1
|
Wang N, Zhu B, Allnutt MA, Grijalva RM, Zhao H, Chandra SS. Decoding transcriptomic signatures of cysteine string protein alpha-mediated synapse maintenance. Proc Natl Acad Sci U S A 2024; 121:e2320064121. [PMID: 38833477 PMCID: PMC11181078 DOI: 10.1073/pnas.2320064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Synapse maintenance is essential for generating functional circuitry, and decrement in this process is a hallmark of neurodegenerative disease. Yet, little is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single-nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in the CSPα KO brain. Significantly, all neuronal classes in CSPα KO brains show strong signatures of repression in synaptic pathways, while up-regulating autophagy-related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. Glial responses varied by cell type, with microglia exhibiting activation. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, with the classical Neurexin1-Neuroligin 1 pair being the most prominent, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice to preserve synapse maintenance. Together, this study provides a rich dataset of transcriptional changes in the CSPα KO cortex and reveals insights into synapse maintenance and neurodegeneration.
Collapse
Affiliation(s)
- Na Wang
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT06510
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | - Mary Alice Allnutt
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06510
| | - Rosalie M. Grijalva
- Department of Neuroscience, Yale University, New Haven, CT06510
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06510
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT06510
- Department of Biostatistics, Yale School of Public Health, New Haven, CT06510
| | - Sreeganga S. Chandra
- Department of Neurology, Yale University, New Haven, CT06510
- Department of Neuroscience, Yale University, New Haven, CT06510
| |
Collapse
|
2
|
Barker E, Morgan A, Barclay JW. Tissue distribution of cysteine string protein/DNAJC5 in C. elegans analysed by CRISPR/Cas9-mediated tagging of endogenous DNJ-14. Cell Tissue Res 2024; 396:41-55. [PMID: 38403745 PMCID: PMC10997724 DOI: 10.1007/s00441-024-03875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of molecular chaperones. CSP is enriched in neurons, where it mainly localises to synaptic vesicles. Mutations in CSP-encoding genes in flies, worms, mice and humans result in neuronal dysfunction, neurodegeneration and reduced lifespan. Most attention has therefore focused on CSP's neuronal functions, although CSP is also expressed in non-neuronal cells. Here, we used genome editing to fluorescently tag the Caenorhabditis elegans CSP orthologue, dnj-14, to identify which tissues preferentially express CSP and hence may contribute to the observed mutant phenotypes. Replacement of dnj-14 with wrmScarlet caused a strong chemotaxis defect, as seen with other dnj-14 null mutants. In contrast, inserting the reporter in-frame to create a DNJ-14-wrmScarlet fusion protein had no effect on chemotaxis, indicating that C-terminal tagging does not impair DNJ-14 function. WrmScarlet fluorescence appeared most obvious in the intestine, head/pharynx, spermathecae and vulva/uterus in the reporter strains, suggesting that DNJ-14 is preferentially expressed in these tissues. Crossing the DNJ-14-wrmScarlet strain with GFP marker strains confirmed the intestinal and pharyngeal expression, but only a partial overlap with neuronal GFP was observed. DNJ-14-wrmScarlet fluorescence in the intestine was increased in response to starvation, which may be relevant to mammalian CSPα's role in microautophagy. DNJ-14's enrichment in worm reproductive tissues (spermathecae and vulva/uterus) parallels the testis-specific expression of CSPβ and CSPγ isoforms in mammals. Furthermore, CSPα messenger RNA is highly expressed in the human proximal digestive tract, suggesting that CSP may have a conserved, but overlooked, function within the gastrointestinal system.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
- Current address: Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Alan Morgan
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| | - Jeff W Barclay
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| |
Collapse
|
3
|
Barker E, Milburn AE, Helassa N, Hammond DE, Sanchez-Soriano N, Morgan A, Barclay JW. Proximity labelling reveals effects of disease-causing mutation on the DNAJC5/cysteine string protein α interactome. Biochem J 2024; 481:BCJ20230319. [PMID: 38193346 PMCID: PMC10903463 DOI: 10.1042/bcj20230319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
Cysteine string protein α (CSPα), also known as DNAJC5, is a member of the DnaJ/Hsp40 family of co-chaperones. The name derives from a cysteine-rich domain, palmitoylation of which enables localization to intracellular membranes, notably neuronal synaptic vesicles. Mutations in the DNAJC5 gene that encodes CSPα cause autosomal dominant, adult-onset neuronal ceroid lipofuscinosis (ANCL), a rare neurodegenerative disease. As null mutations in CSP-encoding genes in flies, worms and mice similarly result in neurodegeneration, CSP is evidently an evolutionarily conserved neuroprotective protein. However, the client proteins that CSP chaperones to prevent neurodegeneration remain unclear. Traditional methods for identifying protein-protein interactions such as yeast 2-hybrid and affinity purification approaches are poorly suited to CSP, due to its requirement for membrane anchoring and its tendency to aggregate after cell lysis. Therefore, we employed proximity labelling, which enables identification of interacting proteins in situ in living cells via biotinylation. Neuroendocrine PC12 cell lines stably expressing wild type or L115R ANCL mutant CSP constructs fused to miniTurbo were generated; then the biotinylated proteomes were analysed by liquid chromatographymass spectrometry (LCMS) and validated by western blotting. This confirmed several known CSP-interacting proteins, such as Hsc70 and SNAP-25, but also revealed novel binding proteins, including STXBP1/Munc18-1. Interestingly, some protein interactions (such as Hsc70) were unaffected by the L115R mutation, whereas others (including SNAP-25 and STXBP1/Munc18-1) were inhibited. These results define the CSP interactome in a neuronal model cell line and reveal interactions that are affected by ANCL mutation and hence may contribute to the neurodegeneration seen in patients.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Amy E. Milburn
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Dean E. Hammond
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Natalia Sanchez-Soriano
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Alan Morgan
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| | - Jeff W. Barclay
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool, U.K
| |
Collapse
|
4
|
Wang N, Zhu B, Allnutt MA, Grijalva RM, Zhao H, Chandra SS. Decoding transcriptomic signatures of Cysteine String Protein alpha-mediated synapse maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560611. [PMID: 37873460 PMCID: PMC10592922 DOI: 10.1101/2023.10.02.560611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synapse maintenance is essential for generating functional circuitry and decrement in this process is a hallmark of neurodegenerative disease. While we are beginning to understand the basis of synapse formation, much less is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in CSPα KO brain. Significantly all neurons in CSPα KO brains show strong signatures of repression in synaptic pathways, while upregulating autophagy related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, including the classical Neurexin1-Neuroligin 1 pair, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice in an attempt to achieve synapse maintenance. Together, this study reveals unique cellular and molecular transcriptional changes in CSPα KO cortex and provides new insights into synapse maintenance and neurodegeneration.
