1
|
Almeida P, Fernandes Â, Alves I, Pinho SS. "Glycans in Trained Immunity: Educators of innate immune memory in homeostasis and disease". Carbohydr Res 2024; 544:109245. [PMID: 39208605 DOI: 10.1016/j.carres.2024.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Trained Immunity is defined as a biological process normally induced by exogenous or endogenous insults that triggers epigenetic and metabolic reprogramming events associated with long-term adaptation of innate immune cells. This trained phenotype confers enhanced responsiveness to subsequent triggers, resulting in an innate immune "memory" effect. Trained Immunity, in the past decade, has revealed important benefits for host defense and homeostasis, but can also induce potentially harmful outcomes associated with chronic inflammatory disorders or autoimmune diseases. Interestingly, evidence suggest that the "trainers" prompting trained immunity are frequently glycans structures. In fact, the exposure of different types of glycans at the surface of pathogens is a key driver of the training phenotype, leading to the reprogramming of innate immune cells through the recognition of those glycan-triggers by a variety of glycan-binding proteins (GBPs) expressed by the immune cells. β-glucan or mannose-enriched structures in Candida albicans are some of the examples that highlight the potential of glycans in trained immunity, both in homeostasis and in disease. In this review, we will discuss the relevance of glycans exposed by pathogens in establishing key immunological hubs with glycan-recognizing receptors expressed in immune cells, highlighting how this glycan-GBP network can impact trained immunity. Finally, we discuss the power of glycans and GBPs as potential targets in trained immunity, envisioning potential therapeutic applications.
Collapse
Affiliation(s)
- Pedro Almeida
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Ângela Fernandes
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Inês Alves
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
| | - Salomé S Pinho
- I3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Gaifem J, Rodrigues CS, Petralia F, Alves I, Leite-Gomes E, Cavadas B, Dias AM, Moreira-Barbosa C, Revés J, Laird RM, Novokmet M, Štambuk J, Habazin S, Turhan B, Gümüş ZH, Ungaro R, Torres J, Lauc G, Colombel JF, Porter CK, Pinho SS. A unique serum IgG glycosylation signature predicts development of Crohn's disease and is associated with pathogenic antibodies to mannose glycan. Nat Immunol 2024; 25:1692-1703. [PMID: 39080486 PMCID: PMC11362009 DOI: 10.1038/s41590-024-01916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gut. There is growing evidence in Crohn's disease (CD) of the existence of a preclinical period characterized by immunological changes preceding symptom onset that starts years before diagnosis. Gaining insight into this preclinical phase will allow disease prediction and prevention. Analysis of preclinical serum samples, up to 6 years before IBD diagnosis (from the PREDICTS cohort), revealed the identification of a unique glycosylation signature on circulating antibodies (IgGs) characterized by lower galactosylation levels of the IgG fragment crystallizable (Fc) domain that remained stable until disease diagnosis. This specific IgG2 Fc glycan trait correlated with increased levels of antimicrobial antibodies, specifically anti-Saccharomyces cerevisiae (ASCA), pinpointing a glycome-ASCA hub detected in serum that predates by years the development of CD. Mechanistically, we demonstrated that this agalactosylated glycoform of ASCA IgG, detected in the preclinical phase, elicits a proinflammatory immune pathway through the activation and reprogramming of innate immune cells, such as dendritic cells and natural killer cells, via an FcγR-dependent mechanism, triggering NF-κB and CARD9 signaling and leading to inflammasome activation. This proinflammatory role of ASCA was demonstrated to be dependent on mannose glycan recognition and galactosylation levels in the IgG Fc domain. The pathogenic properties of (anti-mannose) ASCA IgG were validated in vivo. Adoptive transfer of antibodies to mannan (ASCA) to recipient wild-type mice resulted in increased susceptibility to intestinal inflammation that was recovered in recipient FcγR-deficient mice. Here we identify a glycosylation signature in circulating IgGs that precedes CD onset and pinpoint a specific glycome-ASCA pathway as a central player in the initiation of inflammation many years before CD diagnosis. This pathogenic glyco-hub may constitute a promising new serum biomarker for CD prediction and a potential target for disease prevention.
Collapse
Affiliation(s)
- Joana Gaifem
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Cláudia S Rodrigues
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inês Alves
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Eduarda Leite-Gomes
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Bruno Cavadas
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Joana Revés
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Renee M Laird
- Operationally Relevant Infections Department, Naval Medical Research Command, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Military Medicine, Inc., Bethesda, MD, USA
| | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Berk Turhan
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Ungaro
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Division of Gastroenterology, Hospital da Luz, Lisbon, Portugal
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića, Zagreb, Croatia
| | - Jean-Frederic Colombel
- Department of Medicine, Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chad K Porter
- Translational and Clinical Research Department, Naval Medical Research Command, Silver Spring, MD, USA
| | - Salomé S Pinho
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Changes in the glycosylation of circulating IgG predict future Crohn's disease onset. Nat Immunol 2024; 25:1526-1527. [PMID: 39122923 DOI: 10.1038/s41590-024-01919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
|
4
|
Crouch LI, Rodrigues CS, Bakshani CR, Tavares-Gomes L, Gaifem J, Pinho SS. The role of glycans in health and disease: Regulators of the interaction between gut microbiota and host immune system. Semin Immunol 2024; 73:101891. [PMID: 39388764 DOI: 10.1016/j.smim.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
The human gut microbiota is home to a diverse collection of microorganisms that has co-evolved with the host immune system in which host-microbiota interactions are essential to preserve health and homeostasis. Evidence suggests that the perturbation of this symbiotic host-microbiome relationship contributes to the onset of major diseases such as chronic inflammatory diseases including Inflammatory Bowel Disease. The host glycocalyx (repertoire of glycans/sugar-chains at the surface of gut mucosa) constitutes a major biological and physical interface between the intestinal mucosa and microorganisms, as well as with the host immune system. Glycans are an essential niche for microbiota colonization and thus an important modulator of host-microorganism interactions both in homeostasis and in disease. In this review, we discuss the role of gut mucosa glycome as an instrumental pathway that regulates host-microbiome interactions in homeostasis but also in health to inflammation transition. We also discuss the power of mucosa glycosylation remodelling as an attractive preventive and therapeutic strategy to preserve gut homeostasis.
Collapse
Affiliation(s)
- Lucy I Crouch
- Department of Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK.
| | - Cláudia S Rodrigues
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Cassie R Bakshani
- Department of Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Leticia Tavares-Gomes
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
5
|
Hale RC, Morais D, Chou J, Stowell SR. The role of glycosylation in clinical allergy and immunology. J Allergy Clin Immunol 2024; 153:55-66. [PMID: 37717626 PMCID: PMC10872775 DOI: 10.1016/j.jaci.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
While glycans are among the most abundant macromolecules on the cell with widespread functions, their role in immunity has historically been challenging to study. This is in part due to difficulties assimilating glycan analysis into routine approaches used to interrogate immune cell function. Despite this, recent developments have illuminated fundamental roles for glycans in host immunity. The growing field of glycoimmunology continues to leverage new tools and approaches to uncover the function of glycans and glycan-binding proteins in immunity. Here we utilize clinical vignettes to examine key roles of glycosylation in allergy, inborn errors of immunity, and autoimmunity. We will discuss the diverse functions of glycans as epitopes, as modulators of antibody function, and as regulators of immune cell function. Finally, we will highlight immune modulatory therapies that harness the critical role of glycans in the immune system.
Collapse
Affiliation(s)
- Rebecca C Hale
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Dominique Morais
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| | - Sean R Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Harvard Glycomics Center, Harvard Medical School, Boston, Mass.
| |
Collapse
|
6
|
Abdelbary M, Nolz JC. N-linked glycans: an underappreciated key determinant of T cell development, activation, and function. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00035. [PMID: 38027254 PMCID: PMC10662610 DOI: 10.1097/in9.0000000000000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
N-linked glycosylation is a post-translational modification that results in the decoration of newly synthesized proteins with diverse types of oligosaccharides that originate from the amide group of the amino acid asparagine. The sequential and collective action of multiple glycosidases and glycosyltransferases are responsible for determining the overall size, composition, and location of N-linked glycans that become covalently linked to an asparagine during and after protein translation. A growing body of evidence supports the critical role of N-linked glycan synthesis in regulating many features of T cell biology, including thymocyte development and tolerance, as well as T cell activation and differentiation. Here, we provide an overview of how specific glycosidases and glycosyltransferases contribute to the generation of different types of N-linked glycans and how these post-translational modifications ultimately regulate multiple facets of T cell biology.
Collapse
Affiliation(s)
- Mahmoud Abdelbary
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Pinho SS, Alves I, Gaifem J, Rabinovich GA. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. Cell Mol Immunol 2023; 20:1101-1113. [PMID: 37582971 PMCID: PMC10541879 DOI: 10.1038/s41423-023-01074-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
The immune system is coordinated by an intricate network of stimulatory and inhibitory circuits that regulate host responses against endogenous and exogenous insults. Disruption of these safeguard and homeostatic mechanisms can lead to unpredictable inflammatory and autoimmune responses, whereas deficiency of immune stimulatory pathways may orchestrate immunosuppressive programs that contribute to perpetuate chronic infections, but also influence cancer development and progression. Glycans have emerged as essential components of homeostatic circuits, acting as fine-tuners of immunological responses and potential molecular targets for manipulation of immune tolerance and activation in a wide range of pathologic settings. Cell surface glycans, present in cells, tissues and the extracellular matrix, have been proposed to serve as "self-associated molecular patterns" that store structurally relevant biological data. The responsibility of deciphering this information relies on different families of glycan-binding proteins (including galectins, siglecs and C-type lectins) which, upon recognition of specific carbohydrate structures, can recalibrate the magnitude, nature and fate of immune responses. This process is tightly regulated by the diversity of glycan structures and the establishment of multivalent interactions on cell surface receptors and the extracellular matrix. Here we review the spatiotemporal regulation of selected glycan-modifying processes including mannosylation, complex N-glycan branching, core 2 O-glycan elongation, LacNAc extension, as well as terminal sialylation and fucosylation. Moreover, we illustrate examples that highlight the contribution of these processes to the control of immune responses and their integration with canonical tolerogenic pathways. Finally, we discuss the power of glycans and glycan-binding proteins as a source of immunomodulatory signals that could be leveraged for the treatment of autoimmune inflammation and chronic infection.
