1
|
Farahani M, Robati RM, Rezaei-Tavirani M, Fateminasab F, Shityakov S, Rahmati Roodsari M, Razzaghi Z, Zamanian Azodi M, Saghari S. Integrating protein interaction and pathway crosstalk network reveals a promising therapeutic approach for psoriasis through apoptosis induction. Sci Rep 2024; 14:22103. [PMID: 39333640 PMCID: PMC11436859 DOI: 10.1038/s41598-024-73746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Psoriasis is a complex inflammatory skin disease manifested by altered proliferation and differentiation of keratinocytes with dysfunctional apoptosis. This study aimed to identify regulatory factors and comprehend the underlying mechanisms of inefficient apoptosis to open up promising therapeutic approaches. Incorporating human protein interactions, apoptosis proteins, and physical relationships of psoriasis-apoptosis proteins helped us to generate a psoriasis-apoptosis interaction (SAI) network. Subsequently, topological and functional analyses of the SAI network revealed effective proteins, functional modules, hub motifs, dysregulated pathways and transcriptional gene regulatory factors. Network pharmacology, molecular docking and molecular dynamics simulation methods identified the potential drug-target interactions. RELA, MAPK1, MAPK3, MMP9, IL1B, AKT1 and STAT1 were revealed as effective proteins. The MAPK1-MAPK3-RELA motif was identified as a hub regulator in the crosstalk between 41 pathways. Among all pathways, "lipid and atherosclerosis" was found to be the predominant pathway. Acetylcysteine, arsenic-trioxide, β-elemene, bortezomib and curcumin were identified as potential drugs to inhibit pathway crosstalk. Experimental verifications were performed using the literature search, GSE13355 and GSE14905 microarray datasets. Drug-protein-pathway interactions associated with apoptosis were deciphered. These findings highlight the role of hub motif-mediated pathway-pathway crosstalk associated with apoptosis in the complexity of psoriasis and suggest crosstalk inhibition as an effective therapeutic approach.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, System Biology Institute, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Fateminasab
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| | - Mohammad Rahmati Roodsari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian Azodi
- Proteomics Research Center, System Biology Institute, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saviz Saghari
- Department of Internal Medicine, West Anaheim Medical Center, Anaheim, CA, USA
| |
Collapse
|
2
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Ford NC, Benedeck RE, Mattoon MT, Peterson JK, Mesler AL, Veniaminova NA, Gardon DJ, Tsai SY, Uchida Y, Wong SY. Hair follicles modulate skin barrier function. Cell Rep 2024; 43:114347. [PMID: 38941190 PMCID: PMC11317994 DOI: 10.1016/j.celrep.2024.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/30/2024] Open
Abstract
Our skin provides a protective barrier that shields us from our environment. Barrier function is typically associated with the interfollicular epidermis; however, whether hair follicles influence this process remains unclear. Here, we utilize a potent genetic tool to probe barrier function by conditionally ablating a quintessential epidermal barrier gene, Abca12, which is mutated in the most severe skin barrier disease, harlequin ichthyosis. With this tool, we deduced 4 ways by which hair follicles modulate skin barrier function. First, the upper hair follicle (uHF) forms a functioning barrier. Second, barrier disruption in the uHF elicits non-cell-autonomous responses in the epidermis. Third, deleting Abca12 in the uHF impairs desquamation and blocks sebum release. Finally, barrier perturbation causes uHF cells to move into the epidermis. Neutralizing IL-17a, whose expression is enriched in the uHF, partially alleviated some disease phenotypes. Altogether, our findings implicate hair follicles as multi-faceted regulators of skin barrier function.
Collapse
Affiliation(s)
- Noah C Ford
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel E Benedeck
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew T Mattoon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie K Peterson
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlee L Mesler
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danielle J Gardon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Sunny Y Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Chen J, Liu C, Yang Y, Gong X, Qian H. The stratum corneum barrier: impaired function in relation to associated lipids and proteins. Tissue Barriers 2024:2361197. [PMID: 38818698 DOI: 10.1080/21688370.2024.2361197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
The skin is the largest organ of the human body and is widely considered to be the first-line defense of the body, providing essential protection against mechanical, physical, and chemical damage. Keratinocytes are the primary cells of the outer layer of the epidermis, which acts as a mechanical and permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. Here we report that some components of keratinocytes affect the formation and differentiation of the stratum corneum, which is the most specialized layer of the epidermis.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, District, China
| | - Changjie Liu
- SIMPLY THIS Skin Ecology Research Institute, Shili (Shanghai) Biotechology Co., Ltd, Shanghai, China
| | - Yuan Yang
- SIMPLY THIS Skin Ecology Research Institute, Shili (Shanghai) Biotechology Co., Ltd, Shanghai, China
| | - Xue Gong
- SIMPLY THIS Skin Ecology Research Institute, Shili (Shanghai) Biotechology Co., Ltd, Shanghai, China
| | - Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Ford NC, Benedeck RE, Mattoon MT, Peterson JK, Mesler AL, Veniaminova NA, Gardon DJ, Tsai SY, Uchida Y, Wong SY. Hair follicles modulate skin barrier function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590728. [PMID: 38712094 PMCID: PMC11071379 DOI: 10.1101/2024.04.23.590728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Our skin provides a protective barrier that shields us from our environment. Barrier function is typically associated with interfollicular epidermis; however, whether hair follicles influence this process remains unclear. Here, we utilize a potent genetic tool to probe barrier function by conditionally ablating a quintessential epidermal barrier gene, Abca12, which is mutated in the most severe skin barrier disease, harlequin ichthyosis. With this tool, we deduced 4 ways by which hair follicles modulate skin barrier function. First, the upper hair follicle (uHF) forms a functioning barrier. Second, barrier disruption in the uHF elicits non-cell autonomous responses in the epidermis. Third, deleting Abca12 in the uHF impairs desquamation and blocks sebum release. Finally, barrier perturbation causes uHF cells to move into the epidermis. Neutralizing Il17a, whose expression is enriched in the uHF, partially alleviated some disease phenotypes. Altogether, our findings implicate hair follicles as multi-faceted regulators of skin barrier function.
Collapse
Affiliation(s)
- Noah C. Ford
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel E. Benedeck
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Matthew T. Mattoon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie K. Peterson
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlee L. Mesler
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A. Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danielle J. Gardon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Sunny Y. Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Sutter CH, Azim S, Wang A, Bhuju J, Simpson AS, Uberoi A, Grice EA, Sutter TR. Ligand Activation of the Aryl Hydrocarbon Receptor Upregulates Epidermal Uridine Diphosphate Glucose Ceramide Glucosyltransferase and Glucosylceramides. J Invest Dermatol 2023; 143:1964-1972.e4. [PMID: 37004877 PMCID: PMC10529782 DOI: 10.1016/j.jid.2023.03.1662] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
Ligand activation of the aryl hydrocarbon receptor (AHR) accelerates keratinocyte differentiation and the formation of the epidermal permeability barrier. Several classes of lipids, including ceramides, are critical to the epidermal permeability barrier. In normal human epidermal keratinocytes, the AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, increased RNA levels of ceramide metabolism and transport genes: uridine diphosphate glucose ceramide glucosyltransferase (UGCG), ABCA12, GBA1, and SMPD1. Levels of abundant skin ceramides were also increased by 2,3,7,8-tetrachlorodibenzo-p-dioxin. These included the metabolites synthesized by UGCG, glucosylceramides, and acyl glucosylceramides. Chromatin immunoprecipitation-sequence analysis and luciferase reporter assays identified UGCG as a direct AHR target. The AHR antagonist, GNF351, inhibited the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated RNA and transcriptional increases. Tapinarof, an AHR ligand approved for the treatment of psoriasis, increased UGCG RNA, protein, and its lipid metabolites hexosylceramides as well as increased the RNA expression of ABCA12, GBA1, and SMPD1. In Ahr-null mice, Ugcg RNA and hexosylceramides were lower than those in the wild type. These results indicate that the AHR regulates the expression of UGCG, a ceramide-metabolizing enzyme required for ceramide trafficking, keratinocyte differentiation, and epidermal permeability barrier formation.