Collapse
Affiliation(s)
- Na Wang
- Departments of Neurology and Neuroscience, Yale University, New Haven, CT, USA
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Mary Alice Allnutt
- Departments of Neurology and Neuroscience, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | | | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | | |
Collapse
|
5
|
Barker E, Morgan A, Barclay JW. A Caenorhabditis elegans model of autosomal dominant adult-onset neuronal ceroid lipofuscinosis identifies ethosuximide as a potential therapeutic. Hum Mol Genet 2023; 32:1772-1785. [PMID: 36282524 PMCID: PMC10196665 DOI: 10.1093/hmg/ddac263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 09/22/2023] Open
Abstract
Autosomal dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disorder characterized by progressive dementia and premature death. Four ANCL-causing mutations have been identified, all mapping to the DNAJC5 gene that encodes cysteine string protein α (CSPα). Here, using Caenorhabditis elegans, we describe an animal model of ANCL in which disease-causing mutations are introduced into their endogenous chromosomal locus, thereby mirroring the human genetic disorder. This was achieved through CRISPR/Cas9-mediated gene editing of dnj-14, the C. elegans ortholog of DNAJC5. The resultant homozygous ANCL mutant worms exhibited reduced lifespans and severely impaired chemotaxis, similar to isogenic dnj-14 null mutants. Importantly, these phenotypes were also seen in balanced heterozygotes carrying one wild-type and one ANCL mutant dnj-14 allele, mimicking the heterozygosity of ANCL patients. We observed a more severe chemotaxis phenotype in heterozygous ANCL mutant worms compared with haploinsufficient worms lacking one copy of CSP, consistent with a dominant-negative mechanism of action. Additionally, we provide evidence of CSP haploinsufficiency in longevity, as heterozygous null mutants exhibited significantly shorter lifespan than wild-type controls. The chemotaxis phenotype of dnj-14 null mutants was fully rescued by transgenic human CSPα, confirming the translational relevance of the worm model. Finally, a focused compound screen revealed that the anti-epileptic drug ethosuximide could restore chemotaxis in dnj-14 ANCL mutants to wild-type levels. This suggests that ethosuximide may have therapeutic potential for ANCL and demonstrates the utility of this C. elegans model for future larger-scale drug screening.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | - Alan Morgan
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | - Jeff W Barclay
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| |
Collapse
|
6
|
Braun JEA. Extracellular chaperone networks and the export of J-domain proteins. J Biol Chem 2023; 299:102840. [PMID: 36581212 PMCID: PMC9867986 DOI: 10.1016/j.jbc.2022.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
An extracellular network of molecular chaperones protects a diverse array of proteins that reside in or pass through extracellular spaces. Proteins in the extracellular milieu face numerous challenges that can lead to protein misfolding and aggregation. As a checkpoint for proteins that move between cells, extracellular chaperone networks are of growing clinical relevance. J-domain proteins (JDPs) are ubiquitous molecular chaperones that are known for their essential roles in a wide array of fundamental cellular processes through their regulation of heat shock protein 70s. As the largest molecular chaperone family, JDPs have long been recognized for their diverse functions within cells. Some JDPs are elegantly selective for their "client proteins," some do not discriminate among substrates and others act cooperatively on the same target. The realization that JDPs are exported through both classical and unconventional secretory pathways has fueled investigation into the roles that JDPs play in protein quality control and intercellular communication. The proposed functions of exported JDPs are diverse. Studies suggest that export of DnaJB11 enhances extracellular proteostasis, that intercellular movement of DnaJB1 or DnaJB6 enhances the proteostasis capacity in recipient cells, whereas the import of DnaJB8 increases resistance to chemotherapy in recipient cancer cells. In addition, the export of DnaJC5 and concurrent DnaJC5-dependent ejection of dysfunctional and aggregation-prone proteins are implicated in the prevention of neurodegeneration. This review provides a brief overview of the current understanding of the extracellular chaperone networks and outlines the first wave of studies describing the cellular export of JDPs.
Collapse
Affiliation(s)
- Janice E A Braun
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Johnson JR, Barclay JW. C. elegans dkf-1 (Protein Kinase D1) mutants have age-dependent defects in locomotion and neuromuscular transmission. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000800. [PMID: 37090152 PMCID: PMC10113962 DOI: 10.17912/micropub.biology.000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
Changes in neuronal function that occur with age are an area of increasing importance. A potential significant contributor to age-dependent decline may be alterations to neurotransmitter release. Protein kinases, such as Protein Kinase C and Protein Kinase A, are well characterised modulators of neuronal function and neurotransmission. Protein Kinase D (PRKD) is a serine/threonine kinase whose role in neurons is less well characterised. Here we report that mutations in the C. elegans PRKD homolog, dkf-1 , show an acceleration in age-dependent decline of locomotion rate and an alteration to age-dependent changes in aldicarb sensitivity. These effects could be explained by a pre- or post-synaptic function of the protein kinase as the animal ages.
Collapse
Affiliation(s)
- James R. Johnson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, England, United Kingdom
| | - Jeff W. Barclay
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, England, United Kingdom
- Correspondence to: Jeff W. Barclay (
)
| |
Collapse
|
8
|
Brockmeier EK, Basili D, Herbert J, Rendal C, Boakes L, Grauslys A, Taylor NS, Danby EB, Gutsell S, Kanda R, Cronin M, Barclay J, Antczak P, Viant MR, Hodges G, Falciani F. Data-driven learning of narcosis mode of action identifies a CNS transcriptional signature shared between whole organism Caenorhabditis elegans and a fish gill cell line. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157666. [PMID: 35908689 DOI: 10.1016/j.scitotenv.2022.157666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/27/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
With the large numbers of man-made chemicals produced and released in the environment, there is a need to provide assessments on their potential effects on environmental safety and human health. Current regulatory frameworks rely on a mix of both hazard and risk-based approaches to make safety decisions, but the large number of chemicals in commerce combined with an increased need to conduct assessments in the absence of animal testing makes this increasingly challenging. This challenge is catalysing the use of more mechanistic knowledge in safety assessment from both in silico and in vitro approaches in the hope that this will increase confidence in being able to identify modes of action (MoA) for the chemicals in question. Here we approach this challenge by testing whether a functional genomics approach in C. elegans and in a fish cell line can identify molecular mechanisms underlying the effects of narcotics, and the effects of more specific acting toxicants. We show that narcosis affects the expression of neuronal genes associated with CNS function in C. elegans and in a fish cell line. Overall, we believe that our study provides an important step in developing mechanistically relevant biomarkers which can be used to screen for hazards, and which prevent the need for repeated animal or cross-species comparisons for each new chemical.
Collapse
Affiliation(s)
- Erica K Brockmeier
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Danilo Basili
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - John Herbert
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Cecilie Rendal
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Leigh Boakes
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Christeyns Food Hygiene, Warrington, UK
| | - Arturas Grauslys
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Computational Biology Facility (CBF), University of Liverpool, Liverpool, UK
| | - Nadine S Taylor
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Emma Butler Danby
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Steve Gutsell
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Rakesh Kanda
- Institute of Environment, Health and Societies, Brunel University, London, UK
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Jeff Barclay
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Philipp Antczak
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Computational Biology Facility (CBF), University of Liverpool, Liverpool, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Francesco Falciani
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Computational Biology Facility (CBF), University of Liverpool, Liverpool, UK.
| |
Collapse
|
9
|
Huang L, Zhang Z. CSPα in neurodegenerative diseases. Front Aging Neurosci 2022; 14:1043384. [DOI: 10.3389/fnagi.2022.1043384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disease characterized by epilepsy, cognitive degeneration, and motor disorders caused by mutations in the DNAJC5 gene. In addition to being associated with ANCL disease, the cysteine string proteins α (CSPα) encoded by the DNAJC5 gene have been implicated in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. However, the pathogenic mechanism responsible for these neurodegenerative diseases has not yet been elucidated. Therefore, this study examines the functional properties of the CSPα protein and the related mechanisms of neurodegenerative diseases.
Collapse
|
10
|
Rupawala H, Shah K, Davies C, Rose J, Colom-Cadena M, Peng X, Granat L, Aljuhani M, Mizuno K, Troakes C, Perez-Nievas BG, Morgan A, So PW, Hortobagyi T, Spires-Jones TL, Noble W, Giese KP. Cysteine string protein alpha accumulates with early pre-synaptic dysfunction in Alzheimer’s disease. Brain Commun 2022; 4:fcac192. [PMID: 35928052 PMCID: PMC9345313 DOI: 10.1093/braincomms/fcac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In Alzheimer’s disease, synapse loss causes memory and cognitive impairment. However, the mechanisms underlying synaptic degeneration in Alzheimer’s disease are not well understood. In the hippocampus, alterations in the level of cysteine string protein alpha, a molecular co-chaperone at the pre-synaptic terminal, occur prior to reductions in synaptophysin, suggesting that it is a very sensitive marker of synapse degeneration in Alzheimer’s. Here, we identify putative extracellular accumulations of cysteine string alpha protein, which are proximal to beta-amyloid deposits in post-mortem human Alzheimer’s brain and in the brain of a transgenic mouse model of Alzheimer’s disease. Cysteine string protein alpha, at least some of which is phosphorylated at serine 10, accumulates near the core of beta-amyloid deposits and does not co-localize with hyperphosphorylated tau, dystrophic neurites or glial cells. Using super-resolution microscopy and array tomography, cysteine string protein alpha was found to accumulate to a greater extent than other pre-synaptic proteins and at a comparatively great distance from the plaque core. This indicates that cysteine string protein alpha is most sensitive to being released from pre-synapses at low concentrations of beta-amyloid oligomers. Cysteine string protein alpha accumulations were also evident in other neurodegenerative diseases, including some fronto-temporal lobar dementias and Lewy body diseases, but only in the presence of amyloid plaques. Our findings are consistent with suggestions that pre-synapses are affected early in Alzheimer’s disease, and they demonstrate that cysteine string protein alpha is a more sensitive marker for early pre-synaptic dysfunction than traditional synaptic markers. We suggest that cysteine string protein alpha should be used as a pathological marker for early synaptic disruption caused by beta-amyloid.
