1
|
Prasun P, Patra K. EEF2-Related Neurodevelopmental Disorder Is Clinically Recognizable. Mol Syndromol 2024; 15:403-408. [PMID: 39359947 PMCID: PMC11444702 DOI: 10.1159/000538059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction EEF2 encodes eukaryotic elongation factor 2 which catalyzes the elongation phase of protein translation. It is ubiquitously expressed and important for neuronal function. EEF2 was first associated with adult-onset spinocerebellar ataxia type 26 (SCA26). A novel neurodevelopmental disorder associated with de novo heterozygous variants in EEF2 has been described. Only 6 patients have been described in the literature thus far. A 9-year-old child with de novo novel missense variant is described here. EEF2-related neurodevelopmental disorder appears to be clinically recognizable. Case Presentation A nine-year-old male with autism spectrum disorder was referred for genetic evaluation. On examination, he had relative macrocephaly and frontal prominence. Whole exome sequencing revealed a de novo c.1225 C>T: p. (R409W) variant in exon 9 of the EEF2 gene (NM_001961.3). Discussion A comparison of clinical findings suggests that relative macrocephaly/macrocephaly and prominent forehead are consistent and easily identifiable clinical features of EEF2-related neurodevelopmental disorder. The clinical spectrum of this disorder is still emerging. EEF2-related neurodevelopmental disorder should be considered in a child with autism, developmental delays/intellectual disability, macrocephaly/relative macrocephaly, and frontal prominence.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Pediatrics, West Virginia University Medicine, Morgantown, WV, USA
| | - Kamakhya Patra
- Department of Pediatrics, West Virginia University Medicine, Morgantown, WV, USA
| |
Collapse
|
2
|
Abou Chaar W, Eranki AN, Stevens HA, Watson SL, Wong DY, Avila VS, Delfeld M, Gary AJ, Tawde S, Triebold M, Cherchi M, Xie T, Lockhart PJ, Bahlo M, Pellerin D, Dicaire MJ, Danzi M, Zuchner S, Brais BC, Perlman S, Burmeister M, Paulson H, Srinivasan S, Schut L, Bower M, Bushara K, Liao C, Shakkottai VG, Collins J, Clark HB, Das S, Fogel BL, Gomez CM. Clinical, Radiological and Pathological Features of a Large American Cohort of Spinocerebellar Ataxia (SCA27B). Ann Neurol 2024. [PMID: 39263992 DOI: 10.1002/ana.27060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVES Spinocerebellar ataxia 27B due to GAA repeat expansions in the fibroblast growth factor 14 (FGF14) gene has recently been recognized as a common cause of late-onset hereditary cerebellar ataxia. Here we present the first report of this disease in the US population, characterizing its clinical manifestations, disease progression, pathological abnormalities, and response to 4-aminopyridine in a cohort of 102 patients bearing GAA repeat expansions. METHODS We compiled a series of patients with SCA27B, recruited from 5 academic centers across the United States. Clinical manifestations and patient demographics were collected retrospectively from clinical records in an unblinded approach using a standardized form. Post-mortem analysis was done on 4 brains of patients with genetically confirmed SCA27B. RESULTS In our cohort of 102 patients with SCA27B, we found that SCA27B was a late-onset (57 ± 12.5 years) slowly progressive ataxia with an episodic component in 51% of patients. Balance and gait impairment were almost always present at disease onset. The principal finding on post-mortem examination of 4 brain specimens was loss of Purkinje neurons that was most severe in the vermis most particularly in the anterior vermis. Similar to European populations, a high percent of patients 21/28 (75%) reported a positive treatment response with 4-aminopyridine. INTERPRETATION Our study further estimates prevalence and further expands the clinical, imaging and pathological features of SCA27B, while looking at treatment response, disease progression, and survival in patients with this disease. Testing for SCA27B should be considered in all undiagnosed ataxia patients, especially those with episodic onset. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Widad Abou Chaar
- Department of Neurology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Anirudh N Eranki
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Hannah A Stevens
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Sonya L Watson
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Darice Y Wong
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Veronica S Avila
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Megan Delfeld
- Molecular Diagnostic Laboratory, University of Chicago, Chicago, Illinois, USA
| | - Alexander J Gary
- Molecular Diagnostic Laboratory, University of Chicago, Chicago, Illinois, USA
| | - Sanjukta Tawde
- Molecular Diagnostic Laboratory, University of Chicago, Chicago, Illinois, USA
| | - Malia Triebold
- Molecular Diagnostic Laboratory, University of Chicago, Chicago, Illinois, USA
| | - Marcello Cherchi
- Department of Neurology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Tao Xie
- Department of Neurology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Melanie Bahlo
- Australian Genome Research Facility, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Matt Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Bernard C Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Susan Perlman
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Margit Burmeister
- Department of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharan Srinivasan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lawrence Schut
- The Bob Allison Ataxia Clinic, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthew Bower
- The Bob Allison Ataxia Clinic, University of Minnesota, Minneapolis, Minnesota, USA
| | - Khalaf Bushara
- The Bob Allison Ataxia Clinic, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chuanhong Liao
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Vikram G Shakkottai
- Department of Neurology and O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
| | - John Collins
- Department of Radiology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Soma Das
- Department of Human Genetics, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Christopher M Gomez
- Department of Neurology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| |
Collapse
|
3
|
Popper B, Bürkle M, Ciccopiedi G, Marchioretto M, Forné I, Imhof A, Straub T, Viero G, Götz M, Schieweck R. Ribosome inactivation regulates translation elongation in neurons. J Biol Chem 2024; 300:105648. [PMID: 38219816 PMCID: PMC10869266 DOI: 10.1016/j.jbc.2024.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.
Collapse
Affiliation(s)
- Bastian Popper
- Core Facility Animal Models, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Martina Bürkle
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Giuliana Ciccopiedi
- Department for Cell Biology & Anatomy, Biomedical Center (BMC), LMU Munich, Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Marta Marchioretto
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy
| | - Ignasi Forné
- Protein Analysis Unit, Department for Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Axel Imhof
- Protein Analysis Unit, Department for Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Department of Molecular Biology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Gabriella Viero
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy
| | - Magdalena Götz
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center (BMC), LMU Munich, Munich, Germany
| | - Rico Schieweck
- Department of Physiological Genomics, Biomedical Center (BMC), LMU Munich, Munich, Germany; Department for Cell Biology & Anatomy, Biomedical Center (BMC), LMU Munich, Munich, Germany; Institute of Biophysics, National Research Council (CNR) Unit at Trento, Povo, Italy.
| |
Collapse
|
4
|
Milicevic N, Jenner L, Myasnikov A, Yusupov M, Yusupova G. mRNA reading frame maintenance during eukaryotic ribosome translocation. Nature 2024; 625:393-400. [PMID: 38030725 DOI: 10.1038/s41586-023-06780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.
Collapse
Affiliation(s)
- Nemanja Milicevic
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France
| | - Lasse Jenner
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France
| | | | - Marat Yusupov
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France
| | - Gulnara Yusupova
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
5
|
Pan Y, Lu J, Feng X, Lu S, Yang Y, Yang G, Tan S, Wang L, Li P, Luo S, Lu B. Gelation of cytoplasmic expanded CAG RNA repeats suppresses global protein synthesis. Nat Chem Biol 2023; 19:1372-1383. [PMID: 37592155 DOI: 10.1038/s41589-023-01384-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 08/19/2023]
Abstract
RNA molecules with the expanded CAG repeat (eCAGr) may undergo sol-gel phase transitions, but the functional impact of RNA gelation is completely unknown. Here, we demonstrate that the eCAGr RNA may form cytoplasmic gel-like foci that are rapidly degraded by lysosomes. These RNA foci may significantly reduce the global protein synthesis rate, possibly by sequestering the translation elongation factor eEF2. Disrupting the eCAGr RNA gelation restored the global protein synthesis rate, whereas enhanced gelation exacerbated this phenotype. eEF2 puncta were significantly enhanced in brain slices from a knock-in mouse model and from patients with Huntington's disease, which is a CAG expansion disorder expressing eCAGr RNA. Finally, neuronal expression of the eCAGr RNA by adeno-associated virus injection caused significant behavioral deficits in mice. Our study demonstrates the existence of RNA gelation inside the cells and reveals its functional impact, providing insights into repeat expansion diseases and functional impacts of RNA phase transition.
