1
|
Zhang X, Huangfu Z, Wang S. Review of mendelian randomization studies on age at natural menopause. Front Endocrinol (Lausanne) 2023; 14:1234324. [PMID: 37766689 PMCID: PMC10520463 DOI: 10.3389/fendo.2023.1234324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Menopause marks the end of the reproductive phase of life. Based on epidemiological studies, abnormal age at natural menopause (ANM) is thought to contribute to a number of adverse outcomes, such as osteoporosis, cardiovascular disease, and cancer. However, the causality of these associations remains unclear. A powerful epidemiological method known as Mendelian randomization (MR) can be used to clarify the causality between ANM and other diseases or traits. The present review describes MR studies that included ANM as an exposure, outcome and mediator. The findings of MR analyses on ANM have revealed that higher body mass index, poor educational level, early age at menarche, early age at first live birth, early age at first sexual intercourse, and autoimmune thyroid disease appear to be involved in early ANM etiology. The etiology of late ANM appears to be influenced by higher free thyroxine 4 and methylene tetrahydrofolate reductase gene mutations. Furthermore, early ANM has been found to be causally associated with an increased risk of osteoporosis, fracture, type 2 diabetes mellitus, glycosylated hemoglobin, and the homeostasis model of insulin resistance level. In addition, late ANM has been found to be causally associated with an increased systolic blood pressure, higher risk of breast cancer, endometrial cancer, endometrioid ovarian carcinoma, lung cancer, longevity, airflow obstruction, and lower risk of Parkinson's disease. ANM is also a mediator for breast cancer caused by birth weight and childhood body size. However, due to the different instrumental variables used, some results of studies are inconsistent. Future studies with more valid genetic variants are needed for traits with discrepancies between MRs or between MR and other types of epidemiological studies.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Huangfu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Li J, Liu Z, Ren Y, Shao H, Li S. LRP5-/6 gene polymorphisms and its association with risk of abnormal bone mass in postmenopausal women. J Orthop Surg Res 2023; 18:369. [PMID: 37202775 DOI: 10.1186/s13018-023-03829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVES To assess LRP5-/6 gene polymorphisms and its association with risk of abnormal bone mass (ABM) in postmenopausal women. METHODS The study recruited 166 patients with ABM (case group) and 106 patients with normal bone mass (control group) based on bone mineral density (BMD) results. Multi-factor dimensionality reduction (MDR) was used to analyze the interaction between the Low-density lipoprotein receptor-related protein 5 (LRP5) gene (rs41494349, rs2306862) and the Low-density lipoprotein receptor-related protein 6 (LRP6) gene (rs10743980, rs2302685) and the subjects' clinical characteristics of age and menopausal years. RESULTS (1) Logistic regression analysis showed that the subjects with the CT or TT genotype at rs2306862 had a higher risk of ABM than those with the CC genotype (OR = 2.353, 95%CI = 1.039-6.186; OR = 2.434, 95%CI = 1.071, 5.531; P < 0.05). The subjects with the TC genotype at rs2302685 had a higher risk of ABM than those with the TT genotype (OR = 2.951, 95%CI = 1.030-8.457, P < 0.05). (2) When taking the three Single-nucleotide polymorphisms (SNPs) together, the accuracy was the highest with the cross-validation consistency of 10/10 (OR = 1.504, 95%CI:1.092-2.073, P < 0.05), indicating that the LRP5 rs41494349 and LRP6 rs10743980, rs2302685 were interactively associated with the risk of ABM. (3) Linkage disequilibrium (LD) results revealed that the LRP5 (rs41494349,rs2306862) were in strong LD (D' > 0.9, r2 > 0.3). AC and AT haplotypes were significantly more frequently distributed in the ABM group than in the control group, indicating that subjects carrying the AC and AT haplotypes were associated with an increased risk of ABM (P < 0.01). (4) MDR showed that rs41494349 & rs2302685 & rs10743980 & age were the best model for ABM prediction. The risk of ABM in "high-risk combination" was 1.00 times that of "low-risk combination"(OR = 1.005, 95%CI: 1.002-1.008, P < 0.05). (5) MDR showed that there was no significant association between any of the SNPs and menopausal years and ABM susceptibility. CONCLUSION These findings indicate that LRP5-rs2306862 and LRP6-rs2302685 polymorphisms and gene-gene and gene-age interactions may increase the risk of ABM in postmenopausal women. There was no significant association between any of the SNPs and menopausal years and ABM susceptibility.
Collapse
Affiliation(s)
- Jun Li
- The First Affiliated Hospital of Shihezi University, 107 North Second Road, Hongshan Sub-District, Shihezi City, 832000, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Zebing Liu
- The First Affiliated Hospital of Shihezi University, 107 North Second Road, Hongshan Sub-District, Shihezi City, 832000, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yanxia Ren
- The First Affiliated Hospital of Shihezi University, 107 North Second Road, Hongshan Sub-District, Shihezi City, 832000, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Han Shao
- School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Siyuan Li
- School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang Uygur Autonomous Region, People's Republic of China
| |
Collapse
|
4
|
Chen M, Jiang H, Zhang C. Selected Genetic Factors Associated with Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:ijms24054423. [PMID: 36901862 PMCID: PMC10002966 DOI: 10.3390/ijms24054423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.
Collapse
Affiliation(s)
- Mengchi Chen
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Haotian Jiang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
5
|
Johansson Å, Schmitz D, Höglund J, Hadizadeh F, Karlsson T, Ek WE. Investigating the Effect of Estradiol Levels on the Risk of Breast, Endometrial, and Ovarian Cancer. J Endocr Soc 2022; 6:bvac100. [PMID: 35822202 PMCID: PMC9265484 DOI: 10.1210/jendso/bvac100] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background High levels of estrogen are associated with increased risk of breast and endometrial cancer and have been suggested to also play a role in the development of ovarian cancer. Cancerogenic effects of estradiol, the most prominent form of estrogen, have been highlighted as a side effect of estrogen-only menopausal hormone therapy. However, whether high levels of endogenous estrogens, produced within the body, promote cancer development, has not been fully established. Objective We aimed to examine causal effects of estradiol on breast, endometrial, and ovarian cancer. Methods Here we performed a two-sample Mendelian randomization (MR) to estimate the effect of endogenous estradiol on the risk of developing breast, endometrial, and ovarian cancer, using the UK Biobank as well as 3 independent cancer cohorts. Results Using 3 independent instrumental variables, we showed that higher estradiol levels significantly increase the risk for ovarian cancer (OR = 3.18 [95% CI, 1.47-6.87], P = 0.003). We also identified a nominally significant effect for ER-positive breast cancer (OR = 2.16 [95% CI, 1.09-4.26], P = 0.027). However, we could not establish a clear link to the risk of endometrial cancer (OR = 1.93 [95% CI, 0.77-4.80], P = 0.160). Conclusion Our results suggest that high estradiol levels promote the development of ovarian and ER-positive breast cancer.