Collapse
Affiliation(s)
- Carrie Hayes Sutter
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA
| | - Shafquat Azim
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA; Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Anyou Wang
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA
| | - Jyoti Bhuju
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA; Sanegene Bio USA, Cambridge, Massachusetts, USA
| | - Amelia S Simpson
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA
| | - Aayushi Uberoi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas R Sutter
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA; Department of Chemistry, The University of Memphis, Memphis, Tennessee, USA.
| |
Collapse
|
7
|
McGeoghan F, Camera E, Maiellaro M, Menon M, Huang M, Dewan P, Ziaj S, Caley MP, Donaldson M, Enright AJ, O’Toole EA. RNA sequencing and lipidomics uncovers novel pathomechanisms in recessive X-linked ichthyosis. Front Mol Biosci 2023; 10:1176802. [PMID: 37363400 PMCID: PMC10285781 DOI: 10.3389/fmolb.2023.1176802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Recessive X-linked ichthyosis (RXLI), a genetic disorder caused by deletion or point mutations of the steroid sulfatase (STS) gene, is the second most common form of ichthyosis. It is a disorder of keratinocyte cholesterol sulfate retention and the mechanism of extracutaneous phenotypes such as corneal opacities and attention deficit hyperactivity disorder are poorly understood. To understand the pathomechanisms of RXLI, the transcriptome of differentiated primary keratinocytes with STS knockdown was sequenced. The results were validated in a stable knockdown model of STS, to confirm STS specificity, and in RXLI skin. The results show that there was significantly reduced expression of genes related to epidermal differentiation and lipid metabolism, including ceramide and sphingolipid synthesis. In addition, there was significant downregulation of aldehyde dehydrogenase family members and the oxytocin receptor which have been linked to corneal transparency and behavioural disorders respectively, both of which are extracutaneous phenotypes of RXLI. These data provide a greater understanding of the causative mechanisms of RXLI's cutaneous phenotype, and show that the keratinocyte transcriptome and lipidomics can give novel insights into the phenotype of patients with RXLI.
Collapse
Affiliation(s)
- Farrell McGeoghan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Manasi Menon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mei Huang
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Priya Dewan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stela Ziaj
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Matthew P. Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edel A. O’Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
8
|
Chen B, Lu N, Lee K, Ye L, Hasegawa C, Maeda K. Application of mevalonolactone prevents deterioration of epidermal barrier function by accelerating the lamellar granule lipid transport system. Skin Res Technol 2022; 28:804-814. [PMID: 36148627 PMCID: PMC9907606 DOI: 10.1111/srt.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fatty acids increase ATP-binding cassette ABC transporter A12 (ABCA12) levels via an increase in peroxisome proliferator-activated receptor β/δ (PPAR β/δ). Promoting lipid transport to lamellar granules has been suggested to improve epidermal barrier function in patients with dry skin. OBJECTIVE We investigated whether mevalonolactone (MVL) produced by Saccharomycopsis fibuligera improves dry skin by promoting ABCA12 expression and the amount of free fatty acids in epidermal keratinocytes. METHODS We examined whether MVL increases ABCA12 mRNA and protein levels and the amount of Nile red-positive lipids in cultured epidermal keratinocytes and in a three-dimensional epidermal model by cell staining. Promotion of fatty acid production by MVL was analyzed by liquid chromatography-mass spectrometry. We also evaluated whether MVL addition increases PPAR β/δ mRNA expression in cultured keratinocytes. Based on the results, a randomized controlled trial was conducted in which milky lotions containing MVL and placebo were applied to dry facial skin of healthy female volunteers in winter. RESULTS MVL increased ABCA12 mRNA and protein levels and lamellar granule number and size. Fatty acid analysis revealed that MVL elevated myristic acid, palmitic acid, and palmitoleic acid levels as well as PPAR β/δ mRNA expression. In human tests, milky lotions containing MVL were shown to significantly improve transepidermal water loss (TEWL) in the stratum corneum compared to placebo. CONCLUSION The results suggest that MVL increases fatty acid uptake and ABCA12, promotes fatty acid transport to lamellar granules, and improves epidermal barrier function in dry skin through increased expression of PPAR β/δ.
Collapse
Affiliation(s)
- Bin Chen
- Pechoin Biotech Co. Ltd., Shanghai, China
| | - Nan Lu
- Pechoin Biotech Co. Ltd., Shanghai, China
| | - KeeSuh Lee
- Pechoin Biotech Co. Ltd., Shanghai, China
| | - Lei Ye
- Pechoin Biotech Co. Ltd., Shanghai, China
| | | | | |
Collapse
|
9
|
Sun W, Liu Z, Xu J, Cheng Y, Yin R, Ma L, Li H, Qian X, Zhang H. 3D skin models along with skin-on-a-chip systems: A critical review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Murakami K, Sawada A, Mori T, Sakuyama S, Tokudome Y. Effect of estrogen/progesterone ratio on the differentiation and the barrier function of epidermal keratinocyte and three-dimensional cultured human epidermis. Life Sci 2022; 293:120356. [DOI: 10.1016/j.lfs.2022.120356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
|
11
|
Letsiou S, Ganopoulos I, Kapazoglou A, Xanthopoulou A, Sarrou E, Tanou G, Molassiotis A. Probing the effects of sweet cherry (Prunus avium L.) extract on 2D and 3D human skin models. Mol Biol Rep 2022; 49:2687-2693. [PMID: 35034286 DOI: 10.1007/s11033-021-07076-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Natural products are not only positioned in the heart of traditional medicine but also in modern medicine as many current drugs are coming from natural sources. Apart from the field of medicine and therapeutics, natural products are broadly used in other industrial fields such as nutrition, skincare products and nanotechnology. METHODS AND RESULTS The aim of this study was to assess the effects of sweet cherry (Prunus avium L.) fruit extract from the Greek native cultivar 'Vasiliadi', on the human 2D and 3D in vitro models in order to investigate its potential impact on skin. We focused on 2D culture of primary normal human epidermal keratinocytes (NHEK) that were treated with sweet cherry fruit extract. In the first place, we targeted fruit extract potential cytotoxicity by determining ATP intracellular levels. Furthermore, we assessed its potential skin irritability by using 3D skin model. To better understand the bioactivity of sweet cherry fruit. extract, we used qPCR to study the expression of various genes that are implicated in the skin functions. Our experiments showed that sweet cherry fruit extract is non-toxic in 2D keratinocytes culture as well as non-irritant in 3D skin model. Our results revealed that the extract mediated important pathways for the optimum epidermis function such as cell proliferation, immune and inflammatory response. CONCLUSION The sweet cherry fruit extracts possesses significant activity in epidermis function without any potential of cytotoxicity or skin irritability, which makes it a rather promising active agent for skincare.
Collapse
Affiliation(s)
- Sophia Letsiou
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece.
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, ELGO-DEMETER, Lykovrysi, 14123, Athens, Greece
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001, Thessaloniki-Thermi, Greece
| | - Eirini Sarrou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, ELGO-DEMETER, Lykovrysi, 14123, Athens, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece
- Joint Laboratory of Horticulture, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece
| | - Athanassios Molassiotis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece
| |
Collapse
|
12
|
Letsiou S, Bakea A, Holefors A, Rembiesa J, Spanidi E, Gardikis K. In vitro protective effects of Paeonia mascula subsp. hellenica callus extract on human keratinocytes. Sci Rep 2020; 10:19213. [PMID: 33154501 PMCID: PMC7645794 DOI: 10.1038/s41598-020-76169-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Natural ingredients have been used to improve the state of health in humans. The genus Paeonia has been studied only limited yet it's reported to have many activities such as antioxidant and anti-inflammatory. To this context, here we focused on an endemic Paeonia species in Attica. This study aims to present the development of the Paeonia mascula subsp. hellenica callus extract and its pleiotropic bioactivity on human primary keratinocytes exploring its potential application as an active agent in skin-related products. This extract showed a high scavenging activity with high phenolic content and an interesting metabolic profile. At a molecular level, the study on the transcript accumulation of genes revealed that this extract exhibits in vitro skin-related protection properties by mediating mitochondrial energy, cell proliferation, immune and inflammatory response and positively regulates genes involved in epidermal and in stratum corneum function. Besides, the extract is proven not skin irritant on reconstructed human skin model. These findings indicate that the specific P. mascula subsp. hellenica extract possesses significant in vitro protection activity on human epidermis and provides new insights into its beneficial role in skin confirming that the advent of biotechnology contribution the past few decades.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece.
| | - Artemis Bakea
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece
| | - Anna Holefors
- In Vitro Plant-Tech AB, Geijersg 4B, 21618, Limhamn, Sweden
| | | | - Eleni Spanidi
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece
| | - Konstantinos Gardikis
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece
| |
Collapse
|
13
|
Dabelsteen S, Pallesen EMH, Marinova IN, Nielsen MI, Adamopoulou M, Rømer TB, Levann A, Andersen MM, Ye Z, Thein D, Bennett EP, Büll C, Moons SJ, Boltje T, Clausen H, Vakhrushev SY, Bagdonaite I, Wandall HH. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell 2020; 54:669-684.e7. [PMID: 32710848 PMCID: PMC7497784 DOI: 10.1016/j.devcel.2020.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
The glycome undergoes characteristic changes during histogenesis and organogenesis, but our understanding of the importance of select glycan structures for tissue formation and homeostasis is incomplete. Here, we present a human organotypic platform that allows genetic dissection of cellular glycosylation capacities and systematic interrogation of the roles of distinct glycan types in tissue formation. We used CRISPR-Cas9 gene targeting to generate a library of 3D organotypic skin tissues that selectively differ in their capacity to produce glycan structures on the main types of N- and O-linked glycoproteins and glycolipids. This tissue library revealed distinct changes in skin formation associated with a loss of features for all tested glycoconjugates. The organotypic skin model provides phenotypic cues for the distinct functions of glycoconjugates and serves as a unique resource for further genetic dissection and identification of the specific structural features involved. The strategy is also applicable to other organotypic tissue models.
