1
|
Wu J, Wu J, Chen T, Cai J, Ren R. Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochem Int 2024; 180:105880. [PMID: 39396709 DOI: 10.1016/j.neuint.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Protein aggregation serves as a critical pathological marker in a spectrum of neurodegenerative diseases (NDs), including the formation of amyloid β (Aβ) and Tau neurofibrillary tangles in Alzheimer's disease, as well as α-Synuclein (α-Syn) aggregates in Parkinson's disease, Parkinson's disease-related dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A significant proportion of patients with amyotrophic lateral sclerosis (ALS) exhibit TDP-43 aggregates. Moreover, a confluence of brain protein pathologies, such as Aβ, Tau, α-Syn, and TDP-43, has been identified in individual NDs cases, highlighting the intricate interplay among these proteins that is garnering heightened scrutiny. Importantly, protein aggregation is modulated by an array of factors, with burgeoning evidence suggesting that it frequently results from perturbations in protein homeostasis, influenced by the cellular membrane milieu, metal ion concentrations, post-translational modifications, and genetic mutations. This review delves into the pathological underpinnings of protein aggregation across various NDs and elucidates the intercommunication among disparate proteins within the same disease context. Additionally, we examine the pathogenic mechanisms by which diverse factors impinge upon protein aggregation, offering fresh perspectives for the future therapeutic intervention of NDs.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jing Cai
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
2
|
Carreiras MDC, Marco-Contelles J. Hydrazides as Inhibitors of Histone Deacetylases. J Med Chem 2024; 67:13512-13533. [PMID: 39092855 DOI: 10.1021/acs.jmedchem.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In this Perspective, we have brought together available biological evidence on hydrazides as histone deacetylase inhibitors (HDACis) and as a distinct type of Zn-binding group (ZBG) to be reviewed for the first time in the literature. N-Alkyl hydrazides have transformed the field, providing innovative and practical chemical tools for selective and effective inhibition of specific histone deacetylase (HDAC) enzymes, in addition to the usual hydroxamic acid and o-aminoanilide ZBG-bearing HDACis. This has enabled efficient targeting of neurodegenerative diseases such as Alzheimer's disease, cancer, cardiovascular diseases, and protozoal pathologies.
Collapse
Affiliation(s)
- Maria do Carmo Carreiras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
3
|
Mukhopadhyay U, Levantovsky S, Carusone TM, Gharbi S, Stein F, Behrends C, Bhogaraju S. A ubiquitin-specific, proximity-based labeling approach for the identification of ubiquitin ligase substrates. SCIENCE ADVANCES 2024; 10:eadp3000. [PMID: 39121224 PMCID: PMC11313854 DOI: 10.1126/sciadv.adp3000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/03/2024] [Indexed: 08/11/2024]
Abstract
Over 600 E3 ligases in humans execute ubiquitination of specific target proteins in a spatiotemporal manner to elicit desired signaling effects. Here, we developed a ubiquitin-specific proximity-based labeling method to selectively biotinylate substrates of a given ubiquitin ligase. By fusing the biotin ligase BirA and an Avi-tag variant to the candidate E3 ligase and ubiquitin, respectively, we were able to specifically enrich bona fide substrates of a ligase using a one-step streptavidin pulldown under denaturing conditions. We applied our method, which we named Ub-POD, to the really interesting new gene (RING) E3 ligase RAD18 and identified proliferating cell nuclear antigen and several other critical players in the DNA damage repair pathway. Furthermore, we successfully applied Ub-POD to the RING ubiquitin ligase tumor necrosis factor receptor-associated factor 6 and a U-box-type E3 ubiquitin ligase carboxyl terminus of Hsc70-interacting protein. We anticipate that our method could be widely adapted to all classes of ubiquitin ligases to identify substrates.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sophie Levantovsky
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Teresa Maria Carusone
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sarah Gharbi
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sagar Bhogaraju
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
4
|
Bahram Sangani N, Koetsier J, Mélius J, Kutmon M, Ehrhart F, Evelo CT, Curfs LMG, Reutelingsperger CP, Eijssen LMT. A novel insight into neurological disorders through HDAC6 protein-protein interactions. Sci Rep 2024; 14:14666. [PMID: 38918466 PMCID: PMC11199618 DOI: 10.1038/s41598-024-65094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Due to its involvement in physiological and pathological processes, histone deacetylase 6 (HDAC6) is considered a promising pharmaceutical target for several neurological manifestations. However, the exact regulatory role of HDAC6 in the central nervous system (CNS) is still not fully understood. Hence, using a semi-automated literature screening technique, we systematically collected HDAC6-protein interactions that are experimentally validated and reported in the CNS. The resulting HDAC6 network encompassed 115 HDAC6-protein interactions divided over five subnetworks: (de)acetylation, phosphorylation, protein complexes, regulatory, and aggresome-autophagy subnetworks. In addition, 132 indirect interactions identified through HDAC6 inhibition were collected and categorized. Finally, to display the application of our HDAC6 network, we mapped transcriptomics data of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis on the network and highlighted that in the case of Alzheimer's disease, alterations predominantly affect the HDAC6 phosphorylation subnetwork, whereas differential expression within the deacetylation subnetwork is observed across all three neurological disorders. In conclusion, the HDAC6 network created in the present study is a novel and valuable resource for the understanding of the HDAC6 regulatory mechanisms, thereby providing a framework for the integration and interpretation of omics data from neurological disorders and pharmacodynamic assessments.
Collapse
Affiliation(s)
- Nasim Bahram Sangani
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, The Netherlands.
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands.
| | - Jarno Koetsier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands
| | - Jonathan Mélius
- DataHub, Maastricht University & Maastricht UMC+, P. Debyelaan 15, 6229 HX, Maastricht, The Netherlands
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Chris T Evelo
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Bioinformatics - BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Leopold M G Curfs
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- GKC, Maastricht University Medical Centre, 6229 ER, Maastricht, The Netherlands
| | - Lars M T Eijssen
- Department of Bioinformatics - BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
5
|
Li G, Xiao K, Li Y, Gao J, He S, Li T. CHIP promotes CAD ubiquitination and degradation to suppress the proliferation and colony formation of glioblastoma cells. Cell Oncol (Dordr) 2024; 47:851-865. [PMID: 37982961 DOI: 10.1007/s13402-023-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/21/2023] Open
Abstract
PURPOSE Cancer cells are characterized as the uncontrolled proliferation, which demands high levels of nucleotides that are building blocks for DNA synthesis and replication. CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase and dihydroorotase) is a trifunctional enzyme that initiates the de novo pyrimidine synthesis, which is normally enhanced in cancer cells to preserve the pyrimidine pool for cell division. Glioma, representing most brain cancer, is highly addicted to nucleotides like pyrimidine to sustain the abnormal growth and proliferation of cells. CAD is previously reported to be dysregulated in glioma, but the underlying mechanism remains unclear. METHODS The expression of CAD and CHIP (carboxyl terminus of Hsc70-interacting protein) protein in normal brain cells and three glioblastoma (GBM) cell lines were measured by immunoblots. Lentiviruses-mediated expression of target proteins or shRNAs were used to specifically overexpress or knock down CAD and CHIP. Cell counting, colony formation, apoptosis and cell cycle assays were used to assess the roles of CAD and CHIP in GBM cell proliferation and survival. Co-immunoprecipitation and ubiquitination assays were used to examine the interaction of CHIP with CAD and the ubiquitination of CAD. The correlation of CAD and CHIP expression with GBM patients' survival was obtained by analyzing the GlioVis database. RESULTS In this study, we showed that the expression of CAD was upregulated in glioma, which was positively correlated with the tumor grade and survival of glioma patients. Knockdown of CAD robustly inhibited the cell proliferation and colony formation of GBM cells, indicating the essential role of CAD in the pathogenesis of GBM. Mechanistically, we firstly identified that CAD was modified by the K29-linked polyubiquitination, which was mediated by the E3 ubiquitin ligase CHIP. By interacting with and ubiquitinating CAD, CHIP enhanced its proteasomal and lysosomal degradation, which accounted for the anti-proliferative role of CHIP in GBM cells. To sustain the expression of CAD, CHIP is significantly downregulated, which is correlated with the poor prognosis and survival of GBM patients. Notably, the low level of CHIP and high level of CAD overall predict the short survival of GBM patients. CONCLUSION Altogether, these results illustrated the essential role of CAD in GBM and revealed a novel therapeutic strategy for CAD-positive and CHIP-negative cancer.