Collapse
Affiliation(s)
- Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75108 Uppsala, Sweden
| | - Daniel Schmitz
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75108 Uppsala, Sweden
| | - Julia Höglund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75108 Uppsala, Sweden
| | - Fatemeh Hadizadeh
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75108 Uppsala, Sweden
| | - Torgny Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75108 Uppsala, Sweden
| | - Weronica E Ek
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75108 Uppsala, Sweden
| |
Collapse
|
6
|
Wang X, Wu Y, Liu J, Xu X, Sheng Z, Liu W, Chen M, Ma Y, Zhao D, Li D, Zheng X. Identification of target and pathway of aspirin combined with Lipitor treatment in prostate cancer through integrated bioinformatics analysis. Toxicol Appl Pharmacol 2022; 452:116169. [PMID: 35926565 DOI: 10.1016/j.taap.2022.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Our previous studies have confirmed that aspirin combined with Lipitor inhibited the development of prostate cancer (PCa), but the mechanisms need to be comprehensively expounded. The study aims to screen out the hub genes of combination therapy and to explore their association with the pathogenesis and prognosis of PCa. METHODS Gene expressions were quantified by RNA sequencing (RNA-seq). Altered biological function, pathways of differentially expressed genes (DEGs), protein-protein interaction network, the filtering of hub genes, gene co-expression and the pathogenesis and prognosis were revealed by bioinformatics analysis. The correlation between hub gene expression and patient survival was validated by Kaplan-Meier. The effects of silent DNA replication and sister chromatid cohesion 1 (siDSCC1) combined with Lipitor and aspirin on DSCC1 expression, viability, invasion and migration of PCa cells were detected by qRT-PCR, Wound healing and transwell assays. RESULTS 157 overlapped DEGs involved in FoxO, PI3K-Akt and p53 signaling pathways were identified. Ten hub genes (NEIL3, CDC7, DSCC1, CDC25C, PRIM1, MCM10, FBXO5, DTL, SERPINE1, EXO1) were verified to be correlated with the pathology and prognosis of PCa. DSCC1 silencing not only inhibited the viability, migration and invasion of PCa cells, but also strengthened the suppressing effects of Lipitor and aspirin alone or in combination on PCa cells. CONCLUSION The enrichment pathways and targets of Lipitor combined with aspirin in PCa are discovered, and DSCC1 silencing can potentiate the effect of Lipitor combined with aspirin in the treatment of PCa.
Collapse
Affiliation(s)
- Xiao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Yi Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Junlei Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Min Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Yanyan Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Denggao Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City 529020, China
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Ruters University, Piscataway NJ08854, USA.
| |
Collapse
|
7
|
Louwers YV, Visser JA. Shared Genetics Between Age at Menopause, Early Menopause, POI and Other Traits. Front Genet 2021; 12:676546. [PMID: 34691139 PMCID: PMC8529948 DOI: 10.3389/fgene.2021.676546] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Reproductive ageing leading to menopause is characterized by depletion of follicles and its regulating mechanisms are only partly understood. Early age at menopause and premature ovarian insufficiency (POI) are associated with several other traits such as cardiovascular disease, dyslipidemia, osteoporosis and diabetes. In large cohorts of Northern European women hundreds of Single Nucleotide Polymorphisms (SNPs) have been identified to be associated with age at menopause. These SNPs are located in genes enriched for immune and mitochondrial function as well as DNA repair and maintenance processes. Genetic predisposition to earlier menopause might also increase the risk of other associated traits. Increased risk for cardiovascular disease in women has been associated with age at menopause lowering SNPs. Pleiotropy between early age at menopause and increased mortality from coronary artery disease has been observed, implicating that genetic variants affecting age at menopause also affect the risk for coronary deaths. This review will discuss the shared genetics of age at menopause with other traits. Mendelian Randomization studies implicate causal genetic association between age at menopause and age at menarche, breast cancer, ovarian cancer, BMD and type 2 diabetes. Although the shared biological pathways remain to be determined, mechanisms that regulate duration of estrogen exposure remain an important focus.
Collapse
Affiliation(s)
- Yvonne V Louwers
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
8
|
Huang C, Lei C, Pan B, Fang S, Chen Y, Cao W, Liu L. Potential Prospective Biomarkers for Non-small Cell Lung Cancer: Mini-Chromosome Maintenance Proteins. Front Genet 2021; 12:587017. [PMID: 33936158 PMCID: PMC8079985 DOI: 10.3389/fgene.2021.587017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Minichromosome maintenance proteins (MCMs) are considered to be essential factors coupling DNA replication to both cell cycle progression and checkpoint regulation. Previous studies have shown that dysregulation of MCMs are implicated in tumorigenesis of lung cancer. However, the distinct expression/mutation patterns and prognostic values of MCMs in lung cancer have yet to be systematically elucidated. In the present study, we analyzed the transcriptional levels, mutations, and prognostic value of MCM1-10 in non-small cell lung cancer (NSCLC) patients using multiple bioinformatics tools, including ONCOMINE, GEPIA, Kaplan-Meier Plotter, cBioPortal, and GESA. The analysis results from GEPIA dataset showed that MCM2/4/10 was significantly high expressed in both lung adenocarcinoma (LUAD) and squamous cell lung carcinomas (LUSCs). Meanwhile, the expression levels of MCM2/4/6/7/8 were associated with advanced tumor stages. Subsequent survival analysis using the Kaplan-Meier Plotter indicated that high expression levels of MCM1/2/3/4/5/6/7/8/10 were associated with worse overall survival (OS), while high expression level of MCM9 predicted better OS in these patients. Furthermore, we experimentally validated overexpression of MCM2 and MCM4 in NSCLC, thus the results from this study support a view that they may serve as potential prospective biomarkers to identify high-risk subgroups of NSCLC patients.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy-Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chuqi Lei
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Boyu Pan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy-Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Senbiao Fang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Yubao Chen
- Department of Computational Biology, Beijing Computing Center, Beijing, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy-Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy-Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
9
|
Biswas L, Tyc K, Yakoubi WE, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 2021; 161:R13-R35. [PMID: 33170803 PMCID: PMC7855740 DOI: 10.1530/rep-20-0422] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic or 'unexplained' infertility represents as many as 30% of infertility cases worldwide. Conception, implantation, and term delivery of developmentally healthy infants require chromosomally normal (euploid) eggs and sperm. The crux of euploid egg production is error-free meiosis. Pathologic genetic variants dysregulate meiotic processes that occur during prophase I, meiotic resumption, chromosome segregation, and in cell cycle regulation. This dysregulation can result in chromosomally abnormal (aneuploid) eggs. In turn, egg aneuploidy leads to a broad range of clinical infertility phenotypes, including primary ovarian insufficiency and early menopause, egg fertilization failure and embryonic developmental arrest, or recurrent pregnancy loss. Therefore, maternal genetic variants are emerging as infertility biomarkers, which could allow informed reproductive decision-making. Here, we select and deeply examine human genetic variants that likely cause dysregulation of critical meiotic processes in 14 female infertility-associated genes: SYCP3, SYCE1, TRIP13, PSMC3IP, DMC1, MCM8, MCM9, STAG3, PATL2, TUBB8, CEP120, AURKB, AURKC, andWEE2. We discuss the function of each gene in meiosis, explore genotype-phenotype relationships, and delineate the frequencies of infertility-associated variants.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katarzyna Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Warif El Yakoubi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katie Morgan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Mirinezhad MR, Khosroabadi N, Rahpeyma M, Khayami R, Hashemi SR, Ghazizadeh H, Ferns GA, Pasdar A, Ghayour-Mobarhan M, Hamzehloei T. Genetic Determinants of Premature Menopause in A Mashhad Population Cohort. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:26-33. [PMID: 33497044 PMCID: PMC7838752 DOI: 10.22074/ijfs.2020.134688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/07/2020] [Indexed: 11/04/2022]
Abstract
Background Premature menopause is characterized by amenorrhea before age of 40 years, markedly raised serum luteinizing hormone (LH) level, follicle-stimulating hormone (FSH) level and reduced serum level of estradiol. Genome-wide analysis suggested several loci associated with premature menopause. Here, we aimed to analyze association of variants at the MCM8, FNDC4, PRRC2A, TLK1, ZNF346 and TMEM150B gene loci with premature menopause. Materials and Methods In this cross-sectional study, a total of 117 women with premature menopause were compared to 183 healthy women. Anthropometric indices were measured in all participants: height, weight, body mass index (BMI), waist circumference (WC) and wrist circumference. Eight single-nucleotide polymorphisms (SNPs) of the indicated genes (rs16991615, rs244715, rs451417, rs1046089, rs7246479, rs4806660, rs10183486 and rs2303369) were identified from the literature. Genotyping was performed using tetra-ARMS polymerase chain reaction (PCR) and ASO-PCR methods. Results T allele of the rs16991615, rs1046089, rs7246479 and rs10183486, C allele of rs244715, rs451417 and rs4806660 as well as TT genotype of rs2303369 were associated with an increased risk of premature menopause, likely causing susceptibility to primary ovarian insufficiency (POI) in comparison with C allele. We also found an association between the rs16991615 SNP with premature menopause. Frequency of the minor allele in cases was increased for all SNPs in comparison with controls. All minor alleles, except for rs2303369, showed a statistically significant increased odds ratio (OR). However, after Bonferroni correction for multiple testing, none of the P values were remained significant. Conclusion The selected polymorphisms in MCM8, FNDC4, PRRC2A, TLK1, ZNF346 and TMEM150B genes may potentially affect susceptibility to premature menopause, although replication of the results in larger cohort could clarify this.