Collapse
Affiliation(s)
- Sally Dabelsteen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Oral Pathology, School of Dentistry, University of Copenhagen, Denmark
| | - Emil M H Pallesen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irina N Marinova
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias I Nielsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Adamopoulou
- Department of Oral Pathology, School of Dentistry, University of Copenhagen, Denmark
| | - Troels B Rømer
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Asha Levann
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel M Andersen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David Thein
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sam J Moons
- Institute for Molecules and Materials, Nijmegen 6525 AJ, the Netherlands
| | - Thomas Boltje
- Institute for Molecules and Materials, Nijmegen 6525 AJ, the Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Akiyama M. Acylceramide is a key player in skin barrier function: insight into the molecular mechanisms of skin barrier formation and ichthyosis pathogenesis. FEBS J 2020. [DOI: 10.1111/febs.15497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
15
|
Gentiana lutea Extract Modulates Ceramide Synthesis in Primary and Psoriasis-Like Keratinocytes. Molecules 2020; 25:molecules25081832. [PMID: 32316273 PMCID: PMC7221824 DOI: 10.3390/molecules25081832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023] Open
Abstract
Gentiana lutea is a bitter herb that is traditionally used to improve gastric disorders. Recently, we have shown that Gentiana lutea extract (GE) also modulates the lipid metabolism of human keratinocytes in vitro and in vivo. In the present study, we investigated the role of GE on ceramide synthesis in human primary keratinocytes (HPKs) and psoriasis-like keratinocytes. We could demonstrate that GE increased the concentrations of glucosylceramides and the ceramide AS/AdS subclass without affecting the overall ceramide content in HPKs. The expression of ceramide synthase 3 (CERS3) and elongases (ELOVL1 and 4) was reduced in psoriasis lesions compared to healthy skin. Psoriasis-like HPKs, generated by stimulating HPKs with cytokines that are involved in the pathogenesis of psoriasis (IL-17, TNF-α, IL-22 and IFN-γ) showed increased levels of IL-6, IL-8 and increased expression of DEFB4A, as well as decreased expression of ELOVL4. The treatment with GE partly rescued the reduced expression of ELOVL4 in psoriasis-like HPKs and augmented CERS3 expression. This study has shown that GE modulates ceramide synthesis in keratinocytes. Therefore, GE might be a novel topical treatment for skin diseases with an altered lipid composition such as psoriasis.
Collapse
|
16
|
Molecular Mechanism of Epidermal Barrier Dysfunction as Primary Abnormalities. Int J Mol Sci 2020; 21:ijms21041194. [PMID: 32054030 PMCID: PMC7072774 DOI: 10.3390/ijms21041194] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
Epidermal barrier integrity could be influenced by various factors involved in epidermal cell differentiation and proliferation, cell–cell adhesion, and skin lipids. Dysfunction of this barrier can cause skin disorders, including eczema. Inversely, eczema can also damage the epidermal barrier. These interactions through vicious cycles make the mechanism complicated in connection with other mechanisms, particularly immunologic responses. In this article, the molecular mechanisms concerning epidermal barrier abnormalities are reviewed in terms of the following categories: epidermal calcium gradients, filaggrin, cornified envelopes, desquamation, and skin lipids. Mechanisms linked to ichthyoses, atopic dermatitis without exacerbation or lesion, and early time of experimental irritation were included. On the other hand, the mechanism associated with epidermal barrier abnormalities resulting from preceding skin disorders was excluded. The molecular mechanism involved in epidermal barrier dysfunction has been mostly episodic. Some mechanisms have been identified in cultured cells or animal models. Nonetheless, research into the relationship between the causative molecules has been gradually increasing. Further evidence-based systematic data of target molecules and their interactions would probably be helpful for a better understanding of the molecular mechanism underlying the dysfunction of the epidermal barrier.
Collapse
|
17
|
Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris. Molecules 2020; 25:molecules25030630. [PMID: 32023992 PMCID: PMC7037443 DOI: 10.3390/molecules25030630] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022] Open
Abstract
Ceramides are important lipid metabolites for primal skin functions. There is increasing evidence that alteration of the profile and metabolism of ceramides is associated with skin diseases, such as psoriasis vulgaris. Most studies have reported alteration in ceramide content in the stratum corneum, but these have been scarcely reported for other skin layers. In the present work, we aimed to explore changes in the ceramide profile of fibroblasts and keratinocytes in patients with psoriasis vulgaris and healthy subjects. Using the reversed-phase liquid chromatography-quadrupole-time-of-flight-tandem-mass spectrometry (RPLC-QTOF-MS/MS) platform, we identified ceramide containing non-hydroxy fatty acid ([N]), α-hydroxy fatty acid ([A]), and esterified ω-hydroxy fatty acid ([EO]) and 3 sphingoid bases, dihydrosphingosine ([DS]), sphingosine ([S]), and phytosphingosine ([P]). We found that in the keratinocytes of patients with psoriasis, CER[NS], CER[NP], CER[AS], CER[ADS], CER[AP] and CER[EOS] tended to be expressed at higher relative levels, whereas CER[NDS] tended to be expressed with lower levels than in healthy subjects. In the case of fibroblasts, significant differences were observed, mainly in the three ceramide classes (CER[AS], CER[ADS] and CER[EOS]), which were expressed at significantly higher levels in patients with psoriasis. The most significant alteration in the fibroblasts involved elevated levels of CER[EOS] that contained ester-linked fatty acids. Our findings provide insights into the ceramide profile in the dermis and epidermis of patients with psoriasis and contribute for the research in this field, focusing on the role of keratinocyte-fibroblast crosstalk in the development of psoriasis vulgaris.
Collapse
|
18
|
Deák F, Anderson RE, Fessler JL, Sherry DM. Novel Cellular Functions of Very Long Chain-Fatty Acids: Insight From ELOVL4 Mutations. Front Cell Neurosci 2019; 13:428. [PMID: 31616255 PMCID: PMC6763723 DOI: 10.3389/fncel.2019.00428] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Elongation of Very Long chain fatty acids-4 (ELOVL4) protein is a member of the ELOVL family of fatty acid elongases that is collectively responsible for catalyzing formation of long chain fatty acids. ELOVL4 is the only family member that catalyzes production of Very Long Chain Saturated Fatty Acids (VLC-SFA) and Very Long Chain Polyunsaturated Fatty Acids (VLC-PUFA) with chain lengths ≥28 carbons. ELOVL4 and its VLC-SFA and VLC-PUFA products are emerging as important regulators of synaptic signaling and neuronal survival in the central nervous system (CNS). Distinct sets of mutations in ELOVL4 cause three different neurological diseases in humans. Heterozygous inheritance of one set of autosomal dominant ELOVL4 mutations that leads to truncation of the ELOVL4 protein causes Stargardt-like macular dystrophy (STGD3), an aggressive juvenile-onset retinal degeneration. Heterozygous inheritance of a different set of autosomal dominant ELOVL4 mutations that leads to a full-length protein with single amino acid substitutions causes spinocerebellar ataxia 34 (SCA34), a late-onset neurodegenerative disease characterized by gait ataxia and cerebellar atrophy. Homozygous inheritance of a different set of ELOVL4 mutations causes a more severe disease with infantile onset characterized by seizures, spasticity, intellectual disability, ichthyosis, and premature death. ELOVL4 is expressed widely in the CNS and is found primarily in neurons. ELOVL4 is expressed in cell-specific patterns within different regions of the CNS that are likely to be related to disease symptoms. In the retina, ELOVL4 is expressed exclusively in photoreceptors and produces VLC-PUFA that are incorporated into phosphatidylcholine and enriched in the light sensitive membrane disks of the photoreceptor outer segments. VLC-PUFA are enzymatically converted into "elovanoid" compounds that appear to provide paracrine signals that promote photoreceptor and neuronal survival. In the brain, the main ELOVL4 products are VLC-SFA that are incorporated into sphingolipids and enriched in synaptic vesicles, where they regulate kinetics of presynaptic neurotransmitter release. Understanding the function of ELOVL4 and its VLC-SFA and VLC-PUFA products will advance our understanding of basic mechanisms in neural signaling and has potential for developing novel therapies for seizure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ferenc Deák
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Robert E Anderson
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jennifer L Fessler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David M Sherry
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
19
|
Krieg P, Dick A, Latzko S, Rosenberger S, Meyer J, Crumrine D, Hielscher T, Elias PM, Rauh M, Schneider H. Conditional Alox12b Knockout: Degradation of the Corneocyte Lipid Envelope in a Mouse Model of Autosomal Recessive Congenital Ichthyoses. J Invest Dermatol 2019; 140:249-253.e6. [PMID: 31276677 DOI: 10.1016/j.jid.2019.06.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Peter Krieg
- Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center, Heidelberg, Germany
| | - Angela Dick
- Department of Pediatrics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Latzko
- Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center, Heidelberg, Germany
| | - Sabine Rosenberger
- Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center, Heidelberg, Germany
| | - Jason Meyer
- Dermatology Service, VA Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, California, USA
| | - Debra Crumrine
- Dermatology Service, VA Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, California, USA
| | - Thomas Hielscher
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Peter M Elias
- Dermatology Service, VA Medical Center, San Francisco, California, USA; Department of Dermatology, University of California, San Francisco, California, USA
| | - Manfred Rauh
- Department of Pediatrics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Holm Schneider
- Department of Pediatrics, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
20
|
Boiten W, Helder R, van Smeden J, Bouwstra J. Selectivity in cornified envelop binding of ceramides in human skin and the role of LXR inactivation on ceramide binding. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1206-1213. [PMID: 31112754 DOI: 10.1016/j.bbalip.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
The cornified lipid envelope (CLE) is a lipid monolayer covalently bound to the outside of corneocytes and is part of the stratum corneum (SC). The CLE is suggested to act as a scaffold for the unbound SC lipids. By profiling the bound CLE ceramides, a new subclass was discovered and identified as an omega-hydroxylated dihydrosphingosine (OdS) ceramide. Bound glucosylceramides were observed in superficial SC layers of healthy human skin. To investigate the relation between bound and unbound SC ceramides, the composition of both fractions was analyzed and compared. Selectivity in ceramide binding towards unsaturated ceramides and ceramides with a shorter chain length was observed. The selectivity in ceramide species bound to the cornified envelope is thought to have a physiological function in corneocyte flexibility. Next, it was examined if skin models exhibit an altered bound ceramide composition and if the composition was dependent on liver X-receptor (LXR) activation. The effects of an LXR agonist and antagonist on the bound ceramides composition of a full thickness model (FTM) were analyzed. In FTMs, a decreased amount of bound ceramides was observed compared to native human skin. Furthermore, FTMs had a bound ceramide fraction which consisted mostly of unsaturated and shorter ceramides. The LXR antagonist had a normalizing effect on the FTM bound ceramide composition. The agonist exhibited minimal effects. We show that ceramide binding is a selective process, yet, still is contingent on lipid synthesized.