Collapse
Affiliation(s)
- Yuyin Pan
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Junmei Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinran Feng
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Shengyi Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Yang
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Guang Yang
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Shudan Tan
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Liang Wang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Guo R, Rippert A, Cook EB, Alves CAP, Bird LM, Izumi K. Expansion of clinical and variant spectrum of EEF2-related neurodevelopmental disorder: Report of two additional cases. Am J Med Genet A 2023; 191:2602-2609. [PMID: 37159414 PMCID: PMC10527330 DOI: 10.1002/ajmg.a.63230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Eukaryotic translation elongation factor 2 (eEF2), encoded by the gene EEF2, is an essential factor involved in the elongation phase of protein translation. A specific heterozygous missense variant (p.P596H) in EEF2 was originally identified in association with autosomal dominant adult-onset spinocerebellar ataxia-26 (SCA26). More recently, additional heterozygous missense variants in this gene have been described to cause a novel, childhood-onset neurodevelopmental disorder with benign external hydrocephalus. Herein, we report two unrelated individuals with a similar gene-disease correlation to support this latter observation. Patient 1 is a 7-year-old male with a previously reported, de novo missense variant (p.V28M) who has motor and speech delay, autism spectrum disorder, failure to thrive with relative macrocephaly, unilateral microphthalmia with coloboma and eczema. Patient 2 is a 4-year-old female with a novel de novo nonsense variant (p.Q145X) with motor and speech delay, hypotonia, macrocephaly with benign ventricular enlargement, and keratosis pilaris. These additional cases help to further expand the genotypic and phenotypic spectrum of this newly described EEF2-related neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Rose Guo
- Division of Human Genetics, Children’s Hospital of Philadelphia, Pennsylvania, Pennsylvania, USA
| | - Alyssa Rippert
- Division of Human Genetics, Children’s Hospital of Philadelphia, Pennsylvania, Pennsylvania, USA
| | - Edward B Cook
- Division of Human Genetics, Children’s Hospital of Philadelphia, Pennsylvania, Pennsylvania, USA
| | - Cesar Augusto P Alves
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego; Division of Dysmorphology/Genetics, Rady Children’s Hospital San Diego, San Diego, California, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children’s Hospital of Philadelphia, Pennsylvania, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Current affiliation: Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Lis A, Baptista CG, Dahlgren K, Corvi MM, Blader IJ. Identification of Toxoplasma calcium-dependent protein kinase 3 as a stress-activated elongation factor 2 kinase. mSphere 2023; 8:e0015623. [PMID: 37272703 PMCID: PMC10449493 DOI: 10.1128/msphere.00156-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/19/2023] [Indexed: 06/06/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite whose tachyzoite form causes disease via a lytic growth cycle. Its metabolic and cellular pathways are primarily designed to ensure parasite survival within a host cell. But during its lytic cycle, tachyzoites are exposed to the extracellular milieu and prolonged exposure requires activation of stress response pathways that include reprogramming the parasite proteome. Regulation of protein synthesis is therefore important for extracellular survival. We previously reported that in extracellularly stressed parasites, the elongation phase of protein synthesis is regulated by the Toxoplasma oxygen-sensing protein, PHYb. PHYb acts by promoting the activity of elongation factor eEF2, which is a GTPase that catalyzes the transfer of the peptidyl-tRNA from the A site to the P site of the ribosome. In the absence of PHYb, eEF2 is hyper-phosphorylated, which inhibits eEF2 from interacting with the ribosome. eEF2 kinases are atypical calcium-dependent kinases and BLAST analyses revealed the parasite kinase, CDPK3, as the most highly homologous to the Saccharomyces cerevisiae eEF2 kinase, RCK2. In parasites exposed to extracellular stress, loss of CDPK3 leads to decreased eEF2 phosphorylation and enhanced rates of elongation. Furthermore, co-immunoprecipitation studies revealed that CDPK3 and eEF2 interact in stressed parasites. Since CDPK3 and eEF2 normally localize to the plasma membrane and cytosol, respectively, we investigated how the two can interact. We report that under stress conditions, CDPK3 is not N-myristoylated likely leading to its cytoplasmic localization. In summary, we have identified a novel function for CDPK3 as the first protozoan extracellular stress-induced eEF2 kinase.IMPORTANCEAlthough it is an obligate intracellular parasite, Toxoplasma must be able to survive in the extracellular environment. Our previous work indicated that ensuring that elongation continues during protein synthesis is part of this stress response and that this is due to preventing phosphorylation of elongation factor 2. But the identity of the eEF2 kinase has remained unknown in Toxoplasma and other protozoan parasites. Here, we identify CDPK3 as the first protozoan eEF2 kinase and demonstrate that it is part of a stress response initiated when parasites are exposed to extracellular stress. We also demonstrate that CDPK3 engages eEF2 as a result of its relocalization from the plasma membrane to the cytosol.
Collapse
Affiliation(s)
- Agnieszka Lis
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| | - Carlos Gustavo Baptista
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| | - Kelsey Dahlgren
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| | - Maria M. Corvi
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina
| | - Ira J. Blader
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
8
|
Vila-Sanjurjo A, Mallo N, Atkins JF, Elson JL, Smith PM. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol 2023; 14:1082953. [PMID: 37457031 PMCID: PMC10349377 DOI: 10.3389/fphys.2023.1082953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - John F Atkins
- Schools of Biochemistry and Microbiology, University College Cork, Cork, Ireland
| | - Joanna L Elson
- The Bioscience Institute, Newcastle University, Newcastle uponTyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, Scotland, United Kingdom
| |
Collapse
|
9
|
Li S, Zhu C, Zhao Q, Zhang ZM, Sun P, Li Z. Ynamide Coupling Reagent for the Chemical Cross-Linking of Proteins in Live Cells. ACS Chem Biol 2023; 18:1405-1415. [PMID: 37231651 DOI: 10.1021/acschembio.3c00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) is a powerful method for the study of protein structure and protein-protein interactions (PPIs). However, the chemical probes used in the CXMS are limited to bidentate reactive warheads, and the available zero-length cross-linkers are restricted to 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). To alleviate this issue, an efficient coupling reagent, sulfonyl ynamide, was developed as a new zero-length cross-linker that can connect high-abundance carboxyl residues (D/E) with lysine (K) to form amide bonds in the absence of any catalyst. Significant improvement in the cross-linking efficiency and specificity in comparison with traditional EDC/NHS was achieved with model proteins, which includes inter- and intramolecular conjugations. The cross-linked structures were validated by X-ray crystallography. Importantly, this coupling reagent can be successfully used to capture interacting proteins in the whole proteome and can be a useful reagent for probing potential protein-protein interactions in situ.
Collapse
Affiliation(s)
- Shengrong Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chengjun Zhu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Qian Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Pinghua Sun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengqiu Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), MOE Key Laboratory of Tumor Molecular Biology, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
10
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Rodríguez-García ME, Cotrina-Vinagre FJ, Sánchez-Calvin MT, de Aragón AM, de Las Heras RS, Dinman JD, de Vries BBA, Nabais Sá MJ, Quijada-Fraile P, Martínez-Azorín F. A novel de novo variant in CASK causes a severe neurodevelopmental disorder that masks the phenotype of a novel de novo variant in EEF2. J Hum Genet 2023:10.1038/s10038-023-01150-4. [PMID: 37072624 DOI: 10.1038/s10038-023-01150-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/10/2023] [Accepted: 04/01/2023] [Indexed: 04/20/2023]
Abstract
We report a 9-year-old Spanish boy with severe psychomotor developmental delay, short stature, microcephaly and abnormalities of the brain morphology, including cerebellar atrophy. Whole-exome sequencing (WES) uncovered two novel de novo variants, a hemizygous variant in CASK (Calcium/Calmodulin Dependent Serine Protein Kinase) and a heterozygous variant in EEF2 (Eukaryotic Translation Elongation Factor 2). CASK gene encodes the peripheral plasma membrane protein CASK that is a scaffold protein located at the synapses in the brain. The c.2506-6 A > G CASK variant induced two alternative splicing events that account for the 80% of the total transcripts, which are likely to be degraded by NMD. Pathogenic variants in CASK have been associated with severe neurological disorders such as mental retardation with or without nystagmus also called FG syndrome 4 (FGS4), and intellectual developmental disorder with microcephaly and pontine and cerebellar hypoplasia (MICPCH). Heterozygous variants in EEF2, which encodes the elongation factor 2 (eEF2), have been associated to Spinocerebellar ataxia 26 (SCA26) and more recently to a childhood-onset neurodevelopmental disorder with benign external hydrocephalus. The yeast model system used to investigate the functional consequences of the c.34 A > G EEF2 variant supported its pathogenicity by demonstrating it affects translational fidelity. In conclusion, the phenotype associated with the CASK variant is more severe and masks the milder phenotype of EEF2 variant.
Collapse
Affiliation(s)
- María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i + 12), E-28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041, Madrid, Spain
| | - Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i + 12), E-28041, Madrid, Spain
| | | | | | | | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA, Nijmegen, The Netherlands
| | - Maria João Nabais Sá
- Centre for Predictive and Preventive Genetics (CGPP) and UnIGENe, Institute for Molecular and Cell Biology (IBMC), i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pilar Quijada-Fraile
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN). Instituto de Investigación Hospital 12 de Octubre (i + 12), E-28041, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041, Madrid, Spain.
| |
Collapse
|
12
|
Olson AN, Song S, Dinman JD. Deep mutational analysis of elongation factor eEF2 residues implicated in human disease to identify functionally important contacts with the ribosome. J Biol Chem 2022; 299:102771. [PMID: 36470424 PMCID: PMC9830224 DOI: 10.1016/j.jbc.2022.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
An emerging body of research is revealing mutations in elongation factor eEF2 that are implicated in both inherited and de novo neurodevelopmental disorders. Previous structural analysis has revealed that most pathogenic amino acid substitutions map to the three main points of contact between eEF2 and critical large subunit rRNA elements of the ribosome, specifically to contacts with Helix 69, Helix 95, also known as the sarcin-ricin loop, and Helix 43 of the GTPase-associated center. In order to further investigate these eEF2-ribosome interactions, we identified a series of yeast eEF2 amino acid residues based on their proximity to these functionally important rRNA elements. Based on this analysis, we constructed mutant strains to sample the full range of amino acid sidechain biochemical properties, including acidic, basic, nonpolar, and deletion (alanine) residues. These were characterized with regard to their effects on cell growth, sensitivity to ribosome-targeting antibiotics, and translational fidelity. We also biophysically characterized one mutant from each of the three main points of contact with the ribosome using CD. Collectively, our findings from these studies identified functionally critical contacts between eEF2 and the ribosome. The library of eEF2 mutants generated in this study may serve as an important resource for biophysical studies of eEF2/ribosome interactions going forward.