Collapse
Affiliation(s)
- Huzefa Rupawala
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Keshvi Shah
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Caitlin Davies
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Marti Colom-Cadena
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Xianhui Peng
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Lucy Granat
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Manal Aljuhani
- Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Keiko Mizuno
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Beatriz Gomez Perez-Nievas
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool , Liverpool L69 3BX , UK
| | - Po-Wah So
- Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Tibor Hortobagyi
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
- Department of Neurology, ELKH-DE Cerebrovascular and Neurodegenerative Research Group, University of Debrecen , 4032 Debrecen , Hungary
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Karl Peter Giese
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| |
Collapse
|
11
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
12
|
Pink D, Donnelier J, Lewis JD, Braun JEA. Cysteine String Protein Controls Two Routes of Export for Misfolded Huntingtin. Front Neurosci 2022; 15:762439. [PMID: 35069097 PMCID: PMC8766765 DOI: 10.3389/fnins.2021.762439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted vesicles of diverse size and cargo that are implicated in the cell-to-cell transmission of disease-causing-proteins in several neurodegenerative diseases. Mutant huntingtin, the disease-causing entity in Huntington's disease, has an expanded polyglutamine track at the N terminus that causes the protein to misfold and form toxic intracellular aggregates. In Huntington's disease, mutant huntingtin aggregates are transferred between cells by several routes. We have previously identified a cellular pathway that is responsible for the export of mutant huntingtin via extracellular vesicles. Identifying the EV sub-populations that carry misfolded huntingtin cargo is critical to understanding disease progression. In this work we expressed a form of polyglutamine expanded huntingtin (GFP-tagged 72Qhuntingtinexon1) in cells to assess the EVs involved in cellular export. We demonstrate that the molecular chaperone, cysteine string protein (CSPα; DnaJC5), facilitates export of disease-causing-polyglutamine-expanded huntingtin cargo in 180-240 nm vesicles as well as larger 10-30 μm vesicles.
Collapse
Affiliation(s)
- Desmond Pink
- Nanostics Precision Health, Edmonton, AB, Canada
| | - Julien Donnelier
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - John D. Lewis
- Nanostics Precision Health, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Janice E. A. Braun
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
The bacterial toxin ExoU requires a host trafficking chaperone for transportation and to induce necrosis. Nat Commun 2021; 12:4024. [PMID: 34188051 PMCID: PMC8241856 DOI: 10.1038/s41467-021-24337-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa can cause nosocomial infections, especially in ventilated or cystic fibrosis patients. Highly pathogenic isolates express the phospholipase ExoU, an effector of the type III secretion system that acts on plasma membrane lipids, causing membrane rupture and host cell necrosis. Here, we use a genome-wide screen to discover that ExoU requires DNAJC5, a host chaperone, for its necrotic activity. DNAJC5 is known to participate in an unconventional secretory pathway for misfolded proteins involving anterograde vesicular trafficking. We show that DNAJC5-deficient human cells, or Drosophila flies knocked-down for the DNAJC5 orthologue, are largely resistant to ExoU-dependent virulence. ExoU colocalizes with DNAJC5-positive vesicles in the host cytoplasm. DNAJC5 mutations preventing vesicle trafficking (previously identified in adult neuronal ceroid lipofuscinosis, a human congenital disease) inhibit ExoU-dependent cell lysis. Our results suggest that, once injected into the host cytoplasm, ExoU docks to DNAJC5-positive secretory vesicles to reach the plasma membrane, where it can exert its phospholipase activity Phospholipase ExoU from Pseudomonas aeruginosa acts on plasma membrane lipids in infected cells, causing membrane rupture and host cell necrosis. Here, Deruelle et al. show that once injected into the host cytoplasm, ExoU requires a host chaperone found on secretory vesicles to reach the plasma membrane and exerts its phospholipase activity.
Collapse
|
14
|
Aranaz P, Navarro-Herrera D, Zabala M, Romo-Hualde A, López-Yoldi M, Vizmanos JL, Milagro FI, González-Navarro CJ. Phenolic Compounds Reduce the Fat Content in Caenorhabditis elegans by Affecting Lipogenesis, Lipolysis, and Different Stress Responses. Pharmaceuticals (Basel) 2020; 13:E355. [PMID: 33143060 PMCID: PMC7693530 DOI: 10.3390/ph13110355] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Supplementation with bioactive compounds capable of regulating energy homeostasis is a promising strategy to manage obesity. Here, we have screened the ability of different phenolic compounds (myricetin, kaempferol, naringin, hesperidin, apigenin, luteolin, resveratrol, curcumin, and epicatechin) and phenolic acids (p-coumaric, ellagic, ferulic, gallic, and vanillic acids) regulating C. elegans fat accumulation. Resveratrol exhibited the strongest lipid-reducing activity, which was accompanied by the improvement of lifespan, oxidative stress, and aging, without affecting worm development. Whole-genome expression microarrays demonstrated that resveratrol affected fat mobilization, fatty acid metabolism, and unfolded protein response of the endoplasmic reticulum (UPRER), mimicking the response to calorie restriction. Apigenin induced the oxidative stress response and lipid mobilization, while vanillic acid affected the unfolded-protein response in ER. In summary, our data demonstrates that phenolic compounds exert a lipid-reducing activity in C. elegans through different biological processes and signaling pathways, including those related with lipid mobilization and fatty acid metabolism, oxidative stress, aging, and UPR-ER response. These findings open the door to the possibility of combining them in order to achieve complementary activity against obesity-related disorders.
Collapse
Affiliation(s)
- Paula Aranaz
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (P.A.); (D.N.-H.); (M.Z.); (A.R.-H.); (M.L.-Y.); (F.I.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - David Navarro-Herrera
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (P.A.); (D.N.-H.); (M.Z.); (A.R.-H.); (M.L.-Y.); (F.I.M.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - María Zabala
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (P.A.); (D.N.-H.); (M.Z.); (A.R.-H.); (M.L.-Y.); (F.I.M.)
| | - Ana Romo-Hualde
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (P.A.); (D.N.-H.); (M.Z.); (A.R.-H.); (M.L.-Y.); (F.I.M.)
| | - Miguel López-Yoldi
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (P.A.); (D.N.-H.); (M.Z.); (A.R.-H.); (M.L.-Y.); (F.I.M.)
| | - José Luis Vizmanos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (P.A.); (D.N.-H.); (M.Z.); (A.R.-H.); (M.L.-Y.); (F.I.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos J. González-Navarro
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (P.A.); (D.N.-H.); (M.Z.); (A.R.-H.); (M.L.-Y.); (F.I.M.)
| |
Collapse
|
15
|
Malar DS, Prasanth MI, Jeyakumar M, Balamurugan K, Devi KP. Vitexin prevents Aβ proteotoxicity in transgenic Caenorhabditis elegans model of Alzheimer's disease by modulating unfolded protein response. J Biochem Mol Toxicol 2020; 35:e22632. [PMID: 32926499 DOI: 10.1002/jbt.22632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/17/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) accounts for an estimated 60% to 80% of all dementia cases. The present study is aimed at evaluating the neuroprotective efficacy of vitexin, an apigenin flavone glycoside using transgenic Caenorhabditis elegans strain (CL2006) of AD. The neuroprotective effect of vitexin was determined using physiological assays, quantitative polymerase chain reaction, and Western blotting. The results of survival and paralysis assay indicate that vitexin (200 μM) significantly extended the lifespan of the nematodes. Vitexin-treated nematodes showed a significant reduction in the expression of Aβ, ace-1, and ace-2 genes when compared to control. Further, vitexin significantly upregulated the expression of acr-8 and dnj-14, and increased the lifespan of the nematodes. Vitexin was also found to modulate the unfolded protein response genes (hsp-4, pek-1, ire-1, and xbp-1) and suppress the expression of Aβ. Overall, the results show that vitexin acts as a neuroprotective agent and protects transgenic C. elegans strains from Aβ proteotoxicity.