Collapse
Affiliation(s)
- Walter Boiten
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Richard Helder
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Jeroen van Smeden
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Joke Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
21
|
Girardeau-Hubert S, Deneuville C, Pageon H, Abed K, Tacheau C, Cavusoglu N, Donovan M, Bernard D, Asselineau D. Reconstructed Skin Models Revealed Unexpected Differences in Epidermal African and Caucasian Skin. Sci Rep 2019; 9:7456. [PMID: 31092846 PMCID: PMC6520399 DOI: 10.1038/s41598-019-43128-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/12/2019] [Indexed: 11/21/2022] Open
Abstract
Clinical observations of both normal and pathological skin have shown that there is a heterogeneity based on the skin origin type. Beside external factors, intrinsic differences in skin cells could be a central element to determine skin types. This study aimed to understand the in vitro behaviour of epidermal cells of African and Caucasian skin types in the context of 3D reconstructed skin. Full-thickness skin models were constructed with site matched human keratinocytes and papillary fibroblasts to investigate potential skin type related differences. We report that reconstructed skin epidermis exhibited remarkable differences regarding stratification and differentiation according to skin types, as demonstrated by histological appearance, gene expression analysed by DNA microarray and quantitative proteomic analysis. Signalling pathways and processes related to terminal differentiation and lipid/ceramide metabolism were up-regulated in epidermis constructed with keratinocytes from Caucasian skin type when compared to that of keratinocytes from African skin type. Specifically, the expression of proteins involved in the processing of filaggrins was found different between skin models. Overall, we show unexpected differences in epidermal morphogenesis and differentiation between keratinocytes of Caucasian and African skin types in in vitro reconstructed skin containing papillary fibroblasts that could explain the differences in ethnic related skin behaviour.
Collapse
Affiliation(s)
- Sarah Girardeau-Hubert
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France.
| | - Céline Deneuville
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Hervé Pageon
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Kahina Abed
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Charlotte Tacheau
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Nükhet Cavusoglu
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Mark Donovan
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Dominique Bernard
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Daniel Asselineau
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| |
Collapse
|
22
|
Li J, Li Q, Geng S. All‑trans retinoic acid alters the expression of the tight junction proteins Claudin‑1 and ‑4 and epidermal barrier function‑associated genes in the epidermis. Int J Mol Med 2019; 43:1789-1805. [PMID: 30816426 PMCID: PMC6414175 DOI: 10.3892/ijmm.2019.4098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/12/2019] [Indexed: 01/19/2023] Open
Abstract
All‑trans retinoic acid (ATRA) regulates skin cell proliferation and differentiation. ATRA is widely used in the treatment of skin diseases, but results in irritation, dryness and peeling, possibly due to an impaired skin barrier, although the exact mechanisms are unclear. The present study established an ATRA‑associated dermatitis mouse model (n=32) in order to examine the molecular mechanisms of skin barrier impairment by ATRA. Changes in epidermal morphology and structure were observed using histological examination and transmission electron microscopy (TEM). Gene expression was analyzed by microarray chip assay. Histology and TEM demonstrated pronounced epidermal hyperproliferation and parakeratosis upon ATRA application. The stratum corneum layer displayed abnormal lipid droplets and cell‑cell junctions, suggesting alterations in lipid metabolism and dysfunctional cell junctions. Gene expression profiling revealed that factors associated with epidermal barrier function were differentially expressed by ATRA, including those associated with tight junctions (TJs), cornified envelopes, lipids, proteases, protease inhibitors and transcription factors. In the mouse epidermis, Claudin‑1 and ‑4 are proteins involved in TJs and have key roles in epidermal barrier function. ATRA reduced the expression and altered the localization of Claudin‑1 in HaCaT immortalized keratinocytes and the mouse epidermis, which likely leads to the disruption of the epidermal barrier. By contrast, Claudin‑4 was upregulated in HaCaT cells and the mouse epidermis following treatment with ATRA. In conclusion, ATRA exerts a dual effect on epidermal barrier genes: It downregulates the expression of Claudin‑1 and upregulates the expression of Claudin‑4. Claudin‑4 upregulation may be a compensatory response for the disrupted barrier function caused by Claudin‑1 downregulation.
Collapse
Affiliation(s)
- Jing Li
- Department of Dermatology, Northwest Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Qianying Li
- Department of Dermatology, Northwest Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| |
Collapse
|
23
|
Dumas SN, Ntambi JM. A Discussion on the Relationship between Skin Lipid Metabolism and Whole-Body Glucose and Lipid Metabolism: Systematic Review. ACTA ACUST UNITED AC 2018; 3. [PMID: 30474082 PMCID: PMC6247918 DOI: 10.4172/2576-1471.1000189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The obesity epidemic is a costly public health crisis that is not improving. In addition to the stigma and discomfort associated with carrying extra weight (at the expense of range of movement), obesity also goes hand-in-hand with co-morbidities like fatty liver disease, diabetes, cardiovascular disease, and increased risk of some forms of cancer. Currently there are no long-lasting treatments for obesity other than diet and exercise, which are not feasible for many populations that may not be equipped with the resources and/or support needed to lead a healthy lifestyle. Although there have been some pharmacological breakthroughs for treating obesity, each FDA-approved drug comes with unpleasant side-effects that make adherence unlikely. As a result, alternate approaches are necessary. In this review, we outline the relationship between skin lipid metabolism and whole-body glucose and lipid metabolism. Specifically, by summarizing studies that employed mice that were genetically modified to interrupt lipid metabolism in the skin. As a result, we propose that skin might be an overlooked, but viable target for combating obesity.