Collapse
Affiliation(s)
- Guanya Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Kai Xiao
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinan Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianfang Gao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shanping He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Tingting Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
7
|
Singh R, Hussain J, Kaur A, Jamdare BG, Pathak D, Garg K, Kaur R, Shankar S, Sunkaria A. The hidden players: Shedding light on the significance of post-translational modifications and miRNAs in Alzheimer's disease development. Ageing Res Rev 2023; 90:102002. [PMID: 37423542 DOI: 10.1016/j.arr.2023.102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent, expensive, lethal, and burdening neurodegenerative disease of this century. The initial stages of this disease are characterized by a reduced ability to encode and store new memories. Subsequent cognitive and behavioral deterioration occurs during the later stages. Abnormal cleavage of amyloid precursor protein (APP) resulting in amyloid-beta (Aβ) accumulation along with hyperphosphorylation of tau protein are the two characteristic hallmarks of AD. Recently, several post-translational modifications (PTMs) have been identified on both Aβ as well as tau proteins. However, a complete understanding of how different PTMs influence the structure and function of proteins in both healthy and diseased conditions is still lacking. It has been speculated that these PTMs might play vital roles in the progression of AD. In addition, several short non-coding microRNA (miRNA) sequences have been found to be deregulated in the peripheral blood of Alzheimer patients. The miRNAs are single-stranded RNAs that control gene expression by causing mRNA degradation, deadenylation, or translational repression and have been implicated in the regulation of several neuronal and glial activities. The lack of comprehensive understanding regarding disease mechanisms, biomarkers, and therapeutic targets greatly hampers the development of effective strategies for early diagnosis and the identification of viable therapeutic targets. Moreover, existing treatment options for managing the disease have proven to be ineffective and provide only temporary relief. Therefore, understanding the role of miRNAs and PTMs in AD can provide valuable insights into disease mechanisms, aid in the identification of biomarkers, facilitate the discovery of novel therapeutic targets, and inspire innovative treatments for this challenging condition.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Julfequar Hussain
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Balaji Gokul Jamdare
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Deepti Pathak
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kanchan Garg
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ramanpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shivani Shankar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
8
|
Aleksandrova Y, Munkuev A, Mozhaitsev E, Suslov E, Tsypyshev D, Chaprov K, Begunov R, Volcho K, Salakhutdinov N, Neganova M. Elaboration of the Effective Multi-Target Therapeutic Platform for the Treatment of Alzheimer's Disease Based on Novel Monoterpene-Derived Hydroxamic Acids. Int J Mol Sci 2023; 24:ijms24119743. [PMID: 37298694 DOI: 10.3390/ijms24119743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Novel monoterpene-based hydroxamic acids of two structural types were synthesized for the first time. The first type consisted of compounds with a hydroxamate group directly bound to acyclic, monocyclic and bicyclic monoterpene scaffolds. The second type included hydroxamic acids connected with the monoterpene moiety through aliphatic (hexa/heptamethylene) or aromatic linkers. An in vitro analysis of biological activity demonstrated that some of these molecules had powerful HDAC6 inhibitory activity, with the presence of a linker area in the structure of compounds playing a key role. In particular, it was found that hydroxamic acids containing a hexa- and heptamethylene linker and (-)-perill fragment in the Cap group exhibit excellent inhibitory activity against HDAC6 with IC50 in the submicromolar range from 0.56 ± 0.01 µM to 0.74 ± 0.02 µM. The results of the study of antiradical activity demonstrated the presence of moderate ability for some hydroxamic acids to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2ROO• radicals. The correlation coefficient between the DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC) value was R2 = 0.8400. In addition, compounds with an aromatic linker based on para-substituted cinnamic acids, having a monocyclic para-menthene skeleton as a Cap group, 35a, 38a, 35b and 38b, demonstrated a significant ability to suppress the aggregation of the pathological β-amyloid peptide 1-42. The 35a lead compound with a promising profile of biological activity, discovered in the in vitro experiments, demonstrated neuroprotective effects on in vivo models of Alzheimer's disease using 5xFAD transgenic mice. Together, the results obtained demonstrate a potential strategy for the use of monoterpene-derived hydroxamic acids for treatment of various aspects of Alzheimer's disease.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Aldar Munkuev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Evgenii Mozhaitsev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Evgenii Suslov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Dmitry Tsypyshev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Roman Begunov
- Biology and Ecology Faculty of P. G. Demidov Yaroslavl State University, Matrosova Ave., 9, Yaroslavl 150003, Russia
| | - Konstantin Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| |
Collapse
|
9
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
10
|
Direct and Indirect Effects of Filamin A on Tau Pathology in Neuronal Cells. Mol Neurobiol 2023; 60:1021-1039. [PMID: 36399251 PMCID: PMC9849303 DOI: 10.1007/s12035-022-03121-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
In Alzheimer disease (AD), Tau, an axonal microtubule-associated protein, becomes hyperphosphorylated, detaches from microtubules, accumulates, and self-aggregates in the somatodendritic (SD) compartment. The accumulation of hyperphosphorylated and aggregated Tau is also seen in other neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD-Tau). Previous studies reported a link between filamin A (FLNA), an actin-binding protein found in the SD compartment, and Tau pathology. In the present study, we further explored this link. We confirmed the interaction of Tau with FLNA in neuroblastoma 2a (N2a) cells. This interaction was mediated by a domain located between the 157 and 383 amino acids (a.a.) of Tau. Our results also revealed that the overexpression of FLNA resulted in an intracellular accumulation of wild-type Tau and Tau mutants (P301L, V337M, and R406W) in N2a cells. Tau phosphorylation and cleavage by caspase-3 but not its aggregation were increased upon FLNA overexpression in N2a cells. In the parietal cortex of AD brain, insoluble FLNA was increased compared to control brain, but it did not correlate with Tau pathology. Interestingly, Tau binding to microtubules and F-actin was preserved upon FLNA overexpression in N2a cells. Lastly, our results revealed that FLNA also induced the accumulation of annexin A2, a Tau interacting partner involved in its axonal localization. Collectively, our data indicated that in Tauopathies, FLNA could contribute to Tau pathology by acting on Tau and annexin A2.
Collapse
|
11
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
12
|
MDMX elevation by a novel Mdmx-p53 interaction inhibitor mitigates neuronal damage after ischemic stroke. Sci Rep 2022; 12:21110. [PMID: 36473920 PMCID: PMC9726886 DOI: 10.1038/s41598-022-25427-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mdmx and Mdm2 are two major suppressor factors for the tumor suppressor gene p53. In central nervous system, Mdmx suppresses the transcriptional activity of p53 and enhances the binding of Mdm2 to p53 for degradation. But Mdmx dynamics in cerebral infarction remained obscure. Here we investigated the role of Mdmx under ischemic conditions and evaluated the effects of our developed small-molecule Protein-Protein Interaction (PPI) inhibitors, K-181, on Mdmx-p53 interactions in vivo and in vitro. We found ischemic stroke decreased Mdmx expression with increased phosphorylation of Mdmx Serine 367, while Mdmx overexpression by AAV-Mdmx showed a neuroprotective effect on neurons. The PPI inhibitor, K-181 attenuated the neurological deficits by increasing Mdmx expression in post-stroke mice brain. Additionally, K-181 selectively inhibited HDAC6 activity and enhanced tubulin acetylation. Our findings clarified the dynamics of Mdmx in cerebral ischemia and provide a clue for the future pharmaceutic development of ischemic stroke.
Collapse
|
13
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
Nagaraju PG, S A, Priyadarshini P. Tau-aggregation inhibition: promising role of nanoencapsulated dietary molecules in the management of Alzheimer's disease. Crit Rev Food Sci Nutr 2022; 63:11153-11168. [PMID: 35748395 DOI: 10.1080/10408398.2022.2092446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Alzheimer's disease (AD) is a cumulative form of dementia associated with memory loss, cognition impairment, and finally leading to death. AD is characterized by abnormal deposits of extracellular beta-amyloid and intracellular Tau-protein tangles throughout the brain. During pathological conditions of AD, Tau protein undergoes various modifications and aggregates over time. A number of clinical trials on patients with AD symptoms have indicated the effectiveness of Tau-based therapies over anti-Aβ treatments. Thus, there is a huge paradigm shift toward Tau aggregation inhibitors. Several bioactives of plants and microbes have been suggested to cross the neuronal cell membrane and play a crucial role in managing neurodegenerative disorders. Bioactives mainly act as active modulators of AD pathology besides having antioxidant and anti-inflammatory potential. Studies also demonstrated the potential role of dietary molecules in inhibiting the formation of Tau aggregates and removing toxic Tau. Further, these molecules in nonencapsulated form exert enhanced Tau aggregation inhibition activity both in in vitro and in vivo studies suggesting a remarkable role of nanoencapsulation in AD management. The present article aims to review and discuss the structure-function relationship of Tau protein, the post-translational modifications that aid Tau aggregation and potential bioactives that inhibit Tau aggregation.
Collapse
Affiliation(s)
- Pramod G Nagaraju
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashwini S
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Poornima Priyadarshini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Bai P, Mondal P, Bagdasarian FA, Rani N, Liu Y, Gomm A, Tocci DR, Choi SH, Wey HY, Tanzi RE, Zhang C, Wang C. Development of a potential PET probe for HDAC6 imaging in Alzheimer’s disease. Acta Pharm Sin B 2022; 12:3891-3904. [PMID: 36213537 PMCID: PMC9532562 DOI: 10.1016/j.apsb.2022.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Although the epigenetic regulatory protein histone deacetylase 6 (HDAC6) has been recently implicated in the etiology of Alzheimer's disease (AD), little is known about the role of HDAC6 in the etiopathogenesis of AD and whether HDAC6 can be a potential therapeutic target for AD. Here, we performed positron emission tomography (PET) imaging in combination with histopathological analysis to better understand the underlying pathomechanisms of HDAC6 in AD. We first developed [18F]PB118 which was demonstrated as a valid HDAC6 radioligand with excellent brain penetration and high specificity to HDAC6. PET studies of [18F]PB118 in 5xFAD mice showed significantly increased radioactivity in the brain compared to WT animals, with more pronounced changes identified in the cortex and hippocampus. The translatability of this radiotracer for AD in a potential human use was supported by additional studies, including similar uptake profiles in non-human primates, an increase of HDAC6 in AD-related human postmortem hippocampal tissues by Western blotting protein analysis, and our ex vivo histopathological analysis of HDAC6 in postmortem brain tissues of our animals. Collectively, our findings show that HDAC6 may lead to AD by mechanisms that tend to affect brain regions particularly susceptible to AD through an association with amyloid pathology.
Collapse
Affiliation(s)
- Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Prasenjit Mondal
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Frederick A. Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nisha Rani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Darcy R. Tocci
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Corresponding authors. Tel.: +1 617 724 3983; fax: +1 617 726 7422.