Collapse
Affiliation(s)
- Alexandra N Olson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Serena Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
13
|
Ma X, Li L, Li Z, Huang Z, Yang Y, Liu P, Guo D, Li Y, Wu T, Luo R, Xu J, Ye W, Jiang B, Shi L. eEF2 in the prefrontal cortex promotes excitatory synaptic transmission and social novelty behavior. EMBO Rep 2022; 23:e54543. [PMID: 35993189 PMCID: PMC9535807 DOI: 10.15252/embr.202154543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 08/24/2023] Open
Abstract
Regulation of mRNA translation is essential for brain development and function. Translation elongation factor eEF2 acts as a molecular hub orchestrating various synaptic signals to protein synthesis control and participates in hippocampus-dependent cognitive functions. However, whether eEF2 regulates other behaviors in different brain regions has been unknown. Here, we construct a line of Eef2 heterozygous (HET) mice, which show a reduction in eEF2 and protein synthesis mainly in excitatory neurons of the prefrontal cortex. The mice also show lower spine density, reduced excitability, and AMPAR-mediated synaptic transmission in pyramidal neurons of the medial prefrontal cortex (mPFC). While HET mice exhibit normal learning and memory, they show defective social behavior and elevated anxiety. Knockdown of Eef2 in excitatory neurons of the mPFC specifically is sufficient to impair social novelty preference. Either chemogenetic activation of excitatory neurons in the mPFC or mPFC local infusion of the AMPAR potentiator PF-4778574 corrects the social novelty deficit of HET mice. Collectively, we identify a novel role for eEF2 in promoting prefrontal AMPAR-mediated synaptic transmission underlying social novelty behavior.
Collapse
Affiliation(s)
- Xuanyue Ma
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Liuren Li
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Ziming Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Zhengyi Huang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Yaorong Yang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Peng Liu
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Daji Guo
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Clinical Neuroscience InstituteThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yueyao Li
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Tianying Wu
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Ruixiang Luo
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Junyu Xu
- Department of Neurobiology and Department of Rehabilitation of the Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Wen‐Cai Ye
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Lei Shi
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
14
|
Zhao H, Mata-Machado N. A Comparison of Pathogenic Eukaryotic Elongation Factor 2 (EEF2) Variants in Spinocerebellar Ataxia 26 Versus De Novo Mutations. Cureus 2022; 14:e26857. [PMID: 35847164 PMCID: PMC9282719 DOI: 10.7759/cureus.26857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 11/05/2022] Open
|
15
|
Endicott SJ, Monovich AC, Huang EL, Henry EI, Boynton DN, Beckmann LJ, MacCoss MJ, Miller RA. Lysosomal targetomics of ghr KO mice shows chaperone-mediated autophagy degrades nucleocytosolic acetyl-coA enzymes. Autophagy 2022; 18:1551-1571. [PMID: 34704522 PMCID: PMC9298451 DOI: 10.1080/15548627.2021.1990670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mice deficient in GHR (growth hormone receptor; ghr KO) have a dramatic lifespan extension and elevated levels of hepatic chaperone-mediated autophagy (CMA). Using quantitative proteomics to identify protein changes in purified liver lysosomes and whole liver lysates, we provide evidence that elevated CMA in ghr KO mice downregulates proteins involved in ribosomal structure, translation initiation and elongation, and nucleocytosolic acetyl-coA production. Following up on these initial proteomics findings, we used a cell culture approach to show that CMA is necessary and sufficient to regulate the abundance of ACLY and ACSS2, the two enzymes that produce nucleocytosolic (but not mitochondrial) acetyl-coA. Inhibition of CMA in NIH3T3 cells has been shown to lead to aberrant accumulation of lipid droplets. We show that this lipid droplet phenotype is rescued by knocking down ACLY or ACSS2, suggesting that CMA regulates lipid droplet formation by controlling ACLY and ACSS2. This evidence leads to a model of how constitutive activation of CMA can shape specific metabolic pathways in long-lived endocrine mutant mice.Abbreviations: CMA: chaperone-mediated autophagy; DIA: data-independent acquisition; ghr KO: growth hormone receptor knockout; GO: gene ontology; I-WAT: inguinal white adipose tissue; KFERQ: a consensus sequence resembling Lys-Phe-Glu-Arg-Gln; LAMP2A: lysosomal-associated membrane protein 2A; LC3-I: non-lipidated MAP1LC3; LC3-II: lipidated MAP1LC3; PBS: phosphate-buffered saline; PI3K: phosphoinositide 3-kinase.
Collapse
Affiliation(s)
| | | | - Eric L. Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Evelynn I. Henry
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Dennis N. Boynton
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Logan J. Beckmann
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Richard A. Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA,Geriatrics Center, University of Michigan, Ann Arbor, MI, USA,CONTACT Richard A. Miller Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Abstract
The term SCA refers to a phenotypically and genetically heterogeneous group of autosomal dominant spinocerebellar ataxias. Phenotypically they present as gait ataxia frequently in combination with dysarthria and oculomotor problems. Additional signs and symptoms are common and can include various pyramidal and extrapyramidal signs and intellectual impairment. Genetic causes of SCAs are either repeat expansions within disease genes or common mutations (point mutations, deletions, insertions etc.). Frequently the two types of mutations cause indistinguishable phenotypes (locus heterogeneity). This article focuses on SCAs caused by common mutations. It describes phenotype and genotype of the presently 27 types known and discusses the molecular pathogenesis in those 21 types where the disease gene has been identified. Apart from the dominant types, the article also summarizes findings in a variant caused by mutations in a mitochondrial gene. Possible common disease mechanisms are considered based on findings in the various SCAs described.
Collapse
Affiliation(s)
- Ulrich Müller
- Institute of Human Genetics, JLU-Gießen, Schlangenzahl 14, 35392, Giessen, Germany.
| |
Collapse
|
17
|
Richman TR, Ermer JA, Siira SJ, Kuznetsova I, Brosnan CA, Rossetti G, Baker J, Perks KL, Cserne Szappanos H, Viola HM, Gray N, Larance M, Hool LC, Zuryn S, Rackham O, Filipovska A. Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan. Aging Cell 2021; 20:e13408. [PMID: 34096683 PMCID: PMC8282274 DOI: 10.1111/acel.13408] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/17/2021] [Accepted: 05/08/2021] [Indexed: 12/25/2022] Open
Abstract
Changes in the rate and fidelity of mitochondrial protein synthesis impact the metabolic and physiological roles of mitochondria. Here we explored how environmental stress in the form of a high-fat diet modulates mitochondrial translation and affects lifespan in mutant mice with error-prone (Mrps12ep / ep ) or hyper-accurate (Mrps12ha / ha ) mitochondrial ribosomes. Intriguingly, although both mutations are metabolically beneficial in reducing body weight, decreasing circulating insulin and increasing glucose tolerance during a high-fat diet, they manifest divergent (either deleterious or beneficial) outcomes in a tissue-specific manner. In two distinct organs that are commonly affected by the metabolic disease, the heart and the liver, Mrps12ep / ep mice were protected against heart defects but sensitive towards lipid accumulation in the liver, activating genes involved in steroid and amino acid metabolism. In contrast, enhanced translational accuracy in Mrps12ha / ha mice protected the liver from a high-fat diet through activation of liver proliferation programs, but enhanced the development of severe hypertrophic cardiomyopathy and led to reduced lifespan. These findings reflect the complex transcriptional and cell signalling responses that differ between post-mitotic (heart) and highly proliferative (liver) tissues. We show trade-offs between the rate and fidelity of mitochondrial protein synthesis dictate tissue-specific outcomes due to commonly encountered stressful environmental conditions or aging.