Collapse
Affiliation(s)
- Sabrina N Dumas
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James M Ntambi
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
Wegner MS, Schömel N, Gruber L, Örtel SB, Kjellberg MA, Mattjus P, Kurz J, Trautmann S, Peng B, Wegner M, Kaulich M, Ahrends R, Geisslinger G, Grösch S. UDP-glucose ceramide glucosyltransferase activates AKT, promoted proliferation, and doxorubicin resistance in breast cancer cells. Cell Mol Life Sci 2018; 75:3393-3410. [PMID: 29549423 PMCID: PMC11105721 DOI: 10.1007/s00018-018-2799-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
The UDP-glucose ceramide glucosyltransferase (UGCG) is a key enzyme in the synthesis of glycosylated sphingolipids, since this enzyme generates the precursor for all complex glycosphingolipids (GSL), the GlcCer. The UGCG has been associated with several cancer-related processes such as maintaining cancer stem cell properties or multidrug resistance induction. The precise mechanisms underlying these processes are unknown. Here, we investigated the molecular mechanisms occurring after UGCG overexpression in breast cancer cells. We observed alterations of several cellular properties such as morphological changes, which enhanced proliferation and doxorubicin resistance in UGCG overexpressing MCF-7 cells. These cellular effects seem to be mediated by an altered composition of glycosphingolipid-enriched microdomains (GEMs), especially an accumulation of globotriaosylceramide (Gb3) and glucosylceramide (GlcCer), which leads to an activation of Akt and ERK1/2. The induction of the Akt and ERK1/2 signaling pathway results in an increased gene expression of multidrug resistance protein 1 (MDR1) and anti-apoptotic genes and a decrease of pro-apoptotic gene expression. Inhibition of the protein kinase C (PKC) and phosphoinositide 3 kinase (PI3K) reduced MDR1 gene expression. This study discloses how changes in UGCG expression impact several cellular signaling pathways in breast cancer cells resulting in enhanced proliferation and multidrug resistance.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Lisa Gruber
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephanie Beatrice Örtel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Matti Aleksi Kjellberg
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, 20520, Turku, Finland
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, 20520, Turku, Finland
| | - Jennifer Kurz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Sandra Trautmann
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Bing Peng
- Leibniz-Institut für Analytische Wissenschaften, ISAS e. V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften, ISAS e. V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Kurosawa K, Inoue Y, Kakugawa Y, Yamashita Y, Kanazawa K, Kishimoto K, Nomura M, Momoi Y, Sato I, Chiba N, Suzuki M, Ogoh H, Yamada H, Miura K, Watanabe T, Tanuma N, Tachi M, Shima H. Loss of protein phosphatase 6 in mouse keratinocytes enhances K-ras G12D -driven tumor promotion. Cancer Sci 2018; 109:2178-2187. [PMID: 29758119 PMCID: PMC6029815 DOI: 10.1111/cas.13638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 01/17/2023] Open
Abstract
Here, we address the function of protein phosphatase 6 (PP6) loss on K‐ras‐initiated tumorigenesis in keratinocytes. To do so, we developed tamoxifen‐inducible double mutant (K‐rasG12D‐expressing and Ppp6c‐deficient) mice in which K‐rasG12D expression is driven by the cytokeratin 14 (K14) promoter. Doubly‐mutant mice showed early onset tumor formation in lips, nipples, external genitalia, anus and palms, and had to be killed by 3 weeks after induction by tamoxifen, while comparably‐treated K‐rasG12D‐expressing mice did not. H&E‐staining of lip tumors before euthanasia revealed that all were papillomas, some containing focal squamous cell carcinomas. Immunohistochemical analysis of lips of doubly‐mutant vs K‐rasG12D mice revealed that cell proliferation and cell size increased approximately 2‐fold relative to K‐rasG12D‐expressing mutants, and epidermal thickness of lip tissue greatly increased relative to that seen in K‐rasG12D‐only mice. Moreover, AKT phosphorylation increased in K‐rasG12D‐expressing/Ppp6c‐deficient cells, as did phosphorylation of the downstream effectors 4EBP1, S6 and GSK3, suggesting that protein synthesis and survival signals are enhanced in lip tissues of doubly‐mutant mice. Finally, increased numbers of K14‐positive cells were present in the suprabasal layer of doubly‐mutant mice, indicating abnormal keratinocyte differentiation, and γH2AX‐positive cells accumulated, indicating perturbed DNA repair. Taken together, Ppp6c deficiency enhances K‐rasG12D‐dependent tumor promotion.
Collapse
Affiliation(s)
- Koreyuki Kurosawa
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Department of Plastic and Reconstructive Surgery, Tohoku University Hospital, Miyagi, Japan
| | - Yui Inoue
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Yoichiro Kakugawa
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Kosuke Kanazawa
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Kazuhiro Kishimoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Yuki Momoi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center, Miyagi, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Mai Suzuki
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Koh Miura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Hospital, Miyagi, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
26
|
Yamamoto T, Nakanishi S, Mitamura K, Taga A. Collagen peptides from soft‑shelled turtle induce calpain‑1 expression and regulate inflammatory cytokine expression in HaCaT human skin keratinocytes. Int J Mol Med 2018; 42:1168-1180. [DOI: 10.3892/ijmm.2018.3659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/03/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Tetsushi Yamamoto
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Saori Nakanishi
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Kuniko Mitamura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi‑Osaka, Osaka 577‑8502, Japan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi‑Osaka, Osaka 577‑8502, Japan
| |
Collapse
|
27
|
Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med 2018; 24:617-627. [PMID: 29662201 PMCID: PMC6095711 DOI: 10.1038/s41591-018-0003-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
Proliferating cells depend on glucose uptake more than quiescent cells for their growth. While glucose transport in keratinocytes is mediated largely by the Glut1 facilitative transporter, the keratinocyte-specific ablation of Glut1 did not compromise mouse skin development and homeostasis. Ex vivo metabolic profiling revealed altered sphingolipid, hexose, amino acid, and nucleotide metabolism in Glut1-deficient keratinocytes, suggesting metabolic adaptation. On the other hand, Glut1-deficient keratinocytes in culture displayed metabolic and oxidative stress and impaired proliferation. Similarly, Glut1 deficiency impaired in vivo keratinocyte proliferation and migration within wounded or UV-damaged mouse skin. Notably, both genetic and pharmacological Glut1 inactivation reduced hyperplasia in mouse models of psoriasis-like disease. Topical application of a Glut1 inhibitor also reduced inflammation in these models. Glut1 inhibition decreased expression of pathology-associated genes in human psoriatic skin organoids. Thus, Glut1 is selectively required for injury- and inflammation-associated keratinocyte proliferation, and its inhibition offers a novel treatment strategy for psoriasis.
Collapse
|
28
|
Lewis EEL, Barrett MRT, Freeman-Parry L, Bojar RA, Clench MR. Examination of the skin barrier repair/wound healing process using a living skin equivalent model and matrix-assisted laser desorption-ionization-mass spectrometry imaging. Int J Cosmet Sci 2018; 40:148-156. [PMID: 29355981 DOI: 10.1111/ics.12446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Examination of the skin barrier repair/wound healing process using a living skin equivalent (LSE) model and matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to identify lipids directly involved as potential biomarkers. These biomarkers may be used to determine whether an in vivo wound is going to heal for example if infected. METHODS An in vitro LSE model was wounded with a scalpel blade and assessed at day 4 post-wounding by histology and MALDI-MSI. Samples were sectioned at wound site and were either formalin-fixed paraffin-embedded (FFPE) for histology or snapped frozen (FF) for MSI analysis. RESULTS The combination of using an in vitro wounded skin model with MSI allowed the identification of lipids involved in the skin barrier repair/wound healing process. The technique was able to highlight lipids directly in the wound site and distinguish differences in lipid distribution between the epidermis and wound site. CONCLUSION This novel method of coupling an in vitro LSE with MSI allowed in-depth molecular analysis of the skin barrier repair/wound healing process. The technique allowed the identification of lipids directly involved in the skin barrier repair/wound healing process, indicating these biomarkers may be potentially be used within the clinic. These biomarkers will help to determine, which stage of the skin barrier repair/wound healing process the wound is in to provide the best treatment.