Collapse
Affiliation(s)
- Mohammad Reza Mirinezhad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Khosroabadi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Rahpeyma
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Reza Hashemi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebeh Hamzehloei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Rossetti R, Moleri S, Guizzardi F, Gentilini D, Libera L, Marozzi A, Moretti C, Brancati F, Bonomi M, Persani L. Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset. Front Endocrinol (Lausanne) 2021; 12:664645. [PMID: 34803902 PMCID: PMC8600266 DOI: 10.3389/fendo.2021.664645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is one of the major causes of female infertility associated with the premature loss of ovarian function in about 3.7% of women before the age of 40. This disorder is highly heterogeneous and can manifest with a wide range of clinical phenotypes, ranging from ovarian dysgenesis and primary amenorrhea to post-pubertal secondary amenorrhea, with elevated serum gonadotropins and hypoestrogenism. The ovarian defect still remains idiopathic in some cases; however, a strong genetic component has been demonstrated by the next-generation sequencing (NGS) approach of familiar and sporadic POI cases. As recent evidence suggested an oligogenic architecture for POI, we developed a target NGS panel with 295 genes including known candidates and novel genetic determinants potentially involved in POI pathogenesis. Sixty-four patients with early onset POI (range: 10-25 years) of our cohort have been screened with 90% of target coverage at 50×. Here, we report 48 analyzed patients with at least one genetic variant (75%) in the selected candidate genes. In particular, we found the following: 11/64 patients (17%) with two variants, 9/64 (14%) with three variants, 9/64 (14%) with four variants, 3/64 (5%) with five variants, and 2/64 (3%) with six variants. The most severe phenotypes were associated with either the major number of variations or a worse prediction in pathogenicity of variants. Bioinformatic gene ontology analysis identified the following major pathways likely affected by gene variants: 1) cell cycle, meiosis, and DNA repair; 2) extracellular matrix remodeling; 3) reproduction; 4) cell metabolism; 5) cell proliferation; 6) calcium homeostasis; 7) NOTCH signaling; 8) signal transduction; 9) WNT signaling; 10) cell death; and 11) ubiquitin modifications. Consistently, the identified pathways have been described in other studies dissecting the mechanisms of folliculogenesis in animal models of altered fertility. In conclusion, our results contribute to define POI as an oligogenic disease and suggest novel candidates to be investigated in patients with POI.
Collapse
Affiliation(s)
- Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- *Correspondence: Raffaella Rossetti, ; Luca Persani,
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Fabiana Guizzardi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Libera
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Anna Marozzi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Costanzo Moretti
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesco Brancati
- Medical Genetics, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Human Functional Genomics, IRCCS San Raffaele Pisana, Rome, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- *Correspondence: Raffaella Rossetti, ; Luca Persani,
| |
Collapse
|
12
|
Wang F, Guo S, Li P. Two novel mutations in the MCM8 gene shared by two Chinese siblings with primary ovarian insufficiency and short stature. Mol Genet Genomic Med 2020; 8:e1396. [PMID: 32652893 PMCID: PMC7507566 DOI: 10.1002/mgg3.1396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Minichromosome maintenance complex component 8 (MCM8) is responsible for homologous recombination and DNA double-strand breaks (DSBs) repair and is the cause of primary ovarian insufficiency (POI), which is seldom diagnosed in adolescents and children. METHODS Whole-exome sequencing was performed in a 13-year-old girl, and Sanger sequencing was used to identify potentially pathogenic variants in her sister (aged 6 years and 7 months) and parents. To identify potential pathogenic mutations, DSBs were induced by mitomycin C (MMC), and the DNA repair capacity was evaluated by the histone H2AX phosphorylation level. RESULTS Two novel mutations of MCM8, i.e., c.724T>C (p.C242R) and c.1334C>A (p.S445*), were identified in a 13-year-old girl with POI who exhibited disappeared bilateral ovaries and short stature (height standard difference score [HtSDS] = -3.05), and her sister (aged 6 years and 7 months) with progressive POI whose ovary size decreased from normal to unclear and height growth gradually slowed. In the functional experiments, compared with the wild-type, HeLa cells overexpressing mutant p.C242R and p.S445* showed a higher sensitivity to MMC. Furthermore, the mutant p.S445* has a more deleterious effect on DNA damage repair. CONCLUSION Our results reveal that affected children with the novel pathogenetic mutations p.C242R and p.S445* in the MCM8 gene are characterized by POI, short stature, cancer susceptibility, and genomic instability.
Collapse
Affiliation(s)
- Fei Wang
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Guo
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pin Li
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
El Khoudary SR. Age at menopause onset and risk of cardiovascular disease around the world. Maturitas 2020; 141:33-38. [PMID: 33036700 DOI: 10.1016/j.maturitas.2020.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023]
Abstract
Earlier menopause onset has been linked to a greater risk of cardiovascular disease. Both menopause onset and cardiovascular disease risk vary by geographical region, race/ethnicity and socioeconomic status. As such, it is plausible to hypothesize that these factors may influence the association of menopause onset and cardiovascular disease risk. Taking a global approach, this narrative review focuses on how geographic, racial/ethnic and socioeconomic factors might influence menopause onset, mainly natural menopause, and possibly its association with cardiovascular disease risk. The contribution of genetic factors to menopause onset variation is also summarized. A clear gap in the literature has been identified. Several meta-analyses have assessed the question of whether menopause onset is related to cardiovascular disease risk by combining large populations of diverse racial/ethnic backgrounds and socioeconomic status across wide geographical regions. None of these analyses adequately assessed how these factors might modify the association of menopause onset and cardiovascular disease risk. Testing such a question requires the study of a large group of women of diverse racial/ethnic backgrounds across different geographical locations with good documentation of their socioeconomic status, clinical and environmental factors. The increasing evidence supporting age at menopause onset as a marker of overall health calls for worldwide efforts to implement a standardized approach to define age at menopause in both the clinical and the research fields.
Collapse
Affiliation(s)
- Samar R El Khoudary
- Department of Epidemiology Graduate School of Public Health, Epidemiology Data Center, University of Pittsburgh, 4420 Bayard St., Suite 600, Pittsburgh, PA 15260, USA.
| |
Collapse
|
14
|
Chan S, Gomes A, Singh RS. Is menopause still evolving? Evidence from a longitudinal study of multiethnic populations and its relevance to women's health. BMC WOMENS HEALTH 2020; 20:74. [PMID: 32307019 PMCID: PMC7168978 DOI: 10.1186/s12905-020-00932-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/19/2020] [Indexed: 01/19/2023]
Abstract
Background To reflect on the impact of changing patterns of delayed marriage and reproduction and to seek evidence as to whether menopause is still evolving, characteristics of the menopause transition were investigated within and between ethnic populations in this study. Methods A cross-sectional analysis was conducted using data on 747 middle-aged women obtained from the Study of Women’s Health Across the Nation (SWAN) from 1996 to 2008. The ethnic groups included: Afro-American, Chinese, Japanese, Caucasian, and Hispanic. Perimenopause age and duration, menopause age, and hormonal indicators of menopause were examined across five ethnicities. Results We found a similar window of menopause age within populations, but no significant difference in perimenopause and menopause age between populations. The rate of increase of follicle-stimulating hormone and testosterone differed significantly in Hispanics and African-Americans during the menopause transition period. Conclusions The broad window of variation in age at menopause within the population and the absence of significant differences between populations, in combination with population variation in menopause symptoms, suggest that menopause is a relatively recently evolved and still evolving trait. Under the mate choice theory of menopause, menopause is the result of the accumulation of infertility mutations in older women due to men’s preference for younger mates. We propose a shifting mate choice-shifting menopause model which posits that, as the age of mate choice/marriage shifts to older ages, so will the age at menopause, and that menopause is a transient phase of female fertility; it can de-evolve, be delayed, if not disappear completely. Integrated longitudinal menopausal studies linked with genomics and hormonal studies on diverse ethnic populations can provide valuable information bearing on women’s health and personalized medicine.