Collapse
Affiliation(s)
- Tara R. Richman
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
| | - Judith A. Ermer
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
| | - Stefan J. Siira
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
| | - Christopher A. Brosnan
- Clem Jones Centre for Ageing Dementia Research Queensland Brain Institute The University of Queensland Brisbane Qld Australia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
- Telethon Kids Institute Perth Children's Hospital Nedlands WA Australia
| | - Jessica Baker
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
- Telethon Kids Institute Perth Children's Hospital Nedlands WA Australia
| | - Kara L. Perks
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
- Telethon Kids Institute Perth Children's Hospital Nedlands WA Australia
- School of Pharmacy and Biomedical Sciences Curtin University Bentley WA Australia
| | | | - Helena M. Viola
- School of Human Sciences The University of Western Australia Nedlands WA Australia
| | - Nicola Gray
- Australian National Phenome Centre Centre for Computational and Systems Medicine Health Futures Institute Murdoch University Perth WA Australia
| | - Mark Larance
- Charles Perkins Centre School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Livia C. Hool
- School of Human Sciences The University of Western Australia Nedlands WA Australia
- Victor Chang Cardiac Research Institute Sydney NSW Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research Queensland Brain Institute The University of Queensland Brisbane Qld Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
- Telethon Kids Institute Perth Children's Hospital Nedlands WA Australia
- School of Pharmacy and Biomedical Sciences Curtin University Bentley WA Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research QEII Medical Centre Nedlands WA Australia
- ARC Centre of Excellence in Synthetic Biology QEII Medical Centre Nedlands WA Australia
- Centre for Medical Research QEII Medical Centre, The University of Western Australia Nedlands WA Australia
- Telethon Kids Institute Perth Children's Hospital Nedlands WA Australia
- Victor Chang Cardiac Research Institute Sydney NSW Australia
| |
Collapse
|
18
|
Nabais Sá MJ, Olson AN, Yoon G, Nimmo GAM, Gomez CM, Willemsen MA, Millan F, Schneider A, Pfundt R, de Brouwer APM, Dinman JD, de Vries BBA. De Novo variants in EEF2 cause a neurodevelopmental disorder with benign external hydrocephalus. Hum Mol Genet 2020; 29:3892-3899. [PMID: 33355653 DOI: 10.1093/hmg/ddaa270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/15/2022] Open
Abstract
Eukaryotic translation elongation factor 2 (eEF2) is a key regulatory factor in gene expression that catalyzes the elongation stage of translation. A functionally impaired eEF2, due to a heterozygous missense variant in the EEF2 gene, was previously reported in one family with spinocerebellar ataxia-26 (SCA26), an autosomal dominant adult-onset pure cerebellar ataxia. Clinical exome sequencing identified de novo EEF2 variants in three unrelated children presenting with a neurodevelopmental disorder (NDD). Individuals shared a mild phenotype comprising motor delay and relative macrocephaly associated with ventriculomegaly. Populational data and bioinformatic analysis underscored the pathogenicity of all de novo missense variants. The eEF2 yeast model strains demonstrated that patient-derived variants affect cellular growth, sensitivity to translation inhibitors and translational fidelity. Consequently, we propose that pathogenic variants in the EEF2 gene, so far exclusively associated with late-onset SCA26, can cause a broader spectrum of neurologic disorders, including childhood-onset NDDs and benign external hydrocephalus.
Collapse
Affiliation(s)
- Maria J Nabais Sá
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA Nijmegen, The Netherlands.,Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, 4050-313 Porto, Portugal
| | - Alexandra N Olson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics and Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Graeme A M Nimmo
- Fred A Litwin Family Centre for Genetic Medicine, University Health Network/Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | | | - Michèl A Willemsen
- Department of Pediatric Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, Amalia Children's Hospital, 6525 GA Nijmegen, The Netherlands
| | | | - Alexandra Schneider
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA Nijmegen, The Netherlands
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA Nijmegen, The Netherlands
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
19
|
Skariah G, Todd PK. Translational control in aging and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1628. [PMID: 32954679 DOI: 10.1002/wrna.1628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Protein metabolism plays central roles in age-related decline and neurodegeneration. While a large body of research has explored age-related changes in protein degradation, alterations in the efficiency and fidelity of protein synthesis with aging are less well understood. Age-associated changes occur in both the protein synthetic machinery (ribosomal proteins and rRNA) and within regulatory factors controlling translation. At the same time, many of the interventions that prolong lifespan do so in part by pre-emptively decreasing protein synthesis rates to allow better harmonization to age-related declines in protein catabolism. Here we review the roles of translation regulation in aging, with a specific focus on factors implicated in age-related neurodegeneration. We discuss how emerging technologies such as ribosome profiling and superior mass spectrometric approaches are illuminating age-dependent mRNA-specific changes in translation rates across tissues to reveal a critical interplay between catabolic and anabolic pathways that likely contribute to functional decline. These new findings point to nodes in posttranscriptional gene regulation that both contribute to aging and offer targets for therapy. This article is categorized under: Translation > Translation Regulation Translation > Ribosome Biogenesis Translation > Translation Mechanisms.
Collapse
Affiliation(s)
- Geena Skariah
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Ann Arbor VA Healthcare System, Department of Veterans Affairs, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci 2020; 14:707. [PMID: 32765211 PMCID: PMC7378801 DOI: 10.3389/fnins.2020.00707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.
Collapse
Affiliation(s)
| | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Mild epileptic phenotype associates with de novo eef1a2 mutation: Case report and review. Brain Dev 2020; 42:77-82. [PMID: 31477274 DOI: 10.1016/j.braindev.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mutations in the elongation factor 1 alpha 2 (EEF1A2) gene have been recently shown to cause epileptic encephalopathy (MIM # 616409 EIEE33) associated with neurodevelopmental disorders such as intellectual disability, autistic spectrum disorder, hypotonia and dysmorphic facial features. EEF1A2 protein is involved in protein synthesis, suppression of apoptosis, regulation of actin function and cytoskeletal structure. To date, only sixteen patients with EEF1A2 mutations have been reported. CASE REPORT We described a new case, a boy with severe intellectual disability with absent speech, autistic spectrum disorder, mild dysmorphic facial features, failure to thrive and epilepsy associated to a de novo heterozygous missense mutation in EEF1A2 (c.364G>A; p.Glu122Lys) identified by next generation sequencing; it was already reported in other studies. Most clinical features are shared by all individuals with EEF1A2 mutation, but unlike others reports our patient showed a mild epileptic phenotype: epilepsy developed in late infancy and was well-controlled with antiepileptic drugs. Moreover, at the onset of epilepsy, interictal wake/sleep electroencephalograms showed typical pattern that disappeared with age. CONCLUSION This report focused that EEF1A2 mutations should be considered not only in patients with epileptic encephalopathy, but also in those with less severe epilepsy. A typical EEG pattern may be a biomarker for EEF1A2 mutation, but further investigations and longitudinal clinical observations are required.
Collapse
|
22
|
Szpisjak L, Zadori D, Klivenyi P, Vecsei L. Clinical Characteristics and Possible Drug Targets in Autosomal Dominant Spinocerebellar Ataxias. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:279-293. [DOI: 10.2174/1871527318666190311155846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 12/28/2022]
Abstract
Background & Objective:
The autosomal dominant spinocerebellar ataxias (SCAs) belong
to a large and expanding group of neurodegenerative disorders. SCAs comprise more than 40 subtypes
characterized by progressive ataxia as a common feature. The most prevalent diseases among SCAs
are caused by CAG repeat expansions in the coding-region of the causative gene resulting in polyglutamine
(polyQ) tract formation in the encoded protein. Unfortunately, there is no approved therapy to
treat cerebellar motor dysfunction in SCA patients. In recent years, several studies have been conducted
to recognize the clinical and pathophysiological aspects of the polyQ SCAs more accurately.
This scientific progress has provided new opportunities to develop promising gene therapies, including
RNA interference and antisense oligonucleotides.
Conclusion:
The aim of the current work is to give a brief summary of the clinical features of SCAs
and to review the cardinal points of pathomechanisms of the most common polyQ SCAs. In addition,
we review the last few year’s promising gene suppression therapies of the most frequent polyQ SCAs
in animal models, on the basis of which human trials may be initiated in the near future.
Collapse
Affiliation(s)
- Laszlo Szpisjak
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Denes Zadori
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Peter Klivenyi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Laszlo Vecsei
- Department of Neurology, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado-Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.
Collapse
|
24
|
Delaidelli A, Jan A, Herms J, Sorensen PH. Translational control in brain pathologies: biological significance and therapeutic opportunities. Acta Neuropathol 2019; 137:535-555. [PMID: 30739199 DOI: 10.1007/s00401-019-01971-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Messenger RNA (mRNA) translation is the terminal step in protein synthesis, providing a crucial regulatory checkpoint for this process. Translational control allows specific cell types to respond to rapid changes in the microenvironment or to serve specific functions. For example, neurons use mRNA transport to achieve local protein synthesis at significant distances from the nucleus, the site of RNA transcription. Altered expression or functions of the various components of the translational machinery have been linked to several pathologies in the central nervous system. In this review, we provide a brief overview of the basic principles of mRNA translation, and discuss alterations of this process relevant to CNS disease conditions, with a focus on brain tumors and chronic neurological conditions. Finally, synthesizing this knowledge, we discuss the opportunities to exploit the biology of altered mRNA translation for novel therapies in brain disorders, as well as how studying these alterations can shed new light on disease mechanisms.