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Corresponding authors. Tel.: +1 617 724 3983; fax: +1 617 726 7422.
| |
Collapse
|
16
|
Lage-Rupprecht V, Schultz B, Dick J, Namysl M, Zaliani A, Gebel S, Pless O, Reinshagen J, Ellinger B, Ebeling C, Esser A, Jacobs M, Claussen C, Hofmann-Apitius M. A hybrid approach unveils drug repurposing candidates targeting an Alzheimer pathophysiology mechanism. PATTERNS (NEW YORK, N.Y.) 2022; 3:100433. [PMID: 35510183 PMCID: PMC9058900 DOI: 10.1016/j.patter.2021.100433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 12/23/2021] [Indexed: 01/04/2023]
Abstract
The high number of failed pre-clinical and clinical studies for compounds targeting Alzheimer disease (AD) has demonstrated that there is a need to reassess existing strategies. Here, we pursue a holistic, mechanism-centric drug repurposing approach combining computational analytics and experimental screening data. Based on this integrative workflow, we identified 77 druggable modifiers of tau phosphorylation (pTau). One of the upstream modulators of pTau, HDAC6, was screened with 5,632 drugs in a tau-specific assay, resulting in the identification of 20 repurposing candidates. Four compounds and their known targets were found to have a link to AD-specific genes. Our approach can be applied to a variety of AD-associated pathophysiological mechanisms to identify more repurposing candidates.
Collapse
Affiliation(s)
- Vanessa Lage-Rupprecht
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Department of Bioinformatics, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Bruce Schultz
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Department of Bioinformatics, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Justus Dick
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525 Hamburg, Germany
| | - Marcin Namysl
- Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS, NetMedia Department, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, ScreeningPort, 22525 Hamburg, Germany
| | - Stephan Gebel
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Department of Bioinformatics, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, ScreeningPort, 22525 Hamburg, Germany
| | - Jeanette Reinshagen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, ScreeningPort, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, ScreeningPort, 22525 Hamburg, Germany
| | - Christian Ebeling
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Department of Bioinformatics, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Alexander Esser
- Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS, NetMedia Department, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Marc Jacobs
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Department of Bioinformatics, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, ScreeningPort, 22525 Hamburg, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Department of Bioinformatics, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| |
Collapse
|
17
|
Sreenivasmurthy SG, Iyaswamy A, Krishnamoorthi S, Senapati S, Malampati S, Zhu Z, Su CF, Liu J, Guan XJ, Tong BCK, Cheung KH, Tan JQ, Lu JH, Durairajan SSK, Song JX, Li M. Protopine promotes the proteasomal degradation of pathological tau in Alzheimer's disease models via HDAC6 inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153887. [PMID: 34936968 DOI: 10.1016/j.phymed.2021.153887] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/26/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Collective evidences have indicated that intracellular accumulation of hyperphosphorylated tau forms neurofibrillary tangles in the brain, which impairs memory, cognition and affects social activities in Alzheimer's disease (AD). PURPOSE To investigate the tau-reducing, and memory-enhancing properties of protopine (PRO), a natural alkaloid isolated from Chinese herbal medicine Corydalis yanhusuo (Yanhusuo in Chinese). STUDY DESIGN By using Histone deacetylase 6 (HDAC6) profiling and immunoprecipitation assays, we assessed that PRO mediated the heat shock protein 90 (HSP90) chaperonic activities for the degradation of pathological tau in AD cell culture models. To study the efficacy of PRO in vivo, we employed 3xTg-AD and P301S tau mice models. METHODS Liquid chromatography/quadrupole time-of-flight mass spectrometry was used to analyze the pharmacokinetic profile of PRO. Seven-month-old 3xTg-AD mice and 1.5-month-old P301S mice were administered PRO (1 and 2.5 mg/kg) orally every day. Morris water maze, contextual fear conditioning and rotarod assays were applied for studying memory functions. Sarkosyl differential centrifugation was used to analyze soluble and insoluble tau. Immunohistochemical analysis were performed to determine tau deposits in AD mice's brain sections. Molecular docking, binding affinity studies and primary cell culture studies were performed to demonstrate the mechanism of action of PRO in silico and in vitro. RESULTS Our pharmacokinetic profiling demonstrated that PRO significantly entered the brain at a concentration of 289.47 ng/g, and specifically attenuated tau pathology, improved learning and memory functions in both 3xTg-AD and P301S mice. Docking, binding affinity studies, and fluorometric assays demonstrated that PRO directly bound to the catalytic domain 1 (CD1) of HDAC6 and down-regulated its activity. In primary cortical neurons, PRO enhanced acetylation of α-tubulin, indicating HDAC6 inhibition. Meanwhile, PRO promoted the ubiquitination of tau and recruited heat shock protein 70 (HSP70) and heat shock cognate complex 71 (HSC70) for the degradation of pathological tau via the ubiquitin-proteasomal system (UPS). CONCLUSION We identified PRO as a natural HDAC6 inhibitor that attenuated tau pathology and improved memory dysfunctions in AD mice. The findings from this study provides a strong justification for future clinical development of plant-derived protopine as a novel agent for the treatment of tau-related neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ashok Iyaswamy
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Senthilkumar Krishnamoorthi
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sanjib Senapati
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Sandeep Malampati
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhou Zhu
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng-Fu Su
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jia Liu
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xin-Jie Guan
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Benjamin Chun-Kit Tong
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - King-Ho Cheung
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Jie-Qiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jia-Hong Lu
- State Key Lab of Quality Research in Chinese Medicine, University of Macao, Macao, China
| | - Siva Sundara Kumar Durairajan
- Mycobiology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India.
| | - Ju-Xian Song
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min Li
- Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
18
|
Torres AK, Rivera BI, Polanco CM, Jara C, Tapia-Rojas C. Phosphorylated tau as a toxic agent in synaptic mitochondria: implications in aging and Alzheimer's disease. Neural Regen Res 2022; 17:1645-1651. [PMID: 35017410 PMCID: PMC8820692 DOI: 10.4103/1673-5374.332125] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During normal aging, there is a decline in all physiological functions in the organism. One of the most affected organs is the brain, where neurons lose their proper synaptic function leading to cognitive impairment. Aging is one of the main risk factors for the development of neurodegenerative diseases, such as Alzheimer’s disease. One of the main responsible factors for synaptic dysfunction in aging and neurodegenerative diseases is the accumulation of abnormal proteins forming aggregates. The most studied brain aggregates are the senile plaques, formed by Aβ peptide; however, the aggregates formed by phosphorylated tau protein have gained relevance in the last years by their toxicity. It is reported that neurons undergo severe mitochondrial dysfunction with age, with a decrease in adenosine 5′-triphosphate production, loss of the mitochondrial membrane potential, redox imbalance, impaired mitophagy, and loss of calcium buffer capacity. Interestingly, abnormal tau protein interacts with several mitochondrial proteins, suggesting that it could induce mitochondrial dysfunction. Nevertheless, whether tau-mediated mitochondrial dysfunction occurs indirectly or directly is still unknown. A recent study of our laboratory shows that phosphorylated tau at Ser396/404 (known as PHF-1), an epitope commonly related to pathology, accumulates inside mitochondria during normal aging. This accumulation occurs preferentially in synaptic mitochondria, which suggests that it may contribute to the synaptic failure and cognitive impairment seen in aged individuals. Here, we review the main tau modifications promoting mitochondrial dysfunction, and the possible mechanism involved. Also, we discuss the evidence that supports the possibility that phosphorylated tau accumulation in synaptic mitochondria promotes synaptic and cognitive impairment in aging. Finally, we show evidence and argue about the presence of phosphorylated tau PHF-1 inside mitochondria in Alzheimer’s disease, which could be considered as an early event in the neurodegenerative process. Thus, phosphorylated tau PHF-1 inside the mitochondria could be considered such a potential therapeutic target to prevent or attenuate age-related cognitive impairment.
Collapse
Affiliation(s)
- Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| | - Bastián I Rivera
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| | - Catalina M Polanco
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| |
Collapse
|
19
|
Wang XX, Xie F, Jia CC, Yan N, Zeng YL, Wu JD, Liu ZP. Synthesis and biological evaluation of selective histone deacetylase 6 inhibitors as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2021; 225:113821. [PMID: 34517222 DOI: 10.1016/j.ejmech.2021.113821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a potential target for Alzheimer's disease (AD). In this study, a series of novel phenothiazine-, memantine-, and 1,2,3,4-tetrahydro-γ-carboline-based HDAC6 inhibitors with a variety of linker moieties were designed and synthesized. As a hydrochloride salt, the phenothiazine-based hydroxamic acid W5 with a pyridyl-containing linker motif was identified as a high potent and selective HDAC6 inhibitor. It inhibited HDAC6 with an IC50 of 2.54 nM and was more than 290- to 3300-fold selective over other HDAC isoforms. In SH-SY5Y cells, W5 dose-dependently increased the acetylated α-tubulin levels and reduced the hyperphosphorylated tau proteins at Ser396. As an effective metal chelator, W5 inhibited Cu2+-induced Aβ1-42 aggregation and disaggregated Cu2+-Aβ1-42 oligomers, and showed protective effects on the SH-SY5Y cells against Aβ1-42- as well as Cu2+-Aβ1-42 induced cell damages, serving as a potential ligand to target AD metal dyshomeostasis. Moreover, W5 promoted the differentiated neuronal neurite outgrowth, increased the mRNA expression of the recognized neurogenesis markers, GAP43, N-myc, and MAP-2. Therefore, W5 might be a good lead for the development of novel HDAC6 inhibitors targeting multi-facets of AD.