Collapse
Affiliation(s)
- E E L Lewis
- Innovenn UK Ltd., National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ, U.K.,Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, 754 Owen Building, City Campus, Howard Street, Sheffield, S1 1WB, U.K
| | - M R T Barrett
- Innovenn UK Ltd., National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ, U.K
| | - L Freeman-Parry
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, 754 Owen Building, City Campus, Howard Street, Sheffield, S1 1WB, U.K
| | - R A Bojar
- Innovenn UK Ltd., National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ, U.K
| | - M R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, 754 Owen Building, City Campus, Howard Street, Sheffield, S1 1WB, U.K
| |
Collapse
|
29
|
Monies D, Anabrees J, Ibrahim N, Elbardisy H, Abouelhoda M, Meyer BF, Alkuraya FS. Identification of a novel lethal form of autosomal recessive ichthyosis caused by UDP-glucose ceramide glucosyltransferase deficiency. Clin Genet 2018; 93:1252-1253. [PMID: 29417556 DOI: 10.1111/cge.13180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022]
Affiliation(s)
- D Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - J Anabrees
- Department of Pediatrics, Arrayan Hospital, Dr. Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia
| | - N Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H Elbardisy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - M Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - B F Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - F S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Wegner MS, Gruber L, Mattjus P, Geisslinger G, Grösch S. The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1). BMC Cancer 2018; 18:153. [PMID: 29409484 PMCID: PMC5801679 DOI: 10.1186/s12885-018-4084-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
The UDP-glucose ceramide glycosyltransferase (UGCG) is a key enzyme in the sphingolipid metabolism by generating glucosylceramide (GlcCer), the precursor for all glycosphingolipids (GSL), which are essential for proper cell function. Interestingly, the UGCG is also overexpressed in several cancer types and correlates with multidrug resistance protein 1 (MDR1) gene expression. This membrane protein is responsible for efflux of toxic substances and protects cancer cells from cell damage through chemotherapeutic agents. Studies showed a connection between UGCG and MDR1 overexpression and multidrug resistance development, but the precise underlying mechanisms are unknown. Here, we give an overview about the UGCG and its connection to MDR1 in multidrug resistant cells. Furthermore, we focus on UGCG transcriptional regulation, the impact of UGCG on cellular signaling pathways and the effect of UGCG and MDR1 on the lipid composition of membranes and how this could influence multidrug resistance development. To our knowledge, this is the first review presenting an overview about UGCG with focus on the relationship to MDR1 in the process of multidrug resistance development.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Lisa Gruber
- pharmazentrum frankfurt/ ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, FI-20520, Turku, Finland
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Akiyama M. Corneocyte lipid envelope (CLE), the key structure for skin barrier function and ichthyosis pathogenesis. J Dermatol Sci 2017. [DOI: 10.1016/j.jdermsci.2017.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Kruse V, Neess D, Færgeman NJ. The Significance of Epidermal Lipid Metabolism in Whole-Body Physiology. Trends Endocrinol Metab 2017; 28:669-683. [PMID: 28668301 DOI: 10.1016/j.tem.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
The skin is the largest sensory organ of the human body. The skin not only prevents loss of water and other components of the body, but also is involved in regulation of body temperature and serves as an essential barrier, protecting mammals from both routine and extreme environments. Given the importance of the skin in temperature regulation, it is surprising that adaptive alterations in skin functions and morphology only vaguely have been associated with systemic physiological responses. Despite that impaired lipid metabolism in the skin often impairs the epidermal permeability barrier and insulation properties of the skin, its role in regulating systemic physiology and metabolism is yet to be recognized.
Collapse
Affiliation(s)
- Vibeke Kruse
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Ditte Neess
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
33
|
Ip SCI, Cottle DL, Jones LK, Weir JM, Kelsell DP, O'Toole EA, Meikle PJ, Smyth IM. A profile of lipid dysregulation in harlequin ichthyosis. Br J Dermatol 2017; 177:e217-e219. [PMID: 28493316 DOI: 10.1111/bjd.15642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S C I Ip
- Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, 3800, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic, Australia
| | - D L Cottle
- Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, 3800, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - L K Jones
- Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, 3800, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - J M Weir
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - D P Kelsell
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, 3800, VIC, Australia
| | - E A O'Toole
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, 3800, VIC, Australia
| | - P J Meikle
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - I M Smyth
- Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, 3800, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
34
|
von Gerichten J, Schlosser K, Lamprecht D, Morace I, Eckhardt M, Wachten D, Jennemann R, Gröne HJ, Mack M, Sandhoff R. Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J Lipid Res 2017; 58:1247-1258. [PMID: 28373486 DOI: 10.1194/jlr.d076190] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
Mammals synthesize, cell-type specifically, the diastereomeric hexosylceramides, β-galactosylceramide (GalCer) and β-glucosylceramide (GlcCer), which are involved in several diseases, such as sphingolipidosis, diabetes, chronic kidney diseases, or cancer. In contrast, Bacteroides fragilis, a member of the human gut microbiome, and the marine sponge, Agelas mauritianus, produce α-GalCer, one of the most potent stimulators for invariant natural killer T cells. To dissect the contribution of these individual stereoisomers to pathologies, we established a novel hydrophilic interaction chromatography-based LC-MS2 method and separated (R > 1.5) corresponding diastereomers from each other, independent of their lipid anchors. Testing various bacterial and mammalian samples, we could separate, identify (including the lipid anchor composition), and quantify endogenous β-GlcCer, β-GalCer, and α-GalCer isomers without additional derivatization steps. Thereby, we show a selective decrease of β-GlcCers versus β-GalCers in cell-specific models of GlcCer synthase-deficiency and an increase of specific β-GlcCers due to loss of β-glucoceramidase 2 activity. Vice versa, β-GalCer increased specifically when cerebroside sulfotransferase (Gal3st1) was deleted. We further confirm β-GalCer as substrate of globotriaosylceramide synthase for galabiaosylceramide synthesis and identify additional members of the human gut microbiome to contain immunogenic α-GalCers. Finally, this method is shown to separate corresponding hexosylsphingosine standards, promoting its applicability in further investigations.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Kerstin Schlosser
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Dominic Lamprecht
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Ivan Morace
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology and Center for Rare Diseases University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany.,Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Richard Jennemann
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Mack
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany .,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
35
|
PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat Commun 2017; 8:14609. [PMID: 28248300 PMCID: PMC5337976 DOI: 10.1038/ncomms14609] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in patatin-like phospholipase domain-containing 1 (PNPLA1) cause autosomal recessive congenital ichthyosis, but the mechanism involved remains unclear. Here we show that PNPLA1, an enzyme expressed in differentiated keratinocytes, plays a crucial role in the biosynthesis of ω-O-acylceramide, a lipid component essential for skin barrier. Global or keratinocyte-specific Pnpla1-deficient neonates die due to epidermal permeability barrier defects with severe transepidermal water loss, decreased intercellular lipid lamellae in the stratum corneum, and aberrant keratinocyte differentiation. In Pnpla1−/− epidermis, unique linoleate-containing lipids including acylceramides, acylglucosylceramides and (O-acyl)-ω-hydroxy fatty acids are almost absent with reciprocal increases in their putative precursors, indicating that PNPLA1 catalyses the ω-O-esterification with linoleic acid to form acylceramides. Moreover, acylceramide supplementation partially rescues the altered differentiation of Pnpla1−/− keratinocytes. Our findings provide valuable insight into the skin barrier formation and ichthyosis development, and may contribute to novel therapeutic strategies for treatment of epidermal barrier defects. Loss-of-function mutations in PNPLA1, a gene encoding an enzyme with unknown function, cause dry and scaling skin in humans. Using mouse models with PNPLA1 deficiency, the authors show that PNPLA1 participates in the biosynthesis of acylceramide, a lipid component essential for skin barrier function.
Collapse
|
36
|
Grond S, Eichmann TO, Dubrac S, Kolb D, Schmuth M, Fischer J, Crumrine D, Elias PM, Haemmerle G, Zechner R, Lass A, Radner FPW. PNPLA1 Deficiency in Mice and Humans Leads to a Defect in the Synthesis of Omega-O-Acylceramides. J Invest Dermatol 2016; 137:394-402. [PMID: 27751867 DOI: 10.1016/j.jid.2016.08.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 01/22/2023]
Abstract
Mutations in PNPLA1 have been identified as causative for autosomal recessive congenital ichthyosis in humans and dogs. So far, the underlying molecular mechanisms are unknown. In this study, we generated and characterized PNPLA1-deficient mice and found that PNPLA1 is crucial for epidermal sphingolipid synthesis. The absence of functional PNPLA1 in mice impaired the formation of omega-O-acylceramides and led to an accumulation of nonesterified omega-hydroxy-ceramides. As a consequence, PNPLA1-deficient mice lacked a functional corneocyte-bound lipid envelope leading to a severe skin barrier defect and premature death of newborn animals. Functional analyses of differentiated keratinocytes from a patient with mutated PNPLA1 demonstrated an identical defect in omega-O-acylceramide synthesis in human cells, indicating that PNPLA1 function is conserved among mammals and indispensable for normal skin physiology. Notably, topical application of epidermal lipids from wild-type onto Pnpla1-mutant mice promoted rebuilding of the corneocyte-bound lipid envelope, indicating that supplementation of ichthyotic skin with omega-O-acylceramides might be a therapeutic approach for the treatment of skin symptoms in individuals affected by omega-O-acylceramide deficiency.
