1
|
Yuan Y, Yu L, Zhuang X, Wen D, He J, Hong J, Xie J, Ling S, Du X, Chen W, Wang X. Drosophila models used to simulate human ATP1A1 gene mutations that cause Charcot-Marie-Tooth type 2 disease and refractory seizures. Neural Regen Res 2025; 20:265-276. [PMID: 38767491 PMCID: PMC11246156 DOI: 10.4103/1673-5374.391302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00034/figure1/v/2024-05-14T021156Z/r/image-tiff Certain amino acids changes in the human Na+/K+-ATPase pump, ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1), cause Charcot-Marie-Tooth disease type 2 (CMT2) disease and refractory seizures. To develop in vivo models to study the role of Na+/K+-ATPase in these diseases, we modified the Drosophila gene homolog, Atpα, to mimic the human ATP1A1 gene mutations that cause CMT2. Mutations located within the helical linker region of human ATP1A1 (I592T, A597T, P600T, and D601F) were simultaneously introduced into endogenous DrosophilaAtpα by CRISPR/Cas9-mediated genome editing, generating the AtpαTTTF model. In addition, the same strategy was used to generate the corresponding single point mutations in flies (AtpαI571T, AtpαA576T, AtpαP579T, and AtpαD580F). Moreover, a deletion mutation (Atpαmut) that causes premature termination of translation was generated as a positive control. Of these alleles, we found two that could be maintained as homozygotes (AtpαI571T and AtpαP579T). Three alleles (AtpαA576T, AtpαP579 and AtpαD580F) can form heterozygotes with the Atpαmut allele. We found that the Atpα allele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila. Flies heterozygous for AtpαTTTF mutations have motor performance defects, a reduced lifespan, seizures, and an abnormal neuronal morphology. These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.
Collapse
Affiliation(s)
- Yao Yuan
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Lingqi Yu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xudong Zhuang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian Province, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Dongjing Wen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Jin He
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jingmei Hong
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jiayu Xie
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Shengan Ling
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xiaoyue Du
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xinrui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian Province, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
León M, Prieto J, Molina-Navarro MM, García-García F, Barneo-Muñoz M, Ponsoda X, Sáez R, Palau F, Dopazo J, Izpisua Belmonte JC, Torres J. Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response. Cell Death Discov 2023; 9:217. [PMID: 37393339 DOI: 10.1038/s41420-023-01531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Charcot-Marie-Tooth disease is a chronic hereditary motor and sensory polyneuropathy targeting Schwann cells and/or motor neurons. Its multifactorial and polygenic origin portrays a complex clinical phenotype of the disease with a wide range of genetic inheritance patterns. The disease-associated gene GDAP1 encodes for a mitochondrial outer membrane protein. Mouse and insect models with mutations in Gdap1 have reproduced several traits of the human disease. However, the precise function in the cell types affected by the disease remains unknown. Here, we use induced-pluripotent stem cells derived from a Gdap1 knockout mouse model to better understand the molecular and cellular phenotypes of the disease caused by the loss-of-function of this gene. Gdap1-null motor neurons display a fragile cell phenotype prone to early degeneration showing (1) altered mitochondrial morphology, with an increase in the fragmentation of these organelles, (2) activation of autophagy and mitophagy, (3) abnormal metabolism, characterized by a downregulation of Hexokinase 2 and ATP5b proteins, (4) increased reactive oxygen species and elevated mitochondrial membrane potential, and (5) increased innate immune response and p38 MAP kinase activation. Our data reveals the existence of an underlying Redox-inflammatory axis fueled by altered mitochondrial metabolism in the absence of Gdap1. As this biochemical axis encompasses a wide variety of druggable targets, our results may have implications for developing therapies using combinatorial pharmacological approaches and improving therefore human welfare. A Redox-immune axis underlying motor neuron degeneration caused by the absence of Gdap1. Our results show that Gdap1-/- motor neurons have a fragile cellular phenotype that is prone to degeneration. Gdap1-/- iPSCs differentiated into motor neurons showed an altered metabolic state: decreased glycolysis and increased OXPHOS. These alterations may lead to hyperpolarization of mitochondria and increased ROS levels. Excessive amounts of ROS might be the cause of increased mitophagy, p38 activation and inflammation as a cellular response to oxidative stress. The p38 MAPK pathway and the immune response may, in turn, have feedback mechanisms, leading to the induction of apoptosis and senescence, respectively. CAC, citric acid cycle; ETC, electronic transport chain; Glc, glucose; Lac, lactate; Pyr, pyruvate.