Collapse
Affiliation(s)
- Shirley Chan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Alyssa Gomes
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
15
|
Laisk T, Tšuiko O, Jatsenko T, Hõrak P, Otala M, Lahdenperä M, Lummaa V, Tuuri T, Salumets A, Tapanainen JS. Demographic and evolutionary trends in ovarian function and aging. Hum Reprod Update 2020; 25:34-50. [PMID: 30346539 DOI: 10.1093/humupd/dmy031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The human female reproductive lifespan is regulated by the dynamics of ovarian function, which in turn is influenced by several factors: from the basic molecular biological mechanisms governing folliculogenesis, to environmental and lifestyle factors affecting the ovarian reserve between conception and menopause. From a broader point of view, global and regional demographic trends play an additional important role in shaping the female reproductive lifespan, and finally, influences on an evolutionary scale have led to the reproductive senescence that precedes somatic senescence in humans. OBJECTIVE AND RATIONALE The narrative review covers reproductive medicine, by integrating the molecular mechanisms of ovarian function and aging with short-term demographic and long-term evolutionary trends. SEARCH METHODS PubMed and Google Scholar searches were performed with relevant keywords (menopause, folliculogenesis, reproductive aging, reproductive lifespan and life history theory). The reviewed articles and their references were restricted to those written in English. OUTCOMES We discuss and summarize the rapidly accumulating information from large-scale population-based and single-reproductive-cell genomic studies, their constraints and advantages in the context of female reproductive aging as well as their possible evolutionary significance on the life history trajectory from foetal-stage folliculogenesis until cessation of ovarian function in menopause. The relevant environmental and lifestyle factors and demographic trends are also discussed in the framework of predominant evolutionary hypotheses explaining the origin and maintenance of menopause. WIDER IMPLICATIONS The high speed at which new data are generated has so far raised more questions than it has provided solid answers and has been paralleled by a lack of satisfactory interpretations of the findings in the context of human life history theory. Therefore, the recent flood of data could offer an unprecedented tool for future research to possibly confirm or rewrite human evolutionary reproductive history, at the same time providing novel grounds for patient counselling and family planning strategies.
Collapse
Affiliation(s)
- Triin Laisk
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia.,Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, L. Puusepa 8, Tartu, Estonia
| | - Olga Tšuiko
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, Department of Biomedicine, University of Tartu, Ravila 19, Tartu, Estonia
| | - Tatjana Jatsenko
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia
| | - Peeter Hõrak
- Department of Zoology, University of Tartu, Vanemuise 46, Tartu, Estonia
| | - Marjut Otala
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki, Finland
| | - Mirkka Lahdenperä
- Department of Biology, University of Turku, Turun yliopisto, Turku, Finland
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turun yliopisto, Turku, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki, Finland
| | - Andres Salumets
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia.,Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, L. Puusepa 8, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, Department of Biomedicine, University of Tartu, Ravila 19, Tartu, Estonia.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki, Finland.,Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Center Oulu and PEDEGO Research Unit, OYS Oulu, Finland
| |
Collapse
|
16
|
Relationship between BRSK1 rs12611091 variant and age at natural menopause based on physical activity. ACTA ACUST UNITED AC 2020; 27:459-462. [PMID: 31895179 PMCID: PMC7147414 DOI: 10.1097/gme.0000000000001481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives: The rs12611091 variant in the BR serine/threonine kinase 1 gene is one of the variants previously associated with age at natural menopause. So far, this variant has not been replicated in Taiwanese women. The purpose of this study was to determine the association between rs12611091 and age at natural menopause based on physical activity. Methods: A total of 1,758 women were eligible for analysis whose information about menopause was collected from the Taiwan Biobank. Multiple linear regression analysis was used for analysis. Results: The mean age (standard deviation) at natural menopause was 50.82 (3.59) years. Of the eligible participants, 56.94% were rs12611091 CC carriers, 36.69% were TC carriers, and 6.37% were TT carriers. Compared to CC carriers, TC and TT carriers were associated with early menopause (β = −0.42, P = 0.02 and −0.87, P = 0.01, respectively). There was a significant interaction between rs12611091 and physical activity (P for interaction = 0.02). Compared to rs12611091 CC carriers, TC and TT carriers who were physically inactive were significantly associated with earlier menopause (β = −0.88, P < 0.01 and −1.25, P = 0.02, respectively). Conclusion: We demonstrated that rs12611091 variant was associated with age at natural menopause especially among inactive women in Taiwan. That is, women with TC and TT genotypes who were physically inactive were significantly associated with earlier natural menopause compared to those with CC genotype.
Collapse
|
17
|
Ratnakumar A, Zimmerman SE, Jordan BA, Mar JC. Estrogen activates Alzheimer's disease genes. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:906-917. [PMID: 31890855 PMCID: PMC6926344 DOI: 10.1016/j.trci.2019.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction Women are at increased risk for Alzheimer's disease (AD), but the reason why remains unknown. One hypothesis is that low estrogen levels at menopause increases vulnerability to AD, but this remains unproven. Methods We compared neuronal genes upregulated by estrogen in ovariectomized female rhesus macaques with a database of >17,000 diverse gene sets and applied a rare variant burden test to exome sequencing data from 1208 female AD patients with the age of onset < 75 years and 2162 female AD controls. Results We found a striking overlap between genes upregulated by estrogen in macaques and genes downregulated in the human postmortem AD brain, and we found that estrogen upregulates the APOE gene and that progesterone acts antagonistically to estrogen genome-wide. We also found that female patients with AD have excess rare mutations in the early menopause gene MCM8. Discussion We show with genomic data that the menopausal loss of estrogen could underlie the increased risk for AD in women.
Collapse
Affiliation(s)
- Abhirami Ratnakumar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samuel E Zimmerman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jessica C Mar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| |
Collapse
|
18
|
Abstract
BACKGROUND Age at menarche and age at natural menopause occur significantly earlier in African American women than in other ethnic groups. African American women also have twice the prevalence of cardiometabolic disorders related to the timing of these reproductive traits. OBJECTIVES The objectives of this integrative review were to (a) summarize the genome-wide association studies of reproductive traits in African American women, (b) identify genes that overlap with reproductive traits and cardiometabolic risk factors in African American women, and (c) propose biological mechanisms explaining the link between reproductive traits and cardiometabolic risk factors. METHODS PubMed was searched for genome-wide association studies of genes associated with reproductive traits in African American women. After extracting and summarizing the primary genes, we examined whether any of the associations with reproductive traits had also been identified with cardiometabolic risk factors in African American women. RESULTS Seven studies met the inclusion criteria. Associations with both reproductive and cardiometabolic traits were reported in or near the following genes: FTO, SEC16B, TMEM18, APOE, PHACTR1, KCNQ1, LDLR, PIK3R1, and RORA. Biological pathways implicated include body weight regulation, vascular homeostasis, and lipid metabolism. DISCUSSION A better understanding of the genetic basis of reproductive traits in African American women may provide insight into the biological mechanisms linking variation in these traits with increased risk for cardiometabolic disorders in this population.