Collapse
Affiliation(s)
- Susanne Grond
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venerology, and Allergology, Innsbruck Medical University, Innsbruck, Austria
| | - Dagmar Kolb
- ZMF, Center for Medical Research, Medical University of Graz, Graz, Austria; Institute of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venerology, and Allergology, Innsbruck Medical University, Innsbruck, Austria
| | - Judith Fischer
- Institute for Human Genetics, University Medical Center Freiburg, Freiburg i. Br., Germany
| | - Debra Crumrine
- Dermatology Service, Department of Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Peter M Elias
- Dermatology Service, Department of Veterans Affairs Medical Center, University of California, San Francisco, California, USA
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| |
Collapse
|
37
|
Grond S, Radner FPW, Eichmann TO, Kolb D, Grabner GF, Wolinski H, Gruber R, Hofer P, Heier C, Schauer S, Rülicke T, Hoefler G, Schmuth M, Elias PM, Lass A, Zechner R, Haemmerle G. Skin Barrier Development Depends on CGI-58 Protein Expression during Late-Stage Keratinocyte Differentiation. J Invest Dermatol 2016; 137:403-413. [PMID: 27725204 PMCID: PMC5551682 DOI: 10.1016/j.jid.2016.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/02/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
Adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) are limiting in cellular triglyceride catabolism. Although ATGL deficiency is compatible with normal skin development, mice globally lacking CGI-58 die postnatally and exhibit a severe epidermal permeability barrier defect, which may originate from epidermal and/or peripheral changes in lipid and energy metabolism. Here, we show that epidermis-specific disruption of CGI-58 is sufficient to provoke a defect in the formation of a functional corneocyte lipid envelope linked to impaired ω-O-acylceramide synthesis. As a result, epidermis-specific CGI-58-deficient mice show severe skin dysfunction, arguing for a tissue autonomous cause of disease development. Defective skin permeability barrier formation in global CGI-58-deficient mice could be reversed via transgenic restoration of CGI-58 expression in differentiated but not basal keratinocytes suggesting that CGI-58 is essential for lipid metabolism in suprabasal epidermal layers. The compatibility of ATGL deficiency with normal epidermal function indicated that CGI-58 may stimulate an epidermal triglyceride lipase beyond ATGL required for the adequate provision of fatty acids as a substrate for ω-O-acylceramide synthesis. Pharmacological inhibition of ATGL enzyme activity similarly reduced triglyceride-hydrolytic activities in wild-type and CGI-58 overexpressing epidermis implicating that CGI-58 participates in ω-O-acylceramide biogenesis independent of its role as a coactivator of epidermal triglyceride catabolism.
Collapse
Affiliation(s)
- Susanne Grond
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research/Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, Microscopy Facility, University of Graz, Graz, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, University of Innsbruck, Innsbruck, Austria
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Silvia Schauer
- Institute of Pathology, Medical University of Graz, Graz, Austria; Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- BioTechMed-Graz, Microscopy Facility, University of Graz, Graz, Austria; Institute of Pathology, Medical University of Graz, Graz, Austria; Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, University of Innsbruck, Innsbruck, Austria
| | - Peter M Elias
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| |
Collapse
|
38
|
Liakath-Ali K, Vancollie VE, Lelliott CJ, Speak AO, Lafont D, Protheroe HJ, Ingvorsen C, Galli A, Green A, Gleeson D, Ryder E, Glover L, Vizcay-Barrena G, Karp NA, Arends MJ, Brenn T, Spiegel S, Adams DJ, Watt FM, van der Weyden L. Alkaline ceramidase 1 is essential for mammalian skin homeostasis and regulating whole-body energy expenditure. J Pathol 2016; 239:374-83. [PMID: 27126290 PMCID: PMC4924601 DOI: 10.1002/path.4737] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023]
Abstract
The epidermis is the outermost layer of skin that acts as a barrier to protect the body from the external environment and to control water and heat loss. This barrier function is established through the multistage differentiation of keratinocytes and the presence of bioactive sphingolipids such as ceramides, the levels of which are tightly regulated by a balance of ceramide synthase and ceramidase activities. Here we reveal the essential role of alkaline ceramidase 1 (Acer1) in the skin. Acer1‐deficient (Acer1−/−) mice showed elevated levels of ceramide in the skin, aberrant hair shaft cuticle formation and cyclic alopecia. We demonstrate that Acer1 is specifically expressed in differentiated interfollicular epidermis, infundibulum and sebaceous glands and consequently Acer1−/− mice have significant alterations in infundibulum and sebaceous gland architecture. Acer1−/− skin also shows perturbed hair follicle stem cell compartments. These alterations result in Acer1−/− mice showing increased transepidermal water loss and a hypermetabolism phenotype with associated reduction of fat content with age. We conclude that Acer1 is indispensable for mammalian skin homeostasis and whole‐body energy homeostasis. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kifayathullah Liakath-Ali
- Centre for Stem Cells and Regenerative Medicine, King's College London, UK.,Department of Biochemistry, University of Cambridge, UK
| | | | | | | | - David Lafont
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Camilla Ingvorsen
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | | | - Angela Green
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Diane Gleeson
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Ed Ryder
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Leanne Glover
- Centre for Ultrastructural Imaging, King's College London, Guy's Campus, London, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, King's College London, Guy's Campus, London, UK
| | | | - Mark J Arends
- University of Edinburgh Division of Pathology, Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Thomas Brenn
- NHS Lothian University Hospitals Trust and University of Edinburgh, Department of Pathology, Western General Hospital, Edinburgh, UK
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, UK
| | | |
Collapse
|
39
|
The role of epidermal sphingolipids in dermatologic diseases. Lipids Health Dis 2016; 15:13. [PMID: 26786937 PMCID: PMC4717587 DOI: 10.1186/s12944-016-0178-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids, a group of lipids containing the sphingoid base, have both structural and biological functions in human epidermis. Ceramides, as a part of extracellular lipids in the stratum corneum, are important elements of the skin barrier and are involved in the prevention of transepidermal water loss. In addition, ceramides regulate such processes as proliferation, differentiation and apoptosis of keratinocytes. Another important sphingolipid, sphingosine-1-phosphate (S1P), inhibits proliferation and induces differentiation of keratinocytes. A recent clinical study of the efficacy and safety of ponesimod (a selective modulator of the S1P receptor 1) suggested that sphingolipid metabolism may become a new target for the pharmacological treatment of psoriasis. The role of sphingolipids in some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses was summarized in this article.
Collapse
|
40
|
Usuki S, Tamura N, Sakai S, Tamura T, Mukai K, Igarashi Y. Chemoenzymatically prepared konjac ceramide inhibits NGF-induced neurite outgrowth by a semaphorin 3A-like action. Biochem Biophys Rep 2015; 5:160-167. [PMID: 28955819 PMCID: PMC5600454 DOI: 10.1016/j.bbrep.2015.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/04/2015] [Accepted: 11/17/2015] [Indexed: 11/17/2022] Open
Abstract
Dietary sphingolipids such as glucosylceramide (GlcCer) are potential nutritional factors associated with prevention of metabolic syndrome. Our current understanding is that dietary GlcCer is degraded to ceramide and further metabolized to sphingoid bases in the intestine. However, ceramide is only found in trace amounts in food plants and thus is frequently taken as GlcCer in a health supplement. In the present study, we successfully prepared konjac ceramide (kCer) using endoglycoceramidase I (EGCase I). Konjac, a plant tuber, is an enriched source of GlcCer (kGlcCer), and has been commercialized as a dietary supplement to improve dry skin and itching that are caused by a deficiency of epidermal ceramide. Nerve growth factor (NGF) produced by skin cells is one of the itch factors in the stratum corneum of the skin. Semaphorin 3A (Sema 3A) has been known to inhibit NGF-induced neurite outgrowth of epidermal nerve fibers. It is well known that the itch sensation is regulated by the balance between NGF and Sema 3A. In the present study, while kGlcCer did not show an in vitro inhibitory effect on NGF-induced neurite outgrowth of PC12 cells, kCer was demonstrated to inhibit a remarkable neurite outgrowth. In addition, the effect of kCer was similar to that of Sema 3A in cell morphological changes and neurite retractions, but different from C2-Ceramide. kCer showed a Sema 3A-like action, causing CRMP2 phosphorylation, which results in a collapse of neurite growth cones. Thus, it is expected that kCer is an advanced konjac ceramide material that may have neurite outgrowth-specific action to relieve uncontrolled and serious itching, in particular, from atopic eczema.