Collapse
Affiliation(s)
- Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Inês Alves
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
8
|
Campar A, Alves I, Santos-Pereira B, Nogueira R, Pinto MM, Vasconcelos C, Pinho SS. Muscle glycome in idiopathic inflammatory myopathies: Impact in IL-6 production and disease prognosis. iScience 2023; 26:107172. [PMID: 37404372 PMCID: PMC10316658 DOI: 10.1016/j.isci.2023.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIM) are a group of chronic autoimmune diseases mainly affecting proximal muscles. Absence of meaningful prognostic factors in IIM has hindered new therapies development. Glycans are essential molecules that regulate immunological tolerance and consequently the onset of autoreactive immune response. We showed that muscle biopsies from patients with IIM revealed a deficiency in the glycosylation pathway resulting in loss of branched N-glycans. At diagnosis, this glycosignature predicted disease relapse and treatment refractoriness. Peripheral CD4+ T cells from active-disease patients shown a deficiency in branched N-glycans, linked to increased IL-6 production. Glycan supplementation, restoring homeostatic glycosylation profile, led to a decrease in IL-6 levels. This study highlights the biological and clinical importance of glycosylation in IIM immunopathogenesis, providing a potential mechanism for IL-6 production. This pinpoints muscle glycome as promising biomarker for personalized follow-up and a potential target for new therapies in a patients' subgroup with an ominous evolution.
Collapse
Affiliation(s)
- Ana Campar
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Clinical Immunology Unit, Porto University Hospital Centre, Porto, Portugal
| | - Inês Alves
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rafaela Nogueira
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Department of Chemistry, NOVA School of Science and Technology, Lisbon, Portugal
| | | | - Carlos Vasconcelos
- Clinical Immunology Unit, Porto University Hospital Centre, Porto, Portugal
| | - Salomé S. Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Dressman JW, McDowell CT, Lu X, Angel PM, Drake RR, Mehta AS. Development of an Antibody-Based Platform for the Analysis of Immune Cell-Specific N-linked Glycosylation. Anal Chem 2023; 95:10289-10297. [PMID: 37293957 PMCID: PMC10988393 DOI: 10.1021/acs.analchem.3c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
N-linked glycosylation plays an important role in both the innate and adaptive immune response through the modulation of cell surface receptors as well as general cell-to-cell interactions. The study of immune cell N-glycosylation is gaining interest but is hindered by the complexity of cell-type-specific N-glycan analysis. Analytical techniques such as chromatography, LC-MS/MS, and the use of lectins are all currently used to analyze cellular glycosylation. Issues with these analytical techniques include poor throughput, which is often limited to a single sample at a time, lack of structural information, the need for a large amount of starting materials, and the requirement for cell purification, thereby reducing their feasibility for N-glycan study. Here, we report the development of a rapid antibody array-based approach for the capture of specific nonadherent immune cells coupled with MALDI-IMS to analyze cellular N-glycosylation. This workflow is adaptable to multiple N-glycan imaging approaches such as the removal or stabilization and derivatization of terminal sialic acid residues providing unique avenues of analysis that have otherwise not been explored in immune cell populations. The reproducibility, sensitivity, and versatility of this assay provide an invaluable tool for researchers and clinical applications, significantly expanding the field of glycoimmunology.
Collapse
Affiliation(s)
- James W. Dressman
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Colin T. McDowell
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Xiaowei Lu
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Peggi M. Angel
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Richard R. Drake
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| | - Anand S. Mehta
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425
| |
Collapse
|
10
|
Vicente MM, Alves I, Fernandes Â, Dias AM, Santos-Pereira B, Pérez-Anton E, Santos S, Yang T, Correia A, Münster-Kühnel A, Almeida ARM, Ravens S, Rabinovich GA, Vilanova M, Sousa AE, Pinho SS. Mannosylated glycans impair normal T-cell development by reprogramming commitment and repertoire diversity. Cell Mol Immunol 2023:10.1038/s41423-023-01052-7. [PMID: 37344746 PMCID: PMC10387478 DOI: 10.1038/s41423-023-01052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
T-cell development ensures the formation of diverse repertoires of T-cell receptors (TCRs) that recognize a variety of antigens. Glycosylation is a major posttranslational modification present in virtually all cells, including T-lymphocytes, that regulates activity/functions. Although these structures are known to be involved in TCR-selection in DP thymocytes, it is unclear how glycans regulate other thymic development processes and how they influence susceptibility to disease. Here, we discovered stage-specific glycome compositions during T-cell development in human and murine thymocytes, as well as dynamic alterations. After restricting the N-glycosylation profile of thymocytes to high-mannose structures, using specific glycoengineered mice (Rag1CreMgat1fl/fl), we showed remarkable defects in key developmental checkpoints, including ß-selection, regulatory T-cell generation and γδT-cell development, associated with increased susceptibility to colon and kidney inflammation and infection. We further demonstrated that a single N-glycan antenna (modeled in Rag1CreMgat2fl/fl mice) is the sine-qua-non condition to ensure normal development. In conclusion, we revealed that mannosylated thymocytes lead to a dysregulation in T-cell development that is associated with inflammation susceptibility.
Collapse
Affiliation(s)
- Manuel M Vicente
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA), ICBAS, University of Porto, Porto, Portugal
| | - Inês Alves
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ângela Fernandes
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Elena Pérez-Anton
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Sofia Santos
- Nephrology Department, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Tao Yang
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Alexandra Correia
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Anja Münster-Kühnel
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Afonso R M Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
- Laboratorio de Inmuno-oncología Translacional, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Manuel Vilanova
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Alves I, Santos-Pereira B, de la Cruz N, Campar A, Pinto V, Rodrigues PM, Araújo M, Santos S, Ramos-Soriano J, Vasconcelos C, Silva R, Afonso N, Mira F, Barrias CC, Alves NL, Rojo J, Santos L, Marinho A, Pinho SS. Host-derived mannose glycans trigger a pathogenic γδ T cell/IL-17a axis in autoimmunity. Sci Transl Med 2023; 15:eabo1930. [PMID: 36921032 DOI: 10.1126/scitranslmed.abo1930] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Autoimmune diseases are life-threatening disorders that cause increasing disability over time. Systemic lupus erythematosus (SLE) and other autoimmune diseases arise when immune stimuli override mechanisms of self-tolerance. Accumulating evidence has demonstrated that protein glycosylation is substantially altered in autoimmune disease development, but the mechanisms by which glycans trigger these autoreactive immune responses are still largely unclear. In this study, we found that presence of microbial-associated mannose structures at the surface of the kidney triggers the recognition of DC-SIGN-expressing γδ T cells, inducing a pathogenic interleukin-17a (IL-17a)-mediated autoimmune response. Mice lacking Mgat5, which have a higher abundance of mannose structures in the kidney, displayed increased γδ T cell infiltration into the kidney that was associated with spontaneous development of lupus in older mice. N-acetylglucosamine supplementation, which promoted biosynthesis of tolerogenic branched N-glycans in the kidney, was found to inhibit γδ T cell infiltration and control disease development. Together, this work reveals a mannose-γδ T cell-IL-17a axis in SLE immunopathogenesis and highlights glycometabolic reprogramming as a therapeutic strategy for autoimmune disease treatment.
Collapse
Affiliation(s)
- Inês Alves
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Beatriz Santos-Pereira
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Noelia de la Cruz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Ana Campar
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Clinical Immunology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Vanda Pinto
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Pedro M Rodrigues
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Marco Araújo
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Sofia Santos
- Nephrology Department, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Carlos Vasconcelos
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Clinical Immunology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Roberto Silva
- Department of Pathology, Hospital Universitário São João do Porto, 4200-319 Porto, Portugal
| | - Nuno Afonso
- Department of Nephrology, Centro Hospitalar Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Filipe Mira
- Department of Nephrology, Centro Hospitalar Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Cristina C Barrias
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Nuno L Alves
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Lélita Santos
- Department of Internal Medicine, Centro Hospitalar Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - António Marinho
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Clinical Immunology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Salomé S Pinho
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.,ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
de-Souza-Ferreira M, Ferreira ÉE, de-Freitas-Junior JCM. Aberrant N-glycosylation in cancer: MGAT5 and β1,6-GlcNAc branched N-glycans as critical regulators of tumor development and progression. Cell Oncol 2023; 46:481-501. [PMID: 36689079 DOI: 10.1007/s13402-023-00770-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Changes in protein glycosylation are widely observed in tumor cells. N-glycan branching through adding β1,6-linked N-acetylglucosamine (β1,6-GlcNAc) to an α1,6-linked mannose, which is catalyzed by the N-acetylglucosaminyltransferase V (MGAT5 or GnT-V), is one of the most frequently observed tumor-associated glycan structure formed. Increased levels of this branching structure play a pro-tumoral role in various ways, for example, through the stabilization of growth factor receptors, the destabilization of intercellular adhesion, or the acquisition of a migratory phenotype. CONCLUSION In this review, we provide an updated and comprehensive summary of the physiological and pathophysiological roles of MGAT5 and β1,6-GlcNAc branched N-glycans, including their regulatory mechanisms. Specific emphasis is given to the role of MGAT5 and β1,6-GlcNAc branched N-glycans in cellular mechanisms that contribute to the development and progression of solid tumors. We also provide insight into possible future clinical implications, such as the use of MGAT5 as a prognostic biomarker.