Collapse
Affiliation(s)
- Dicson Sheeja Malar
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Mani Iyer Prasanth
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
16
|
Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T. Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research. Nutrients 2020; 12:E1344. [PMID: 32397145 PMCID: PMC7285205 DOI: 10.3390/nu12051344] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
It has been thought that caloric restriction favors longevity and healthy aging where autophagy plays a vital role. However, autophagy decreases during aging and that can lead to the development of aging-associated diseases such as cancer, diabetes, neurodegeneration, etc. It was shown that autophagy can be induced by mechanical or chemical stress. In this regard, various pharmacological compounds were proposed, including natural polyphenols. Apart from the ability to induce autophagy, polyphenols, such as resveratrol, are capable of modulating the expression of pro- and anti-apoptotic factors, neutralizing free radical species, affecting mitochondrial functions, chelating redox-active transition metal ions, and preventing protein aggregation. Moreover, polyphenols have advantages compared to chemical inducers of autophagy due to their intrinsic natural bio-compatibility and safety. In this context, polyphenols can be considered as a potential therapeutic tool for healthy aging either as a part of a diet or as separate compounds (supplements). This review discusses the epigenetic aspect and the underlying molecular mechanism of polyphenols as an anti-aging remedy. In addition, the recent advances of studies on NAD-dependent deacetylase sirtuin-1 (SIRT1) regulation of autophagy, the role of senescence-associated secretory phenotype (SASP) in cells senescence and their regulation by polyphenols have been highlighted as well. Apart from that, the review also revised the latest information on how polyphenols can help to improve mitochondrial function and modulate apoptosis (programmed cell death).
Collapse
Affiliation(s)
- Assylzhan Yessenkyzy
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Timur Saliev
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Marina Zhanaliyeva
- Department of Human Anatomy, NSC “Medical University of Astana”, Nur-Sultan 010000, Kazakhstan;
| | - Abdul-Razak Masoud
- Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Elena Krivykh
- Khanty-Mansiysk State Medical Academy, Tyumen Region, Khanty-Mansiysk Autonomous Okrug—Ugra, Khanty-Mansiysk 125438, Russia;
| | - Alexander Gulyayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Talgat Nurgozhin
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| |
Collapse
|
17
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
18
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
19
|
Mulcahy B, Ibbett P, Holden-Dye L, O'Connor V. The Caenorhabditis elegans cysteine-string protein homologue DNJ-14 is dispensable for neuromuscular junction maintenance across ageing. ACTA ACUST UNITED AC 2019; 222:jeb.205450. [PMID: 31624097 DOI: 10.1242/jeb.205450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/09/2019] [Indexed: 01/16/2023]
Abstract
Maintenance of synaptic function across ageing is vital in sustaining cognitive function. Synaptic dysfunction is a key part of the pathophysiology of a number of neurodegenerative diseases. The synaptic co-chaperone, cysteine-string protein (CSP), is important for synaptic maintenance and function in Drosophila, mice and humans, and disruption of CSP results in synaptic degeneration. We sought to characterise synaptic ageing in Caenorhabditis elegans upon genetic disruption of CSP. To do this, we focused on the worms' neuromuscular junctions, which are the best characterised synapse. CSP mutant worms did not display reduced lifespan or any neuromuscular-dependent behavioural deficits across ageing. Pharmacological interrogation of the neuromuscular synapse of CSP mutant animals showed no sign of synaptic dysfunction even at advanced age. Lastly, patch clamp analysis of neuromuscular transmission across ageing in wild-type and CSP mutant animals revealed no obvious CSP-dependent deficits. Electrophysiological spontaneous postsynaptic current analysis reinforced pharmacological observations that the C. elegans neuromuscular synapse increases in strength during early ageing and remains relatively intact in old, immotile worms. Taken together, this study shows that surprisingly, despite disruption of CSP in other animals having severe synaptic phenotypes, CSP does not seem to be important for maintenance of the neuromuscular junction across ageing in C. elegans.
Collapse
Affiliation(s)
- Ben Mulcahy
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Paul Ibbett
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Lindy Holden-Dye
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Vincent O'Connor
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
20
|
Sathya S, Shanmuganathan B, Balasubramaniam B, Balamurugan K, Devi KP. Phytol loaded PLGA nanoparticles regulate the expression of Alzheimer's related genes and neuronal apoptosis against amyloid-β induced toxicity in Neuro-2a cells and transgenic Caenorhabditis elegans. Food Chem Toxicol 2019; 136:110962. [PMID: 31734340 DOI: 10.1016/j.fct.2019.110962] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Abstract
Amyloid β (Aβ) induced neurotoxicity has been postulated to initiate synaptic loss and subsequent neuronal degeneration in Alzheimer's disease (AD). The nanoparticles based drug carrier system is considered as a promising therapeutic strategy to combat this incurable disease. It was also found to inhibit cholinesterase activity and apoptosis mediated cell death in Neuro-2a cells. The in vivo study further revealed that the Phytol and Phytol-PLGA NPs (Poly Lactic-co-Glycolic Acid Nanoparticles) was found to increase the lifespan, chemotaxis behavior and decrease Aβ deposition & ROS (Reactive oxygen species) production in transgenic Caenorhabditis elegans models of AD (CL2006, CL4176). Phytol and Phytol-PLGA NPs treatment downregulated the expression of AD associated genes viz Aβ, ace-1 and hsp-4 and upregulated the gene involved in the longevity to nematodes (dnj-14) and it also reduced the expression of Aβ peptide at the protein level. Our results of in vitro and in vivo studies suggest that Phytol and Phytol-PLGA NPs hold promising neuroprotective efficacy and targets multiple neurotoxic mechanisms involved in the AD progression.
Collapse
Affiliation(s)
- Sethuraman Sathya
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, 630003, Tamil Nadu, India
| | | | - Boopathi Balasubramaniam
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, 630003, Tamil Nadu, India
| | - Krishnaswamy Balamurugan
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, 630003, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|
21
|
Shanmuganathan B, Sathya S, Balasubramaniam B, Balamurugan K, Devi KP. Amyloid-β induced neuropathological actions are suppressed by Padina gymnospora (Phaeophyceae) and its active constituent α-bisabolol in Neuro2a cells and transgenic Caenorhabditis elegans Alzheimer's model. Nitric Oxide 2019; 91:52-66. [PMID: 31362072 DOI: 10.1016/j.niox.2019.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/11/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022]
Abstract
The inhibition of Aβ peptide development and aggregation is a hopeful curative approach for the discovery of disease modifying drugs for Alzheimer's disease (AD) treatment. Recent research mainly focuses on the discovery of drugs from marine setting due to their immense therapeutic potential. The present study aims to evaluate the brown macroalga Padina gymnospora and its active constituent α-bisabolol against Aβ25-35 induced neurotoxicity in Neuro2a cells and transgenic Caenorhabditis elegans (CL2006 and CL4176). The results of the in vitro study revealed that the acetone extract of P. gymnospora (ACTPG) and its active constituent α-bisabolol restores the Aβ25-35 induced alteration in the oxidation of intracellular protein and lipids. In addition, ACTPG and α-bisabolol inhibited cholinesterase and β-secretase activity in Neuro2a cells. Moreover, the intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) production was reduced by ACTPG and α-bisabolol in Neuro2a cells. The decrease in the expression level of apoptotic proteins such as Bax and caspase-3 in ACTPG and α-bisabolol treated group indicates that the seaweed and its bioactive compound have anti-apoptotic property. Further, the in vivo study revealed that the ACTPG and α-bisabolol exerts neuroprotective effect against Aβ induced proteotoxicity in transgenic C. elegans strains of AD. Moreover it altered the Aβ mediated pathways, lifespan, macromolecular damage and down regulated the AD related gene expression of ace-1, hsp-4 and Aβ, thereby preventing Aβ synthesis. Overall, the outcome of the study signifies the neuroprotective effect of ACTPG and α-bisabolol against Aβ mediated AD pathology.