Collapse
Key Words
- BSA, bovine serum albumin
- C16Cer, N-hexadecanoyl-D-erythro-sphingosine
- C18Cer, N-octadecanoyl-D-erythro-sphingosine
- C24Cer, N-tetracosanoyl-D-erythro-sphingosine
- C2Cer, N-acetyl-D-erythro-sphingosine
- CBB, Coomassie Briliant Blue
- CCK-8, cell counting kit 8
- CRMP2
- CRMP2, collapsin response mediator protein 2
- Cer, ceramide
- Ceramide
- DMEM, Dulbecco’s modified Eagle's medium
- EGCase I, endoglycoceramidase I
- GlcCer, glucosylceramide
- Konjac
- LDH, lactate dehydrogenase
- NGF
- NGF, nerve growth factor
- Neurite outgrowth
- PBS, phosphate-buffered saline
- Sema 3A, semaphorin 3A
- Semaphorin 3A
- TBEA, trypan blue exclusion assay
- kCer, konjac ceramide
- pCRMP2, phospho-collapsin response mediator protein 2
Collapse
Affiliation(s)
- Seigo Usuki
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita 21, Nishi 11, Kita Ward, Sapporo, Hokkaido 011-0021, Japan
- Corresponding author.
| | - Noriko Tamura
- National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Shota Sakai
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita 21, Nishi 11, Kita Ward, Sapporo, Hokkaido 011-0021, Japan
| | - Tomohiro Tamura
- National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | | | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita 21, Nishi 11, Kita Ward, Sapporo, Hokkaido 011-0021, Japan
| |
Collapse
|
41
|
Swindell WR, Remmer HA, Sarkar MK, Xing X, Barnes DH, Wolterink L, Voorhees JJ, Nair RP, Johnston A, Elder JT, Gudjonsson JE. Proteogenomic analysis of psoriasis reveals discordant and concordant changes in mRNA and protein abundance. Genome Med 2015; 7:86. [PMID: 26251673 PMCID: PMC4527112 DOI: 10.1186/s13073-015-0208-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/17/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic disease characterized by the development of scaly red skin lesions and possible co-morbid conditions. The psoriasis lesional skin transcriptome has been extensively investigated, but mRNA levels do not necessarily reflect protein abundance. The purpose of this study was therefore to compare differential expression patterns of mRNA and protein in psoriasis lesions. METHODS Lesional (PP) and uninvolved (PN) skin samples from 14 patients were analyzed using high-throughput complementary DNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS We identified 4122 differentially expressed genes (DEGs) along with 748 differentially expressed proteins (DEPs). Global shifts in mRNA were modestly correlated with changes in protein abundance (r = 0.40). We identified similar numbers of increased and decreased DEGs, but 4-fold more increased than decreased DEPs. Ribosomal subunit and translation proteins were elevated within lesions, without a corresponding shift in mRNA expression (RPL3, RPS8, RPL11). We identified 209 differentially expressed genes/proteins (DEGPs) with corresponding trends at the transcriptome and proteome levels. Most DEGPs were similarly altered in at least one other skin disease. Psoriasis-specific and non-specific DEGPs had distinct cytokine-response patterns, with only the former showing disproportionate induction by IL-17A in cultured keratinocytes. CONCLUSIONS Our findings reveal global imbalance between the number of increased and decreased proteins in psoriasis lesions, consistent with heightened translation. This effect could not have been discerned from mRNA profiling data alone. High-confidence DEGPs were identified through transcriptome-proteome integration. By distinguishing between psoriasis-specific and non-specific DEGPs, our analysis uncovered new functional insights that would otherwise have been overlooked.
Collapse
Affiliation(s)
- William R Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Henriette A Remmer
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Drew H Barnes
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Liza Wolterink
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Rajan P Nair
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Andrew Johnston
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - James T Elder
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| |
Collapse
|
42
|
Allende ML, Proia RL. Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J 2014; 31:613-22. [PMID: 25351657 PMCID: PMC4245496 DOI: 10.1007/s10719-014-9563-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022]
Abstract
Glycosphingolipids (GSLs) are a group of plasma-membrane lipids notable for their extremely diverse glycan head groups. The metabolic pathways for GSLs, including the identity of the biosynthetic enzymes needed for synthesis of their glycans, are now well understood. Many of their cellular functions, which include plasma-membrane organization, regulation of cell signaling, endocytosis, and serving as binding sites for pathogens and endogenous receptors, have also been established. However, an understanding of their functions in vivo had been lagging. Studies employing genetic manipulations of the GSL synthesis pathways in mice have been used to systematically reduce the large numbers and complexity of GSL glycan structures, allowing the in vivo functions of GSLs to be revealed from analysis of the resulting phenotypes. Findings from these studies have produced a clearer picture of the role of GSLs in mammalian physiology, which is the topic of this review.
Collapse
Affiliation(s)
- Maria Laura Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9D-06; 10 Center DR MSC 1821, Bethesda, MD, 20892-1821, USA
| | | |
Collapse
|
43
|
Cottle DL, Ursino GMA, Ip SCI, Jones LK, Ditommaso T, Hacking DF, Mangan NE, Mellett NA, Henley KJ, Sviridov D, Nold-Petry CA, Nold MF, Meikle PJ, Kile BT, Smyth IM. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Hum Mol Genet 2014; 24:436-49. [PMID: 25209981 DOI: 10.1093/hmg/ddu459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Harlequin ichthyosis (HI) is a severe skin disease which leads to neonatal death in ∼50% of cases. It is the result of mutations in ABCA12, a protein that transports lipids required to establish the protective skin barrier needed after birth. To better understand the life-threatening newborn HI phenotype, we analysed the developing epidermis for consequences of lipid dysregulation in mouse models. We observed a pro-inflammatory signature which was characterized by chemokine upregulation in embryonic skin which is distinct from that seen in other types of ichthyosis. Inflammation also persisted in grafted HI skin. To examine the contribution of inflammation to disease development, we overexpressed interleukin-37b to globally suppress fetal inflammation, observing considerable improvements in keratinocyte differentiation. These studies highlight inflammation as an unexpected contributor to HI disease development in utero, and suggest that inhibiting inflammation may reduce disease severity.
Collapse
Affiliation(s)
| | | | | | | | | | - Douglas F Hacking
- Department of Anaesthetics, Saint Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC 3065, Australia Department of Paediatric Intensive Care, The Royal Children's Hospital, Melbourne, VIC, Australia
| | | | - Natalie A Mellett
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Katya J Henley
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
| | - Marcel F Nold
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Benjamin T Kile
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia and
| | - Ian M Smyth
- Department of Biochemistry and Molecular Biology Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
44
|
Abstract
The epidermis functions as a physical barrier to the external environment and works to prevent loss of water from the skin. Numerous factors have been implicated in the formation of epidermal barriers, such as cornified envelopes, corneocytes, lipids, junctional proteins, proteases, protease inhibitors, antimicrobial peptides, and transcription factors. This review illustrates human diseases (ichthyoses) and animal models in which the epidermal barrier is disrupted or dysfunctional at steady state owing to ablation of one or more of the above factors. These diseases and animal models help us to understand the complicated mechanisms of epidermal barrier formation and give further insights on epidermal development.
Collapse
|
45
|
Uchida Y. Ceramide signaling in mammalian epidermis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:453-62. [PMID: 24055887 DOI: 10.1016/j.bbalip.2013.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/12/2022]
Abstract
Ceramide, the backbone structure of all sphingolipids, as well as a minor component of cellular membranes, has a unique role in the skin, by forming the epidermal permeability barrier at the extracellular domains of the outermost layer of the skin, the stratum corneum, which is required for terrestrial mammalian survival. In contrast to the role of ceramide in forming the permeability barrier, the signaling roles of ceramide and its metabolites have not yet been recognized. Ceramide and/or its metabolites regulate proliferation, differentiation, and apoptosis in epidermal keratinocytes. Recent studies have further demonstrated that a ceramide metabolite, sphingosine-1-phosphate, modulates innate immune function. Ceramide has already been applied to therapeutic approaches for treatment of eczema associated with attenuated epidermal permeability barrier function. Pharmacological modulation of ceramide and its metabolites' signaling can also be applied to cutaneous disease prevention and therapy. The author here describes the signaling roles of ceramide and its metabolites in mammalian cells and tissues, including the epidermis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Yoshikazu Uchida
- Department of Dermatology, University of California, San Francisco, CA, USA; School of Medicine, University of California, San Francisco, CA, USA; Dermatology Service and Research Unit, Veterans Affairs Medical Center, San Francisco, CA, USA; Northern California Institute for Research and Education, San Francisco, CA, USA.
| |
Collapse
|
46
|
Ceramide synthesis in the epidermis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:422-34. [PMID: 23988654 DOI: 10.1016/j.bbalip.2013.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022]
Abstract
The epidermis and in particular its outermost layer the stratum corneum provides terrestrial vertebrates with a pivotal defensive barrier against water loss, xenobiotics and harmful pathogens. A vital demand for this epidermal permeability barrier is the lipid-enriched lamellar matrix that embeds the enucleated corneocytes. Ceramides are the major components of these highly ordered intercellular lamellar structures, in which linoleic acid- and protein-esterified ceramides are crucial for structuring and maintaining skin barrier integrity. In this review, we describe the fascinating diversity of epidermal ceramides including 1-O-acylceramides. We focus on epidermal ceramide biosynthesis emphasizing its metabolic and topological requirements and discuss enzymes that may be involved in α- and ω-hydroxylation. Finally, we turn to epidermal ceramide regulation, highlighting transcription factors and liposensors recently described to play crucial roles in modulating skin lipid metabolism and epidermal barrier homeostasis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier.
Collapse
|
47
|
Breiden B, Sandhoff K. The role of sphingolipid metabolism in cutaneous permeability barrier formation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:441-52. [PMID: 23954553 DOI: 10.1016/j.bbalip.2013.08.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/04/2013] [Accepted: 08/08/2013] [Indexed: 11/15/2022]
Abstract
The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-β-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the "collodion baby" in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Bernadette Breiden
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Konrad Sandhoff
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| |
Collapse
|