Collapse
Affiliation(s)
- Xiu-Xiu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Cong-Cong Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Ning Yan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Yan-Li Zeng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jing-De Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
20
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
21
|
Liu P, Xiao J, Wang Y, Song X, Huang L, Ren Z, Kitazato K, Wang Y. Posttranslational modification and beyond: interplay between histone deacetylase 6 and heat-shock protein 90. Mol Med 2021; 27:110. [PMID: 34530730 PMCID: PMC8444394 DOI: 10.1186/s10020-021-00375-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Posttranslational modification (PTM) and regulation of protein stability are crucial to various biological processes. Histone deacetylase 6 (HDAC6), a unique histone deacetylase with two functional catalytic domains (DD1 and DD2) and a ZnF-UBP domain (ubiquitin binding domain, BUZ), regulates a number of biological processes, including gene expression, cell motility, immune response, and the degradation of misfolded proteins. In addition to the deacetylation of histones, other nonhistone proteins have been identified as substrates for HDAC6. Hsp90, a molecular chaperone that is a critical modulator of cell signaling, is one of the lysine deacetylase substrates of HDAC6. Intriguingly, as one of the best-characterized regulators of Hsp90 acetylation, HDAC6 is the client protein of Hsp90. In addition to regulating Hsp90 at the post-translational modification level, HDAC6 also regulates Hsp90 at the gene transcription level. HDAC6 mainly regulates the Hsp90-HSF1 complex through the ZnF-UBP domain, thereby promoting the HSF1 entry into the nucleus and activating gene transcription. The mutual interaction between HDAC6 and Hsp90 plays an important role in the regulation of protein stability, cell migration, apoptosis and other functions. Plenty of of studies have indicated that blocking HDAC6/Hsp90 has a vital regulatory role in multifarious diseases, mainly in cancers. Therefore, developing inhibitors or drugs against HDAC6/Hsp90 becomes a promising development direction. Herein, we review the current knowledge on molecular regulatory mechanisms based on the interaction of HDAC6 and Hsp90 and inhibition of HDAC6 and/or Hsp90 in oncogenesis and progression, antiviral and immune-related diseases and other vital biological processes.
Collapse
Affiliation(s)
- Ping Liu
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China
| | - Ji Xiao
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China
| | - Yiliang Wang
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China
| | - Xiaowei Song
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China
| | - Lianzhou Huang
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhe Ren
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China
| | - Kaio Kitazato
- Department of Clinical Research Pharmacy, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Yifei Wang
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
Durairajan SSK, Selvarasu K, Bera MR, Rajaram K, Iyaswamy A, Li M. Alzheimer's Disease and other Tauopathies: Exploring Efficacy of Medicinal Plant-Derived Compounds in Alleviating Tau-Mediated Neurodegeneration. Curr Mol Pharmacol 2021; 15:361-379. [PMID: 34488602 DOI: 10.2174/1874467214666210906125318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick's disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recently unsuccessful phase III clinical trials related to Aβ-targeted therapeutic drugs indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently-available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies that focused on medicinal plant-derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We mainly considered the studies that focused on Tau protein as a therapeutic target. We reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Karthikeyan Selvarasu
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Minu Rani Bera
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Kaushik Rajaram
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR. China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR. China
| |
Collapse
|
23
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
24
|
A novel orally active HDAC6 inhibitor T-518 shows a therapeutic potential for Alzheimer's disease and tauopathy in mice. Sci Rep 2021; 11:15423. [PMID: 34326423 PMCID: PMC8322070 DOI: 10.1038/s41598-021-94923-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
Accumulation of tau protein is a key pathology of age-related neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Those diseases are collectively termed tauopathies. Tau pathology is associated with axonal degeneration because tau binds to microtubules (MTs), a component of axon and regulates their stability. The acetylation state of MTs contributes to stability and histone deacetylase 6 (HDAC6) is a major regulator of MT acetylation status, suggesting that pharmacological HDAC6 inhibition could improve axonal function and may slow the progression of tauopathy. Here we characterize N-[(1R,2R)-2-{3-[5-(difluoromethyl)-1,3,4-oxadiazol-2-yl]-5-oxo-5H,6H,7H-pyrrolo[3,4-b]pyridin-6-yl}cyclohexyl]-2,2,3,3,3-pentafluoropropanamide (T-518), a novel, potent, highly selective HDAC6 inhibitor with clinically favorable pharmacodynamics. T-518 shows potent inhibitory activity against HDAC6 and superior selectivity over other HDACs compared with the known HDAC6 inhibitors in the enzyme and cellular assays. T-518 showed brain penetration in an oral dose and blocked HDAC6-dependent tubulin deacetylation at Lys40 in mouse hippocampus. A 2-week treatment restored impaired axonal transport and novel object recognition in the P301S tau Tg mouse, tauopathy model, while a 3-month treatment also decreased RIPA-insoluble tau accumulation. Pharmaceutical inhibition of HDAC6 is a potential therapeutic strategy for tauopathy, and T-518 is a particularly promising drug candidate.
Collapse
|
25
|
Valencia A, Bieber VLR, Bajrami B, Marsh G, Hamann S, Wei R, Ling K, Rigo F, Arnold HM, Golonzhka O, Hering H. Antisense Oligonucleotide-Mediated Reduction of HDAC6 Does Not Reduce Tau Pathology in P301S Tau Transgenic Mice. Front Neurol 2021; 12:624051. [PMID: 34262517 PMCID: PMC8273312 DOI: 10.3389/fneur.2021.624051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Acetylation of tau protein is dysregulated in Alzheimer's Disease (AD). It has been proposed that acetylation of specific sites in the KXGS motif of tau can regulate phosphorylation of nearby residues and reduce the propensity of tau to aggregate. Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme involved in deacetylation of multiple targets, including tau, and it has been suggested that inhibition of HDAC6 would increase tau acetylation at the KXGS motifs and thus may present a viable therapeutic approach to treat AD. To directly test the contribution of HDAC6 to tau pathology, we intracerebroventricularly injected an antisense oligonucleotide (ASO) directed against HDAC6 mRNA into brains of P301S tau mice (PS19 model), which resulted in a 70% knockdown of HDAC6 protein in the brain. Despite a robust decrease in levels of HDAC6, no increase in tau acetylation was observed. Additionally, no change of tau phosphorylation or tau aggregation was detected upon the knockdown of HDAC6. We conclude that HDAC6 does not impact tau pathology in PS19 mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Ru Wei
- Biogen, Cambridge, MA, United States
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | | | | | | |
Collapse
|
26
|
Fazal R, Boeynaems S, Swijsen A, De Decker M, Fumagalli L, Moisse M, Vanneste J, Guo W, Boon R, Vercruysse T, Eggermont K, Swinnen B, Beckers J, Pakravan D, Vandoorne T, Vanden Berghe P, Verfaillie C, Van Den Bosch L, Van Damme P. HDAC6 inhibition restores TDP-43 pathology and axonal transport defects in human motor neurons with TARDBP mutations. EMBO J 2021; 40:e106177. [PMID: 33694180 PMCID: PMC8013789 DOI: 10.15252/embj.2020106177] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
TDP-43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP-43, are one of the common causes of familial ALS. In this study, we investigate TDP-43 protein behavior in induced pluripotent stem cell (iPSC)-derived motor neurons from three ALS patients with different TARDBP mutations, three healthy controls and an isogenic control. TARDPB mutations induce several TDP-43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP-43, C-terminal fragments, and phospho-TDP-43. By generating iPSC lines with allele-specific tagging of TDP-43, we find that mutant TDP-43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry. Our findings also indicate that TDP-43 proteinopathy results in a defect in mitochondrial transport. Lastly, we show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP-43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP-43 pathology.
Collapse
Affiliation(s)
- Raheem Fazal
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Steven Boeynaems
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Ann Swijsen
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Mathias De Decker
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Joni Vanneste
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Wenting Guo
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Ruben Boon
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Thomas Vercruysse
- Department of Microbiology, Immunology and TransplantationLaboratory of Virology and ChemotherapyRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Donya Pakravan
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Tijs Vandoorne
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Pieter Vanden Berghe
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research in GastroIntestinal Disorders, KU LeuvenLeuvenBelgium
| | - Catherine Verfaillie
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
27
|
Klingl YE, Pakravan D, Van Den Bosch L. Opportunities for histone deacetylase inhibition in amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:1353-1372. [PMID: 32726472 PMCID: PMC9327724 DOI: 10.1111/bph.15217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. ALS patients suffer from a progressive loss of motor neurons, leading to respiratory failure within 3 to 5 years after diagnosis. Available therapies only slow down the disease progression moderately or extend the lifespan by a few months. Epigenetic hallmarks have been linked to the disease, creating an avenue for potential therapeutic approaches. Interference with one class of epigenetic enzymes, histone deacetylases, has been shown to affect neurodegeneration in many preclinical models. Consequently, it is crucial to improve our understanding about histone deacetylases and their inhibitors in (pre)clinical models of ALS. We conclude that selective inhibitors with high tolerability and safety and sufficient blood-brain barrier permeability will be needed to interfere with both epigenetic and non-epigenetic targets of these enzymes. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Yvonne E. Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI)KU Leuven‐University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| | - Donya Pakravan
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI)KU Leuven‐University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI)KU Leuven‐University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
28
|
Alzheimer Gene BIN1 may Simultaneously Influence Dementia Risk and Androgen Deprivation Therapy Dosage in Prostate Cancer. Am J Clin Oncol 2021; 43:685-689. [PMID: 32568785 DOI: 10.1097/coc.0000000000000727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is extensively used in prostate cancer. Yet the risk of impaired cognition or Alzheimer disease (AD) in men with prostate cancer receiving ADT is uncertain. Some studies of prostate cancer and ADT suggest that the risk of AD is not increased. But other studies have found an increased risk of AD and cognitive impairment. OBJECTIVES As the uncertainty about ADT and dementia might relate to the genetics of prostate cancer and AD, the authors used the Cancer Genome Atlas (TCGA) to examine the relationship in men with prostate cancer between genes implicated in AD and genes implicated in prostate cancer. METHODS The authors examined the genomics of 492 prostate cancer cases in the Genomic Data Commons (GDC) TCGA Prostate Cancer (PRAD) data set. To access and analyze the data, 2 web-based interfaces were used: (1) the UCSC Xena browser, a web-based visual integration and exploration tool for TCGA data, including clinical and phenotypic annotations; and (2) cBioportal, a web-based interface that enables integrative analysis of complex cancer genomics and clinical profiles. RESULTS Co-occurrence analysis indicates that alterations in the prostate cancer gene Speckle-type POZ protein (SPOP) significantly co-occur with alterations in the AD gene BIN1 (P<0.001). The presence of somatic mutations (deleterious and missense/in frame) in SPOP deranges BIN1 gene expression. SPOP/BIN1 RNA gene expression in 492 prostate cancer specimens is significantly correlated (P<0.001). Increased expression of SPOP in 492 prostate cancers is associated with reduced survival (P=0.00275). Men receiving pharmacologic therapy had a tumor with a significantly higher Gleason score (P=0.023). Gleason score and BIN1 RNA gene expression, unit log2 (fragments per kilobase of transcript per million mapped reads upper quartile [FPKM-UQ]+1), in 499 prostate cancer specimens were significantly inversely correlated (P<0.001). CONCLUSIONS BIN1 forms part of a network that interacts with the MYC oncogene, activated at the earliest phases of prostate cancer and in its position on chr8q24 linked to disease aggressiveness. Dynamic regulation of the BIN1-Tau interaction is involved in AD. BIN1 loss in AD allows phosphorylated tau to be mis-sorted to synapses, which likely alters the integrity of the postsynapse, alongside reducing the functionally important release of physiological forms of tau. Alzheimer symptoms are usually preceded by a preclinical phase that may be 16 years long. The authors suggest that the ADT dosage reflects the severity of a process that is already underway. The severity is determined by the genetics of the tumor itself, at least in part by BIN1. ADT is not causing new cases of AD. The oncologist treats higher-grade prostate cancer with more ADT, which serves as a surrogate marker for disease severity. Our analysis of TCGA data does not support the idea that ADT causes AD or dementia.