Collapse
|
19
|
Yatsenko SA, Rajkovic A. Genetics of human female infertility†. Biol Reprod 2019; 101:549-566. [PMID: 31077289 PMCID: PMC8127036 DOI: 10.1093/biolre/ioz084] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
About 10% of women of reproductive age are unable to conceive or carry a pregnancy to term. Female factors alone account for at least 35% of all infertility cases and comprise a wide range of causes affecting ovarian development, maturation of oocytes, and fertilization competence, as well as the potential of a fertilized egg for preimplantation development, implantation, and fetal growth. Genetic abnormalities leading to infertility in females comprise large chromosome abnormalities, submicroscopic chromosome deletion and duplications, and DNA sequence variations in the genes that control numerous biological processes implicated in oogenesis, maintenance of ovarian reserve, hormonal signaling, and anatomical and functional development of female reproductive organs. Despite the great number of genes implicated in reproductive physiology by the study of animal models, only a subset of these genes is associated with human infertility. In this review, we mainly focus on genetic alterations identified in humans and summarize recent knowledge on the molecular pathways of oocyte development and maturation, the crucial role of maternal-effect factors during embryogenesis, and genetic conditions associated with ovarian dysgenesis, primary ovarian insufficiency, early embryonic lethality, and infertility.
Collapse
Affiliation(s)
- Svetlana A Yatsenko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA
| |
Collapse
|
20
|
|
21
|
Vajaranant TS, Ray RM, Pasquale LR, Mares JA, Ritch R, Gower EW, Haan MN, Jackson RD, Maki PM. Racial Differences in the Effects of Hormone Therapy on Incident Open-Angle Glaucoma in a Randomized Trial. Am J Ophthalmol 2018; 195:110-120. [PMID: 30081016 DOI: 10.1016/j.ajo.2018.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE We conducted a secondary analysis of a randomized, placebo-controlled trial to test if hormone therapy (HT) altered the risk of open-angle glaucoma (OAG), and if the risk reduction varied by race. DESIGN Secondary analysis of randomized controlled trial data. METHODS We linked Medicare claims data to 25 535 women in the Women's Health Initiative. Women without a uterus were randomized to receive either oral conjugated equine estrogens (CEE 0.625 mg/day) or placebo, and women with a uterus received oral CEE and medroxyprogesterone acetate (CEE 0.625 mg/day + MPA 2.5 mg/day) or placebo. We used Cox proportional hazards models to calculate hazard ratios (HR) and 95% confidence interval. RESULTS After exclusion of women with prevalent glaucoma or without claims for eye care provider visits, the final analysis included 8102 women (mean age = 68.5 ± 4.8 years). The OAG incidence was 7.6% (mean follow-up = 11.5 ± 5.2 years; mean HT duration = 4.4 ± 2.3 years). Increased age (P trend = .01) and African-American race (HR = 2.69, 95% CI = 2.13-3.42; white as a reference) were significant risk factors for incident OAG. We found no overall benefit of HT in reducing incident OAG (HR = 1.01, 95% CI = 0.79-1.29 in the CEE trial, and HR = 1.05, 95% CI = 0.85-1.29 in the CEE + MPA trial). However, race modified the relationship between CEE use and OAG risk (P interaction = .01), and risk was reduced in African-American women treated with CEE (HR = 0.49, 95% CI = 0.27-0.88), compared to placebo. Race did not modify the relation between CEE + MPA use and OAG risk (P interaction = .68). CONCLUSIONS Analysis suggests that HT containing estrogen, but not a combination of estrogen and progesterone, reduces the risk of incident OAG among African-American women. Further investigation is needed.
Collapse
|
22
|
An Ancient Fecundability-Associated Polymorphism Creates a GATA2 Binding Site in a Distal Enhancer of HLA-F. Am J Hum Genet 2018; 103:509-521. [PMID: 30245028 DOI: 10.1016/j.ajhg.2018.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022] Open
Abstract
Variation in female reproductive traits, such as fertility, fecundity, and fecundability, are heritable in humans, but identifying and functionally characterizing genetic variants associated with these traits have been challenging. Here, we explore the functional significance and evolutionary history of a G/A polymorphism at SNP rs2523393, which is an eQTL for HLA-F and is significantly associated with fecundability (the probability of being pregnant within a single menstrual cycle). We replicated the association between the rs2523393 genotype and HLA-F expression by using GTEx data and demonstrate that HLA-F is upregulated in the endometrium during the window of implantation and by progesterone in decidual stromal cells. Next, we show that the rs2523393 A allele creates a GATA2 binding site in a progesterone-responsive distal enhancer that loops to the HLA-F promoter. Remarkably, we found that the A allele is derived in the human lineage and that the G/A polymorphism arose before the divergence of modern and archaic humans and segregates at intermediate to high frequencies across human populations. Remarkably, the derived A allele is has also been identified in a GWAS as a risk allele for multiple sclerosis. These data suggest that the polymorphism is maintained by antagonistic pleiotropy and a reproduction-health tradeoff in human evolution.
Collapse
|
23
|
Stamou MI, Georgopoulos NA. Kallmann syndrome: phenotype and genotype of hypogonadotropic hypogonadism. Metabolism 2018; 86:124-134. [PMID: 29108899 PMCID: PMC5934335 DOI: 10.1016/j.metabol.2017.10.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 11/20/2022]
Abstract
Isolated Gonadotropin-Releasing Hormone (GnRH) Deficiency (IGD) IGD is a genetically and clinically heterogeneous disorder. Mutations in many different genes are able to explain ~40% of the causes of IGD, with the rest of cases remaining genetically uncharacterized. While most mutations are inherited in X-linked, autosomal dominant, or autosomal recessive pattern, several IGD genes are shown to interact with each other in an oligogenic manner. In addition, while the genes involved in the pathogenesis of IGD act on either neurodevelopmental or neuroendocrine pathways, a subset of genes are involved in both pathways, acting as "overlap genes". Thus, some IGD genes play the role of the modifier genes or "second hits", providing an explanation for incomplete penetrance and variable expressivity associated with some IGD mutations. The clinical spectrum of IGD includes a variety of disorders including Kallmann Syndrome (KS), i.e. hypogonadotropic hypogonadism with anosmia, and its normosmic variation normosmic idiopathic hypogonadotropic hypogonadism (nIHH), which represent the most severe aspects of the disorder. Apart from these disorders, there are also "milder" and more common reproductive diseases associated with IGD, including hypothalamic amenorrhea (HA), constitutional delay of puberty (CDP) and adult-onset hypogonadotropic hypogonadism (AHH). Interestingly, neurodeveloplmental genes are associated with the KS form of IGD, due to the topographical link between the GnRH neurons and the olfactory placode. On the other hand, neuroendocrine genes are mostly linked to nIHH. However, a great deal of clinical and genetic overlap characterizes the spectrum of the IGD disorders. IGD is also characterized by a wide variety of non-reproductive features, including midline facial defects such as cleft lip and/or palate, renal agenesis, short metacarpals and other bone abnormalities, hearing loss, synkinesia, eye movement abnormalities, poor balance due to cerebellar ataxia, etc. Therefore, genetic screening should be offered in patients with IGD, as it can provide valuable information for genetic counseling and further understanding of IGD.
Collapse
Affiliation(s)
- Maria I Stamou
- Harvard Reproductive Sciences Center, Massachusetts General Hospital, Boston, MA, USA; University of Patras Medical School, University Hospital, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Rion, Patras, Achaia, Greece; Mount Auburn Hospital, Harvard Medical School Teaching Hospital, Cambridge, MA, USA.