Collapse
Affiliation(s)
- Michelle de-Souza-Ferreira
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Érika Elias Ferreira
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Julio Cesar Madureira de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil.
| |
Collapse
|
13
|
Mortha A, Remark R, Del Valle DM, Chuang LS, Chai Z, Alves I, Azevedo C, Gaifem J, Martin J, Petralia F, Tuballes K, Barcessat V, Tai SL, Huang HH, Laface I, Jerez YA, Boschetti G, Villaverde N, Wang MD, Korie UM, Murray J, Choung RS, Sato T, Laird RM, Plevy S, Rahman A, Torres J, Porter C, Riddle MS, Kenigsberg E, Pinho SS, Cho JH, Merad M, Colombel JF, Gnjatic S. Neutralizing Anti-Granulocyte Macrophage-Colony Stimulating Factor Autoantibodies Recognize Post-Translational Glycosylations on Granulocyte Macrophage-Colony Stimulating Factor Years Before Diagnosis and Predict Complicated Crohn's Disease. Gastroenterology 2022; 163:659-670. [PMID: 35623454 PMCID: PMC10127946 DOI: 10.1053/j.gastro.2022.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Anti-granulocyte macrophage-colony stimulating factor autoantibodies (aGMAbs) are detected in patients with ileal Crohn's disease (CD). Their induction and mode of action during or before disease are not well understood. We aimed to investigate the underlying mechanisms associated with aGMAb induction, from functional orientation to recognized epitopes, for their impact on intestinal immune homeostasis and use as a predictive biomarker for complicated CD. METHODS We characterized using enzyme-linked immunosorbent assay naturally occurring aGMAbs in longitudinal serum samples from patients archived before the diagnosis of CD (n = 220) as well as from 400 healthy individuals (matched controls) as part of the US Defense Medical Surveillance System. We used biochemical, cellular, and transcriptional analysis to uncover a mechanism that governs the impaired immune balance in CD mucosa after diagnosis. RESULTS Neutralizing aGMAbs were found to be specific for post-translational glycosylation on granulocyte macrophage-colony stimulating factor (GM-CSF), detectable years before diagnosis, and associated with complicated CD at presentation. Glycosylation of GM-CSF was altered in patients with CD, and aGMAb affected myeloid homeostasis and promoted group 1 innate lymphoid cells. Perturbations in immune homeostasis preceded the diagnosis in the serum of patients with CD presenting with aGMAb and were detectable in the noninflamed CD mucosa. CONCLUSIONS Anti-GMAbs predict the diagnosis of complicated CD long before the diagnosis of disease, recognize uniquely glycosylated epitopes, and impair myeloid cell and innate lymphoid cell balance associated with altered intestinal immune homeostasis.
Collapse
Affiliation(s)
- Arthur Mortha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Tisch Cancer Institute, Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Immunology, University of Toronto, Toronto, Canada.
| | - Romain Remark
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Innate Pharma, Marseille, France
| | - Diane Marie Del Valle
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Tisch Cancer Institute, Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ling-Shiang Chuang
- Charles Bronfman Institute for Personalized Medicine, Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhi Chai
- Charles Bronfman Institute for Personalized Medicine, Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Inês Alves
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
| | - Catarina Azevedo
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Jerome Martin
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, Nantes, France; CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Tisch Cancer Institute, Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Vanessa Barcessat
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Tisch Cancer Institute, Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Hsin-Hui Huang
- Tisch Cancer Institute, Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ilaria Laface
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Tisch Cancer Institute, Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yeray Arteaga Jerez
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gilles Boschetti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Hépato-Gastroentérologue, Hospices Civils de Lyon, Université Claude Bernard, Lyon, France
| | - Nicole Villaverde
- Charles Bronfman Institute for Personalized Medicine, Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mona D Wang
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Ujunwa M Korie
- Charles Bronfman Institute for Personalized Medicine, Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Rok-Seon Choung
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Renee M Laird
- Naval Medical Research Center, Silver Spring, Maryland
| | | | - Adeeb Rahman
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Human Immune Monitoring Center at Mount Sinai, New York, New York
| | - Joana Torres
- Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York; Gastroenterology Division, Hospital Beatriz Ângelo, Loures, Portugal
| | - Chad Porter
- Naval Medical Research Center, Silver Spring, Maryland
| | - Mark S Riddle
- Naval Medical Research Center, Silver Spring, Maryland
| | - Ephraim Kenigsberg
- Charles Bronfman Institute for Personalized Medicine, Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, New York; Human Immune Monitoring Center at Mount Sinai, New York, New York
| | - Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Judy H Cho
- Charles Bronfman Institute for Personalized Medicine, Department of Genetics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Tisch Cancer Institute, Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Human Immune Monitoring Center at Mount Sinai, New York, New York
| | - Jean-Frederic Colombel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Tisch Cancer Institute, Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Human Immune Monitoring Center at Mount Sinai, New York, New York
| |
Collapse
|
14
|
Yang W, Yu T, Cong Y. CD4+ T cell metabolism, gut microbiota, and autoimmune diseases: Implication in precision medicine of autoimmune diseases. PRECISION CLINICAL MEDICINE 2022; 5:pbac018. [PMID: 35990897 PMCID: PMC9384833 DOI: 10.1093/pcmedi/pbac018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/03/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells are critical to the development of autoimmune disorders. Glucose, fatty acids, and glutamine metabolisms are the primary metabolic pathways in immune cells, including CD4+ T cells. The distinct metabolic programs in CD4+ T cell subsets are recognized to reflect the bioenergetic requirements, which are compatible with their functional demands. Gut microbiota affects T cell responses by providing a series of antigens and metabolites. Accumulating data indicate that CD4+ T cell metabolic pathways underlie aberrant T cell functions, thereby regulating the pathogenesis of autoimmune disorders, including inflammatory bowel diseases, systemic lupus erythematosus, and rheumatoid arthritis. Here, we summarize the current progress of CD4+ T cell metabolic programs, gut microbiota regulation of T cell metabolism, and T cell metabolic adaptions to autoimmune disorders to shed light on potential metabolic therapeutics for autoimmune diseases.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston, TX, 77555 , USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch , Galveston, TX, 77555 , USA
| | - Tianming Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston, TX, 77555 , USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch , Galveston, TX, 77555 , USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston, TX, 77555 , USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch , Galveston, TX, 77555 , USA
| |
Collapse
|
15
|
Radovani B, Gudelj I. N-Glycosylation and Inflammation; the Not-So-Sweet Relation. Front Immunol 2022; 13:893365. [PMID: 35833138 PMCID: PMC9272703 DOI: 10.3389/fimmu.2022.893365] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation is the main feature of many long-term inflammatory diseases such as autoimmune diseases, metabolic disorders, and cancer. There is a growing number of studies in which alterations of N-glycosylation have been observed in many pathophysiological conditions, yet studies of the underlying mechanisms that precede N-glycome changes are still sparse. Proinflammatory cytokines have been shown to alter the substrate synthesis pathways as well as the expression of glycosyltransferases required for the biosynthesis of N-glycans. The resulting N-glycosylation changes can further contribute to disease pathogenesis through modulation of various aspects of immune cell processes, including those relevant to pathogen recognition and fine-tuning the inflammatory response. This review summarizes our current knowledge of inflammation-induced N-glycosylation changes, with a particular focus on specific subsets of immune cells of innate and adaptive immunity and how these changes affect their effector functions, cell interactions, and signal transduction.
Collapse
Affiliation(s)
- Barbara Radovani
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
16
|
Leite-Gomes E, Dias AM, Azevedo CM, Santos-Pereira B, Magalhães M, Garrido M, Amorim R, Lago P, Marcos-Pinto R, Pinho SS. Bringing to Light the Risk of Colorectal Cancer in Inflammatory Bowel Disease: Mucosal Glycosylation as a Key Player. Inflamm Bowel Dis 2022; 28:947-962. [PMID: 34849933 DOI: 10.1093/ibd/izab291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Colitis-associated cancer is a major complication of inflammatory bowel disease remaining an important clinical challenge in terms of diagnosis, screening, and prognosis. Inflammation is a driving factor both in inflammatory bowel disease and cancer, but the mechanism underlying the transition from colon inflammation to cancer remains to be defined. Dysregulation of mucosal glycosylation has been described as a key regulatory mechanism associated both with colon inflammation and colorectal cancer development. In this review, we discuss the major molecular mechanisms of colitis-associated cancer pathogenesis, highlighting the role of glycans expressed at gut epithelial cells, at lamina propria T cells, and in serum proteins in the regulation of intestinal inflammation and its progression to colon cancer, further discussing its potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Eduarda Leite-Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mariana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Mónica Garrido
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Rita Amorim
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Pediatrics Department, Centro Hospitalar e Universitário São João, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Lago
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Centre for Research in Health Technologies and Information Systems, University of Porto, Portugal
| | - Salomé S Pinho
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Agrawal M, Allin KH, Petralia F, Colombel JF, Jess T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat Rev Gastroenterol Hepatol 2022; 19:399-409. [PMID: 35301463 PMCID: PMC9214275 DOI: 10.1038/s41575-022-00593-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated disease of the intestinal tract, with complex pathophysiology involving genetic, environmental, microbiome, immunological and potentially other factors. Epidemiological data have provided important insights into risk factors associated with IBD, but are limited by confounding, biases and data quality, especially when pertaining to risk factors in early life. Multiomics platforms provide granular high-throughput data on numerous variables simultaneously and can be leveraged to characterize molecular pathways and risk factors for chronic diseases, such as IBD. Herein, we describe omics platforms that can advance our understanding of IBD risk factors and pathways, and available omics data on IBD and other relevant diseases. We highlight knowledge gaps and emphasize the importance of birth, at-risk and pre-diagnostic cohorts, and neonatal blood spots in omics analyses in IBD. Finally, we discuss network analysis, a powerful bioinformatics tool to assemble high-throughput data and derive clinical relevance.