Collapse
Affiliation(s)
- Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Asad Jan
- Department of Biomedicine, Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000, Aarhus C, Denmark
| | - Jochen Herms
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Schillerstraße 44, 80336, Munich, Germany
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
25
|
Hawer H, Ütkür K, Arend M, Mayer K, Adrian L, Brinkmann U, Schaffrath R. Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast. PLoS One 2018; 13:e0205870. [PMID: 30335802 PMCID: PMC6193676 DOI: 10.1371/journal.pone.0205870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 01/23/2023] Open
Abstract
In eukaryotes, the modification of an invariant histidine (His-699 in yeast) residue in translation elongation factor 2 (EF2) with diphthamide involves a conserved pathway encoded by the DPH1-DPH7 gene network. Diphthamide is the target for diphtheria toxin and related lethal ADP ribosylases, which collectively kill cells by inactivating the essential translocase function of EF2 during mRNA translation and protein biosynthesis. Although this notion emphasizes the pathological importance of diphthamide, precisely why cells including our own require EF2 to carry it, is unclear. Mining the synthetic genetic array (SGA) landscape from the budding yeast Saccharomyces cerevisiae has revealed negative interactions between EF2 (EFT1-EFT2) and diphthamide (DPH1-DPH7) gene deletions. In line with these correlations, we confirm in here that loss of diphthamide modification (dphΔ) on EF2 combined with EF2 undersupply (eft2Δ) causes synthetic growth phenotypes in the composite mutant (dphΔ eft2Δ). These reflect negative interference with cell performance under standard as well as thermal and/or chemical stress conditions, cell growth rates and doubling times, competitive fitness, cell viability in the presence of TOR inhibitors (rapamycin, caffeine) and translation indicator drugs (hygromycin, anisomycin). Together with significantly suppressed tolerance towards EF2 inhibition by cytotoxic DPH5 overexpression and increased ribosomal -1 frame-shift errors in mutants lacking modifiable pools of EF2 (dphΔ, dphΔ eft2Δ), our data indicate that diphthamide is important for the fidelity of the EF2 translocation function during mRNA translation.
Collapse
Affiliation(s)
- Harmen Hawer
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Koray Ütkür
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Meike Arend
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany
| | - Lorenz Adrian
- AG Geobiochemie, Department Isotopenbiogeochemie, Helmholtz-Zentrum für Umweltforschung GmbH–UFZ, Leipzig, Germany
- Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail:
| |
Collapse
|
26
|
Nguyen LT, Zacchi LF, Schulz BL, Moore SS, Fortes MRS. Adipose tissue proteomic analyses to study puberty in Brahman heifers. J Anim Sci 2018; 96:2392-2398. [PMID: 29788311 DOI: 10.1093/jas/sky128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/17/2018] [Indexed: 12/31/2022] Open
Abstract
The adipose tissue has been recognized as an active endocrine organ which can modulate numerous physiological processes such as metabolism, appetite, immunity, and reproduction. The aim of this study was to look for differentially abundant proteins and their biological functions in the abdominal adipose tissue between pre- and postpubertal Brahman heifers. Twelve Brahman heifers were divided into 2 groups and paired on slaughter day. Prepubertal heifers had never ovulated and postpubertal heifers were slaughtered on the luteal phase of their second estrous cycle. After ensuring the occurrence of puberty in postpubertal heifers, abdominal adipose tissue samples were collected. Mass spectrometry proteomic analysis identified 646 proteins and revealed that 171 proteins showed differential abundance in adipose tissue between the pre- and postpuberty groups (adjusted P-value < 0.05). Data are available via ProteomeXchange with identifier PXD009452. Using a list of 51 highly differentially abundant proteins as the target (adjusted P-value < 10-5), we found 14 enriched pathways. The results indicated that gluconeogenesis was enhanced when puberty approached. The metabolism of glucose, lipids, and AA in the adipose tissue mainly participated in oxidation and energy supply for heifers when puberty occurred. Our study also revealed the differentially abundant proteins were enriched for estrogen signaling and PI3K-Akt signaling pathways, which are known integrators of metabolism and reproduction. These results suggest new candidate proteins that may contribute to a better understanding of the signaling mechanisms that relate adipose tissue function to puberty. Protein-protein interaction network analysis identified 4 hub proteins that had the highest degrees of connection: PGK1, ALDH5A1, EEF2, and LDHB. Highly connected proteins are likely to influence the functions of all differentially abundant proteins identified, directly or indirectly.
Collapse
Affiliation(s)
- L T Nguyen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - L F Zacchi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - B L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - S S Moore
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - M R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Dever TE, Dinman JD, Green R. Translation Elongation and Recoding in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032649. [PMID: 29610120 DOI: 10.1101/cshperspect.a032649] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we highlight the current understanding of translation elongation and recoding in eukaryotes. In addition to providing an overview of the process, recent advances in our understanding of the role of the factor eIF5A in both translation elongation and termination are discussed. We also highlight mechanisms of translation recoding with a focus on ribosomal frameshifting during elongation. We see that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
28
|
Huang M, Verbeek DS. Why do so many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? Neurosci Lett 2018; 688:49-57. [PMID: 29421540 DOI: 10.1016/j.neulet.2018.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
The genetically heterozygous spinocerebellar ataxias are all characterized by cerebellar atrophy and pervasive Purkinje Cell degeneration. Up to date, more than 35 functionally diverse spinocerebellar ataxia genes have been identified. The main question that remains yet unsolved is why do some many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? To address this question it is important to identify intrinsic pathways important for Purkinje Cell function and survival. In this review, we discuss the current consensus on shared mechanisms underlying the pervasive Purkinje Cell loss in spinocerebellar ataxia. Additionally, using recently published cell type specific expression data, we identified several Purkinje Cell-specific genes and discuss how the corresponding pathways might underlie the vulnerability of Purkinje Cells in response to the diverse genetic insults causing spinocerebellar ataxia.
Collapse
Affiliation(s)
- Miaozhen Huang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
29
|
Tripathy D, Vignoli B, Ramesh N, Polanco MJ, Coutelier M, Stephen CD, Canossa M, Monin ML, Aeschlimann P, Turberville S, Aeschlimann D, Schmahmann JD, Hadjivassiliou M, Durr A, Pandey UB, Pennuto M, Basso M. Mutations in TGM6 induce the unfolded protein response in SCA35. Hum Mol Genet 2018; 26:3749-3762. [PMID: 28934387 DOI: 10.1093/hmg/ddx259] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 12/23/2022] Open
Abstract
Spinocerebellar ataxia type 35 (SCA35) is a rare autosomal-dominant neurodegenerative disease caused by mutations in the TGM6 gene, which codes for transglutaminase 6 (TG6). Mutations in TG6 induce cerebellar degeneration by an unknown mechanism. We identified seven patients bearing new mutations in TGM6. To gain insights into the molecular basis of mutant TG6-induced neurotoxicity, we analyzed all the seven new TG6 mutants and the five TG6 mutants previously linked to SCA35. We found that the wild-type (TG6-WT) protein mainly localized to the nucleus and perinuclear area, whereas five TG6 mutations showed nuclear depletion, increased accumulation in the perinuclear area, insolubility and loss of enzymatic function. Aberrant accumulation of these TG6 mutants in the perinuclear area led to activation of the unfolded protein response (UPR), suggesting that specific TG6 mutants elicit an endoplasmic reticulum stress response. Mutations associated with activation of the UPR caused death of primary neurons and reduced the survival of novel Drosophila melanogaster models of SCA35. These results indicate that mutations differently impacting on TG6 function cause neuronal dysfunction and death through diverse mechanisms and highlight the UPR as a potential therapeutic target for patient treatment.
Collapse
Affiliation(s)
- Debasmita Tripathy
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Beatrice Vignoli
- Laboratory of Neural Stem Cells and Neurogenesis, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Nandini Ramesh
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Jose Polanco
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Marie Coutelier
- INSERM U 1127, Centre National de la Recherche Scientifique UMR 7225, UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Institut du Cerveau et de la Moelle Epinière, 75013 Paris, France
| | - Christopher D Stephen
- Ataxia Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Canossa
- Laboratory of Neural Stem Cells and Neurogenesis, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Marie-Lorraine Monin
- INSERM U 1127, Centre National de la Recherche Scientifique UMR 7225, UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Institut du Cerveau et de la Moelle Epinière, 75013 Paris, France
| | - Pascale Aeschlimann
- Matrix Biology & Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Shannon Turberville
- Matrix Biology & Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Daniel Aeschlimann
- Matrix Biology & Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Jeremy D Schmahmann
- Ataxia Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Alexandra Durr
- INSERM U 1127, Centre National de la Recherche Scientifique UMR 7225, UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Institut du Cerveau et de la Moelle Epinière, 75013 Paris, France
| | - Udai B Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Maria Pennuto
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| |
Collapse
|
30
|
Kapur M, Ackerman SL. mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease. Trends Genet 2018; 34:218-231. [PMID: 29352613 DOI: 10.1016/j.tig.2017.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding. We draw on studies from genetic models, including yeast and mice, to enhance our understanding of the translational defects observed in these diseases. Finally, we emphasize the importance of tRNA, their associated enzymes, and the inextricable link between accuracy and efficiency in the maintenance of translational fidelity.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
|
32
|
Kapur M, Monaghan CE, Ackerman SL. Regulation of mRNA Translation in Neurons-A Matter of Life and Death. Neuron 2017; 96:616-637. [PMID: 29096076 DOI: 10.1016/j.neuron.2017.09.057] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases. Dysfunction of central components of the elongation machinery, such as the tRNAs and their associated enzymes, can cause translational infidelity and ribosome stalling, resulting in neurodegeneration. Taken together, dysregulation of mRNA translation is emerging as a unifying mechanism underlying the pathogenesis of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin E Monaghan
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets CJLM, de Boer-Bergsma JJ, van der Vries G, Dooijes D, Bampi GB, van Diemen C, Brunt E, Ippel E, Kremer B, Vlak M, Adir N, Wijmenga C, van de Warrenburg BPC, Franke L, Sinke RJ, Verbeek DS. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 2017; 140:2860-2878. [PMID: 29053796 DOI: 10.1093/brain/awx251] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/05/2017] [Indexed: 12/17/2022] Open
Abstract
The autosomal dominant cerebellar ataxias, referred to as spinocerebellar ataxias in genetic nomenclature, are a rare group of progressive neurodegenerative disorders characterized by loss of balance and coordination. Despite the identification of numerous disease genes, a substantial number of cases still remain without a genetic diagnosis. Here, we report five novel spinocerebellar ataxia genes, FAT2, PLD3, KIF26B, EP300, and FAT1, identified through a combination of exome sequencing in genetically undiagnosed families and targeted resequencing of exome candidates in a cohort of singletons. We validated almost all genes genetically, assessed damaging effects of the gene variants in cell models and further consolidated a role for several of these genes in the aetiology of spinocerebellar ataxia through network analysis. Our work links spinocerebellar ataxia to alterations in synaptic transmission and transcription regulation, and identifies these as the main shared mechanisms underlying the genetically diverse spinocerebellar ataxia types.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anna Duarri
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Michiel R Fokkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Juha M Karjalainen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo J L M Smeets
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jelkje J de Boer-Bergsma
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerben van der Vries
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dennis Dooijes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Giovana B Bampi
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cleo van Diemen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ewout Brunt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elly Ippel
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Berry Kremer
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Monique Vlak
- Department of Neurology, Medical Center Haaglanden and Bronovo-Nebo, Den Hague, The Netherlands
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Israel
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Richard J Sinke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat Rev Neurosci 2017; 18:613-626. [PMID: 28855740 PMCID: PMC6420820 DOI: 10.1038/nrn.2017.92] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.