Collapse
Affiliation(s)
| | - Sethuraman Sathya
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | | | | | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|
22
|
Novel in-frame deletion in MFSD8 gene revealed by trio whole exome sequencing in an Iranian affected with neuronal ceroid lipofuscinosis type 7: a case report. J Med Case Rep 2018; 12:281. [PMID: 30249282 PMCID: PMC6154911 DOI: 10.1186/s13256-018-1788-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 07/30/2018] [Indexed: 11/28/2022] Open
Abstract
Background The neuronal ceroid lipofuscinoses are a group of neurodegenerative, lysosomal storage disorders. They are inherited as an autosomal recessive pattern with the exception of adult neuronal ceroid lipofuscinosis, which can be inherited in either an autosomal recessive or an autosomal dominant manner. The neuronal ceroid lipofuscinoses are characterized by accumulation of autofluorescent lipopigments in the cells and one of the most important pathological manifestations is ceroid accumulation in the lysosomes. Various types of neuronal ceroid lipofuscinoses are categorized based on the clinical manifestations and the genes involved. Accumulatively, 15 different genes have been found so far to be implicated in the pathogenesis of at least nine different types of neuronal ceroid lipofuscinoses, which result in similar pathological and clinical manifestations. Case presentation A 5-year-old Iranian boy affected by a neurodegenerative disorder with speech problems, lack of concentration, walking disability at age of 4 years leading to quadriplegia, spontaneous laughing, hidden seizure, clumsiness, psychomotor delay, and vision deterioration at age of 5 years, which could be the consequence of macular dystrophy, was referred to us for genetic testing. Trio whole exome sequencing, Sanger validation, and segregation analysis discovered a novel in-frame small deletion c.325_339del (p.Val109_Ile113del) in MFSD8 gene associated with neuronal ceroid lipofuscinosis type 7. Conclusions The deletion found in this patient affects the exon 5 of this gene which is the region encoding transmembrane domain. Sequencing analysis in this family has shown that the index is homozygous for 15 base pairs in-frame deletion, his uncle has normal homozygous, and his parents are heterozygous. This pattern of mutation inheritance and the signs and symptoms observed in the affected male of this family are compatible with what is described in the literature for neuronal ceroid lipofuscinosis type 7 and, therefore, suggest that the MFSD8 gene deletion found in this study is most probably the cause of disease in this family.
Collapse
|
23
|
Wong SQ, Pontifex MG, Phelan MM, Pidathala C, Kraemer BC, Barclay JW, Berry NG, O'Neill PM, Burgoyne RD, Morgan A. α-Methyl-α-phenylsuccinimide ameliorates neurodegeneration in a C. elegans model of TDP-43 proteinopathy. Neurobiol Dis 2018; 118:40-54. [PMID: 29940336 PMCID: PMC6097874 DOI: 10.1016/j.nbd.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
The antiepileptic drug ethosuximide has recently been shown to be neuroprotective in various Caenorhabditis elegans and rodent neurodegeneration models. It is therefore a promising repurposing candidate for the treatment of multiple neurodegenerative diseases. However, high concentrations of the drug are required for its protective effects in animal models, which may impact on its translational potential and impede the identification of its molecular mechanism of action. Therefore, we set out to develop more potent neuroprotective lead compounds based on ethosuximide as a starting scaffold. Chemoinformatic approaches were used to identify compounds with structural similarity to ethosuximide and to prioritise these based on good predicated blood-brain barrier permeability and C. elegans bioaccumulation properties. Selected compounds were initially screened for anti-convulsant activity in a C. elegans pentylenetetrazol-induced seizure assay, as a rapid primary readout of bioactivity; and then assessed for neuroprotective properties in a C. elegans TDP-43 proteinopathy model based on pan-neuronal expression of human A315T mutant TDP-43. The most potent compound screened, α-methyl-α-phenylsuccinimide (MPS), ameliorated the locomotion defects and extended the shortened lifespan of TDP-43 mutant worms. MPS also directly protected against neurodegeneration by reducing the number of neuronal breaks and cell body losses in GFP-labelled GABAergic motor neurons. Importantly, optimal neuroprotection was exhibited by external application of 50 μM MPS, compared to 8 mM for ethosuximide. This greater potency of MPS was not due to bioaccumulation to higher internal levels within the worm, based on 1H-nuclear magnetic resonance analysis. Like ethosuximide, the activity of MPS was abolished by mutation of the evolutionarily conserved FOXO transcription factor, daf-16, suggesting that both compounds act via the same neuroprotective pathway(s). In conclusion, we have revealed a novel neuroprotective activity of MPS that is >100-fold more potent than ethosuximide. This increased potency will facilitate future biochemical studies to identify the direct molecular target(s) of both compounds, as we have shown here that they share a common downstream DAF-16-dependent mechanism of action. Furthermore, MPS is the active metabolite of another approved antiepileptic drug, methsuximide. Therefore, methsuximide may have repurposing potential for treatment of TDP-43 proteinopathies and possibly other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Matthew G Pontifex
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Marie M Phelan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | | | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Seattle Veterans Affairs Puget Sound Health Care System, University of Washington Department of Medicine, Seattle, WA 98108, USA.
| | - Jeff W Barclay
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| | - Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
24
|
Jin EJ, Kiral FR, Hiesinger PR. The where, what, and when of membrane protein degradation in neurons. Dev Neurobiol 2018; 78:283-297. [PMID: 28884504 PMCID: PMC5816708 DOI: 10.1002/dneu.22534] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022]
Abstract
Membrane protein turnover and degradation are required for the function and health of all cells. Neurons may live for the entire lifetime of an organism and are highly polarized cells with spatially segregated axonal and dendritic compartments. Both longevity and morphological complexity represent challenges for regulated membrane protein degradation. To investigate how neurons cope with these challenges, an increasing number of recent studies investigated local, cargo-specific protein sorting, and degradation at axon terminals and in dendritic processes. In this review, we explore the current answers to the ensuing questions of where, what, and when membrane proteins are degraded in neurons. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 283-297, 2018.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
- Graduate School of Biomedical SciencesUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Ferdi Ridvan Kiral
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
| | - Peter Robin Hiesinger
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
| |
Collapse
|
25
|
Zarouchlioti C, Parfitt DA, Li W, Gittings LM, Cheetham ME. DNAJ Proteins in neurodegeneration: essential and protective factors. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160534. [PMID: 29203718 PMCID: PMC5717533 DOI: 10.1098/rstb.2016.0534] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Maintenance of protein homeostasis is vitally important in post-mitotic cells, particularly neurons. Neurodegenerative diseases such as polyglutamine expansion disorders-like Huntington's disease or spinocerebellar ataxia (SCA), Alzheimer's disease, fronto-temporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease-are often characterized by the presence of inclusions of aggregated protein. Neurons contain complex protein networks dedicated to protein quality control and maintaining protein homeostasis, or proteostasis. Molecular chaperones are a class of proteins with prominent roles in maintaining proteostasis, which act to bind and shield hydrophobic regions of nascent or misfolded proteins while allowing correct folding, conformational changes and enabling quality control. There are many different families of molecular chaperones with multiple functions in proteostasis. The DNAJ family of molecular chaperones is the largest chaperone family and is defined by the J-domain, which regulates the function of HSP70 chaperones. DNAJ proteins can also have multiple other protein domains such as ubiquitin-interacting motifs or clathrin-binding domains leading to diverse and specific roles in the cell, including targeting client proteins for degradation via the proteasome, chaperone-mediated autophagy and uncoating clathrin-coated vesicles. DNAJ proteins can also contain ER-signal peptides or mitochondrial leader sequences, targeting them to specific organelles in the cell. In this review, we discuss the multiple roles of DNAJ proteins and in particular focus on the role of DNAJ proteins in protecting against neurodegenerative diseases caused by misfolded proteins. We also discuss the role of DNAJ proteins as direct causes of inherited neurodegeneration via mutations in DNAJ family genes.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
| | - David A Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1 V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1 V 9EL, UK
| | - Lauren M Gittings
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1 V 9EL, UK
| | | |
Collapse
|
26
|
The Role of Cysteine String Protein α Phosphorylation at Serine 10 and 34 by Protein Kinase Cγ for Presynaptic Maintenance. J Neurosci 2017; 38:278-290. [PMID: 29167402 DOI: 10.1523/jneurosci.1649-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/23/2017] [Accepted: 11/12/2017] [Indexed: 01/05/2023] Open
Abstract
Protein kinase Cγ (PKCγ) knock-out (KO) animals exhibit symptoms of Parkinson's disease (PD), including dopaminergic neuronal loss in the substantia nigra. However, the PKCγ substrates responsible for the survival of dopaminergic neurons in vivo have not yet been elucidated. Previously, we found 10 potent substrates in the striatum of PKCγ-KO mice. Here, we focused on cysteine string protein α (CSPα), a protein from the heat shock protein (HSP) 40 cochaperone families localized on synaptic vesicles. We found that in cultured cells, PKCγ phosphorylates CSPα at serine (Ser) 10 and Ser34. Additionally, apoptosis was found to have been enhanced by the overexpression of a phosphorylation-null mutant of CSPα, CSPα(S10A/S34A). Compared with wild-type (WT) CSPα, the CSPα(S10A/S34A) mutant had a weaker interaction with HSP70. However, in sharp contrast, a phosphomimetic CSPα(S10D/S34D) mutant, compared with WT CSPα, had a stronger interaction with HSP70. In addition, total levels of synaptosomal-associated protein (SNAP) 25, a main downstream target of the HSC70/HSP70 chaperone complex, were found to have decreased by the CSPα(S10A/S34A) mutant through increased ubiquitination of SNAP25 in PC12 cells. In the striatum of 2-year-old male PKCγ-KO mice, decreased phosphorylation levels of CSPα and decreased SNAP25 protein levels were observed. These findings indicate the phosphorylation of CSPα by PKCγ may protect the presynaptic terminal from neurodegeneration. The PKCγ-CSPα-HSC70/HSP70-SNAP25 axis, because of its role in protecting the presynaptic terminal, may provide a new therapeutic target for the treatment of PD.SIGNIFICANCE STATEMENT Cysteine string protein α (CSPα) is a protein belonging to the heat shock protein (HSP) 40 cochaperone families localized on synaptic vesicles, which maintain the presynaptic terminal. However, the function of CSPα phosphorylation by protein kinase C (PKC) for neuronal cell survival remains unclear. The experiments presented here demonstrate that PKCγ phosphorylates CSPα at serine (Ser) 10 and Ser34. CSPα phosphorylation at Ser10 and Ser34 by PKCγ protects the presynaptic terminal by promoting HSP70 chaperone activity. This report suggests that CSPα phosphorylation, because of its role in modulating HSP70 chaperone activity, may be a target for the treatment of neurodegeneration.