Collapse
Affiliation(s)
- Manasi Agrawal
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
18
|
Alves I, Fernandes Â, Santos-Pereira B, Azevedo CM, Pinho SS. Glycans as a key factor in self and non-self discrimination: Impact on the breach of immune tolerance. FEBS Lett 2022; 596:1485-1502. [PMID: 35383918 DOI: 10.1002/1873-3468.14347] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Glycans are carbohydrates that are made by all organisms and covalently conjugated to other biomolecules. Glycans cover the surface of both human cells and pathogens and are fundamental to defining the identity of a cell or an organism, thereby contributing to discriminating self from non-self. As such, glycans are a class of "Self-Associated Molecular Patterns" that can fine-tune host inflammatory processes. In fact, glycans can be sensed and recognized by a variety of glycan-binding proteins (GBP) expressed by immune cells, such as galectins, siglecs and C-type lectins, which recognize changes in the cellular glycosylation, instructing both pro-inflammatory or anti-inflammatory responses. In this review, we introduce glycans as cell-identification structures, discussing how glycans modulate host-pathogen interactions and how they can fine-tune inflammatory processes associated with infection, inflammation and autoimmunity. Finally, from the clinical standpoint, we discuss how glycoscience research can benefit life sciences and clinical medicine by providing a source of valuable biomarkers and therapeutic targets for immunity.
Collapse
Affiliation(s)
- Inês Alves
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| |
Collapse
|
19
|
Wang G, Yuan J, Luo J, Ocansey DKW, Zhang X, Qian H, Xu W, Mao F. Emerging role of protein modification in inflammatory bowel disease. J Zhejiang Univ Sci B 2022; 23:173-188. [PMID: 35261214 PMCID: PMC8913920 DOI: 10.1631/jzus.b2100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
The onset of inflammatory bowel disease (IBD) involves many factors, including environmental parameters, microorganisms, and the immune system. Although research on IBD continues to expand, the specific pathogenesis mechanism is still unclear. Protein modification refers to chemical modification after protein biosynthesis, also known as post-translational modification (PTM), which causes changes in the properties and functions of proteins. Since proteins can be modified in different ways, such as acetylation, methylation, and phosphorylation, the functions of proteins in different modified states will also be different. Transitions between different states of protein or changes in modification sites can regulate protein properties and functions. Such modifications like neddylation, sumoylation, glycosylation, and acetylation can activate or inhibit various signaling pathways (e.g., nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT)) by changing the intestinal flora, regulating immune cells, modulating the release of cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), and ultimately leading to the maintenance of the stability of the intestinal epithelial barrier. In this review, we focus on the current understanding of PTM and describe its regulatory role in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Gaoying Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Clinical Laboratory, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jintao Yuan
- Clinical Laboratory, the People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China
| | - Ji Luo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast 02630, Ghana
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
20
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Brazil JC, Parkos CA. Finding the sweet spot: glycosylation mediated regulation of intestinal inflammation. Mucosal Immunol 2022; 15:211-222. [PMID: 34782709 PMCID: PMC8591159 DOI: 10.1038/s41385-021-00466-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
Glycans are essential cellular components that facilitate a range of critical functions important for tissue development and mucosal homeostasis. Furthermore, specific alterations in glycosylation represent important diagnostic hallmarks of cancer that contribute to tumor cell dissociation, invasion, and metastasis. However, much less is known about how glycosylation contributes to the pathobiology of inflammatory mucosal diseases. Here we will review how epithelial and immune cell glycosylation regulates gut homeostasis and how inflammation-driven changes in glycosylation contribute to intestinal pathobiology.
Collapse
Affiliation(s)
- Jennifer C. Brazil
- grid.214458.e0000000086837370Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Charles A. Parkos
- grid.214458.e0000000086837370Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
22
|
Alves I, Vicente MM, Gaifem J, Fernandes Â, Dias AM, Rodrigues CS, Oliveira JC, Seixas N, Malheiro L, Abreu MA, Sarmento E Castro R, Pinho SS. SARS-CoV-2 Infection Drives a Glycan Switch of Peripheral T Cells at Diagnosis. THE JOURNAL OF IMMUNOLOGY 2021; 207:1591-1598. [PMID: 34417260 DOI: 10.4049/jimmunol.2100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023]
Abstract
COVID-19 is a highly selective disease in which SARS-CoV-2 infection can result in different clinical manifestations ranging from asymptomatic/mild to severe disease that requires hospitalization. In this study, we demonstrated that SARS-CoV-2 infection results in a glycosylation reprogramming of circulating lymphocytes at diagnosis. We identified a specific glycosignature of T cells, defined upon SARS-CoV-2 infection and apparently triggered by a serological factor. This specific glycan switch of T cells is detected at diagnosis being more pronounced in asymptomatic patients. We further demonstrated that asymptomatic patients display an increased expression of a viral-sensing receptor through the upregulation of DC-SIGN in monocytes. We showed that higher levels of DC-SIGN in monocytes at diagnosis correlates with better COVID-19 prognosis. This new evidence pave the way to the identification of a novel glycan-based response in T cells that may confer protection against SARS-CoV-2 infection in asymptomatic patients, highlighting a novel prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Inês Alves
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Machado Vicente
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Joana Gaifem
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana Mendes Dias
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Cláudia Sousa Rodrigues
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - José Carlos Oliveira
- Departamento de Patologia Clínica, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Nair Seixas
- Departamento de Patologia Clínica, Centro Hospitalar Vila Nova de Gaia/Espinho, Gaia, Portugal
| | - Luis Malheiro
- Departamento de Doenças Infeciosas, Centro Hospitalar Vila Nova de Gaia/Espinho, Gaia, Portugal; and
| | - Miguel Araújo Abreu
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Departmento de Doenças Infeciosas, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Rui Sarmento E Castro
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Departmento de Doenças Infeciosas, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Salomé Soares Pinho
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; .,Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc Natl Acad Sci U S A 2021; 118:2020322118. [PMID: 34253606 PMCID: PMC8307711 DOI: 10.1073/pnas.2020322118] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Other than exposure to gluten and genetic compatibility, the gut microbiome has been suggested to be involved in celiac disease (CD) pathogenesis by mediating interactions between gluten/environmental factors and the host immune system. However, to establish disease progression markers, it is essential to assess alterations in the gut microbiota before disease onset. Here, a prospective metagenomic analysis of the gut microbiota of infants at risk of CD was done to track shifts in the microbiota before CD development. We performed cross-sectional and longitudinal analyses of gut microbiota, functional pathways, and metabolites, starting from 18 mo before CD onset, in 10 infants who developed CD and 10 matched nonaffected infants. Cross-sectional analysis at CD onset identified altered abundance of six microbial strains and several metabolites between cases and controls but no change in microbial species or pathway abundance. Conversely, results of longitudinal analysis revealed several microbial species/strains/pathways/metabolites occurring in increased abundance and detected before CD onset. These had previously been linked to autoimmune and inflammatory conditions (e.g., Dialister invisus, Parabacteroides sp., Lachnospiraceae, tryptophan metabolism, and metabolites serine and threonine). Others occurred in decreased abundance before CD onset and are known to have anti-inflammatory effects (e.g., Streptococcus thermophilus, Faecalibacterium prausnitzii, and Clostridium clostridioforme). Additionally, we uncovered previously unreported microbes/pathways/metabolites (e.g., Porphyromonas sp., high mannose-type N-glycan biosynthesis, and serine) that point to CD-specific biomarkers. Our study establishes a road map for prospective longitudinal study designs to better understand the role of gut microbiota in disease pathogenesis and therapeutic targets to reestablish tolerance and/or prevent autoimmunity.
Collapse
|
24
|
Chen S, Wu D, Robinson CV, Struwe WB. Native Mass Spectrometry Meets Glycomics: Resolving Structural Detail and Occupancy of Glycans on Intact Glycoproteins. Anal Chem 2021; 93:10435-10443. [PMID: 34279906 DOI: 10.1021/acs.analchem.1c01460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycoproteins are inherently heterogeneous and therefore resolving structures in their entirety remains a major challenge in structural biology. Native mass spectrometry has transformed our ability to study glycoproteins, and despite advances in high-resolution instrumentation, there are comparatively a few studies demonstrating its potential with data largely limited to an overall measure of monosaccharide composition for all glycans across glycosylation sites for a given protein. Clearly, these readouts lack glycan topology information, namely, monosaccharide linkage and glycan branching. To address this deficiency, we developed a new approach that joins native mass spectrometry with glycan exoglycosidase sequencing, the combination of which provides remarkable glycoprotein structural details. We show how N-glycan branching, terminal fucosylation, LacNAc extensions, and N- and O-glycan occupancy (i.e., total number of glycans) can be directly characterized on intact glycoproteins with minimal sample preparation. Taken together, native exoglycosidase sequencing mass spectrometry (NES-MS) notably improves our ability to characterize protein glycosylation, addressing a significant need in structural biology that will enable new routes to understand glycoprotein function.
Collapse
Affiliation(s)
- Siyun Chen
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Di Wu
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Carol V Robinson
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| | - Weston B Struwe
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, OX1 3QZ Oxford, U.K
| |
Collapse
|
25
|
Morosi LG, Cutine AM, Cagnoni AJ, Manselle-Cocco MN, Croci DO, Merlo JP, Morales RM, May M, Pérez-Sáez JM, Girotti MR, Méndez-Huergo SP, Pucci B, Gil AH, Huernos SP, Docena GH, Sambuelli AM, Toscano MA, Rabinovich GA, Mariño KV. Control of intestinal inflammation by glycosylation-dependent lectin-driven immunoregulatory circuits. SCIENCE ADVANCES 2021; 7:7/25/eabf8630. [PMID: 34144987 PMCID: PMC8213219 DOI: 10.1126/sciadv.abf8630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 05/14/2023]
Abstract
Diverse immunoregulatory circuits operate to preserve intestinal homeostasis and prevent inflammation. Galectin-1 (Gal1), a β-galactoside-binding protein, promotes homeostasis by reprogramming innate and adaptive immunity. Here, we identify a glycosylation-dependent "on-off" circuit driven by Gal1 and its glycosylated ligands that controls intestinal immunopathology by targeting activated CD8+ T cells and shaping the cytokine profile. In patients with inflammatory bowel disease (IBD), augmented Gal1 was associated with dysregulated expression of core 2 β6-N-acetylglucosaminyltransferase 1 (C2GNT1) and α(2,6)-sialyltransferase 1 (ST6GAL1), glycosyltransferases responsible for creating or masking Gal1 ligands. Mice lacking Gal1 exhibited exacerbated colitis and augmented mucosal CD8+ T cell activation in response to 2,4,6-trinitrobenzenesulfonic acid; this phenotype was partially ameliorated by treatment with recombinant Gal1. While C2gnt1-/- mice exhibited aggravated colitis, St6gal1-/- mice showed attenuated inflammation. These effects were associated with intrinsic T cell glycosylation. Thus, Gal1 and its glycosylated ligands act to preserve intestinal homeostasis by recalibrating T cell immunity.