| | - Neoklis A Georgopoulos
- University of Patras Medical School, University Hospital, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Rion, Patras, Achaia, Greece
| |
Collapse
|
24
|
Fernández-Rhodes L, Malinowski JR, Wang Y, Tao R, Pankratz N, Jeff JM, Yoneyama S, Carty CL, Setiawan VW, Le Marchand L, Haiman C, Corbett S, Demerath E, Heiss G, Gross M, Buzkova P, Crawford DC, Hunt SC, Rao DC, Schwander K, Chakravarti A, Gottesman O, Abul-Husn NS, Bottinger EP, Loos RJF, Raffel LJ, Yao J, Guo X, Bielinski SJ, Rotter JI, Vaidya D, Chen YDI, Castañeda SF, Daviglus M, Kaplan R, Talavera GA, Ryckman KK, Peters U, Ambite JL, Buyske S, Hindorff L, Kooperberg C, Matise T, Franceschini N, North KE. The genetic underpinnings of variation in ages at menarche and natural menopause among women from the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) Study: A trans-ethnic meta-analysis. PLoS One 2018; 13:e0200486. [PMID: 30044860 PMCID: PMC6059436 DOI: 10.1371/journal.pone.0200486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022] Open
Abstract
Current knowledge of the genetic architecture of key reproductive events across the female life course is largely based on association studies of European descent women. The relevance of known loci for age at menarche (AAM) and age at natural menopause (ANM) in diverse populations remains unclear. We investigated 32 AAM and 14 ANM previously-identified loci and sought to identify novel loci in a trans-ethnic array-wide study of 196,483 SNPs on the MetaboChip (Illumina, Inc.). A total of 45,364 women of diverse ancestries (African, Hispanic/Latina, Asian American and American Indian/Alaskan Native) in the Population Architecture using Genomics and Epidemiology (PAGE) Study were included in cross-sectional analyses of AAM and ANM. Within each study we conducted a linear regression of SNP associations with self-reported or medical record-derived AAM or ANM (in years), adjusting for birth year, population stratification, and center/region, as appropriate, and meta-analyzed results across studies using multiple meta-analytic techniques. For both AAM and ANM, we observed more directionally consistent associations with the previously reported risk alleles than expected by chance (p-valuesbinomial≤0.01). Eight densely genotyped reproductive loci generalized significantly to at least one non-European population. We identified one trans-ethnic array-wide SNP association with AAM and two significant associations with ANM, which have not been described previously. Additionally, we observed evidence of independent secondary signals at three of six AAM trans-ethnic loci. Our findings support the transferability of reproductive trait loci discovered in European women to women of other race/ethnicities and indicate the presence of additional trans-ethnic associations both at both novel and established loci. These findings suggest the benefit of including diverse populations in future studies of the genetic architecture of female growth and development.
Collapse
Affiliation(s)
- Lindsay Fernández-Rhodes
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | | | - Yujie Wang
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Janina M. Jeff
- Genotyping Arrays Division, Illumina, Inc., San Diego, California, United States of America
| | - Sachiko Yoneyama
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cara L. Carty
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - V. Wendy Setiawan
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Christopher Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Steven Corbett
- Kansas Health Institute, Topeka, Kansas, United States of America
| | - Ellen Demerath
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Petra Buzkova
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Dana C. Crawford
- Institute for Computational Biology, Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Steven C. Hunt
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - D. C. Rao
- Division of Biostatistics, Washington University in St. Louis, St. Louis, Michigan, United States of America
| | - Karen Schwander
- Division of Biostatistics, Washington University in St. Louis, St. Louis, Michigan, United States of America
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Omri Gottesman
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Noura S. Abul-Husn
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Erwin P. Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Leslie J. Raffel
- Division of Genetic and Genomic Medicine, University of California—Irvine, Irvine, California, United States of America
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Suzette J. Bielinski
- College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Sheila F. Castañeda
- South Bay Latino Research Center, Graduate School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Martha Daviglus
- Institute of Minority Health Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gregory A. Talavera
- South Bay Latino Research Center, Graduate School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Kelli K. Ryckman
- Departments of Epidemiology and Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jose Luis Ambite
- Information Sciences Institute, University of Southern California, Marina del Rey, California, United States of America
| | - Steven Buyske
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Lucia Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Tara Matise
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
25
|
Bachelot A, Gilleron J, Meduri G, Guberto M, Dulon J, Boucherie S, Touraine P, Misrahi M. A common African variant of human connexin 37 is associated with Caucasian primary ovarian insufficiency and has a deleterious effect in vitro. Int J Mol Med 2018; 41:640-648. [PMID: 29207017 PMCID: PMC5752242 DOI: 10.3892/ijmm.2017.3257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Folliculogenesis requires communication between granulosa cells and oocytes, mediated by connexin-based gap junctions. Connexin 37 (Cx37)-deficient female mice are infertile. The present study assessed Cx37 deficiency in patients with primary ovarian insufficiency (POI). A candidate gene study was performed in patients and controls from the National Genotyping Center (Evry, France) including 58 Caucasian patients with idiopathic isolated POI and 142 Caucasian controls. Direct genomic sequencing of the coding regions of the GJA4 gene (encoding Cx37) was performed with the aim to identify a deleterious variant associated with POI and absent in ethnically matched controls. A single Cx37 variant absent in the control population was identified, namely a c.946G>A heterozygous substitution leading to a p.Gly316Ser variant that was present in two POI patients. This variant was absent in all Caucasian controls from various databases, and has been observed exclusively in African populations. This variant was identified to have a dominant negative effect in HeLa cells in vitro to alter connexon function (by 67.2±7.17%), as determined by Gap-fluorescence recovery after photobleaching. The alteration principally resulted from a decrease of cell surface connexons due to altered trafficking (by 47.73±8.59%). In marked contrast to this observation, a p.Pro258Ser variant frequent in all ethnic populations in databases had no functional effect in vitro. In conclusion, the present study reported on a Cx37 variant in two Caucasian POI patients, which was absent in control Caucasian populations, and which had a deleterious effect in vitro. It is therefore suggested that in the genetic context of the Caucasian population, this variant may contribute to POI.
Collapse
Affiliation(s)
- Anne Bachelot
- AP-HP, Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Reference Center for Rare Endocrine Diseases of Growth, Reference Center for Rare Gynecological Pathologies
- University Pierre and Marie Curie, University Paris 6, F-75013 Paris
| | - Jerome Gilleron
- National Institute of Health and Medical Research INSERM U1065 - University of Nice-Sophia Antipolis, Mediterranean Center for Molecular Medicine C3M, F-06000 Nice
| | - Geri Meduri
- National Institute of Health and Medical Research INSERM U1195
| | - Mihelai Guberto
- University Paris-Sud, University Paris Saclay, Medical Faculty Paris-Sud, Bicêtre Hospital, F-94275 Le Kremlin Bicêtre
| | - Jerome Dulon
- AP-HP, Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Reference Center for Rare Endocrine Diseases of Growth, Reference Center for Rare Gynecological Pathologies
| | - Sylviane Boucherie
- National Institute of Health and Medical Research UMR-S 757 INSERM, University Paris-Sud, F-91400 Orsay, France
| | - Philippe Touraine
- AP-HP, Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Reference Center for Rare Endocrine Diseases of Growth, Reference Center for Rare Gynecological Pathologies
- University Pierre and Marie Curie, University Paris 6, F-75013 Paris
| | - Micheline Misrahi
- University Paris-Sud, University Paris Saclay, Medical Faculty Paris-Sud, Bicêtre Hospital, F-94275 Le Kremlin Bicêtre
| |
Collapse
|
26
|
Coignet MV, Zirpoli GR, Roberts MR, Khoury T, Bandera EV, Zhu Q, Yao S. Genetic variations, reproductive aging, and breast cancer risk in African American and European American women: The Women's Circle of Health Study. PLoS One 2017; 12:e0187205. [PMID: 29073238 PMCID: PMC5658184 DOI: 10.1371/journal.pone.0187205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022] Open
Abstract
Reproductive aging phenotypes, including age at menarche (AM) and age at natural menopause (ANM), are well-established risk factors for breast cancer. In recent years, many genetic variants have been identified in association with AM and ANM in genome-wide association studies among European populations. Using data from the Women’s Circle of Health Study (WCHS) of 1,307 European-American (EA) and 1,365 African-American (AA) breast cancer cases and controls, we aimed to replicate 53 earlier GWAS variants for AM and ANM in AA and EA groups and to perform analyses on total and net reproductive lifespan (TRLS; NRLS). Breast cancer risk was also examined in relation to a polygenic risk score (PRS) for each of the reproductive aging phenotypes. We replicated a number of variants in EA women, including rs7759938 in LIN28B for AM and rs16991615 in MCM8 for ANM; whereas in the AA group, only one SNP (rs2947411 in TMEM18) for AM was directionally consistent and nominally significant. In analysis of TRLS and NRLS, several SNPs were significant, including rs466639 in RXRG that was associated with both phenotypes in both AA and EA groups. None of the PRS was associated with breast cancer risk. Given the paucity of data available among AA populations, our study contributes to the literature of genetics of reproductive aging in AA women and highlights the importance of cross population replication of GWAS variants.
