neurologie Pédiatrique et Pathologie Métabolique, F-75019 Paris 2. Sorbonne Paris Cité, Université Paris Diderot, F-75010
| | - Vincent des Portes
- National Reference Center for Fragile X and Other XLID, Biobank NeuroBioTec, Hospices Civils de Lyon, Université de Lyon and CNRS UMR 5304 (L2C2), Bron, France
| | - Adolfo García-Sastre
- Department of Microbiology, and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029
| | - Renate König
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany.,Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116.,German Center for Infection Research (DZIF), Langen, Germany
| | - Sumit K Chanda
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| |
Collapse
|
33
|
Wan D, Zhang ZC, Zhang X, Li Q, Han J. X chromosome-linked intellectual disability protein PQBP1 associates with and regulates the translation of specific mRNAs. Hum Mol Genet 2015; 24:4599-614. [DOI: 10.1093/hmg/ddv191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/19/2015] [Indexed: 01/08/2023] Open
|
34
|
Human DExD/H RNA helicases: emerging roles in stress survival regulation. Clin Chim Acta 2014; 436:45-58. [PMID: 24835919 DOI: 10.1016/j.cca.2014.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Environmental stresses threatening cell homeostasis trigger various cellular responses ranging from the activation of survival pathways to eliciting programmed cell death. Cellular stress response highly depends on the nature and level of the insult as well as the cell type. Notably, the interplay among all these responses will ultimately determine the fate of the stressed cell. Human DExD/H RNA helicases are ubiquitous molecular motors rearranging RNA secondary structure in an ATP-dependent fashion. These highly conserved enzymes participate in nearly all aspects of cellular process involving RNA metabolism. Although numerous functions of DExD/H RNA helicases are well documented, their importance in stress response is only just becoming evident. This review outlines our current knowledge on major mechanistic themes of human DExD/H RNA helicases in response to stressful stimuli, especially on emerging molecular models for the functional roles of these enzymes in the stress survival regulation.
Collapse
|
35
|
Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 2013; 38:494-506. [PMID: 24029419 DOI: 10.1016/j.tibs.2013.07.004] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
Abstract
Stress granules (SGs) contain translationally-stalled mRNAs, associated preinitiation factors, and specific RNA-binding proteins. In addition, many signaling proteins are recruited to SGs and/or influence their assembly, which is transient, lasting only until the cells adapt to stress or die. Beyond their role as mRNA triage centers, we posit that SGs constitute RNA-centric signaling hubs analogous to classical multiprotein signaling domains such as transmembrane receptor complexes. As signaling centers, SG formation communicates a 'state of emergency', and their transient existence alters multiple signaling pathways by intercepting and sequestering signaling components. SG assembly and downstream signaling functions may require a cytosolic phase transition facilitated by intrinsically disordered, aggregation-prone protein regions shared by RNA-binding and signaling proteins.
Collapse
Affiliation(s)
- Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115, USA
| | | | | |
Collapse
|
36
|
Chou CF, Lin WJ, Lin CC, Luber CA, Godbout R, Mann M, Chen CY. DEAD box protein DDX1 regulates cytoplasmic localization of KSRP. PLoS One 2013; 8:e73752. [PMID: 24023901 PMCID: PMC3762726 DOI: 10.1371/journal.pone.0073752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
mRNA decay mediated by the AU-rich elements (AREs) is one of the most studied post-transcriptional mechanisms and is modulated by ARE-binding proteins (ARE-BPs). To understand the regulation of K homology splicing regulatory protein (KSRP), a decay-promoting ARE-BP, we purified KSRP protein complexes and identified an RNA helicase, DDX1. We showed that down-regulation of DDX1 expression elevated cytoplasmic levels of KSRP and facilitated ARE-mediated mRNA decay. Association of KSRP with 14-3-3 proteins, that are predominately located in the cytoplasm, increased upon reduction of DDX1. We also demonstrated that KSRP associated with DDX1 or 14-3-3, but not both. These observations indicate that subcellular localization of KSRP is regulated by competing interactions with DDX1 or 14-3-3.
Collapse
Affiliation(s)
- Chu-Fang Chou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Wei-Jye Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chen-Chung Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christian A. Luber
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ikeuchi Y, de la Torre-Ubieta L, Matsuda T, Steen H, Okazawa H, Bonni A. The XLID protein PQBP1 and the GTPase Dynamin 2 define a signaling link that orchestrates ciliary morphogenesis in postmitotic neurons. Cell Rep 2013; 4:879-89. [PMID: 23994472 DOI: 10.1016/j.celrep.2013.07.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022] Open
Abstract
Intellectual disability (ID) is a prevalent developmental disorder of cognition that remains incurable. Here, we report that knockdown of the X-linked ID (XLID) protein polyglutamine-binding protein 1 (PQBP1) in neurons profoundly impairs the morphogenesis of the primary cilium, including in the mouse cerebral cortex in vivo. PQBP1 is localized at the base of the neuronal cilium, and targeting its WW effector domain to the cilium stimulates ciliary morphogenesis. We also find that PQBP1 interacts with Dynamin 2 and thereby inhibits its GTPase activity. Accordingly, Dynamin 2 knockdown in neurons stimulates ciliogenesis and suppresses the PQBP1 knockdown-induced ciliary phenotype. Strikingly, a mutation of the PQBP1 WW domain that causes XLID disrupts its ability to interact with and inhibit Dynamin 2 and to induce neuronal ciliogenesis. These findings define PQBP1 and Dynamin 2 as components of a signaling pathway that orchestrates neuronal ciliary morphogenesis in the brain.