Collapse
Affiliation(s)
- Luciano G Morosi
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Anabela M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Montana N Manselle-Cocco
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Diego O Croci
- Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Joaquín P Merlo
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
- Laboratorio de Inmuno-oncología Translacional, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Rosa M Morales
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - María May
- Instituto de Investigaciones Farmacológicas (ININFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1113 Ciudad de Buenos Aires, Argentina
| | - Juan M Pérez-Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - María R Girotti
- Laboratorio de Inmuno-oncología Translacional, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Santiago P Méndez-Huergo
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Betiana Pucci
- Sección de Enfermedades Inflamatorias, Hospital de Gastroenterología Carlos Bonorino Udaondo, 1264 Ciudad de Buenos Aires, Argentina
| | - Aníbal H Gil
- Sección de Enfermedades Inflamatorias, Hospital de Gastroenterología Carlos Bonorino Udaondo, 1264 Ciudad de Buenos Aires, Argentina
| | - Sergio P Huernos
- Sección de Enfermedades Inflamatorias, Hospital de Gastroenterología Carlos Bonorino Udaondo, 1264 Ciudad de Buenos Aires, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), 1900 La Plata, Argentina
| | - Alicia M Sambuelli
- Sección de Enfermedades Inflamatorias, Hospital de Gastroenterología Carlos Bonorino Udaondo, 1264 Ciudad de Buenos Aires, Argentina
| | - Marta A Toscano
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina.
- Laboratorio de Inmuno-oncología Translacional, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, 1428 Ciudad de Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
26
|
Genetic Variants of the MGAT5 Gene Are Functionally Implicated in the Modulation of T Cells Glycosylation and Plasma IgG Glycome Composition in Ulcerative Colitis. Clin Transl Gastroenterol 2021; 11:e00166. [PMID: 32352685 PMCID: PMC7263653 DOI: 10.14309/ctg.0000000000000166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The impact of genetic variants (single nucleotide polymorphisms [SNPs]) in the clinical heterogeneity of ulcerative colitis (UC) remains unclear. We showed that patients with UC exhibit a deficiency in MGAT5 glycogene transcription in intestinal T cells associated with a hyperimmune response. Herein, we evaluated whether MGAT5 SNPs might functionally impact on T cells glycosylation and plasma IgG glycome in patients with UC, as well as in UC clinical outcomes.
Collapse
|
27
|
Glycosylation of Immune Receptors in Cancer. Cells 2021; 10:cells10051100. [PMID: 34064396 PMCID: PMC8147841 DOI: 10.3390/cells10051100] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Evading host immune surveillance is one of the hallmarks of cancer. Immune checkpoint therapy, which aims to eliminate cancer progression by reprogramming the antitumor immune response, currently occupies a solid position in the rapidly expanding arsenal of cancer therapy. As most immune checkpoints are membrane glycoproteins, mounting attention is drawn to asking how protein glycosylation affects immune function. The answers to this fundamental question will stimulate the rational development of future cancer diagnostics and therapeutic strategies.
Collapse
|
28
|
Abstract
The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.
Collapse
Affiliation(s)
- Julie Y Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-7288, USA;
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-7288, USA;
| |
Collapse
|
29
|
Ząbczyńska M, Link-Lenczowski P, Pocheć E. Glycosylation in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:205-218. [PMID: 34495537 DOI: 10.1007/978-3-030-70115-4_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autoimmune diseases are accompanied by changes in protein glycosylation, in both the immune system and target tissues. The best-studied alteration in autoimmunity is agalactosylation of immunoglobulin G (IgG), characterized primarily in rheumatoid arthritis (RA), and then detected also in systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), and multiple sclerosis (MS). The rebuilding of IgG N-glycans in RA correlates with the relapses and remissions of the disease, is associated with physiological states such as pregnancy but also depends on applied anti-inflammatory therapy. In turn, a decreased core fucosylation of the whole pool of IgG N-glycans is a serum glycomarker in autoimmune thyroid diseases (AITD) encompassing Hashimoto's thyroiditis (HT) and Grave's disease (GD). However, fucosylation of anti-thyroglobulin IgG (an immunological marker of HT) was elevated in HT serum. Core fucosylation of IgG oligosaccharides was also lowered in MS and SLE. In AITD and IBD, chronic inflammation T lymphocytes showed the reduced expression of MGAT5 gene encoding β1,6-N-acetylglucosaminyltransferase V (GnT-V) responsible for β1,6-branching of N-glycans, which is important for T cell receptor activation. Structural changes of glycans have a profound effect on the pro-inflammatory activity of immune cells and serum immune proteins, including IgG in autoimmunity.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Jagiellonian University Medical College, Kraków, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
30
|
The Role of Glycosylation in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:265-283. [PMID: 34495540 DOI: 10.1007/978-3-030-70115-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diversity of glycan presentation in a cell, tissue and organism is enormous, which reflects the huge amount of important biological information encoded by the glycome which has not been fully understood. A compelling body of evidence has been highlighting the fundamental role of glycans in immunity, such as in development, and in major inflammatory processes such as inflammatory bowel disease, systemic lupus erythematosus and other autoimmune disorders. Glycans play an instrumental role in the immune response, integrating the canonical circuits that regulate innate and adaptive immune responses. The relevance of glycosylation in immunity is demonstrated by the role of glycans as important danger-associated molecular patterns and pathogen-associated molecular patterns associated with the discrimination between self and non-self; also as important regulators of the threshold of T cell activation, modulating receptors signalling and the activity of both T and other immune cells. In addition, glycans are important determinants that regulate the dynamic crosstalk between the microbiome and immune response. In this chapter, the essential role of glycans in the immunopathogenesis of inflammatory disorders will be presented and its potential clinical applications (diagnosis, prognosis and therapeutics) will be highlighted.
Collapse
|
31
|
Gómez-Henao W, Tenorio EP, Sanchez FRC, Mendoza MC, Ledezma RL, Zenteno E. Relevance of glycans in the interaction between T lymphocyte and the antigen presenting cell. Int Rev Immunol 2020; 40:274-288. [PMID: 33205679 DOI: 10.1080/08830185.2020.1845331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The immunological synapse promotes receptors and ligands interaction in the contact interface between the T lymphocyte and the antigen presenting cell; glycosylation of the proteins involved in this biological process favors regulation of molecular interactions and development of the T lymphocyte effector response. Glycans in the immunological synapse influence cellular and molecular processes such as folding, expression, and structural stability of proteins, they also mediate ligand-receptor interaction and propagation of the intracellular signaling or inhibition of uncontrolled cellular activation that could lead to the development of autoimmunity, among others. It has been suggested that altered glycosylation of proteins that participate in the immunological synapse affects the signaling processes and cell proliferation, as well as exacerbation of the effector mechanisms of T cells that trigger systemic damage and autoimmunity. Understanding the role of glycans in the immune response has allowed for advances in the development of immunotherapies in different fields through the controlled and specific activation of the immune response. This review describes the structural and biological aspects of glycans associated with some molecules present in the immunological synapse, providing information that allows understanding the function of glycosylation in the interaction between the T lymphocyte and the antigen-presenting cell, as well as its impact on signaling and development regulation of T lymphocytes effector response.
Collapse
Affiliation(s)
- Wilton Gómez-Henao
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico.,Cell Growth, Tissue Repair and Regeneration (CRRET), CNRS ERL 9215, Université Paris Est Créteil (UPEC), Créteil, France
| | - Eda Patricia Tenorio
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | | | - Miguel Cuéllar Mendoza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Ricardo Lascurain Ledezma
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| |
Collapse
|
32
|
Silva MC, Fernandes Â, Oliveira M, Resende C, Correia A, de-Freitas-Junior JC, Lavelle A, Andrade-da-Costa J, Leander M, Xavier-Ferreira H, Bessa J, Pereira C, Henrique RM, Carneiro F, Dinis-Ribeiro M, Marcos-Pinto R, Lima M, Lepenies B, Sokol H, Machado JC, Vilanova M, Pinho SS. Glycans as Immune Checkpoints: Removal of Branched N-glycans Enhances Immune Recognition Preventing Cancer Progression. Cancer Immunol Res 2020; 8:1407-1425. [PMID: 32933968 DOI: 10.1158/2326-6066.cir-20-0264] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/03/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
Tumor growth is accompanied with dramatic changes in the cellular glycome, such as the aberrant expression of complex branched N-glycans. However, the role of this protumoral N-glycan in immune evasion and whether its removal contributes to enhancement of immune recognition and to unleashing an antitumor immune response remain elusive. We demonstrated that branched N-glycans are used by colorectal cancer cells to escape immune recognition, instructing the creation of immunosuppressive networks through inhibition of IFNγ. The removal of this "glycan-mask" exposed immunogenic mannose glycans that potentiated immune recognition by DC-SIGN-expressing immune cells, resulting in an effective antitumor immune response. We revealed a glycoimmune checkpoint in colorectal cancer, highlighting the therapeutic efficacy of its deglycosylation to potentiate immune recognition and, thus, improving cancer immunotherapy.