Collapse
|
29
|
Lemos M, Stefanova N. Histone Deacetylase 6 and the Disease Mechanisms of α-Synucleinopathies. Front Synaptic Neurosci 2020; 12:586453. [PMID: 33041780 PMCID: PMC7518386 DOI: 10.3389/fnsyn.2020.586453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
The abnormal accumulation of α-Synuclein (α-Syn) is a prominent pathological feature in a group of diseases called α-Synucleinopathies, such as Parkinson’s disease, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). The formation of Lewy bodies (LBs) and glial cytoplasmic inclusions (GCIs) in neurons and oligodendrocytes, respectively, is highly investigated. However, the molecular mechanisms behind α-Syn improper folding and aggregation remain unclear. Histone deacetylase 6 (HDAC6) is a Class II deacetylase, containing two active catalytic domains and a ubiquitin-binding domain. The properties of HDAC6 and its exclusive cytoplasmic localization allow HDAC6 to modulate the microtubule dynamics, acting as a specific α-tubulin deacetylase. Also, HDAC6 can bind ubiquitinated proteins, facilitating the formation of the aggresome, a cellular defense mechanism to cope with higher levels of misfolded proteins. Several studies report that the aggresome shares similarities in size and composition with LBs and GCIs. HDAC6 is found to co-localize with α-Syn in neurons and in oligodendrocytes, together with other aggresome-related proteins. The involvement of HDAC6 in several neurodegenerative diseases is already under discussion, however, the results obtained by modulating HDAC6 activity are not entirely conclusive. The main goal of this review is to summarize and critically discuss previous in vitro and in vivo data regarding the specific role of HDAC6 in the context of α-Syn accumulation and protein aggregation in α-Synucleinopathies.
Collapse
Affiliation(s)
- Miguel Lemos
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Multitarget Therapeutic Strategies for Alzheimer's Disease: Review on Emerging Target Combinations. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5120230. [PMID: 32714977 PMCID: PMC7354643 DOI: 10.1155/2020/5120230] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases represent nowadays one of the major health problems. Despite the efforts made to unveil the mechanism leading to neurodegeneration, it is still not entirely clear what triggers this phenomenon and what allows its progression. Nevertheless, it is accepted that neurodegeneration is a consequence of several detrimental processes, such as protein aggregation, oxidative stress, and neuroinflammation, finally resulting in the loss of neuronal functions. Starting from these evidences, there has been a wide search for novel agents able to address more than a single event at the same time, the so-called multitarget-directed ligands (MTDLs). These compounds originated from the combination of different pharmacophoric elements which endowed them with the ability to interfere with different enzymatic and/or receptor systems, or to exert neuroprotective effects by modulating proteins and metal homeostasis. MTDLs have been the focus of the latest strategies to discover a new treatment for Alzheimer's disease (AD), which is considered the most common form of dementia characterized by neurodegeneration and cognitive dysfunctions. This review is aimed at collecting the latest and most interesting target combinations for the treatment of AD, with a detailed discussion on new agents with favorable in vitro properties and on optimized structures that have already been assessed in vivo in animal models of dementia.
Collapse
|
31
|
Rodrigues DA, Pinheiro PDSM, Sagrillo FS, Bolognesi ML, Fraga CAM. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities. Med Res Rev 2020; 40:2177-2211. [DOI: 10.1002/med.21701] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel A. Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Química, Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Pedro de S. M. Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| | - Fernanda S. Sagrillo
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| | - Carlos A. M. Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Química, Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| |
Collapse
|
32
|
Mazzetti S, De Leonardis M, Gagliardi G, Calogero AM, Basellini MJ, Madaschi L, Costa I, Cacciatore F, Spinello S, Bramerio M, Cilia R, Rolando C, Giaccone G, Pezzoli G, Cappelletti G. Phospho-HDAC6 Gathers Into Protein Aggregates in Parkinson's Disease and Atypical Parkinsonisms. Front Neurosci 2020; 14:624. [PMID: 32655357 PMCID: PMC7324673 DOI: 10.3389/fnins.2020.00624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 05/19/2020] [Indexed: 01/10/2023] Open
Abstract
HDAC6 is a unique histone deacetylase that targets cytoplasmic non-histone proteins and has a specific ubiquitin-binding activity. Both of these activities are required for HDAC6-mediated formation of aggresomes, which contain misfolded proteins that will ultimately be degraded via autophagy. HDAC6 deacetylase activity is increased following phosphorylation on serine 22 (phospho-HDAC6). In human, HDAC6 localizes in neuronal Lewy bodies in Parkinson’s disease (PD) and in oligodendrocytic Papp–Lantos bodies in multiple system atrophy (MSA). However, the expression of phospho-HDAC6 in post-mortem human brains is currently unexplored. Here, we evaluate and compare the distribution of HDAC6 and its phosphorylated form in human brains obtained from patients affected by three forms of parkinsonism: two synucleinopathies (PD and MSA) and a tauopathy (progressive supranuclear palsy, PSP). We find that both HDAC6 and its phosphorylated form localize with pathological protein aggregates, including α-synuclein-positive Lewy bodies in PD and Papp–Lantos bodies in MSA, and phospho-tau-positive neurofibrillary tangles in PSP. We further find a direct interaction of HDAC6 with α-synuclein with proximity ligation assay (PLA) in neuronal cell of PD patients. Taken together, our findings suggest that both HDAC6 and phospho-HDAC6 regulate the homeostasis of intra-neuronal proteins in parkinsonism.
Collapse
Affiliation(s)
- Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Mara De Leonardis
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gloria Gagliardi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Maria Calogero
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | | | - Laura Madaschi
- UNITECH NO LIMITS, Università degli Studi di Milano, Milan, Italy
| | - Ilaria Costa
- Imaging TDU, IFOM Foundation, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesca Cacciatore
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sonia Spinello
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Manuela Bramerio
- S. C. Divisione Oncologia Falck and S. C. Divisione Anatomia Patologica, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Roberto Cilia
- Parkinson Institute, ASST "G.Pini-CTO," Milan, Italy
| | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Giaccone
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy.,Parkinson Institute, ASST "G.Pini-CTO," Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
33
|
Identification of novel class I and class IIb histone deacetylase inhibitor for Alzheimer's disease therapeutics. Life Sci 2020; 256:117912. [PMID: 32504755 DOI: 10.1016/j.lfs.2020.117912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 01/02/2023]
Abstract
Histone deacetylase enzymes were prominent chromatin remodeling drug that targets in the pathophysiology of Alzheimer's disease associated with transcriptional dysregulation. In vitro and in vivo models of AD have demonstrated overexpression of HDAC activity. Non-specificity and non-selectivity of HDAC are the major problems of existing HDAC inhibitors. Hence, we aim to set up a methodology describing the rational development of isoform-selective HDAC inhibitor targeting class, I and class IIb. A convenient multistage virtual screening followed by machine learning and IC50 screenings were used to classify the 5064 compounds into inhibitors and non-inhibitors classes retrieved from the ChEMBL database. ADMET analysis identified the pharmacokinetics and pharmacodynamics properties of selected compounds. Molecular docking, along with mutational analysis of eleven compounds, characterized the inhibiting potency. Herein, for the first time, we reported ChEMBL1834473 (2-[[5-(4-chlorophenyl)-1,3,4-thiadiazol-2-yl]amino]-N-hydroxypyrimidine-5-carboxamide) as the isoform-selective HDAC inhibitor, which interact central Zn2+ atom. The negative energy and interacting residue of the ChEMBL1834473 with six HDAC isoform has also been tabulated and mapped. Moreover, our findings concluded histidine, glycine, phenylalanine, and aspartic acid as key residues in protein-ligand interaction and classify 2347 compounds as HDAC inhibitors. Later, a protein-protein interaction network of six HDAC with the key proteins involved in the progression of an AD and signaling pathway, which describes the relationship between ChEMBL1834473 and AD, has been demonstrated using PPI network where the chosen inhibitor will work. Altogether, we conclude that the compound ChEMBL1834473 may be capable of inhibiting all isoforms of class I and class IIb HDAC based on computational analysis for AD therapeutics.