Collapse
|
27
|
Ethanol Stimulates Locomotion via a G αs-Signaling Pathway in IL2 Neurons in Caenorhabditis elegans. Genetics 2017; 207:1023-1039. [PMID: 28951527 PMCID: PMC5676223 DOI: 10.1534/genetics.117.300119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/23/2017] [Indexed: 01/21/2023] Open
Abstract
Alcohol abuse is among the top causes of preventable death, generating considerable financial, health, and societal burdens. Paradoxically, alcohol... Alcohol is a potent pharmacological agent when consumed acutely at sufficient quantities and repeated overuse can lead to addiction and deleterious effects on health. Alcohol is thought to modulate neuronal function through low-affinity interactions with proteins, in particular with membrane channels and receptors. Paradoxically, alcohol acts as both a stimulant and a sedative. The exact molecular mechanisms for the acute effects of ethanol on neurons, as either a stimulant or a sedative, however remain unclear. We investigated the role that the heat shock transcription factor HSF-1 played in determining a stimulatory phenotype of Caenorhabditis elegans in response to physiologically relevant concentrations of ethanol (17 mM; 0.1% v/v). Using genetic techniques, we demonstrate that either RNA interference of hsf-1 or use of an hsf-1(sy441) mutant lacked the enhancement of locomotion in response to acute ethanol exposure evident in wild-type animals. We identify that the requirement for HSF-1 in this phenotype was IL2 neuron-specific and required the downstream expression of the α-crystallin ortholog HSP-16.48. Using a combination of pharmacology, optogenetics, and phenotypic analyses we determine that ethanol activates a Gαs-cAMP-protein kinase A signaling pathway in IL2 neurons to stimulate nematode locomotion. We further implicate the phosphorylation of a specific serine residue (Ser322) on the synaptic protein UNC-18 as an end point for the Gαs-dependent signaling pathway. These findings establish and characterize a distinct neurosensory cell signaling pathway that determines the stimulatory action of ethanol and identifies HSP-16.48 and HSF-1 as novel regulators of this pathway.
Collapse
|
28
|
Neurons Export Extracellular Vesicles Enriched in Cysteine String Protein and Misfolded Protein Cargo. Sci Rep 2017; 7:956. [PMID: 28424476 PMCID: PMC5430488 DOI: 10.1038/s41598-017-01115-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The fidelity of synaptic transmission depends on the integrity of the protein machinery at the synapse. Unfolded synaptic proteins undergo refolding or degradation in order to maintain synaptic proteostasis and preserve synaptic function, and buildup of unfolded/toxic proteins leads to neuronal dysfunction. Many molecular chaperones contribute to proteostasis, but one in particular, cysteine string protein (CSPα), is critical for proteostasis at the synapse. In this study we report that exported vesicles from neurons contain CSPα. Extracellular vesicles (EV’s) have been implicated in a wide range of functions. However, the functional significance of neural EV’s remains to be established. Here we demonstrate that co-expression of CSPα with the disease-associated proteins, polyglutamine expanded protein 72Q huntingtinex°n1 or superoxide dismutase-1 (SOD-1G93A) leads to the cellular export of both 72Q huntingtinex°n1 and SOD-1G93A via EV’s. In contrast, the inactive CSPαHPD-AAA mutant does not facilitate elimination of misfolded proteins. Furthermore, CSPα-mediated export of 72Q huntingtinex°n1 is reduced by the polyphenol, resveratrol. Our results indicate that by assisting local lysosome/proteasome processes, CSPα-mediated removal of toxic proteins via EVs plays a central role in synaptic proteostasis and CSPα thus represents a potential therapeutic target for neurodegenerative diseases.
Collapse
|
29
|
Lopez-Ortega E, Ruiz R, Tabares L. CSPα, a Molecular Co-chaperone Essential for Short and Long-Term Synaptic Maintenance. Front Neurosci 2017; 11:39. [PMID: 28239331 PMCID: PMC5301022 DOI: 10.3389/fnins.2017.00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/19/2017] [Indexed: 01/26/2023] Open
Abstract
Cysteine string protein α (CSPα) is a vesicle protein located in the presynaptic terminal of most synapses. CSPα is an essential molecular co-chaperone that facilitates the correct folding of proteins and the assembly of the exocytic machinery. The absence of this protein leads to altered neurotransmitter release and neurodegeneration in multiple model systems, from flies to mice. In humans, CSPα mutations are associated with the development of neuronal ceroid lipofuscinosis (NCL), a neurodegenerative disease characterized by intracellular accumulation of lysosomal material. Here, we review the physiological role of CSPα and the pathology resulting from the homozygous deletion of the gene or its mutations. In addition, we investigate whether long-term moderate reduction of the protein produces motor dysfunction. We found that 1-year-old CSPα heterozygous mice display a reduced ability to sustain motor unit recruitment during repetitive stimulation, which indicates that physiological levels of CSPα are required for normal neuromuscular responses in mice and, likely, in humans.