Collapse
Affiliation(s)
- Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Maria Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Carlos Resende
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Alexandra Correia
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Julio C de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Aonghus Lavelle
- Sorbonne Université, INSERM, Saint-Antoine Research Center (CRSA), Paris, France
| | - Jéssica Andrade-da-Costa
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Magdalena Leander
- Department of Hematology, Hospital Center of Porto, Porto, Portugal.,Multidisciplinary Unit for Biomedical Research, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Helena Xavier-Ferreira
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - José Bessa
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Carina Pereira
- CINTESIS - Centre for Health Technology and Services Research, University of Porto, Porto, Portugal.,Molecular Oncology and Viral Pathology Group, IPO Porto Research Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rui M Henrique
- Department of Pathology and Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Fátima Carneiro
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Department of Pathology, Hospital Center of São João, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mário Dinis-Ribeiro
- CINTESIS - Centre for Health Technology and Services Research, University of Porto, Porto, Portugal.,Department of Gastroenterology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Ricardo Marcos-Pinto
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Department of Gastroenterology, Hospital Center of Porto, Porto, Portugal.,Medical Faculty, Centre for Research in Health Technologies and Information Systems, Porto, Portugal
| | - Margarida Lima
- Department of Hematology, Hospital Center of Porto, Porto, Portugal.,Multidisciplinary Unit for Biomedical Research, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harry Sokol
- Sorbonne Université, INSERM, Saint-Antoine Research Center (CRSA), Paris, France.,INRA, UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique - Hopitaux de Paris, Sorbonne Universités, Paris, France
| | - José C Machado
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel Vilanova
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
33
|
N-glycans as functional effectors of genetic and epigenetic disease risk. Mol Aspects Med 2020; 79:100891. [PMID: 32861467 DOI: 10.1016/j.mam.2020.100891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
N-glycosylation is a frequent modification of proteins, essential for all domains of life. N-glycan biosynthesis is a dynamic, complex, non-templated process, wherein specific glycoforms are modulated by various microenvironmental cues, cellular signals and local availability of dedicated enzymes and sugar precursors. This intricate regulatory network comprises hundreds of proteins, whose activity is dependent on both sequence of implicated genes and the regulation of their expression. In this regard, variation in N-glycosylation patterns stems from either gene polymorphisms or from stable epigenetic regulation of gene expression in different individuals. Moreover, epigenome alters in response to various environmental factors, representing a direct link between environmental exposure and changes in gene expression, that are subsequently reflected through altered N-glycosylation. N-glycosylation itself has a fundamental role in numerous biological processes, ranging from protein folding, cellular homeostasis, adhesion and immune regulation, to the effector functions in multiple diseases. Moreover, specific modification of the glycan structure can modulate glycoprotein's biological function or direct the faith of the entire cell, as seen on the examples of antibodies and T cells, respectively. Since immunoglobulin G is one of the most profoundly studied glycoproteins in general, the focus of this review will be on its N-glycosylation changes and their functional implications. By deepening the knowledge on the mechanistic roles that certain glycoforms exert in differential pathological processes, valuable insight into molecular perturbations occurring during disease development could be obtained. The prospect of resolving the exact biological pathways involved offers a potential for the development of new therapeutic interventions and molecular tools that would aid in prognosis, early referral and timely treatment of multiple disease conditions.
Collapse
|
34
|
Nagao-Kitamoto H, Leslie JL, Kitamoto S, Jin C, Thomsson KA, Gillilland MG, Kuffa P, Goto Y, Jenq RR, Ishii C, Hirayama A, Seekatz AM, Martens EC, Eaton KA, Kao JY, Fukuda S, Higgins PDR, Karlsson NG, Young VB, Kamada N. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nat Med 2020; 26:608-617. [PMID: 32066975 PMCID: PMC7160049 DOI: 10.1038/s41591-020-0764-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
The involvement of host immunity in the gut microbiota-mediated colonization resistance to Clostridioides difficile infection (CDI) is incompletely understood. Here, we show that interleukin (IL)-22, induced by colonization of the gut microbiota, is crucial for the prevention of CDI in human microbiota-associated (HMA) mice. IL-22 signaling in HMA mice regulated host glycosylation, which enabled the growth of succinate-consuming bacteria Phascolarctobacterium spp. within the gut microbiome. Phascolarctobacterium reduced the availability of luminal succinate, a crucial metabolite for the growth of C. difficile, and therefore prevented the growth of C. difficile. IL-22-mediated host N-glycosylation is likely impaired in patients with ulcerative colitis (UC) and renders UC-HMA mice more susceptible to CDI. Transplantation of healthy human-derived microbiota or Phascolarctobacterium reduced luminal succinate levels and restored colonization resistance in UC-HMA mice. IL-22-mediated host glycosylation thus fosters the growth of commensal bacteria that compete with C. difficile for the nutritional niche.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jhansi L Leslie
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- The University of Virginia, Washington, VA, USA
| | - Sho Kitamoto
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chunsheng Jin
- Institute of Biomedicine, Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A Thomsson
- Institute of Biomedicine, Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Merritt G Gillilland
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter Kuffa
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yoshiyuki Goto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Mucosal Symbiosis, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Anna M Seekatz
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Clemson University, Columbia, SC, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John Y Kao
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Peter D R Higgins
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Niclas G Karlsson
- Institute of Biomedicine, Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Vincent B Young
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Verhelst X, Dias AM, Colombel JF, Vermeire S, Van Vlierberghe H, Callewaert N, Pinho SS. Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology 2020; 158:95-110. [PMID: 31626754 DOI: 10.1053/j.gastro.2019.08.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Severine Vermeire
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal.
| |
Collapse
|
36
|
Hanić M, Trbojević-Akmačić I, Lauc G. Inflammatory bowel disease - glycomics perspective. Biochim Biophys Acta Gen Subj 2019; 1863:1595-1601. [PMID: 31276732 DOI: 10.1016/j.bbagen.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) pathogenesis is still not well understood. It is considered to result from genetic susceptibility, environment, microbiota composition and aberrant immune response. Crohn's disease (CD) and ulcerative colitis (UC), forms of IBD, are sometimes indistinguishable by typical laboratory and clinical characteristics making timely diagnosis and subsequent therapy hit-and-miss. Glycosylation has shown a promising biomarker potential for early IBD diagnosis and effective response to treatment prediction. SCOPE OF REVIEW This mini-review briefly covers present knowledge of IBD pathophysiology, with a focus on recent research on the role of glycosylation in IBD pathogenesis and disease progression. MAJOR CONCLUSIONS Aberrant glycosylation significantly changes functionality of key proteins in intestinal niche and is involved in IBD etiology. GENERAL SIGNIFICANCE Elucidating mechanisms of IBD development is one of critical goals in managing this disease. Glycans are important for fine-tuning of intestinal processes that ensure homeostatic conditions which, if disrupted, lead to IBD.
Collapse
Affiliation(s)
- Maja Hanić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
| |
Collapse
|
37
|
Dierckx T, Verstockt B, Vermeire S, van Weyenbergh J. GlycA, a Nuclear Magnetic Resonance Spectroscopy Measure for Protein Glycosylation, is a Viable Biomarker for Disease Activity in IBD. J Crohns Colitis 2019; 13:389-394. [PMID: 30312386 PMCID: PMC6434738 DOI: 10.1093/ecco-jcc/jjy162] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Glycoprotein acetylation [GlycA] is a novel nuclear magnetic resonance [NMR] biomarker, measured in serum or plasma, that summarizes the signals originating from glycan groups of certain acute-phase glycoproteins. This biomarker has been shown to be robustly associated with cardiovascular and short-term all-cause mortality, and with disease severity in several inflammatory conditions. We investigated GlycA levels in a cohort of healthy individuals [HCs], patients with Crohn's disease [CD] and patients with ulcerative colitis [UC] prior to and after therapeutic control of inflammation. METHODS Serum samples of 10 HCs, 37 CD patients and 21 UC patients before and after biologic therapy were subjected to high-throughput NMR analysis by Nightingale Health Ltd. Paired C-reactive protein [CRP] and fecal calprotectin [fCal] measurements were used to characterize baseline differences, treatment effects and post-treatment association with endoscopic response [50% SES-CD decrease at Week 24] and mucosal healing [SES-CD ≤ 2 for CD, Mayo endoscopic score ≤ 1 for UC]. RESULTS GlycA levels were significantly higher in patients with active inflammamtory bowel disease [IBD] compared with those in healthy controls, and accurately reflected the mucosal recovery to a 'healthy' state in both CD and UC patients achieving mucosal healing. In CD patients who experienced an endoscopic response without achieving full mucosal healing, GlycA levels also decreased but did not normalize to HC levels. Overall, GlycA correlated well with CRP and fCal, and accurately tracked disease activity in CRP-negative patients [<5 mg/dL]. CONCLUSION GlycA holds promise as a viable serological biomarker for disease activity in IBD, even in patients without elevated CRP, and should therefore be tested in large prospective cohorts.
Collapse
Affiliation(s)
- Tim Dierckx
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Bram Verstockt
- KU Leuven, Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research in Gastrointestinal Disorders, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven, Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research in Gastrointestinal Disorders, Leuven, Belgium
| | - Johan van Weyenbergh
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| |
Collapse
|
38
|
Pereira MS, Alves I, Vicente M, Campar A, Silva MC, Padrão NA, Pinto V, Fernandes Â, Dias AM, Pinho SS. Glycans as Key Checkpoints of T Cell Activity and Function. Front Immunol 2018; 9:2754. [PMID: 30538706 PMCID: PMC6277680 DOI: 10.3389/fimmu.2018.02754] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The immune system is highly controlled and fine-tuned by glycosylation, through the addition of a diversity of carbohydrates structures (glycans) to virtually all immune cell receptors. Despite a relative backlog in understanding the importance of glycans in the immune system, due to its inherent complexity, remarkable findings have been highlighting the essential contributions of glycosylation in the regulation of both innate and adaptive immune responses with important implications in the pathogenesis of major diseases such as autoimmunity and cancer. Glycans are implicated in fundamental cellular and molecular processes that regulate both stimulatory and inhibitory immune pathways. Besides being actively involved in pathogen recognition through interaction with glycan-binding proteins (such as C-type lectins), glycans have been also shown to regulate key pathophysiological steps within T cell biology such as T cell development and thymocyte selection; T cell activity and signaling as well as T cell differentiation and proliferation. These effects of glycans in T cells functions highlight their importance as determinants of either self-tolerance or T cell hyper-responsiveness which ultimately might be implicated in the creation of tolerogenic pathways in cancer or loss of immunological tolerance in autoimmunity. This review discusses how specific glycans (with a focus on N-linked glycans) act as regulators of T cell biology and their implications in disease.