Collapse
|
34
|
Liu T, Wan Y, Xiao Y, Xia C, Duan G. Dual-Target Inhibitors Based on HDACs: Novel Antitumor Agents for Cancer Therapy. J Med Chem 2020; 63:8977-9002. [PMID: 32320239 DOI: 10.1021/acs.jmedchem.0c00491] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating target gene expression. They have been highlighted as a novel category of anticancer targets, and their inhibition can induce apoptosis, differentiation, and growth arrest in cancer cells. In view of the fact that HDAC inhibitors and other antitumor agents, such as BET inhibitors, topoisomerase inhibitors, and RTK pathway inhibitors, exert a synergistic effect on cellular processes in cancer cells, the combined inhibition of two targets is regarded as a rational strategy to improve the effectiveness of these single-target drugs for cancer treatment. In this review, we discuss the theoretical basis for designing HDAC-involved dual-target drugs and provide insight into the structure-activity relationships of these dual-target agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Yuliang Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Guiyun Duan
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| |
Collapse
|
35
|
Shen S, Kozikowski AP. A patent review of histone deacetylase 6 inhibitors in neurodegenerative diseases (2014-2019). Expert Opin Ther Pat 2020; 30:121-136. [PMID: 31865813 PMCID: PMC6950832 DOI: 10.1080/13543776.2019.1708901] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
Introduction: Histone deacetylase 6 (HDAC6) is unique in comparison with other zinc-dependent HDAC family members. An increasing amount of evidence from clinical and preclinical research demonstrates the potential of HDAC6 inhibition as an effective therapeutic approach for the treatment of cancer, autoimmune diseases, as well as neurological disorders. The recently disclosed crystal structures of HDAC6-ligand complexes offer further means for achieving pharmacophore refinement, thus further accelerating the pace of HDAC6 inhibitor discovery in the last few years.Area covered: This review summarizes the latest clinical status of HDAC6 inhibitors, discusses pharmacological applications of selective HDAC6 inhibitors in neurodegenerative diseases, and describes the patent applications dealing with HDAC6 inhibitors from 2014-2019 that have not been reported in research articles.Expert opinion: Phenylhydroxamate has proven a very useful scaffold in the discovery of potent and selective HDAC6 inhibitors. However, weaknesses of the hydroxamate function such as metabolic instability and mutagenic potential limit its application in the neurological field, where long-term administration is required. The recent invention of oxadiazole-based ligands by pharmaceutical companies may provide a new opportunity to optimize the druglike properties of HDAC6 inhibitors for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sida Shen
- Departments of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, United States
| | | |
Collapse
|
36
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
37
|
Mufson EJ, Counts SE, Ginsberg SD, Mahady L, Perez SE, Massa SM, Longo FM, Ikonomovic MD. Nerve Growth Factor Pathobiology During the Progression of Alzheimer's Disease. Front Neurosci 2019; 13:533. [PMID: 31312116 PMCID: PMC6613497 DOI: 10.3389/fnins.2019.00533] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
The current review summarizes the pathobiology of nerve growth factor (NGF) and its cognate receptors during the progression of Alzheimer's disease (AD). Both transcript and protein data indicate that cholinotrophic neuronal dysfunction is related to an imbalance between TrkA-mediated survival signaling and the NGF precursor (proNGF)/p75NTR-mediated pro-apoptotic signaling, which may be related to alteration in the metabolism of NGF. Data indicate a spatiotemporal pattern of degeneration related to the evolution of tau pathology within cholinotrophic neuronal subgroups located within the nucleus basalis of Meynert (nbM). Despite these degenerative events the cholinotrophic system is capable of cellular resilience and/or plasticity during the prodromal and later stages of the disease. In addition to neurotrophin dysfunction, studies indicate alterations in epigenetically regulated proteins occur within cholinotrophic nbM neurons during the progression of AD, suggesting a mechanism that may underlie changes in transcript expression. Findings that increased cerebrospinal fluid levels of proNGF mark the onset of MCI and the transition to AD suggests that this proneurotrophin is a potential disease biomarker. Novel therapeutics to treat NGF dysfunction include NGF gene therapy and the development of small molecule agonists for the cognate prosurvival NGF receptor TrkA and antagonists against the pan-neurotrophin p75NTR death receptor for the treatment of AD.
Collapse
Affiliation(s)
- Elliott J. Mufson
- Department of Neurobiology and Neurology, Department of Neurobiology, and Department of Neurological Sciences, Alzheimer’s Disease Laboratory, Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, United States
| | - Scott E. Counts
- Translational Science and Molecular Medicine Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, Department of Neuroscience, and Physiology and NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
| | - Laura Mahady
- Department of Neurobiology and Neurology, Department of Neurobiology, and Department of Neurological Sciences, Alzheimer’s Disease Laboratory, Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, United States
| | - Sylvia E. Perez
- Department of Neurobiology and Neurology, Department of Neurobiology, and Department of Neurological Sciences, Alzheimer’s Disease Laboratory, Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, United States
| | - Stephen M. Massa
- Department of Neurology, San Francisco VA Health Care System, University of California, San Francisco, San Francisco, CA, United States
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Milos D. Ikonomovic
- Department of Neurology and Department of Psychiatry, Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Cuadrado-Tejedor M, Pérez-González M, García-Muñoz C, Muruzabal D, García-Barroso C, Rabal O, Segura V, Sánchez-Arias JA, Oyarzabal J, Garcia-Osta A. Taking Advantage of the Selectivity of Histone Deacetylases and Phosphodiesterase Inhibitors to Design Better Therapeutic Strategies to Treat Alzheimer's Disease. Front Aging Neurosci 2019; 11:149. [PMID: 31281249 PMCID: PMC6597953 DOI: 10.3389/fnagi.2019.00149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
The discouraging results with therapies for Alzheimer’s disease (AD) in clinical trials, highlights the urgent need to adopt new approaches. Like other complex diseases, it is becoming clear that AD therapies should focus on the simultaneous modulation of several targets implicated in the disease. Recently, using reference compounds and the first-in class CM-414, we demonstrated that the simultaneous inhibition of histone deacetylases [class I histone deacetylases (HDACs) and HDAC6] and phosphodiesterase 5 (PDE5) has a synergistic therapeutic effect in AD models. To identify the best inhibitory balance of HDAC isoforms and PDEs that provides a safe and efficient therapy to combat AD, we tested the compound CM-695 in the Tg2576 mouse model of this disease. CM-695 selectively inhibits HDAC6 over class I HDAC isoforms, which largely overcomes the toxicity associated with HDAC class 1 inhibition. Furthermore, CM-695 inhibits PDE9, which is expressed strongly in the brain and has been proposed as a therapeutic target for AD. Chronic treatment of aged Tg2576 mice with CM-695 ameliorates memory impairment and diminishes brain Aβ, although its therapeutic effect was no longer apparent 4 weeks after the treatment was interrupted. An increase in the presence of 78-KDa glucose regulated protein (GRP78) and heat shock protein 70 (Hsp70) chaperones may underlie the therapeutic effect of CM-695. In summary, chronic treatment with CM-695 appears to reverse the AD phenotype in a safe and effective manner. Taking into account that AD is a multifactorial disorder, the multimodal action of these compounds and the different events they affect may open new avenues to combat AD.
Collapse
Affiliation(s)
- Mar Cuadrado-Tejedor
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Marta Pérez-González
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Cristina García-Muñoz
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Damián Muruzabal
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carolina García-Barroso
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Víctor Segura
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan A Sánchez-Arias
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ana Garcia-Osta
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| |
Collapse
|
39
|
Mahady L, Nadeem M, Malek-Ahmadi M, Chen K, Perez SE, Mufson EJ. Frontal Cortex Epigenetic Dysregulation During the Progression of Alzheimer's Disease. J Alzheimers Dis 2019; 62:115-131. [PMID: 29439356 DOI: 10.3233/jad-171032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the frontal cortex plays an important role in cognitive function and undergoes neuronal dysfunction in Alzheimer's disease (AD), the factors driving these cellular alterations remain unknown. Recent studies suggest that alterations in epigenetic regulation play a pivotal role in this process in AD. We evaluated frontal cortex histone deacetylase (HDAC) and sirtuin (SIRT) levels in tissue obtained from subjects with a premortem diagnosis of no-cognitive impairment (NCI), mild cognitive impairment (MCI), mild to moderate AD (mAD), and severe AD (sAD) using quantitative western blotting. Immunoblots revealed significant increases in HDAC1 and HDAC3 in MCI and mAD, followed by a decrease in sAD compared to NCI. HDAC2 levels remained stable across clinical groups. HDAC4 was significantly increased in MCI and mAD, but not in sAD compared to NCI. HDAC6 significantly increased during disease progression, while SIRT1 decreased in MCI, mAD, and sAD compared to NCI. HDAC1 levels negatively correlated with perceptual speed, while SIRT1 positively correlated with perceptual speed, episodic memory, global cognitive score, and Mini-Mental State Examination. HDAC1 positively, while SIRT1 negatively correlated with cortical neurofibrillary tangle counts. These findings suggest that dysregulation of epigenetic proteins contribute to neuronal dysfunction and cognitive decline in the early stage of AD.