Collapse
Affiliation(s)
- Marie V. Coignet
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, United States of America
| | - Gary Robert Zirpoli
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, United States of America
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Michelle R. Roberts
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Thaer Khoury
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, United States of America
| | - Elisa V. Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States of America
| | - Qianqian Zhu
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, United States of America
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
27
|
Withdrawn: Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era. Endocr Rev 2017. [PMID: 27454361 DOI: 10.1210/er.2015-1045.2016.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015).
Collapse
|
28
|
Ikram MA, Brusselle GGO, Murad SD, van Duijn CM, Franco OH, Goedegebure A, Klaver CCW, Nijsten TEC, Peeters RP, Stricker BH, Tiemeier H, Uitterlinden AG, Vernooij MW, Hofman A. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol 2017; 32:807-850. [PMID: 29064009 PMCID: PMC5662692 DOI: 10.1007/s10654-017-0321-4] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. Since 2016, the cohort is being expanded by persons aged 40 years and over. The findings of the Rotterdam Study have been presented in over 1500 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy ). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Guy G O Brusselle
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sarwa Darwish Murad
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Gastro-Enterology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André Goedegebure
- Department of Otolaryngology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
29
|
Shi J, Zhang B, Choi JY, Gao YT, Li H, Lu W, Long J, Kang D, Xiang YB, Wen W, Park SK, Ye X, Noh DY, Zheng Y, Wang Y, Chung S, Lin X, Cai Q, Shu XO. Age at menarche and age at natural menopause in East Asian women: a genome-wide association study. AGE (DORDRECHT, NETHERLANDS) 2016; 38:513-523. [PMID: 27629107 PMCID: PMC5266214 DOI: 10.1007/s11357-016-9939-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Age at menarche (AM) and age at natural menopause (ANM) are complex traits with a high heritability. Abnormal timing of menarche or menopause is associated with a reduced span of fertility and risk for several age-related diseases including breast, endometrial and ovarian cancer, cardiovascular disease, and osteoporosis. To identify novel genetic loci for AM or ANM in East Asian women and to replicate previously identified loci primarily in women of European ancestry by genome-wide association studies (GWASs), we conducted a two-stage GWAS. Stage I aimed to discover promising novel AM and ANM loci using GWAS data of 8073 women from Shanghai, China. The Stage II replication study used the data from another Chinese GWAS (n = 1230 for AM and n = 1458 for ANM), a Korean GWAS (n = 4215 for AM and n = 1739 for ANM), and de novo genotyping of 2877 additional Chinese women. Previous GWAS-identified loci for AM and ANM were also evaluated. We identified two suggestive menarcheal age loci tagged by rs79195475 at 10q21.3 (beta = -0.118 years, P = 3.4 × 10-6) and rs1023935 at 4p15.1 (beta = -0.145 years, P = 4.9 × 10-6) and one menopausal age locus tagged by rs3818134 at 22q12.2 (beta = -0.276 years, P = 8.8 × 10-6). These suggestive loci warrant a further validation in independent populations. Although limited by low statistical power, we replicated 19 of the 98 menarche loci and 5 of the 20 menopause loci previously identified in women of European ancestry in East Asian women, suggesting a shared genetic architecture for these two traits across populations.
Collapse
Affiliation(s)
- Jiajun Shi
- Department of Medicine, Vanderbilt Epidemiology Center and Division of Epidemiology, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, IMPH, Nashville, Tennessee, 37203, USA
| | - Ben Zhang
- Department of Medicine, Vanderbilt Epidemiology Center and Division of Epidemiology, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, IMPH, Nashville, Tennessee, 37203, USA
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huaixing Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Wei Lu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jirong Long
- Department of Medicine, Vanderbilt Epidemiology Center and Division of Epidemiology, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, IMPH, Nashville, Tennessee, 37203, USA
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wanqing Wen
- Department of Medicine, Vanderbilt Epidemiology Center and Division of Epidemiology, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, IMPH, Nashville, Tennessee, 37203, USA
| | - Sue K Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Xingwang Ye
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ying Zheng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yiqin Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Seokang Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Xu Lin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Qiuyin Cai
- Department of Medicine, Vanderbilt Epidemiology Center and Division of Epidemiology, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, IMPH, Nashville, Tennessee, 37203, USA
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt Epidemiology Center and Division of Epidemiology, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, IMPH, Nashville, Tennessee, 37203, USA.
| |
Collapse
|
30
|
Mika KM, Lynch VJ. An Ancient Fecundability-Associated Polymorphism Switches a Repressor into an Enhancer of Endometrial TAP2 Expression. Am J Hum Genet 2016; 99:1059-1071. [PMID: 27745831 DOI: 10.1016/j.ajhg.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022] Open
Abstract
Variation in female reproductive traits, such as fertility, fecundity, and fecundability, is heritable in humans, but identifying and functionally characterizing genetic variants associated with these traits has been challenging. Here, we explore the functional significance and evolutionary history of a T/C polymorphism of SNP rs2071473, which we have previously shown is an eQTL for TAP2 and significantly associated with fecundability (time to pregnancy). We replicated the association between the rs2071473 genotype and TAP2 expression by using GTEx data and demonstrated that TAP2 is expressed by decidual stromal cells at the maternal-fetal interface. Next, we showed that rs2071473 is located within a progesterone-responsive cis-regulatory element that functions as a repressor with the T allele and an enhancer with the C allele. Remarkably, we found that this polymorphism arose before the divergence of modern and archaic humans, segregates at intermediate to high frequencies across human populations, and has genetic signatures of long-term balancing selection. This variant has also previously been identified in genome-wide association studies of immune-related disease, suggesting that both alleles are maintained as a result of antagonistic pleiotropy.
Collapse
|
31
|
Laven JS, Visser JA, Uitterlinden AG, Vermeij WP, Hoeijmakers JH. Menopause: Genome stability as new paradigm. Maturitas 2016; 92:15-23. [DOI: 10.1016/j.maturitas.2016.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022]
|
32
|
Minichromosome maintenance complex component 8 mutations cause primary ovarian insufficiency. Fertil Steril 2016; 106:1485-1489.e2. [PMID: 27573988 DOI: 10.1016/j.fertnstert.2016.08.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To investigate whether mutations in the minichromosome maintenance complex component 8 (MCM8) gene were present in 192 patients with sporadic primary ovarian insufficiency (POI). DESIGN Retrospective case-control cohort study. SETTING University-based reproductive medicine center. PATIENT(S) A total of 192 patients with sporadic POI and 312 control women with regular menstruation (192 age-matched women and 120 women >45 years old). INTERVENTION(S) Sanger sequencing was performed in patients with sporadic POI, and potentially pathogenic variants were confirmed in matched controls. DNA damage was induced by mitomycinC (MMC) treatment, and DNA repair capacity was evaluated by histone H2AX phosphorylation level. MAIN OUTCOME MEASURE(S) Sanger sequencing for MCM8 was performed in 192 patients with sporadic POI, and functional experiments were performed to explore the deleterious effects of mutations identified. RESULT(S) Two novel missense variants in MCM8, c. A950T (p. H317L), and c. A1802G (p. H601R), were identified in two patients with POI but absent in 312 controls (the upper 90% confidence limit for the proportion 2/192 is 2.24%). The HeLa cells overexpressing mutant p. H317L and p. H601R showed higher sensitivity to MMC compared with wild type. Furthermore, mutant p. H317L showed decreased repair capacity after MMC treatment with much more histone H2AX phosphorylation remaining after 2 hours of recovery. CONCLUSION(S) Our result suggests novel mutations p. H317L and p. H601R in the MCM8 gene are potentially causative for POI by dysfunctional DNA repair.