Collapse
Affiliation(s)
- Yoshiho Ikeuchi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
Li C, Ito H, Fujita K, Shiwaku H, Qi Y, Tagawa K, Tamura T, Okazawa H. Sox2 transcriptionally regulates PQBP1, an intellectual disability-microcephaly causative gene, in neural stem progenitor cells. PLoS One 2013; 8:e68627. [PMID: 23874697 PMCID: PMC3713010 DOI: 10.1371/journal.pone.0068627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022] Open
Abstract
PQBP1 is a nuclear-cytoplasmic shuttling protein that is engaged in RNA metabolism and transcription. In mouse embryonic brain, our previous in situ hybridization study revealed that PQBP1 mRNA was dominantly expressed in the periventricular zone region where neural stem progenitor cells (NSPCs) are located. Because the expression patterns in NSPCs are related to the symptoms of intellectual disability and microcephaly in PQBP1 gene-mutated patients, we investigated the transcriptional regulation of PQBP1 by NSPC-specific transcription factors. We selected 132 genome sequences that matched the consensus sequence for the binding of Sox2 and POU transcription factors upstream and downstream of the mouse PQBP1 gene. We then screened the binding affinity of these sequences to Sox2-Pax6 or Sox2-Brn2 with gel mobility shift assays and found 18 genome sequences that interacted with the NSPC-specific transcription factors. Some of these sequences had cis-regulatory activities in Luciferase assays and in utero electroporation into NSPCs. Furthermore we found decreased levels of expression of PQBP1 protein in NSPCs of heterozygous Sox2-knockout mice in vivo by immunohistochemistry and western blot analysis. Collectively, these results indicated that Sox2 regulated the transcription of PQBP1 in NSPCs.
Collapse
Affiliation(s)
- Chan Li
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hikaru Ito
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Shiwaku
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yunlong Qi
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
39
|
Functional genomic screen of human stem cell differentiation reveals pathways involved in neurodevelopment and neurodegeneration. Proc Natl Acad Sci U S A 2013; 110:12361-6. [PMID: 23836664 DOI: 10.1073/pnas.1309725110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human embryonic stem cells (hESCs) can be induced and differentiated to form a relatively homogeneous population of neuronal precursors in vitro. We have used this system to screen for genes necessary for neural lineage development by using a pooled human short hairpin RNA (shRNA) library screen and massively parallel sequencing. We confirmed known genes and identified several unpredicted genes with interrelated functions that were specifically required for the formation or survival of neuronal progenitor cells without interfering with the self-renewal capacity of undifferentiated hESCs. Among these are several genes that have been implicated in various neurodevelopmental disorders (i.e., brain malformations, mental retardation, and autism). Unexpectedly, a set of genes mutated in late-onset neurodegenerative disorders and with roles in the formation of RNA granules were also found to interfere with neuronal progenitor cell formation, suggesting their functional relevance in early neurogenesis. This study advances the feasibility and utility of using pooled shRNA libraries in combination with next-generation sequencing for a high-throughput, unbiased functional genomic screen. Our approach can also be used with patient-specific human-induced pluripotent stem cell-derived neural models to obtain unparalleled insights into developmental and degenerative processes in neurological or neuropsychiatric disorders with monogenic or complex inheritance.