Collapse
Affiliation(s)
- Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
35
|
Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, Valter R, Anheim M, Behin A, Castelnovo G, Charles P, David A, Ewenczyk C, Fradin M, Goizet C, Hannequin D, Labauge P, Riant F, Sarda P, Sznajer Y, Tison F, Ullmann U, Van Maldergem L, Mochel F, Brice A, Stevanin G, Durr A. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain 2017; 140:1579-1594. [PMID: 28444220 DOI: 10.1093/brain/awx081] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/05/2017] [Indexed: 12/21/2022] Open
Abstract
Autosomal dominant cerebellar ataxias have a marked heterogeneous genetic background, with mutations in 34 genes identified so far. This large amount of implicated genes accounts for heterogeneous clinical presentations, making genotype-phenotype correlations a major challenge in the field. While polyglutamine ataxias, linked to CAG repeat expansions in genes such as ATXN1, ATXN2, ATXN3, ATXN7, CACNA1A and TBP, have been extensively characterized in large cohorts, there is a need for comprehensive assessment of frequency and phenotype of more 'conventional' ataxias. After exclusion of CAG/polyglutamine expansions in spinocerebellar ataxia genes in 412 index cases with dominantly inherited cerebellar ataxias, we aimed to establish the relative frequencies of mutations in other genes, with an approach combining panel sequencing and TaqMan® polymerase chain reaction assay. We found relevant genetic variants in 59 patients (14.3%). The most frequently mutated were channel genes [CACNA1A (n = 16), KCND3 (n = 4), KCNC3 (n = 2) and KCNA1 (n = 2)]. Deletions in ITPR1 (n = 11) were followed by biallelic variants in SPG7 (n = 9). Variants in AFG3L2 (n = 7) came next in frequency, and variants were rarely found in STBN2 (n = 2), ELOVL5, FGF14, STUB1 and TTBK2 (n = 1 each). Interestingly, possible risk factor variants were detected in SPG7 and POLG. Clinical comparisons showed that ataxias due to channelopathies had a significantly earlier age at onset with an average of 24.6 years, versus 40.9 years for polyglutamine expansion spinocerebellar ataxias and 37.8 years for SPG7-related forms (P = 0.001). In contrast, disease duration was significantly longer in the former (20.5 years versus 9.3 and 13.7, P=0.001), though for similar functional stages, indicating slower progression of the disease. Of interest, intellectual deficiency was more frequent in channel spinocerebellar ataxias, while cognitive impairment in adulthood was similar among the three groups. Similar differences were found among a single gene group, comparing 23 patients with CACNA1A expansions (spinocerebellar ataxia 6) to 22 patients with CACNA1A point mutations, which had lower average age at onset (25.2 versus 47.3 years) with longer disease duration (18.7 versus 10.9), but lower severity indexes (0.39 versus 0.44), indicating slower progression of the disease. In conclusion, we identified relevant genetic variations in up to 15% of cases after exclusion of polyglutamine expansion spinocerebellar ataxias, and confirmed CACNA1A and SPG7 as major ataxia genes. We could delineate firm genotype-phenotype correlations that are important for genetic counselling and of possible prognostic value.
Collapse
Affiliation(s)
- Marie Coutelier
- INSERM U 1127, 75013, Paris, France.,Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France.,UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, 75013, Paris, France.,Institut du Cerveau et de la Moelle Epinière, 75013, Paris, France.,Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, 1200, Brussels, Belgium.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014, Paris, France
| | - Giulia Coarelli
- INSERM U 1127, 75013, Paris, France.,Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France.,UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, 75013, Paris, France.,Institut du Cerveau et de la Moelle Epinière, 75013, Paris, France.,Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013, Paris, France
| | - Marie-Lorraine Monin
- Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013, Paris, France
| | - Juliette Konop
- INSERM U 1127, 75013, Paris, France.,Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France.,UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, 75013, Paris, France.,Institut du Cerveau et de la Moelle Epinière, 75013, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014, Paris, France
| | - Claire-Sophie Davoine
- INSERM U 1127, 75013, Paris, France.,Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France.,UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, 75013, Paris, France.,Institut du Cerveau et de la Moelle Epinière, 75013, Paris, France
| | - Christelle Tesson
- INSERM U 1127, 75013, Paris, France.,Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France.,UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, 75013, Paris, France.,Institut du Cerveau et de la Moelle Epinière, 75013, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014, Paris, France
| | - Rémi Valter
- INSERM U 1127, 75013, Paris, France.,Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France.,UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, 75013, Paris, France.,Institut du Cerveau et de la Moelle Epinière, 75013, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014, Paris, France
| | - Mathieu Anheim
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67200, Strasbourg, France.,Département de Neurologie, Hôpital de Hautepierre, CHU de Strasbourg, 67100, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400, Illkirch, France
| | - Anthony Behin
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, 75013, Paris, France
| | - Giovanni Castelnovo
- Service de Neurologie, Centre Hospitalier Universitaire Caremeau, 30900, Nîmes, France
| | - Perrine Charles
- Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013, Paris, France
| | - Albert David
- Service de Génétique Médicale Centre Hospitalier Universitaire de Nantes, 44093, Nantes, France
| | - Claire Ewenczyk
- Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013, Paris, France
| | - Mélanie Fradin
- Service de Génétique Médicale, CHU de Rennes, 35033, Rennes, France.,Service de Génétique Médicale, Centre Hospitalier de Saint Brieuc, 22000, Saint-Brieuc, France
| | - Cyril Goizet
- INSERM U1211, Université de Bordeaux, Laboratoire Maladies Rares, Génétique et Métabolisme, 33000, Bordeaux, France.,CHU Bordeaux, Service de Génétique Médicale, 33000, Bordeaux, France
| | - Didier Hannequin
- Service de Génétique, Service de Neurologie, Inserm U1079, Rouen University Hospital, 76031, Rouen, France
| | - Pierre Labauge
- Service de Neurologie, Hopital Gui de Chauliac, CHU de Montpellier, 34295, Montpellier Cedex 5, France
| | - Florence Riant
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Lariboisiere-Fernand Widal, Laboratoire de Génétique, 75010, Paris, France
| | - Pierre Sarda
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, CHU de Montpellier, 34295 Montpellier, France
| | - Yves Sznajer
- Cliniques Universitaires Saint-Luc, Centre for Human Genetics, 1200, Brussels, Belgium
| | - François Tison
- Institut des Maladies Neurodégénératives, CHU de Bordeaux, Université de Bordeaux, CNRS UMR 5293, 33076, Bordeaux, France
| | - Urielle Ullmann
- Centre de génétique humaine, Institut de Pathologie et de Génétique, 6041, Gosselies, Belgium
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, 25000, Besançon, France.,Centre de Référence pour les Maladies Métaboliques, Université de Liège, 4000, Liège, Belgium
| | - Fanny Mochel
- INSERM U 1127, 75013, Paris, France.,Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France.,UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, 75013, Paris, France.,Institut du Cerveau et de la Moelle Epinière, 75013, Paris, France.,Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013, Paris, France.,Neurometabolic Research Group, University Pierre and Marie Curie, 75013, Paris, France
| | - Alexis Brice
- INSERM U 1127, 75013, Paris, France.,Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France.,UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, 75013, Paris, France.,Institut du Cerveau et de la Moelle Epinière, 75013, Paris, France.,Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013, Paris, France
| | - Giovanni Stevanin
- INSERM U 1127, 75013, Paris, France.,Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France.,UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, 75013, Paris, France.,Institut du Cerveau et de la Moelle Epinière, 75013, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014, Paris, France.,Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013, Paris, France
| | - Alexandra Durr
- INSERM U 1127, 75013, Paris, France.,Centre National de la Recherche Scientifique UMR 7225, 75013, Paris, France.,UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, 75013, Paris, France.,Institut du Cerveau et de la Moelle Epinière, 75013, Paris, France.,Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, 75013, Paris, France
| | | |
Collapse
|
36
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
37
|
Nibbeling EAR, Delnooz CCS, de Koning TJ, Sinke RJ, Jinnah HA, Tijssen MAJ, Verbeek DS. Using the shared genetics of dystonia and ataxia to unravel their pathogenesis. Neurosci Biobehav Rev 2017; 75:22-39. [PMID: 28143763 DOI: 10.1016/j.neubiorev.2017.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/09/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
In this review we explore the similarities between spinocerebellar ataxias and dystonias, and suggest potentially shared molecular pathways using a gene co-expression network approach. The spinocerebellar ataxias are a group of neurodegenerative disorders characterized by coordination problems caused mainly by atrophy of the cerebellum. The dystonias are another group of neurological movement disorders linked to basal ganglia dysfunction, although evidence is now pointing to cerebellar involvement as well. Our gene co-expression network approach identified 99 shared genes and showed the involvement of two major pathways: synaptic transmission and neurodevelopment. These pathways overlapped in the two disorders, with a large role for GABAergic signaling in both. The overlapping pathways may provide novel targets for disease therapies. We need to prioritize variants obtained by whole exome sequencing in the genes associated with these pathways in the search for new pathogenic variants, which can than be used to help in the genetic counseling of patients and their families.