Collapse
|
33
|
Variation analysis of PRIM1 gene in Chinese patients with primary ovarian insufficiency. Reprod Biomed Online 2016; 33:587-591. [PMID: 27599756 DOI: 10.1016/j.rbmo.2016.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/24/2016] [Accepted: 08/18/2016] [Indexed: 11/23/2022]
Abstract
Insights into common genetic susceptibility between primary ovarian insufficiency (POI) and natural or early menopause have delivered an innovative way of assessing the genetic mechanisms involved in POI. PRIM1 plays a crucial role in DNA replication by synthesizing RNA primers for Okazaki fragments. It is closely associated with age at natural menopause, early menopause and POI in European women. In this study, we aimed to investigate whether mutations in PRIM1 contribute to POI in Chinese women. All exons and exon-intron boundaries of PRIM1 gene were sequenced in 192 Han Chinese women with non-syndromic POI. No plausible mutations were identified. The results suggest that the perturbations in PRIM1 gene are not a common explanation for POI in Chinese women.
Collapse
|
34
|
Laisk-Podar T, Lindgren CM, Peters M, Tapanainen JS, Lambalk CB, Salumets A, Mägi R. Ovarian Physiology and GWAS: Biobanks, Biology, and Beyond. Trends Endocrinol Metab 2016; 27:516-528. [PMID: 27221566 PMCID: PMC7610559 DOI: 10.1016/j.tem.2016.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Abstract
Ovarian function is central to female fertility, and several genome-wide association studies (GWAS) have been carried out to elucidate the genetic background of traits and disorders that reflect and affect ovarian physiology. While GWAS have been successful in reporting numerous genetic associations and highlighting involved pathways relevant to reproductive aging, for ovarian disorders, such as premature ovarian insufficiency and polycystic ovary syndrome, research has lagged behind due to insufficient study sample size. Novel approaches to study design and analysis methods that help to fit GWAS findings into biological context will improve our knowledge about genetics governing ovarian function in fertility and disease, and provide input for clinical tools and better patient management.
Collapse
Affiliation(s)
- Triin Laisk-Podar
- Women's Clinic, University of Tartu, Tartu 51014, Estonia; Competence Centre on Health Technologies, Tartu 50410, Estonia.
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Maire Peters
- Women's Clinic, University of Tartu, Tartu 51014, Estonia; Competence Centre on Health Technologies, Tartu 50410, Estonia
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland; Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Center Oulu and PEDEGO Research Unit, Oulu 90029, Finland
| | - Cornelis B Lambalk
- Department of Obstetrics and Gynecology, VU University Medical Centre, Amsterdam 1007 MB, Netherlands
| | - Andres Salumets
- Women's Clinic, University of Tartu, Tartu 51014, Estonia; Competence Centre on Health Technologies, Tartu 50410, Estonia; Institute of Bio- and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
35
|
Stamou MI, Cox KH, Crowley WF. Withdrawn: Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era. Endocr Rev 2016; 2016:4-22. [PMID: 27454361 PMCID: PMC6958992 DOI: 10.1210/er.2015-1045.2016.1.test] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/15/2015] [Indexed: 12/17/2022]
Abstract
The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015).
Collapse
Affiliation(s)
- M I Stamou
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - K H Cox
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - William F Crowley
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
36
|
Stamou MI, Cox KH, Crowley WF. Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era. Endocr Rev 2015; 36:603-21. [PMID: 26394276 PMCID: PMC4702497 DOI: 10.1210/er.2015-1045] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022]
Abstract
The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3) substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery.
Collapse
Affiliation(s)
- M I Stamou
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - K H Cox
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - William F Crowley
- Harvard National Center for Translational Research in Reproduction and Infertility, Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
37
|
Zhou J, Stein P, Leu NA, Chmátal L, Xue J, Ma J, Huang X, Lampson MA, Schultz RM, Wang PJ. Accelerated reproductive aging in females lacking a novel centromere protein SYCP2L. Hum Mol Genet 2015; 24:6505-14. [PMID: 26362258 PMCID: PMC4614708 DOI: 10.1093/hmg/ddv359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 11/13/2022] Open
Abstract
Menopause results from loss of ovarian function and marks the end of a woman's reproductive life. Alleles of the human SYCP2L locus are associated with age at natural menopause (ANM). SYCP2L is a paralogue of the synaptonemal complex protein SYCP2 and is expressed exclusively in oocytes. Here we report that SYCP2L localizes to centromeres of dictyate stage oocytes, which represent the limited pool of primordial oocytes that are formed perinatally and remain arrested till ovulation. Centromere localization of SYCP2L requires its C-terminal portion, which is missing in truncated variants resulting from low-frequency nonsense mutations identified in humans. Female mice lacking SYCP2L undergo a significantly higher progressive loss of oocytes with age compared with wild-type females and are less fertile. Specifically, the pool of primordial oocytes becomes more rapidly depleted in SYCP2L-deficient than in wild-type females, such that with aging, fewer oocytes undergo maturation in developing follicles. We find that a human SYCP2L intronic single nucleotide polymorphism (SNP) rs2153157, which is associated with ANM, changes the splicing efficiency of U12-type minor introns and may therefore regulate the steady-state amount of SYCP2L transcript. Furthermore, the more efficiently spliced allele of this intronic SNP in SYCP2L is associated with increased ANM. Our results suggest that SYCP2L promotes the survival of primordial oocytes and thus provide functional evidence for its association with ANM in humans.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Paula Stein
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Lukáš Chmátal
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - Jiangyang Xue
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jun Ma
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA, Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA,
| |
Collapse
|
38
|
Affiliation(s)
- Svetlana A Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
|
40
|
Laisk-Podar T, Kaart T, Peters M, Salumets A. Genetic variants associated with female reproductive ageing – potential markers for assessing ovarian function and ovarian stimulation outcome. Reprod Biomed Online 2015; 31:199-209. [DOI: 10.1016/j.rbmo.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 02/19/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
41
|
|
42
|
Extended fertility and longevity: the genetic and epigenetic link. Fertil Steril 2015; 103:1117-24. [PMID: 25796320 DOI: 10.1016/j.fertnstert.2015.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 11/22/2022]
Abstract
Many women now choose to develop their careers before having children. Thus, it is becoming increasingly important to assess a woman's potential for extended fertility and to understand the health consequences of having children at a late age. In particular, there is a striking positive correlation between extended fertility and longevity in women, which poses important implications for medicine, biology, and evolution. In this article we review the diverse epidemiologic evidence for the link between fertility potential, age of menopause, and women's lifespan. Then we discuss the recent advances using genomic technology to better understand biological mechanisms driving this association. At the genetic level, there are polymorphisms that may be driving both extended fertility and longevity. At the cellular and molecular levels, changes in the genome (both nuclear and mitochondrial), epigenome, and transcriptome during oocyte aging have important implications for fertility. By synthesizing results from diverse domains, we hope to provide a genomic-era conceptual framework in which this important connection can be investigated and understood.
Collapse
|
43
|
Staples J, Qiao D, Cho M, Silverman E, Nickerson D, Below J, Below JE. PRIMUS: rapid reconstruction of pedigrees from genome-wide estimates of identity by descent. Am J Hum Genet 2014; 95:553-64. [PMID: 25439724 DOI: 10.1016/j.ajhg.2014.10.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/02/2014] [Indexed: 11/29/2022] Open
Abstract
Understanding and correctly utilizing relatedness among samples is essential for genetic analysis; however, managing sample records and pedigrees can often be error prone and incomplete. Data sets ascertained by random sampling often harbor cryptic relatedness that can be leveraged in genetic analyses for maximizing power. We have developed a method that uses genome-wide estimates of pairwise identity by descent to identify families and quickly reconstruct and score all possible pedigrees that fit the genetic data by using up to third-degree relatives, and we have included it in the software package PRIMUS (Pedigree Reconstruction and Identification of the Maximally Unrelated Set). Here, we validate its performance on simulated, clinical, and HapMap pedigrees. Among these samples, we demonstrate that PRIMUS can verify reported pedigree structures and identify cryptic relationships. Finally, we show that PRIMUS reconstructed pedigrees, all of which were previously unknown, for 203 families from a cohort collected in Starr County, TX (1,890 samples).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jennifer E Below
- Epidemiology, Human Genetics, & Environmental Sciences, University of Texas Health Science Center, Houston, TX 77225, USA.
| |
Collapse
|