Collapse
Affiliation(s)
- Elena Lopez-Ortega
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville Seville, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville Seville, Spain
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville Seville, Spain
| |
Collapse
|
30
|
Patel P, Prescott GR, Burgoyne RD, Lian LY, Morgan A. Phosphorylation of Cysteine String Protein Triggers a Major Conformational Switch. Structure 2016; 24:1380-1386. [PMID: 27452402 PMCID: PMC4975591 DOI: 10.1016/j.str.2016.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022]
Abstract
Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 chaperone family that localizes to neuronal synaptic vesicles. Impaired CSP function leads to neurodegeneration in humans and model organisms as a result of misfolding of client proteins involved in neurotransmission. Mammalian CSP is phosphorylated in vivo on Ser10, and this modulates its protein interactions and effects on neurotransmitter release. However, there are no data on the structural consequences of CSP phosphorylation to explain these functional effects. We show that Ser10 phosphorylation causes an order-to-disorder transition that disrupts CSP's extreme N-terminal α helix. This triggers the concomitant formation of a hairpin loop stabilized by ionic interactions between phosphoSer10 and the highly conserved J-domain residue, Lys58. These phosphorylation-induced effects result in significant changes to CSP conformation and surface charge distribution. The phospho-switch revealed here provides structural insight into how Ser10 phosphorylation modulates CSP function and also has potential implications for other DnaJ phosphoproteins. First structure of a phosphorylated DnaJ/Hsp40 protein Phosphorylation destabilizes CSP's N-terminal α helix Newly disordered, phosphorylated N-terminal loop binds to the J domain Phosphorylation causes significant changes to CSP conformation and surface charge
Collapse
Affiliation(s)
- Pryank Patel
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK; NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK; Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Gerald R Prescott
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
31
|
Chen X, Barclay JW, Burgoyne RD, Morgan A. Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases. Chem Cent J 2015; 9:65. [PMID: 26617668 PMCID: PMC4661952 DOI: 10.1186/s13065-015-0143-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/15/2015] [Indexed: 12/24/2022] Open
Abstract
Age-associated neurodegenerative disorders such as Alzheimer's disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuroprotective compound screening. Here we describe how C. elegans has been used to model various human ageing-associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in these worm models and so may have translational potential.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX UK ; Centre for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan, MI 49503 USA
| | - Jeff W Barclay
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX UK
| | - Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX UK
| |
Collapse
|
32
|
Amorim IS, Mitchell NL, Palmer DN, Sawiak SJ, Mason R, Wishart TM, Gillingwater TH. Molecular neuropathology of the synapse in sheep with CLN5 Batten disease. Brain Behav 2015; 5:e00401. [PMID: 26664787 PMCID: PMC4667763 DOI: 10.1002/brb3.401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022] Open
Abstract
AIMS Synapses represent a major pathological target across a broad range of neurodegenerative conditions. Recent studies addressing molecular mechanisms regulating synaptic vulnerability and degeneration have relied heavily on invertebrate and mouse models. Whether similar molecular neuropathological changes underpin synaptic breakdown in large animal models and in human patients with neurodegenerative disease remains unclear. We therefore investigated whether molecular regulators of synaptic pathophysiology, previously identified in Drosophila and mouse models, are similarly present and modified in the brain of sheep with CLN5 Batten disease. METHODS Gross neuropathological analysis of CLN5 Batten disease sheep and controls was used alongside postmortem MRI imaging to identify affected brain regions. Synaptosome preparations were then generated and quantitative fluorescent Western blotting used to determine and compare levels of synaptic proteins. RESULTS The cortex was particularly affected by regional neurodegeneration and synaptic loss in CLN5 sheep, whilst the cerebellum was relatively spared. Quantitative assessment of the protein content of synaptosome preparations revealed significant changes in levels of seven out of eight synaptic neurodegeneration proteins investigated in the motor cortex, but not cerebellum, of CLN5 sheep (α-synuclein, CSP-α, neurofascin, ROCK2, calretinin, SIRT2, and UBR4). CONCLUSIONS Synaptic pathology is a robust correlate of region-specific neurodegeneration in the brain of CLN5 sheep, driven by molecular pathways similar to those reported in Drosophila and rodent models. Thus, large animal models, such as sheep, represent ideal translational systems to develop and test therapeutics aimed at delaying or halting synaptic pathology for a range of human neurodegenerative conditions.
Collapse
Affiliation(s)
- Inês S Amorim
- Centre for Integrative Physiology University of Edinburgh Hugh Robson Building Edinburgh UK ; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK
| | - Nadia L Mitchell
- Department of Molecular Biosciences Faculty of Agricultural and Life Sciences and Batten Animal Research Network Lincoln University Christchurch New Zealand
| | - David N Palmer
- Department of Molecular Biosciences Faculty of Agricultural and Life Sciences and Batten Animal Research Network Lincoln University Christchurch New Zealand
| | - Stephen J Sawiak
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge UK ; Wolfson Brain Imaging Centre University of Cambridge Box 65 Addenbrooke's Hospital Hills Road Cambridge UK
| | - Roger Mason
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK ; Division of Neurobiology The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh Edinburgh UK
| | - Thomas H Gillingwater
- Centre for Integrative Physiology University of Edinburgh Hugh Robson Building Edinburgh UK ; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK
| |
Collapse
|
33
|
Asthana J, Yadav D, Pant A, Yadav AK, Gupta MM, Pandey R. Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside Elicits Life-span Extension and Stress Resistance in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2015; 71:1160-8. [PMID: 26433219 DOI: 10.1093/gerona/glv173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 09/15/2015] [Indexed: 11/12/2022] Open
Abstract
The advancements in the field of gerontology have unraveled the signaling pathways that regulate life span, suggesting that it might be feasible to modulate aging. To this end, we isolated a novel phytomolecule Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside (ARX) from Premna integrifolia and evaluated its antiaging effects in Caenorhabditis elegans The spectral data analysis revealed the occurrence of a new compound ARX. Out of the three tested pharmacological doses of ARX, viz. 5, 25, and 50 µM, the 25-µM dose was able to extend life span in C. elegans by more than 39%. The present study suggests that ARX affects bacterial metabolism, which in turn leads to dietary restriction (DR)-like effects in the worms. The effect of ARX on worms with mutations (mev-1, eat-2, sir-2.1, skn-1, daf-16, and hsf-1) indicates that ARX-mediated life-span extension involves mechanisms associated with DR and maintenance of cellular redox homeostasis. This study is the first time report on longevity-promoting activity of ARX in C. elegans mediated by stress and DR-regulating genes. This novel phytomolecule can contribute in designing therapeutics for managing aging and age-related diseases.
Collapse
Affiliation(s)
| | - Deepti Yadav
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | | - A K Yadav
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - M M Gupta
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology and
| |
Collapse
|
34
|
Chen X, McCue HV, Wong SQ, Kashyap SS, Kraemer BC, Barclay JW, Burgoyne RD, Morgan A. Ethosuximide ameliorates neurodegenerative disease phenotypes by modulating DAF-16/FOXO target gene expression. Mol Neurodegener 2015; 10:51. [PMID: 26419537 PMCID: PMC4587861 DOI: 10.1186/s13024-015-0046-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Many neurodegenerative diseases are associated with protein misfolding/aggregation. Treatments mitigating the effects of such common pathological processes, rather than disease-specific symptoms, therefore have general therapeutic potential. RESULTS Here we report that the anti-epileptic drug ethosuximide rescues the short lifespan and chemosensory defects exhibited by C. elegans null mutants of dnj-14, the worm orthologue of the DNAJC5 gene mutated in autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. It also ameliorates the locomotion impairment and short lifespan of worms expressing a human Tau mutant that causes frontotemporal dementia. Transcriptomic analysis revealed a highly significant up-regulation of DAF-16/FOXO target genes in response to ethosuximide; and indeed RNAi knockdown of daf-16 abolished the therapeutic effect of ethosuximide in the worm dnj-14 model. Importantly, ethosuximide also increased the expression of classical FOXO target genes and reduced protein aggregation in mammalian neuronal cells. CONCLUSIONS We have revealed a conserved neuroprotective mechanism of action of ethosuximide from worms to mammalian neurons. Future experiments in mouse neurodegeneration models will be important to confirm the repurposing potential of this well-established anti-epileptic drug for treatment of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
- Present Address: Centre for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503, USA.
| | - Hannah V McCue
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| | - Shi Quan Wong
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| | - Sudhanva S Kashyap
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Seattle Veterans Affairs Puget Sound Health Care System and University of Washington Department of Medicine, 1660 South Columbian Way, Seattle, WA, 98108, USA.
| | - Jeff W Barclay
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| | - Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
| |
Collapse
|
35
|
Expression profile of a Caenorhabditis elegans model of adult neuronal ceroid lipofuscinosis reveals down regulation of ubiquitin E3 ligase components. Sci Rep 2015; 5:14392. [PMID: 26395859 PMCID: PMC4585785 DOI: 10.1038/srep14392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/28/2015] [Indexed: 12/24/2022] Open
Abstract
Cysteine string protein (CSP) is a chaperone of the Dnaj/Hsp40 family of proteins and is essential for synaptic maintenance. Mutations in the human gene encoding CSP, DNAJC5, cause adult neuronal ceroid lipofucinosis (ANCL) which is characterised by progressive dementia, movement disorders, seizures and premature death. CSP null models in mice, flies and worms have been shown to also exhibit similar neurodegenerative phenotypes. Here we have explored the mechanisms underlying ANCL disease progression using Caenorhaditis elegans mutant strains of dnj-14, the worm orthologue of DNAJC5. Transcriptional profiling of these mutants compared to control strains revealed a broad down-regulation of ubiquitin proteasome system (UPS)-related genes, in particular, components of multimeric RING E3 ubiquitin ligases including F-Box, SKR and BTB proteins. These data were supported by the observation that dnj-14 mutant worm strains expressing a GFP-tagged ubiquitin fusion degradation substrate exhibited decreased ubiquitylated protein degradation. The results indicate that disruption of an essential synaptic chaperone leads to changes in expression levels of UPS-related proteins which has a knock-on effect on overall protein degradation in C. elegans. The specific over-representation of E3 ubiquitin ligase components revealed in our study, suggests that proteins and complexes upstream of the proteasome itself may be beneficial therapeutic targets.