Collapse
Affiliation(s)
- Marian León
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - María Micaela Molina-Navarro
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Francisco García-García
- Unidad de Bioinformática y Bioestadística, Centro de Investigación Príncipe Felipe, 46012, València, Spain
| | - Manuela Barneo-Muñoz
- Unitat Predepartamental de Medicina, Universidad Jaume I, Castellón de la Plana, Castellón, Spain
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Rosana Sáez
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Francesc Palau
- Institut de Recerca and Hospital San Joan de Déu, 08950, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Joaquín Dopazo
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, 5510 Morehouse Drive, San Diego, CA, 92121, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain.
- Instituto de Investigación Sanitaria (INCLIVA), 46010, València, Spain.
| |
Collapse
|
3
|
Zhang Y, Wen MH, Qin G, Cai C, Chen TY. Subcellular redox responses reveal different Cu-dependent antioxidant defenses between mitochondria and cytosol. Metallomics 2022; 14:mfac087. [PMID: 36367501 PMCID: PMC9686363 DOI: 10.1093/mtomcs/mfac087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2023]
Abstract
Excess intracellular Cu perturbs cellular redox balance and thus causes diseases. However, the relationship between cellular redox status and Cu homeostasis and how such an interplay is coordinated within cellular compartments has not yet been well established. Using combined approaches of organelle-specific redox sensor Grx1-roGFP2 and non-targeted proteomics, we investigate the real-time Cu-dependent antioxidant defenses of mitochondria and cytosol in live HEK293 cells. The Cu-dependent real-time imaging experiments show that CuCl2 treatment results in increased oxidative stress in both cytosol and mitochondria. In contrast, subsequent excess Cu removal by bathocuproine sulfonate, a Cu chelating reagent, lowers oxidative stress in mitochondria but causes even higher oxidative stress in the cytosol. The proteomic data reveal that several mitochondrial proteins, but not cytosolic ones, undergo significant abundance change under Cu treatments. The proteomic analysis also shows that proteins with significant changes are related to mitochondrial oxidative phosphorylation and glutathione synthesis. The differences in redox behaviors and protein profiles in different cellular compartments reveal distinct mitochondrial and cytosolic response mechanisms upon Cu-induced oxidative stress. These findings provide insights into how redox and Cu homeostasis interplay by modulating specific protein expressions at the subcellular levels, shedding light on understanding the effects of Cu-induced redox misregulation on the diseases.
Collapse
Affiliation(s)
- Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Guoting Qin
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
4
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
5
|
Tapia A, Palomino-Schätzlein M, Roca M, Lahoz A, Pineda-Lucena A, López del Amo V, Galindo MI. Mild Muscle Mitochondrial Fusion Distress Extends Drosophila Lifespan through an Early and Systemic Metabolome Reorganization. Int J Mol Sci 2021; 22:ijms222212133. [PMID: 34830014 PMCID: PMC8618903 DOI: 10.3390/ijms222212133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
In a global aging population, it is important to understand the factors affecting systemic aging and lifespan. Mitohormesis, an adaptive response caused by different insults affecting the mitochondrial network, triggers a response from the nuclear genome inducing several pathways that promote longevity and metabolic health. Understanding the role of mitochondrial function during the aging process could help biomarker identification and the development of novel strategies for healthy aging. Herein, we interfered the muscle expression of the Drosophila genes Marf and Opa1, two genes that encode for proteins promoting mitochondrial fusion, orthologues of human MFN2 and OPA1. Silencing of Marf and Opa1 in muscle increases lifespan, improves locomotor capacities in the long term, and maintains muscular integrity. A metabolomic analysis revealed that muscle down-regulation of Marf and Opa1 promotes a non-autonomous systemic metabolome reorganization, mainly affecting metabolites involved in the energetic homeostasis: carbohydrates, lipids and aminoacids. Interestingly, the differences are consistently more evident in younger flies, implying that there may exist an anticipative adaptation mediating the protective changes at the older age. We demonstrate that mild mitochondrial muscle disturbance plays an important role in Drosophila fitness and reveals metabolic connections between tissues. This study opens new avenues to explore the link of mitochondrial dynamics and inter-organ communication, as well as their relationship with muscle-related pathologies, or in which muscle aging is a risk factor for their appearance. Our results suggest that early intervention in muscle may prevent sarcopenia and promote healthy aging.