Collapse
|
40
|
Wang Q, Moore MJ, Adelmant G, Marto JA, Silver PA. PQBP1, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth. Genes Dev 2013; 27:615-26. [PMID: 23512658 DOI: 10.1101/gad.212308.112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein associated with neurodegenerative disorders. Here, we identify PQBP1 as an alternative messenger RNA (mRNA) splicing (AS) effector capable of influencing splicing of multiple mRNA targets. PQBP1 is associated with many splicing factors, including the key U2 small nuclear ribonucleoprotein (snRNP) component SF3B1 (subunit 1 of the splicing factor 3B [SF3B] protein complex). Loss of functional PQBP1 reduced SF3B1 substrate mRNA association and led to significant changes in AS patterns. Depletion of PQBP1 in primary mouse neurons reduced dendritic outgrowth and altered AS of mRNAs enriched for functions in neuron projection development. Disease-linked PQBP1 mutants were deficient in splicing factor associations and could not complement neurite outgrowth defects. Our results indicate that PQBP1 can affect the AS of multiple mRNAs and indicate specific affected targets whose splice site determination may contribute to the disease phenotype in PQBP1-linked neurological disorders.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Kunde SA, Rademacher N, Tzschach A, Wiedersberg E, Ullmann R, Kalscheuer VM, Shoichet SA. Characterisation of de novo MAPK10/JNK3 truncation mutations associated with cognitive disorders in two unrelated patients. Hum Genet 2013; 132:461-71. [DOI: 10.1007/s00439-012-1260-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/18/2012] [Indexed: 11/24/2022]
|
42
|
Reich J, Papoulas O. Caprin controls follicle stem cell fate in the Drosophila ovary. PLoS One 2012; 7:e35365. [PMID: 22493746 PMCID: PMC3320888 DOI: 10.1371/journal.pone.0035365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/14/2012] [Indexed: 12/25/2022] Open
Abstract
Adult stem cells must balance self-renewal and differentiation for tissue homeostasis. The Drosophila ovary has provided a wealth of information about the extrinsic niche signals and intrinsic molecular processes required to ensure appropriate germline stem cell renewal and differentiation. The factors controlling behavior of the more recently identified follicle stem cells of the ovary are less well-understood but equally important for fertility. Here we report that translational regulators play a critical role in controlling these cells. Specifically, the translational regulator Caprin (Capr) is required in the follicle stem cell lineage to ensure maintenance of this stem cell population and proper encapsulation of developing germ cells by follicle stem cell progeny. In addition, reduction of one copy of the gene fmr1, encoding the translational regulator Fragile X Mental Retardation Protein, exacerbates the Capr encapsulation phenotype, suggesting Capr and fmr1 are regulating a common process. Caprin was previously characterized in vertebrates as Cytoplasmic Activation/Proliferation-Associated Protein. Significantly, we find that loss of Caprin alters the dynamics of the cell cycle, and we present evidence that misregulation of CycB contributes to the disruption in behavior of follicle stem cell progeny. Our findings support the idea that translational regulators may provide a conserved mechanism for oversight of developmentally critical cell cycles such as those in stem cell populations.
Collapse
Affiliation(s)
- John Reich
- The Section of Molecular Cell and Developmental Biology and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ophelia Papoulas
- The Section of Molecular Cell and Developmental Biology and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
43
|
Molecular insights into the WW domain of the Golabi-Ito-Hall syndrome protein PQBP1. FEBS Lett 2012; 586:2795-9. [PMID: 22710169 DOI: 10.1016/j.febslet.2012.03.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/23/2022]
Abstract
The WW domain-containing PQBP1 (polyglutamine tract-binding protein 1) protein regulates mRNA processing and gene transcription. Mutations in the PQBP1 gene were reported in several X chromosome-linked intellectual disability (XLID) disorders, including Golabi-Ito-Hall (GIH) syndrome. The missense mutation in the GIH syndrome maps within a functional region of the PQBP1 protein known as the WW domain. The causative mutation of PQBP1 replaces the conserved tyrosine (Y) at position 65 within the aromatic core of the WW domain to cysteine (C), which is a chemically significant change. In this short review, we analyze structural models of the Y65C mutated and wild type WW domains of PQBP1 in order to infer potential molecular mechanisms that render the mutated PQBP1 protein inactive in terms of ligand binding and its function as a regulator of mRNA splicing.
Collapse
|
44
|
Bardoni B, Abekhoukh S, Zongaro S, Melko M. Intellectual disabilities, neuronal posttranscriptional RNA metabolism, and RNA-binding proteins: three actors for a complex scenario. PROGRESS IN BRAIN RESEARCH 2012; 197:29-51. [PMID: 22541287 DOI: 10.1016/b978-0-444-54299-1.00003-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intellectual disability (ID) is the most frequent cause of serious handicap in children and young adults and interests 2-3% of worldwide population, representing a serious problem from the medical, social, and economic points of view. The causes are very heterogeneous. Genes involved in ID have various functions altering different pathways important in neuronal function. Regulation of mRNA metabolism is particularly important in neurons for synaptic structure and function. Here, we review ID due to alteration of mRNA metabolism. Functional absence of some RNA-binding proteins--namely, FMRP, FMR2P, PQBP1, UFP3B, VCX-A--causes different forms of ID. These proteins are involved in different steps of RNA metabolism and, even if a detailed analysis of their RNA targets has been performed so far only for FMRP, it appears clear that they modulate some aspects (translation, stability, transport, and sublocalization) of a subset of RNAs coding for proteins, whose function must be relevant for neurons. Two other proteins, DYRK1A and CDKL5, involved in Down syndrome and Rett syndrome, respectively, have been shown to have an impact on splicing efficiency of specific mRNAs. Both proteins are kinases and their effect is indirect. Interestingly, both are localized in nuclear speckles, the nuclear domains where splicing factors are assembled, stocked, and recycled and influence their biogenesis and/or their organization.
Collapse
Affiliation(s)
- Barbara Bardoni
- Institute of Molecular and Cellular Pharmacology, CNRS-UMR6097, Université de Nice Sophia-Antipolis,Valbonne, France.
| | | | | | | |
Collapse
|