Collapse
Affiliation(s)
- Márcia S Pereira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Inês Alves
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Manuel Vicente
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Ana Campar
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal.,Centro Hospitalar do Porto Porto, Portugal
| | - Mariana C Silva
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Nuno A Padrão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Vanda Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ângela Fernandes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| |
Collapse
|
39
|
Dias AM, Pereira MS, Padrão NA, Alves I, Marcos-Pinto R, Lago P, Pinho SS. Glycans as critical regulators of gut immunity in homeostasis and disease. Cell Immunol 2018; 333:9-18. [DOI: 10.1016/j.cellimm.2018.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
|
40
|
Doherty M, Theodoratou E, Walsh I, Adamczyk B, Stöckmann H, Agakov F, Timofeeva M, Trbojević-Akmačić I, Vučković F, Duffy F, McManus CA, Farrington SM, Dunlop MG, Perola M, Lauc G, Campbell H, Rudd PM. Plasma N-glycans in colorectal cancer risk. Sci Rep 2018; 8:8655. [PMID: 29872119 PMCID: PMC5988698 DOI: 10.1038/s41598-018-26805-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Aberrant glycosylation has been associated with a number of diseases including cancer. Our aim was to elucidate changes in whole plasma N-glycosylation between colorectal cancer (CRC) cases and controls in one of the largest cohorts of its kind. A set of 633 CRC patients and 478 age and gender matched controls was analysed. Additionally, patients were stratified into four CRC stages. Moreover, N-glycan analysis was carried out in plasma of 40 patients collected prior to the initial diagnosis of CRC. Statistically significant differences were observed in the plasma N-glycome at all stages of CRC, this included a highly significant decrease in relation to the core fucosylated bi-antennary glycans F(6)A2G2 and F(6)A2G2S(6)1 (P < 0.0009). Stage 1 showed a unique biomarker signature compared to stages 2, 3 and 4. There were indications that at risk groups could be identified from the glycome (retrospective AUC = 0.77 and prospective AUC = 0.65). N-glycome biomarkers related to the pathogenic progress of the disease would be a considerable asset in a clinical setting and it could enable novel therapeutics to be developed to target the disease in patients at risk of progression.
Collapse
Affiliation(s)
- Margaret Doherty
- National Institute for Bioprocessing Research & Training, Dublin, Ireland.
- Institute of Technology Sligo, Department of Life Sciences, Sligo, Ireland.
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Barbara Adamczyk
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henning Stöckmann
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| | - Felix Agakov
- Pharmatics Limited, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, UK
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | | | | | - Fergal Duffy
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| | - Ciara A McManus
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| | - Susan M Farrington
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Markus Perola
- Department of Health, The National Institute for Health and Welfare, Helsinki, Finland
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Pauline M Rudd
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| |
Collapse
|
41
|
Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease. Clin Epigenetics 2018; 10:75. [PMID: 29991969 PMCID: PMC5987481 DOI: 10.1186/s13148-018-0507-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Background Many genome- and epigenome-wide association studies (GWAS and EWAS) and studies of promoter methylation of candidate genes for inflammatory bowel disease (IBD) have demonstrated significant associations between genetic and epigenetic changes and IBD. Independent GWA studies have identified genetic variants in the BACH2, IL6ST, LAMB1, IKZF1, and MGAT3 loci to be associated with both IBD and immunoglobulin G (IgG) glycosylation. Methods Using bisulfite pyrosequencing, we analyzed CpG methylation in promoter regions of these five genes from peripheral blood of several hundred IBD patients and healthy controls (HCs) from two independent cohorts, respectively. Results We found significant differences in the methylation levels in the MGAT3 and BACH2 genes between both Crohn’s disease and ulcerative colitis when compared to HC. The same pattern of methylation changes was identified for both genes in CD19+ B cells isolated from the whole blood of a subset of the IBD patients. A correlation analysis was performed between the MGAT3 and BACH2 promoter methylation and individual IgG glycans, measured in the same individuals of the two large cohorts. MGAT3 promoter methylation correlated significantly with galactosylation, sialylation, and bisecting GlcNAc on IgG of the same patients, suggesting that activity of the GnT-III enzyme, encoded by this gene, might be altered in IBD. The correlations between the BACH2 promoter methylation and IgG glycans were less obvious, since BACH2 is not a glycosyltransferase and therefore may affect IgG glycosylation only indirectly. Conclusions Our results suggest that epigenetic deregulation of key glycosylation genes might lead to an increase in pro-inflammatory properties of IgG in IBD through a decrease in galactosylation and sialylation and an increase of bisecting GlcNAc on digalactosylated glycan structures. Finally, we showed that CpG methylation in the promoter of the MGAT3 gene is altered in CD3+ T cells isolated from inflamed mucosa of patients with ulcerative colitis from a third smaller cohort, for which biopsies were available, suggesting a functional role of this glyco-gene in IBD pathogenesis. Electronic supplementary material The online version of this article (10.1186/s13148-018-0507-y) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proc Natl Acad Sci U S A 2018; 115:E4651-E4660. [PMID: 29720442 DOI: 10.1073/pnas.1720409115] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
) exhibited increased susceptibility to severe forms of colitis and early-onset disease. Importantly, the treatment of these mice with GlcNAc reduced disease severity and suppressed disease progression due to a controlled T cell-mediated immune response at the intestinal mucosa. In conclusion, our human ex vivo and preclinical results demonstrate the targeted-specific immunomodulatory properties of this simple glycan, proposing a therapeutic approach for patients with UC.
Collapse
|
43
|
Šimurina M, de Haan N, Vučković F, Kennedy NA, Štambuk J, Falck D, Trbojević-Akmačić I, Clerc F, Razdorov G, Khon A, Latiano A, D'Incà R, Danese S, Targan S, Landers C, Dubinsky M, McGovern DPB, Annese V, Wuhrer M, Lauc G. Glycosylation of Immunoglobulin G Associates With Clinical Features of Inflammatory Bowel Diseases. Gastroenterology 2018; 154:1320-1333.e10. [PMID: 29309774 PMCID: PMC5880750 DOI: 10.1053/j.gastro.2018.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/15/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Causes of inflammatory bowel diseases are not well understood and the most prominent forms, Crohn's disease (CD) and ulcerative colitis (UC), are sometimes hard to distinguish. Glycosylation of IgG has been associated with CD and UC. IgG Fc-glycosylation affects IgG effector functions. We evaluated changes in IgG Fc-glycosylation associated with UC and CD, as well as with disease characteristics in different patient groups. METHODS We analyzed 3441 plasma samples obtained from 2 independent cohorts of patients with CD (874 patients from Italy and 391 from the United States) or UC (1056 from Italy and 253 from the US and healthy individuals [controls]; 427 in Italy and 440 from the United States). IgG Fc-glycosylation (tryptic glycopeptides) was analyzed by liquid chromatography coupled to mass spectrometry. We analyzed associations between disease status (UC vs controls, CD vs controls, and UC vs CD) and glycopeptide traits, and associations between clinical characteristics and glycopeptide traits, using a logistic regression model with age and sex included as covariates. RESULTS Patients with CD or UC had lower levels of IgG galactosylation than controls. For example, the odds ratio (OR) for IgG1 galactosylation in patients with CD was 0.59 (95% confidence interval [CI], 0.51-0.69) and for patients with UC was 0.81 (95% CI, 0.71-0.92). Fucosylation of IgG was increased in patients with CD vs controls (for IgG1: OR, 1.27; 95% CI, 1.12-1.44), but decreased in patients with UC vs controls (for IgG23: OR, 0.72; 95% CI, 0.63-0.82). Decreased galactosylation associated with more severe CD or UC, including the need for surgery in patients with UC vs controls (for IgG1: OR, 0.69; 95% CI, 0.54-0.89) and in patients with CD vs controls (for IgG23: OR, 0.78; 95% CI, 0.66-0.91). CONCLUSIONS In a retrospective analysis of plasma samples from patients with CD or UC, we associated levels of IgG Fc-glycosylation with disease (compared to controls) and its clinical features. These findings could increase our understanding of mechanisms of CD and UC pathogenesis and be used to develop diagnostics or guide treatment.
Collapse
Affiliation(s)
- Mirna Šimurina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frano Vučković
- Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia
| | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Genadij Razdorov
- Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia
| | - Anna Khon
- Division of Gastroenterology, S. Camillo-Forlanini Hospital, Circonvallazione Gianicolense, Rome, Italy
| | - Anna Latiano
- Division of Gastroenterology, Casa Sollievo della Sofferenza Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, San Giovanni Rotondo, Italy
| | - Renata D'Incà
- Division of Gastroenterology, University Hospital, Padua, Italy
| | - Silvio Danese
- Humanitas University, Inflammatory Bowel Disease Center, Department of Gastroenterology, Humanitas Clinical and Research Hospital, Milan, Italy
| | - Stephan Targan
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Carol Landers
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Marla Dubinsky
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dermot P B McGovern
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vito Annese
- Division of Gastroenterology, University Hospital Azienda Ospedaliero-Universitaria Careggi, Florence, Italy; Valiant Clinic, Dubai, United Arab Emirates
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos Glycoscience Research Laboratory, BIOCentar, Zagreb, Croatia.
| |
Collapse
|
44
|
Abstract
Glycosylation is a ubiquitous posttranslational modification of proteins that occurs in the endoplasmic reticulum/Golgi. N-glycans and mucin-type O-glycans are achieved via a series of glycohydrolase- and glycosyltransferase-mediated reactions. Glycosylation modulates immune responses by regulating thymocyte development and T helper cell differentiation. Autoimmune diseases result from an abnormal immune response by self-antigens and subsequently lead to the destruction of the target tissues. The modification of N-glycans has been studied in several animal models of T-cell-mediated autoimmune diseases. This review summarizes and highlights the modulatory effects of N-glycosylation in several autoimmune diseases, including multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Ming-Wei Chien
- Department of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
| | - Shin-Huei Fu
- Department of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
| | - Chao-Yuan Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan.