Collapse
Affiliation(s)
- Esther A R Nibbeling
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cathérine C S Delnooz
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Tom J de Koning
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Richard J Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory Clinic, Atlanta, USA
| | - Marina A J Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
38
|
Perkins E, Suminaite D, Jackson M. Cerebellar ataxias: β-III spectrin's interactions suggest common pathogenic pathways. J Physiol 2016; 594:4661-76. [PMID: 26821241 PMCID: PMC4983618 DOI: 10.1113/jp271195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of disorders all characterised by postural abnormalities, motor deficits and cerebellar degeneration. Animal and in vitro models have revealed β‐III spectrin, a cytoskeletal protein present throughout the soma and dendritic tree of cerebellar Purkinje cells, to be required for the maintenance of dendritic architecture and for the trafficking and/or stabilisation of several membrane proteins: ankyrin‐R, cell adhesion molecules, metabotropic glutamate receptor‐1 (mGluR1), voltage‐gated sodium channels (Nav) and glutamate transporters. This scaffold of interactions connects β‐III spectrin to a wide variety of proteins implicated in the pathology of many SCAs. Heterozygous mutations in the gene encoding β‐III spectrin (SPTBN2) underlie SCA type‐5 whereas homozygous mutations cause spectrin associated autosomal recessive ataxia type‐1 (SPARCA1), an infantile form of ataxia with cognitive impairment. Loss‐of β‐III spectrin function appears to underpin cerebellar dysfunction and degeneration in both diseases resulting in thinner dendrites, excessive dendritic protrusion with loss of planarity, reduced resurgent sodium currents and abnormal glutamatergic neurotransmission. The initial physiological consequences are a decrease in spontaneous activity and excessive excitation, likely to be offsetting each other, but eventually hyperexcitability gives rise to dark cell degeneration and reduced cerebellar output. Similar molecular mechanisms have been implicated for SCA1, 2, 3, 7, 13, 14, 19, 22, 27 and 28, highlighting alterations to intrinsic Purkinje cell activity, dendritic architecture and glutamatergic transmission as possible common mechanisms downstream of various loss‐of‐function primary genetic defects. A key question for future research is whether similar mechanisms underlie progressive cerebellar decline in normal ageing.
![]()
Collapse
Affiliation(s)
- Emma Perkins
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Daumante Suminaite
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Mandy Jackson
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| |
Collapse
|
39
|
Lam WWK, Millichap JJ, Soares DC, Chin R, McLellan A, FitzPatrick DR, Elmslie F, Lees MM, Schaefer GB, Abbott CM. Novel de novo EEF1A2 missense mutations causing epilepsy and intellectual disability. Mol Genet Genomic Med 2016; 4:465-74. [PMID: 27441201 PMCID: PMC4947865 DOI: 10.1002/mgg3.219] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Exome sequencing has led to the discovery of mutations in novel causative genes for epilepsy. One such gene is EEF1A2, encoding a neuromuscular specific translation elongation factor, which has been found to be mutated de novo in five cases of severe epilepsy. We now report on a further seven cases, each with a different mutation, of which five are newly described. METHODS New cases were identified and sequenced through the Deciphering Developmental Disabilities project, via direct contact with neurologists or geneticists, or recruited via our website. RESULTS All the mutations cause epilepsy and intellectual disability, but with a much wider range of severity than previously identified. All new cases share specific subtle facial dysmorphic features. Each mutation occurs at an evolutionarily highly conserved amino acid position indicating strong structural or functional selective pressure. CONCLUSIONS EEF1A2 should be considered as a causative gene not only in cases of epileptic encephalopathy but also in children with less severe epilepsy and intellectual disability. The emergence of a possible discernible phenotype, a broad nasal bridge, tented upper lip, everted lower lip and downturned corners of the mouth may help in identifying patients with mutations in EEF1A2.
Collapse
Affiliation(s)
- Wayne W K Lam
- South East of Scotland Clinical Genetics ServiceCrewe RoadEdinburghUK; Centre for Genomic & Experimental MedicineMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General HospitalCrewe RoadEdinburghEH4 2XUUK; Muir Maxwell Epilepsy CentreUniversity of Edinburgh20 Sylvan PlaceEdinburghEH9 1UWUK; Paediatric NeurosciencesRoyal Hospital for Sick ChildrenSciennes RoadEdinburghEH9 1LFUK
| | - John J Millichap
- Epilepsy Center Departments of Pediatrics and Neurology Ann & Robert H. Lurie Children's Hospital of Chicago Northwestern University Feinberg School of Medicine 225 E Chicago Ave Box #29 Chicago Illinois 60611
| | - Dinesh C Soares
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General HospitalCrewe RoadEdinburghEH4 2XUUK; MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General HospitalCrewe RoadEdinburghEH4 2XUUK
| | - Richard Chin
- Muir Maxwell Epilepsy CentreUniversity of Edinburgh20 Sylvan PlaceEdinburghEH9 1UWUK; Paediatric NeurosciencesRoyal Hospital for Sick ChildrenSciennes RoadEdinburghEH9 1LFUK; Child Life and HealthUniversity of Edinburgh20 Sylvan PlaceEdinburghEH9 1UWUK
| | - Ailsa McLellan
- Paediatric Neurosciences Royal Hospital for Sick Children Sciennes Road Edinburgh EH9 1LF UK
| | - David R FitzPatrick
- Paediatric NeurosciencesRoyal Hospital for Sick ChildrenSciennes RoadEdinburghEH9 1LFUK; MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General HospitalCrewe RoadEdinburghEH4 2XUUK
| | - Frances Elmslie
- South West Thames Regional Genetics Service St George's Hospital Tooting London UK
| | - Melissa M Lees
- Department of Clinical Genetics Great Ormond Street Hospital Great Ormond Street London UK
| | - G Bradley Schaefer
- Division of Medical Genetics Arkansas Children's Hospital Little Rock Arkansas
| | | | - Catherine M Abbott
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghWestern General HospitalCrewe RoadEdinburghEH4 2XUUK; Muir Maxwell Epilepsy CentreUniversity of Edinburgh20 Sylvan PlaceEdinburghEH9 1UWUK
| |
Collapse
|
40
|
Smeets CJLM, Verbeek DS. Climbing fibers in spinocerebellar ataxia: A mechanism for the loss of motor control. Neurobiol Dis 2016; 88:96-106. [PMID: 26792399 DOI: 10.1016/j.nbd.2016.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/19/2015] [Accepted: 01/09/2016] [Indexed: 11/26/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) form an ever-growing group of neurodegenerative disorders causing dysfunction of the cerebellum and loss of motor control in patients. Currently, 41 different genetic causes have been identified, with each mutation affecting a different gene. Interestingly, these diverse genetic causes all disrupt cerebellar function and produce similar symptoms in patients. In order to understand the disease better, and define possible therapeutic targets for multiple SCAs, the field has been searching for common ground among the SCAs. In this review, we discuss the physiology of climbing fibers and the possibility that climbing fiber dysfunction is a point of convergence for at least a subset of SCAs.