Collapse
|
36
|
Cell biology of the NCL proteins: What they do and don't do. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2242-55. [PMID: 25962910 DOI: 10.1016/j.bbadis.2015.04.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023]
Abstract
The fatal, primarily childhood neurodegenerative disorders, neuronal ceroid lipofuscinoses (NCLs), are currently associated with mutations in 13 genes. The protein products of these genes (CLN1 to CLN14) differ in their function and their intracellular localization. NCL-associated proteins have been localized mostly in lysosomes (CLN1, CLN2, CLN3, CLN5, CLN7, CLN10, CLN12 and CLN13) but also in the Endoplasmic Reticulum (CLN6 and CLN8), or in the cytosol associated to vesicular membranes (CLN4 and CLN14). Some of them such as CLN1 (palmitoyl protein thioesterase 1), CLN2 (tripeptidyl-peptidase 1), CLN5, CLN10 (cathepsin D), and CLN13 (cathepsin F), are lysosomal soluble proteins; others like CLN3, CLN7, and CLN12, have been proposed to be lysosomal transmembrane proteins. In this review, we give our views and attempt to summarize the proposed and confirmed functions of each NCL protein and describe and discuss research results published since the last review on NCL proteins. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
|
37
|
Faller KME, Gutierrez-Quintana R, Mohammed A, Rahim AA, Tuxworth RI, Wager K, Bond M. The neuronal ceroid lipofuscinoses: Opportunities from model systems. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2267-78. [PMID: 25937302 DOI: 10.1016/j.bbadis.2015.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
The neuronal ceroid lipofuscinoses are a group of severe and progressive neurodegenerative disorders, generally with childhood onset. Despite the fact that these diseases remain fatal, significant breakthroughs have been made in our understanding of the genetics that underpin these conditions. This understanding has allowed the development of a broad range of models to study disease processes, and to develop new therapeutic approaches. Such models have contributed significantly to our knowledge of these conditions. In this review we will focus on the advantages of each individual model, describe some of the contributions the models have made to our understanding of the broader disease biology and highlight new techniques and approaches relevant to the study and potential treatment of the neuronal ceroid lipofuscinoses. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Kiterie M E Faller
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Rodrigo Gutierrez-Quintana
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Alamin Mohammed
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Richard I Tuxworth
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kim Wager
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Michael Bond
- MRC Laboratory for Molecular Cell Biology, University College of London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
38
|
Donnelier J, Braun ST, Dolzhanskaya N, Ahrendt E, Braun AP, Velinov M, Braun JEA. Increased Expression of the Large Conductance, Calcium-Activated K+ (BK) Channel in Adult-Onset Neuronal Ceroid Lipofuscinosis. PLoS One 2015; 10:e0125205. [PMID: 25905915 PMCID: PMC4407904 DOI: 10.1371/journal.pone.0125205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/17/2015] [Indexed: 01/18/2023] Open
Abstract
Cysteine string protein (CSPα) is a presynaptic J protein co-chaperone that opposes neurodegeneration. Mutations in CSPα (i.e., Leu115 to Arg substitution or deletion (Δ) of Leu116) cause adult neuronal ceroid lipofuscinosis (ANCL), a dominantly inherited neurodegenerative disease. We have previously demonstrated that CSPα limits the expression of large conductance, calcium-activated K+ (BK) channels in neurons, which may impact synaptic excitability and neurotransmission. Here we show by western blot analysis that expression of the pore-forming BKα subunit is elevated ~2.5 fold in the post-mortem cortex of a 36-year-old patient with the Leu116∆ CSPα mutation. Moreover, we find that the increase in BKα subunit level is selective for ANCL and not a general feature of neurodegenerative conditions. While reduced levels of CSPα are found in some postmortem cortex specimens from Alzheimer's disease patients, we find no concomitant increase in BKα subunit expression in Alzheimer's specimens. Both CSPα monomer and oligomer expression are reduced in synaptosomes prepared from ANCL cortex compared with control. In a cultured neuronal cell model, CSPα oligomers are short lived. The results of this study indicate that the Leu116∆ mutation leads to elevated BKα subunit levels in human cortex and extend our initial work in rodent models demonstrating the modulation of BKα subunit levels by the same CSPα mutation. While the precise sequence of pathogenic events still remains to be elucidated, our findings suggest that dysregulation of BK channels may contribute to neurodegeneration in ANCL.
Collapse
Affiliation(s)
- Julien Donnelier
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Samuel T. Braun
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Eva Ahrendt
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew P. Braun
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Milen Velinov
- Albert Einstein College of Medicine, Bronx, New York, United States of America
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Janice E. A. Braun
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
39
|
Burgoyne RD, Morgan A. Cysteine string protein (CSP) and its role in preventing neurodegeneration. Semin Cell Dev Biol 2015; 40:153-9. [PMID: 25800794 PMCID: PMC4447612 DOI: 10.1016/j.semcdb.2015.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of co-chaperones that localises to neuronal synaptic vesicles. Its name derives from the possession of a string of 12–15 cysteine residues, palmitoylation of which is required for targeting to post-Golgi membranes. The DnaJ domain of CSP enables it to bind client proteins and recruit Hsc70 chaperones, thereby contributing to the maintenance of protein folding in the presynaptic compartment. Mutation of CSP in flies, worms and mice reduces lifespan and causes synaptic dysfunction and neurodegeneration. Furthermore, recent studies have revealed that the neurodegenerative disease, adult onset neuronal ceroid lipofuscinosis, is caused by mutations in the human CSPα-encoding DNAJC5 gene. Accumulating evidence suggests that the major mechanism by which CSP prevents neurodegeneration is by maintaining the conformation of SNAP-25, thereby facilitating its entry into the membrane-fusing SNARE complex. In this review, we focus on the role of CSP in preventing neurodegeneration and discuss how recent studies of this universal neuroprotective chaperone are being translated into potential novel therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK.
| |
Collapse
|
40
|
Metabolic effects of resveratrol: addressing the controversies. Cell Mol Life Sci 2014; 72:1473-88. [PMID: 25548801 DOI: 10.1007/s00018-014-1808-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
Resveratrol, a polyphenol found in a number of plant-based foods such as red wine, has received a great deal of attention for its diverse array of healthful effects. Beneficial effects of resveratrol are diverse; they include improvement of mitochondrial function, protection against obesity and obesity-related diseases such as type-2 diabetes, suppression of inflammation and cancer cell growth and protection against cardiovascular dysfunction, just to name a few. Investigations into the metabolic effects of resveratrol are furthest along and now include a number of clinical trials, which have yielded mixed results. There are a number of controversies surrounding resveratrol that have not been resolved. Here, we will review these controversies with particular emphasis on its mechanism of metabolic action and how lessons from resveratrol may help develop therapies that harness the effects of resveratrol but without the undesirable properties of resveratrol.
Collapse
|
41
|
Edmonds MJ, Morgan A. A systematic analysis of protein palmitoylation in Caenorhabditis elegans. BMC Genomics 2014; 15:841. [PMID: 25277130 PMCID: PMC4192757 DOI: 10.1186/1471-2164-15-841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Palmitoylation is a reversible post-translational protein modification which involves the addition of palmitate to cysteine residues. Palmitoylation is catalysed by the DHHC family of palmitoyl-acyl transferases (PATs) and reversibility is conferred by palmitoyl-protein thioesterases (PPTs). Mutations in genes encoding both classes of enzymes are associated with human diseases, notably neurological disorders, underlining their importance. Despite the pivotal role of yeast studies in discovering PATs, palmitoylation has not been studied in the key animal model Caenorhabditis elegans. RESULTS Analysis of the C. elegans genome identified fifteen PATs, using the DHHC cysteine-rich domain, and two PPTs, by homology. The twelve uncategorised PATs were officially named using a dhhc-x system. Genomic data on these palmitoylation enzymes and those in yeast, Drosophila and humans was collated and analysed to predict properties and relationships in C. elegans. All available C. elegans strains containing a mutation in a palmitoylation enzyme were analysed and a complete library of RNA interference (RNAi) feeding plasmids against PAT or PPT genes was generated. To test for possible redundancy, double RNAi was performed against selected closely related PATs and both PPTs. Animals were screened for phenotypes including size, longevity and sensory and motor neuronal functions. Although some significant differences were observed with individual mutants or RNAi treatment, in general there was little impact on these phenotypes, suggesting that genetic buffering exists within the palmitoylation network in worms. CONCLUSIONS This study reports the first characterisation of palmitoylation in C. elegans using both in silico and in vivo approaches, and opens up this key model organism for further detailed study of palmitoylation in future.
Collapse
Affiliation(s)
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St,, Liverpool L69 3BX, UK.
| |
Collapse
|