Collapse
Affiliation(s)
- Laura Mahady
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.,Arizona State University Interdisciplinary Graduate Program in Neuroscience, Tempe, AZ, USA
| | - Muhammad Nadeem
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
40
|
Zeb A, Park C, Rampogu S, Son M, Lee G, Lee KW. Structure-Based Drug Designing Recommends HDAC6 Inhibitors To Attenuate Microtubule-Associated Tau-Pathogenesis. ACS Chem Neurosci 2019; 10:1326-1335. [PMID: 30407786 DOI: 10.1021/acschemneuro.8b00405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation and deacetylation play vital roles in the structural and physiological behavior of target proteins. Histone deacetylase 6 (HDAC6) remains a key therapeutic target in several chronic diseases such as cancer, neurodegenerative, and hematological diseases. In tau-pathogenesis, HDAC6 tightly regulates microtubule-associated tau physiology, and its inhibition suppresses Alzheimer's phenotype. To this end, the current study has identified novel HDAC6 inhibitors by structure-based drug designing method. A pharmacophore was generated from HDAC6 in complex with trichostatin A. The selected pharmacophore had five features including two hydrogen bond donors, one hydrogen bond acceptor, and two hydrophobic features. Pharmacophore validation obtained the highest GH score of 0.80. By applying Lipinski's rule of five and ADMET Descriptors, a drug-like database of 29 183 molecules was generated from the Zinc Natural Product Database. The validated pharmacophore screened 841 drug-like molecules and was subsequently subjected to molecular docking in the active site of HDAC6. Molecular docking identified 11 hits, where they showed the highest ChemPLP score (>90.00), stable conformation, and hydrogen-bond interactions with catalytic residues of HDAC6. Finally, molecular dynamics simulation identified three molecules as potent HDAC6 inhibitors with stable root-mean-square deviation and the highest number of hydrogen bonds with the catalytic residues of HDAC6. Overall, we recommend three novel inhibitors of HDAC6, capable of suppressing the microtubule-associated tau-pathogenesis.
Collapse
Affiliation(s)
- Amir Zeb
- Division of Life Sciences, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Chanin Park
- Division of Life Sciences, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Shailima Rampogu
- Division of Life Sciences, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Minky Son
- Division of Life Sciences, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - GiHwan Lee
- Division of Life Sciences, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Keun Woo Lee
- Division of Life Sciences, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
41
|
HDAC6 Restricts Influenza A Virus by Deacetylation of the RNA Polymerase PA Subunit. J Virol 2019; 93:JVI.01896-18. [PMID: 30518648 PMCID: PMC6364008 DOI: 10.1128/jvi.01896-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 12/23/2022] Open
Abstract
Influenza A virus (IAV) continues to threaten global public health due to drug resistance and the emergence of frequently mutated strains. Thus, it is critical to find new strategies to control IAV infection. Here, we discover one host protein, HDAC6, that can inhibit viral RNA polymerase activity by deacetylating PA and thus suppresses virus RNA replication and transcription. Previously, it was reported that IAV can utilize the HDAC6-dependent aggresome formation mechanism to promote virus uncoating, but HDAC6-mediated deacetylation of α-tubulin inhibits viral protein trafficking at late stages of the virus life cycle. These findings together will contribute to a better understanding of the role of HDAC6 in regulating IAV infection. Understanding the molecular mechanisms of HDAC6 at various periods of viral infection may illuminate novel strategies for developing antiviral drugs. The life cycle of influenza A virus (IAV) is modulated by various cellular host factors. Although previous studies indicated that IAV infection is controlled by HDAC6, the deacetylase involved in the regulation of PA remained unknown. Here, we demonstrate that HDAC6 acts as a negative regulator of IAV infection by destabilizing PA. HDAC6 binds to and deacetylates PA, thereby promoting the proteasomal degradation of PA. Based on mass spectrometric analysis, Lys(664) of PA can be deacetylated by HDAC6, and the residue is crucial for PA protein stability. The deacetylase activity of HDAC6 is required for anti-IAV activity, because IAV infection was enhanced due to elevated IAV RNA polymerase activity upon HDAC6 depletion and an HDAC6 deacetylase dead mutant (HDAC6-DM; H216A, H611A). Finally, we also demonstrate that overexpression of HDAC6 suppresses IAV RNA polymerase activity, but HDAC6-DM does not. Taken together, our findings provide initial evidence that HDAC6 plays a negative role in IAV RNA polymerase activity by deacetylating PA and thus restricts IAV RNA transcription and replication. IMPORTANCE Influenza A virus (IAV) continues to threaten global public health due to drug resistance and the emergence of frequently mutated strains. Thus, it is critical to find new strategies to control IAV infection. Here, we discover one host protein, HDAC6, that can inhibit viral RNA polymerase activity by deacetylating PA and thus suppresses virus RNA replication and transcription. Previously, it was reported that IAV can utilize the HDAC6-dependent aggresome formation mechanism to promote virus uncoating, but HDAC6-mediated deacetylation of α-tubulin inhibits viral protein trafficking at late stages of the virus life cycle. These findings together will contribute to a better understanding of the role of HDAC6 in regulating IAV infection. Understanding the molecular mechanisms of HDAC6 at various periods of viral infection may illuminate novel strategies for developing antiviral drugs.
Collapse
|
42
|
Carlomagno Y, Chung DEC, Yue M, Kurti A, Avendano NM, Castanedes-Casey M, Hinkle KM, Jansen-West K, Daughrity LM, Tong J, Phillips V, Rademakers R, DeTure M, Fryer JD, Dickson DW, Petrucelli L, Cook C. Enhanced phosphorylation of T153 in soluble tau is a defining biochemical feature of the A152T tau risk variant. Acta Neuropathol Commun 2019; 7:10. [PMID: 30674342 PMCID: PMC6345061 DOI: 10.1186/s40478-019-0661-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Pathogenic mutations in the tau gene (microtubule associated protein tau, MAPT) are linked to the onset of tauopathy, but the A152T variant is unique in acting as a risk factor for a range of disorders including Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and dementia with Lewy bodies (DLB). In order to provide insight into the mechanism by which A152T modulates disease risk, we developed a novel mouse model utilizing somatic brain transgenesis with adeno-associated virus (AAV) to drive tau expression in vivo, and validated the model by confirming the distinct biochemical features of A152T tau in postmortem brain tissue from human carriers. Specifically, TauA152T-AAV mice exhibited increased tau phosphorylation that unlike animals expressing the pathogenic P301L mutation remained localized to the soluble fraction. To investigate the possibility that the A152T variant might alter the phosphorylation state of tau on T152 or the neighboring T153 residue, we generated a novel antibody that revealed significant accumulation of soluble tau species that were hyperphosphorylated on T153 (pT153) in TauA152T-AAV mice, which were absent the soluble fraction of TauP301L-AAV mice. Providing new insight into the role of A152T in modifying risk of tauopathy, as well as validating the TauA152T-AAV model, we demonstrate that the presence of soluble pT153-positive tau species in human postmortem brain tissue differentiates A152T carriers from noncarriers, independent of disease classification. These results implicate both phosphorylation of T153 and an altered solubility profile in the mechanism by which A152T modulates disease risk.
Collapse
|
43
|
Tan CC, Zhang XY, Tan L, Yu JT. Tauopathies: Mechanisms and Therapeutic Strategies. J Alzheimers Dis 2019; 61:487-508. [PMID: 29278892 DOI: 10.3233/jad-170187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tauopathies are morphologically, biochemically, and clinically heterogeneous neurodegenerative diseases defined by the accumulation of abnormal tau proteins in the brain. There is no effective method to prevent and reverse the tauopathies, but this gloomy picture has been changed by recent research advances. Evidences from genetic studies, experimental animal models, and molecular and cell biology have shed light on the main mechanisms of the diseases. The development of radiology and biochemistry, especially the development of PET imaging, will provide important biomarkers for the clinical diagnosis and treatment. Given the central role of tau in tauopathies, many treatments have constantly emerged, including targeting phosphorylation, targeting aggregation, increasing microtubule stabilization, tau immunization, clearance of tau, anti-inflammatory treatment, and other therapeutics. There is still a long way to go before we obtain drug therapy targeted at multifactor mechanisms.
Collapse
Affiliation(s)
- Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiao-Yan Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
44
|
Esteves AR, Palma AM, Gomes R, Santos D, Silva DF, Cardoso SM. Acetylation as a major determinant to microtubule-dependent autophagy: Relevance to Alzheimer's and Parkinson disease pathology. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2008-2023. [PMID: 30572013 DOI: 10.1016/j.bbadis.2018.11.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/29/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
Protein post-translational modifications (PTMs) that potentiate protein aggregation have been implicated in several neurological disorders, including Alzheimer's (AD) and Parkinson's disease (PD). In fact, Tau and alpha-synuclein (ASYN) undergo several PTMs potentiating their aggregation and neurotoxicity. Recent data posits a role for acetylation in Tau and ASYN aggregation. Herein we aimed to clarify the role of Sirtuin-2 (SIRT2) and HDAC6 tubulin deacetylases as well as p300 acetyltransferase in AD and PD neurodegeneration. We used transmitochondrial cybrids that recapitulate pathogenic alterations observed in sporadic PD and AD patient brains and ASYN and Tau cellular models. We confirmed that Tau protein and ASYN are microtubules (MTs)-associated proteins (MAPs). Moreover, our results suggest that α-tubulin acetylation induced by SIRT2 inhibition is functionally associated with the improvement of MT dynamic determined by decreased Tau phosphorylation and by increased Tau/tubulin and ASYN/tubulin binding. Our data provide a strong evidence for a functional role of tubulin and MAPs acetylation on autophagic vesicular traffic and cargo clearance. Additionally, we showed that an accumulation of ASYN oligomers imbalance mitochondrial dynamics, which further compromise autophagy. We also demonstrated that an increase in Tau acetylation is associated with Tau phosphorylation. We found that p300, HDAC6 and SIRT2 influences Tau phosphorylation and autophagic flux in AD. In addition, we demonstrated that p300 and HDAC6 modulate Tau and Tubulin acetylation. Overall, our data disclose the role of Tau and ASYN modifications through acetylation in AD and PD pathology, respectively. Moreover, this study indicates that MTs can be a promising therapeutic target in the field of neurodegenerative disorders in which intracellular transport is altered.