Collapse
Affiliation(s)
- C J L M Smeets
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D S Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
41
|
Advani VM, Dinman JD. Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression. Bioessays 2015; 38:21-6. [PMID: 26661048 PMCID: PMC4749135 DOI: 10.1002/bies.201500131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reading frame maintenance is a critical property of ribosomes. However, a number of genetic elements have been described that can induce ribosomes to shift on mRNAs, the most well understood of which are a class that directs ribosomal slippage by one base in 5' (‐1) direction. This is referred to as programmed ‐1 ribosomal frameshifting (‐1 PRF). Recently, a new ‐1 PRF promoting element was serendipitously discovered in a study examining the effects of stretches of adenosines in the coding sequences of mRNAs. Here, we discuss this finding, recent studies describing how ‐1 PRF is used to control gene expression in eukaryotes, and how ‐1 PRF is itself regulated. The implications of dysregulation of ‐1 PRF on human health are examined, as are possible new areas in which novel ‐1 PRF promoting elements might be discovered. Also watch the https://youtu.be/1mPXIINCRcY.
Collapse
Affiliation(s)
- Vivek M Advani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
42
|
Belew AT, Dinman JD. Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics. Cell Cycle 2015; 14:172-8. [PMID: 25584829 PMCID: PMC4615106 DOI: 10.4161/15384101.2014.989123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Like most basic molecular mechanisms, programmed –1 ribosomal frameshifting (−1 PRF) was first identified in viruses. Early observations that global dysregulation of −1 PRF had deleterious effects on yeast cell growth suggested that −1 PRF may be used to control cellular gene expression, and the cell cycle in particular. Collection of sufficient numbers of viral −1 PRF signals coupled with advances in computer sciences enabled 2 complementary computational approaches to identify −1 PRF signals in free living organisms. The unexpected observation that almost all −1 PRF events on eukaryotic mRNAs direct ribosomes to premature termination codons engendered the hypothesis that −1 PRF signals post-transcriptionally regulate gene expression by functioning as mRNA destabilizing elements. Emerging research suggests that some human diseases are associated with global defects in −1 PRF. The recent discovery of −1 PRF signal-specific trans-acting regulators may provide insight into novel therapeutic strategies aimed at treating diseases caused by changes in gene expression patterns.
Collapse
Affiliation(s)
- Ashton T Belew
- a Department of Cell Biology and Molecular Genetics ; University of Maryland ; College Park , MD USA
| | | |
Collapse
|
43
|
Hekman KE, Gomez CM. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry 2015; 86:554-61. [PMID: 25136055 PMCID: PMC6718294 DOI: 10.1136/jnnp-2014-308421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/27/2014] [Indexed: 01/05/2023]
Abstract
The spinocerebellar ataxias are a genetically heterogeneous group of disorders with clinically overlapping phenotypes arising from Purkinje cell degeneration, cerebellar atrophy and varying degrees of degeneration of other grey matter regions. For 22 of the 32 subtypes, a genetic cause has been identified. While recurring themes are emerging, there is no clear correlation between the clinical phenotype or penetrance, the type of genetic defect or the category of the disease mechanism, or the neuronal types involved beyond Purkinje cells. These phenomena suggest that cerebellar Purkinje cells may be a uniquely vulnerable neuronal cell type, more susceptible to a wider variety of genetic/cellular insults than most other neuron types.
Collapse
Affiliation(s)
- Katherine E Hekman
- Department of Vascular Surgery, McGaw Medical Center of Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
44
|
Coutelier M, Stevanin G, Brice A. Genetic landscape remodelling in spinocerebellar ataxias: the influence of next-generation sequencing. J Neurol 2015; 262:2382-95. [DOI: 10.1007/s00415-015-7725-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/23/2022]
|
45
|
Subramony S, Moscovich M, Ashizawa T. Genetics and Clinical Features of Inherited Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Musalgaonkar S, Moomau CA, Dinman JD. Ribosomes in the balance: structural equilibrium ensures translational fidelity and proper gene expression. Nucleic Acids Res 2014; 42:13384-92. [PMID: 25389262 PMCID: PMC4245932 DOI: 10.1093/nar/gku1020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
At equilibrium, empty ribosomes freely transit between the rotated and un-rotated states. In the cell, the binding of two translation elongation factors to the same general region of the ribosome stabilizes one state over the other. These stabilized states are resolved by expenditure of energy in the form of GTP hydrolysis. A prior study employing mutants of a late assembling peripheral ribosomal protein suggested that ribosome rotational status determines its affinity for elongation factors, and hence translational fidelity and gene expression. Here, mutants of the early assembling integral ribosomal protein uL2 are used to test the generality of this hypothesis. rRNA structure probing analyses reveal that mutations in the uL2 B7b bridge region shift the equilibrium toward the rotated state, propagating rRNA structural changes to all of the functional centers of ribosome. Structural disequilibrium unbalances ribosome biochemically: rotated ribosomes favor binding of the eEF2 translocase and disfavor that of the elongation ternary complex. This manifests as specific translational fidelity defects, impacting the expression of genes involved in telomere maintenance. A model is presented describing how cyclic intersubunit rotation ensures the unidirectionality of translational elongation, and how perturbation of rotational equilibrium affects specific aspects of translational fidelity and cellular gene expression.
Collapse
Affiliation(s)
- Sharmishtha Musalgaonkar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Christine A Moomau
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
47
|
Leprivier G, Sorensen PH. How does oncogene transformation render tumor cells hypersensitive to nutrient deprivation? Bioessays 2014; 36:1082-90. [PMID: 25244326 DOI: 10.1002/bies.201400085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oncogene activation leads to cellular transformation by deregulation of biological processes such as proliferation and metabolism. Paradoxically, this can also sensitize cells to nutrient deprivation, potentially representing an Achilles' heel in early stage tumors. The mechanisms underlying this phenotype include loss of energetic and redox homeostasis as a result of metabolic reprogramming, favoring synthesis of macromolecules. Moreover, an emerging mechanism involving the deregulation of mRNA translation elongation through inhibition of eukaryotic elongation factor 2 kinase (eEF2K) is presented. The potential consequences of eEF2K deregulation leading to cell death under nutrient depletion are discussed. Finally, the relevance of eEF2K as a master regulator of the response to nutrient deprivation in vivo, and its potential exploitation for therapeutic targeting of cancers, are elaborated. Overall, a better understanding of the adaptive mechanisms allowing tumors to circumvent oncogene-induced hypersensitivity to nutrient deprivation is a promising avenue for uncovering novel therapeutic targets in cancers.
Collapse
Affiliation(s)
- Gabriel Leprivier
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
48
|
Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO, Kasprzak WK, Shapiro BA, Dinman JD. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 2014; 512:265-9. [PMID: 25043019 PMCID: PMC4369343 DOI: 10.1038/nature13429] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/29/2014] [Indexed: 12/17/2022]
Abstract
Programmed -1 ribosomal frameshift (-1 PRF) signals redirect translating ribosomes to slip back one base on messenger RNAs. Although well characterized in viruses, how these elements may regulate cellular gene expression is not understood. Here we describe a -1 PRF signal in the human mRNA encoding CCR5, the HIV-1 co-receptor. CCR5 mRNA-mediated -1 PRF is directed by an mRNA pseudoknot, and is stimulated by at least two microRNAs. Mapping the mRNA-miRNA interaction suggests that formation of a triplex RNA structure stimulates -1 PRF. A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay pathway. At least one additional mRNA decay pathway is also involved. Functional -1 PRF signals that seem to be regulated by miRNAs are also demonstrated in mRNAs encoding six other cytokine receptors, suggesting a novel mode through which immune responses may be fine-tuned in mammalian cells.
Collapse
Affiliation(s)
- Ashton Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| | - Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
- Department of Biotechnology and Microbiology, Vilnius University, Vilnius, LT 03101 Lithuania
| | - Sharmishtha Musalgaonkar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| | - Vivek M. Advani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| | - Sergey O. Sulima
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
- Present Address: Present address: VIB Center for the Biology of Disease, KU Leuven, Campus Gasthuisberg, Herestraat 49, bus 602, 3000 Leuven, Belgium.,
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, 21702 Maryland USA
| | - Bruce A. Shapiro
- Basic Research Laboratory, National Cancer Institute, Frederick, 21702 Maryland USA
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| |
Collapse
|
49
|
Smeets CJLM, Verbeek DS. Cerebellar ataxia and functional genomics: Identifying the routes to cerebellar neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2030-2038. [PMID: 24726947 DOI: 10.1016/j.bbadis.2014.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 12/20/2022]
Abstract
Cerebellar ataxias are progressive neurodegenerative disorders characterized by atrophy of the cerebellum leading to motor dysfunction, balance problems, and limb and gait ataxia. These include among others, the dominantly inherited spinocerebellar ataxias, recessive cerebellar ataxias such as Friedreich's ataxia, and X-linked cerebellar ataxias. Since all cerebellar ataxias display considerable overlap in their disease phenotypes, common pathological pathways must underlie the selective cerebellar neurodegeneration. Therefore, it is important to identify the molecular mechanisms and routes to neurodegeneration that cause cerebellar ataxia. In this review, we discuss the use of functional genomic approaches including whole-exome sequencing, genome-wide gene expression profiling, miRNA profiling, epigenetic profiling, and genetic modifier screens to reveal the underlying pathogenesis of various cerebellar ataxias. These approaches have resulted in the identification of many disease genes, modifier genes, and biomarkers correlating with specific stages of the disease. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- C J L M Smeets
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D S Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
50
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|