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan.
| |
Collapse
|
45
|
Dias AM, Almeida CR, Reis CA, Pinho SS. Studying T Cells N-Glycosylation by Imaging Flow Cytometry. Methods Mol Biol 2017; 1389:167-76. [PMID: 27460244 DOI: 10.1007/978-1-4939-3302-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Imaging flow cytometry is an emerging imaging technology that combines features of both conventional flow cytometry and fluorescence microscopy allowing quantification of the imaging parameters. The analysis of protein posttranslational modifications by glycosylation using imaging flow cytometry constitutes an important bioimaging tool in the glycobiology field. This technique allows quantification of the glycan fluorescence intensity, co-localization with proteins, and evaluation of the membrane/cytoplasmic expression. In this chapter we provide the guidelines to analyze glycan expression, particularly the β1,6 GlcNAc branched N-glycans, on the membrane of intestinal T cells from inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Ana M Dias
- Institute for Research and Innovation in Health, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Catarina R Almeida
- Institute for Research and Innovation in Health, Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Celso A Reis
- Institute for Research and Innovation in Health, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health, Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
46
|
Fujii H, Shinzaki S, Iijima H, Wakamatsu K, Iwamoto C, Sobajima T, Kuwahara R, Hiyama S, Hayashi Y, Takamatsu S, Uozumi N, Kamada Y, Tsujii M, Taniguchi N, Takehara T, Miyoshi E. Core Fucosylation on T Cells, Required for Activation of T-Cell Receptor Signaling and Induction of Colitis in Mice, Is Increased in Patients With Inflammatory Bowel Disease. Gastroenterology 2016; 150:1620-1632. [PMID: 26965517 DOI: 10.1053/j.gastro.2016.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Attachment of a fucose molecule to the innermost N-glycan in a glycoprotein (core fucosylation) regulates the activity of many growth factor receptors and adhesion molecules. The process is catalyzed by α1-6 fucosyltransferase (FUT8) and required for immune regulation, but it is not clear whether this process is dysregulated during disease pathogenesis. We investigated whether core fucosylation regulates T-cell activation and induction of colitis in mice, and is altered in patients with inflammatory bowel disease (IBD). METHODS Biopsy samples were collected from inflamed and noninflamed regions of intestine from patients (8 with Crohn's disease, 4 with ulcerative colitis, and 4 without IBD [controls]) at Osaka University Hospital. Colitis was induced in FUT8-deficient (Fut8(-/-)) mice and Fut8(+/+) littermates by administration of trinitrobenzene sulfonic acid. Intestinal tissues were collected and analyzed histologically. Immune cells were collected and analyzed by lectin flow cytometry, immunofluorescence, and reverse-transcription polymerase chain reaction, as well as for production of cytokines and levels of T-cell receptor (TCR) in lipid raft fractions. T-cell function was analyzed by intraperitoneal injection of CD4(+)CD62L(+) naïve T cells into RAG2-deficient mice. RESULTS Levels of core fucosylation were increased on T cells from mice with colitis, compared with mice without colitis, as well as on inflamed mucosa from patients with IBD, compared with their noninflamed tissues or tissues from control patients. Fut8(-/-) mice developed less-severe colitis than Fut8(+/+) mice, and T cells from Fut8(-/-) mice produced lower levels of T-helper 1 and 2 cytokines. Adoptive transfer of Fut8(-/-) T cells to RAG2-deficient mice reduced the severity of colitis. Compared with CD4(+) T cells from Fut8(+/+) mice, those from Fut8(-/-) mice expressed similar levels of TCR and CD28, but these proteins did not contain core fucosylation. TCR complexes formed on CD4(+) T cells from Fut8(-/-) mice did not signal properly after activation and were not transported to lipid rafts. CONCLUSIONS Core fucosylation of the TCR is required for T-cell signaling and production of inflammatory cytokines and induction of colitis in mice. Levels of TCR core fucosylation are increased on T cells from intestinal tissues of patients with IBD; this process might be blocked as a therapeutic strategy.
Collapse
Affiliation(s)
- Hironobu Fujii
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kana Wakamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizuru Iwamoto
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Sobajima
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryusuke Kuwahara
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Satoshi Hiyama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naofumi Uozumi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiko Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
47
|
Prenc E, Pulanic D, Pucic-Bakovic M, Pezer M, Desnica L, Vrhovac R, Nemet D, Pavletic SZ. Potential of glycosylation research in graft versus host disease after allogeneic hematopoietic stem cell transplantation. Biochim Biophys Acta Gen Subj 2016; 1860:1615-22. [PMID: 26923767 DOI: 10.1016/j.bbagen.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glycans, complex oligosaccharides, are directly involved in almost every biological process, have a fundamental role in the immune system, and are probably involved in nearly every human disease. However, glycosylation has been greatly ignored in the area of allogeneic hematopoietic stem cell transplantation (alloHSCT) and graft versus host disease (GVHD). Both acute and chronic GVHD are multisystemic debilitating immunological disturbances arising after alloHSCT. SCOPE OF REVIEW In this paper, we review the glycosylation research already done in the field of alloHSCT and GVHD and evaluate further potential of glycan analysis in GVHD by looking into resembling inflammatory and autoimmune conditions. MAJOR CONCLUSIONS Glycan research could bring significant improvement in alloHSCT procedure with reduction in following complications, such as GVHD. Identifying glycan patterns that induce self-tolerance and the ones that cause the auto- and allo-immune response could lead to innovative and tissue-specific immunomodulative therapy instead of the current immunosuppressive treatment, enabling preservation of the graft-versus-tumor effect. Moreover, improved glycan pattern analyses could offer a more complete assessment and greatly needed dynamic biomarkers for GVHD. GENERAL SIGNIFICANCE This review is written with a goal to encourage glycan research in the field of alloHSCT and GVHD as a perspective tool leading to improved engraftment, discovery of much needed biomarkers for GVHD, enabling an appropriate therapy and improved monitoring of therapeutic response. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Ema Prenc
- Croatian Cooperative Group for Hematologic Diseases, Zagreb, Croatia
| | - Drazen Pulanic
- Division of Haematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia; University of Zagreb School of Medicine, Zagreb, Croatia; Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia.
| | | | - Marija Pezer
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Lana Desnica
- Division of Haematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Radovan Vrhovac
- Division of Haematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia; University of Zagreb School of Medicine, Zagreb, Croatia
| | - Damir Nemet
- Division of Haematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia; University of Zagreb School of Medicine, Zagreb, Croatia; Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Steven Z Pavletic
- Graft-versus-Host and Autoimmunity Section, Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Abstract
Despite recent progress in understanding the cancer genome, there is still a relative delay in understanding the full aspects of the glycome and glycoproteome of cancer. Glycobiology has been instrumental in relevant discoveries in various biological and medical fields, and has contributed to the deciphering of several human diseases. Glycans are involved in fundamental molecular and cell biology processes occurring in cancer, such as cell signalling and communication, tumour cell dissociation and invasion, cell-matrix interactions, tumour angiogenesis, immune modulation and metastasis formation. The roles of glycans in cancer have been highlighted by the fact that alterations in glycosylation regulate the development and progression of cancer, serving as important biomarkers and providing a set of specific targets for therapeutic intervention. This Review discusses the role of glycans in fundamental mechanisms controlling cancer development and progression, and their applications in oncology.
Collapse
Affiliation(s)
- Salomé S Pinho
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
49
|
Abstract
BACKGROUND Glycobiology is an underexplored research area in inflammatory bowel disease (IBD), and glycans are relevant to many etiological mechanisms described in IBD. Alterations in N-glycans attached to the immunoglobulin G (IgG) Fc fragment can affect molecular structure and immunological function. Recent genome-wide association studies reveal pleiotropy between IBD and IgG glycosylation. This study aims to explore IgG glycan changes in ulcerative colitis (UC) and Crohn's disease (CD). METHODS IgG glycome composition in patients with UC (n = 507), CD (n = 287), and controls (n = 320) was analyzed by ultra performance liquid chromatography. RESULTS Statistically significant differences in IgG glycome composition between patients with UC or CD, compared with controls, were observed. Both UC and CD were associated with significantly decreased IgG galactosylation (digalactosylation, UC: odds ratio [OR] = 0.71; 95% confidence interval [CI], 0.5-0.9; P = 0.01; CD: OR = 0.41; CI, 0.3-0.6; P = 1.4 × 10) and significant decrease in the proportion of sialylated structures in CD (OR = 0.46, CI, 0.3-0.6, P = 8.4 × 10). Logistic regression models incorporating measured IgG glycan traits were able to distinguish UC and CD from controls (UC: P = 2.13 × 10 and CD: P = 2.20 × 10), with receiver-operator characteristic curves demonstrating better performance of the CD model (area under curve [AUC] = 0.77) over the UC model (AUC = 0.72) (P = 0.026). The ratio of the presence to absence of bisecting GlcNAc in monogalactosylated structures was increased in patients with UC undergoing colectomy compared with no colectomy (FDR-adjusted, P = 0.05). CONCLUSIONS The observed differences indicate significantly increased inflammatory potential of IgG in IBD. Changes in IgG glycosylation may contribute to IBD pathogenesis and could alter monoclonal antibody therapeutic efficacy. IgG glycan profiles have translational potential as IBD biomarkers.
Collapse
|