Collapse
Affiliation(s)
- A R Esteves
- CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal.
| | - A M Palma
- CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - R Gomes
- CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - D Santos
- CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - D F Silva
- CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - S M Cardoso
- CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal; Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
45
|
Mahady L, Nadeem M, Malek-Ahmadi M, Chen K, Perez SE, Mufson EJ. HDAC2 dysregulation in the nucleus basalis of Meynert during the progression of Alzheimer's disease. Neuropathol Appl Neurobiol 2018; 45:380-397. [PMID: 30252960 DOI: 10.1111/nan.12518] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
AIMS Alzheimer's disease (AD) is characterized by degeneration of cholinergic basal forebrain (CBF) neurons in the nucleus basalis of Meynert (nbM), which provides the major cholinergic input to the cortical mantle and is related to cognitive decline in patients with AD. Cortical histone deacetylase (HDAC) dysregulation has been associated with neuronal degeneration during AD progression. However, whether HDAC alterations play a role in CBF degeneration during AD onset is unknown. We investigated global HDAC protein levels and nuclear HDAC2 immunoreactivity in tissue containing the nbM, changes and their association with neurofibrillary tangles (NFTs) during the progression of AD. METHODS We used semi-quantitative western blotting and immunohistochemistry to evaluate HDAC and sirtuin (SIRT) levels in individuals that died with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), mild/moderate AD (mAD) or severe AD (sAD). Quantitative immunohistochemistry was used to identify HDAC2 protein levels in individual cholinergic nbM nuclei and their colocalization with the early phosphorylated tau marker AT8, the late-stage apoptotic tau marker TauC3 and Thioflavin-S, a marker of β-pleated sheet structures in NFTs. RESULTS In AD patients, HDAC2 protein levels were dysregulated in the basal forebrain region containing cholinergic neurons of the nbM. HDAC2 nuclear immunoreactivity was reduced in individual cholinergic nbM neurons across disease stages. HDAC2 nuclear reactivity correlated with multiple cognitive domains and with NFT formation. CONCLUSIONS These findings suggest that HDAC2 dysregulation contributes to cholinergic nbM neuronal dysfunction, NFT pathology, and cognitive decline during clinical progression of AD.
Collapse
Affiliation(s)
- L Mahady
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.,Arizona State University Interdisciplinary Graduate Program in Neuroscience, Tempe, Arizona, USA
| | - M Nadeem
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | - K Chen
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
| | - S E Perez
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - E J Mufson
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
46
|
Lee HY, Fan SJ, Huang FI, Chao HY, Hsu KC, Lin TE, Yeh TK, Lai MJ, Li YH, Huang HL, Yang CR, Liou JP. 5-Aroylindoles Act as Selective Histone Deacetylase 6 Inhibitors Ameliorating Alzheimer's Disease Phenotypes. J Med Chem 2018; 61:7087-7102. [PMID: 30028616 DOI: 10.1021/acs.jmedchem.8b00151] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This paper reports the development of a series of 5-aroylindolyl-substituted hydroxamic acids. N-Hydroxy-4-((5-(4-methoxybenzoyl)-1 H-indol-1-yl)methyl)benzamide (6) has potent inhibitory selectivity against histone deacetylase 6 (HDAC6) with an IC50 value of 3.92 nM. It decreases not only the level of phosphorylation of tau proteins but also the aggregation of tau proteins. Compound 6 also shows neuroprotective activity by triggering ubiquitination. In animal models, compound 6 is able to ameliorate the impaired learning and memory, and it crosses the blood-brain barrier after oral administration. Compound 6 can be developed as a potential treatment for Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Sheng-Jun Fan
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 10607 , Taiwan
| | - Fang-I Huang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 10607 , Taiwan
| | - Hsin-Yi Chao
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology , Taipei Medical University , Taipei 11031 , Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology , Taipei Medical University , Taipei 11031 , Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Zhunan Town , Miaoli County 35053 , Taiwan
| | - Mei-Jung Lai
- Research Center of Cancer Translational Medicine , Taipei Medical University , Taipei 11031 , Taiwan
| | - Yu-Hsuan Li
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Hsiang-Ling Huang
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 10607 , Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy , Taipei Medical University , 250 Wuxing Street , Taipei 11031 , Taiwan
| |
Collapse
|
47
|
Fan SJ, Huang FI, Liou JP, Yang CR. The novel histone de acetylase 6 inhibitor, MPT0G211, ameliorates tau phosphorylation and cognitive deficits in an Alzheimer's disease model. Cell Death Dis 2018; 9:655. [PMID: 29844403 PMCID: PMC5974403 DOI: 10.1038/s41419-018-0688-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a dreadful neurodegenerative disease that leads to severe impairment of cognitive function, leading to a drastic decline in the quality of life. The primary pathological features of AD include senile plaques (SPs) and intracellular neurofibrillary tangles (NFTs), comprising aggregated amyloid β (Aβ) and hyperphosphorylated tau protein, respectively, in the hippocampus of AD patients. Histone deacetylase 6 (HDAC6) is a key enzyme in this neurodegenerative disease, in particular, as it relates to tau hyperphosphorylation. This study aimed to investigate the protective effects and mechanism of the novel HDAC6 inhibitor, MPT0G211, using an AD model. Our results indicated that MPT0G211 significantly reduced tau phosphorylation and aggregation, the processes highly correlated with the formation of NFTs. This HDAC6 inhibitory activity resulted in an increase in acetylated Hsp90, which decreased Hsp90 and HDAC6 binding, causing ubiquitination of phosphorylated tau proteins. In addition, a significant increase of phospho-glycogen synthase kinase-3β (phospho-GSK3β) on Ser9 (the inactive form) through Akt phosphorylation was associated with the inhibition of phospho-tau Ser396 in response to MPT0G211 treatment. In AD in vivo models, MPT0G211 appeared to ameliorate learning and memory impairment in animals. Furthermore, MPT0G211 treatment reduced the amount of phosphorylated tau in the hippocampal CA1 region. In summary, MPT0G211 treatment appears to be a promising strategy for improving the AD phenotypes, including tau hyperphosphorylation and aggregation, neurodegeneration, and learning and memory impairment, making it a valuable agent for further investigation.
Collapse
Affiliation(s)
- Sheng-Jun Fan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-I Huang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
48
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
49
|
Tan Y, Ci Y, Dai X, Wu F, Guo J, Liu D, North BJ, Huo J, Zhang J. Cullin 3SPOP ubiquitin E3 ligase promotes the poly-ubiquitination and degradation of HDAC6. Oncotarget 2018; 8:47890-47901. [PMID: 28599312 PMCID: PMC5564613 DOI: 10.18632/oncotarget.18141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/15/2017] [Indexed: 01/02/2023] Open
Abstract
The histone deacetylase 6 (HDAC6) plays critical roles in human tumorigenesis and metastasis. As such, HDAC6-selective inhibitors have entered clinical trials for cancer therapy. However, the upstream regulator(s), especially ubiquitin E3 ligase(s), responsible for controlling the protein stability of HDAC6 remains largely undefined. Here, we report that Cullin 3SPOP earmarks HDAC6 for poly-ubiquitination and degradation. We found that the proteasome inhibitor MG132, or the Cullin-based E3 ligases inhibitor MLN4924, but not the autophagosome-lysosome inhibitor bafilomycin A1, stabilized endogenous HDAC6 protein in multiple cancer cell lines. Furthermore, we demonstrated that Cullin 3-based ubiquitin E3 ligase(s) primarily reduced the stability of HDAC6. Importantly, we identified SPOP, an adaptor protein of Cullin 3 family E3 ligases, specifically interacted with HDAC6, and promoted its poly-ubiquitination and subsequent degradation in cells. Notably, cancer-derived SPOP mutants disrupted their binding with HDAC6 and thereby failed to promote HDAC6 degradation. More importantly, increased cellular proliferation and migration in SPOP-depleted HCT116 colon cancer cells could be partly reversed by additional depletion of HDAC6, suggesting that HDAC6 is a key downstream effector for SPOP tumor suppressor function. Together, our data identify the tumor suppressor SPOP as an upstream negative regulator for HDAC6 stability, and SPOP loss-of-function mutations might lead to elevated levels of the HDAC6 oncoprotein to facilitate tumorigenesis and metastasis in various human cancers.
Collapse
Affiliation(s)
- Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yanpeng Ci
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Fei Wu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
50
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Haizhong T, Wei W, Musheng X, Garcia-Osta A, Oyarzabal J. Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2018; 150:506-524. [PMID: 29549837 DOI: 10.1016/j.ejmech.2018.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023]
Abstract
We have identified chemical probes that act as dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors (>1 log unit difference versus class I HDACs) to decipher the contribution of HDAC isoforms to the positive impact of dual-acting PDE5 and HDAC inhibitors on mouse models of Alzheimer's disease (AD) and fine-tune this systems therapeutics approach. Structure- and knowledge-based approaches led to the design of first-in-class molecules with the desired target compound profile: dual PDE5 and HDAC6-selective inhibitors. Compound 44b, which fulfilled the biochemical, functional and ADME-Tox profiling requirements and exhibited adequate pharmacokinetic properties, was selected as pharmacological tool compound and tested in a mouse model of AD (Tg2576) in vivo.
Collapse
Affiliation(s)
- Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Juan A Sánchez-Arias
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain; Anatomy Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Irene de Miguel
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Marta Pérez-González
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Carolina García-Barroso
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Ana Ugarte
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Ander Estella-Hermoso de Mendoza
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Elena Sáez
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Maria Espelosin
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Susana Ursua
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Tan Haizhong
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, 4th Avenue, Tianjin, 300456, PR China
| | - Wu Wei
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, 4th Avenue, Tianjin, 300456, PR China
| | - Xu Musheng
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, 4th Avenue, Tianjin, 300456, PR China
| | - Ana Garcia-Osta
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain.
| |
Collapse
|