Collapse
Affiliation(s)
- Andrea Tapia
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.T.); (M.P.-S.)
| | | | - Marta Roca
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (M.R.); (A.L.)
| | - Agustín Lahoz
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (M.R.); (A.L.)
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona Spain;
| | - Víctor López del Amo
- Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA
- Correspondence: (V.L.d.A.); (M.I.G.)
| | - Máximo Ibo Galindo
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.T.); (M.P.-S.)
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46022 Valencia, Spain
- UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain
- Correspondence: (V.L.d.A.); (M.I.G.)
| |
Collapse
|
6
|
Miressi F, Benslimane N, Favreau F, Rassat M, Richard L, Bourthoumieu S, Laroche C, Magy L, Magdelaine C, Sturtz F, Lia AS, Faye PA. GDAP1 Involvement in Mitochondrial Function and Oxidative Stress, Investigated in a Charcot-Marie-Tooth Model of hiPSCs-Derived Motor Neurons. Biomedicines 2021; 9:biomedicines9080945. [PMID: 34440148 PMCID: PMC8393985 DOI: 10.3390/biomedicines9080945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) gene have been associated with demyelinating and axonal forms of Charcot-Marie-Tooth (CMT) disease, the most frequent hereditary peripheral neuropathy in humans. Previous studies reported the prevalent GDAP1 expression in neural tissues and cells, from animal models. Here, we described the first GDAP1 functional study on human induced-pluripotent stem cells (hiPSCs)-derived motor neurons, obtained from normal subjects and from a CMT2H patient, carrying the GDAP1 homozygous c.581C>G (p.Ser194*) mutation. At mRNA level, we observed that, in normal subjects, GDAP1 is mainly expressed in motor neurons, while it is drastically reduced in the patient’s cells containing a premature termination codon (PTC), probably degraded by the nonsense-mediated mRNA decay (NMD) system. Morphological and functional investigations revealed in the CMT patient’s motor neurons a decrease of cell viability associated to lipid dysfunction and oxidative stress development. Mitochondrion is a key organelle in oxidative stress generation, but it is also mainly involved in energetic metabolism. Thus, in the CMT patient’s motor neurons, mitochondrial cristae defects were observed, even if no deficit in ATP production emerged. This cellular model of hiPSCs-derived motor neurons underlines the role of mitochondrion and oxidative stress in CMT disease and paves the way for new treatment evaluation.
Collapse
Affiliation(s)
- Federica Miressi
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- Correspondence:
| | - Nesrine Benslimane
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Marion Rassat
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
| | - Laurence Richard
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Sylvie Bourthoumieu
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Cytogénétique, F-87000 Limoges, France
| | - Cécile Laroche
- CHU Limoges, Service de Pédiatrie, F-87000 Limoges, France;
- CHU Limoges, Centre de Compétence des Maladies Héréditaires du Métabolisme, F-87000 Limoges, France
| | - Laurent Magy
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Corinne Magdelaine
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Franck Sturtz
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Anne-Sophie Lia
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
- CHU Limoges, Service de Bioinformatique, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| |
Collapse
|
7
|
Yamaguchi M, Lee IS, Jantrapirom S, Suda K, Yoshida H. Drosophila models to study causative genes for human rare intractable neurological diseases. Exp Cell Res 2021; 403:112584. [PMID: 33812867 DOI: 10.1016/j.yexcr.2021.112584] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Drosophila is emerging as a convenient model for investigating human diseases. Functional homologues of almost 75% of human disease-related genes are found in Drosophila. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that causes defects in motoneurons. Charcot-Marie-Tooth disease (CMT) is one of the most commonly found inherited neuropathies affecting both motor and sensory neurons. No effective therapy has been established for either of these diseases. In this review, after overviewing ALS, Drosophila models targeting several ALS-causing genes, including TDP-43, FUS and Ubiquilin2, are described with their genetic interactants. Then, after overviewing CMT, examples of Drosophila models targeting several CMT-causing genes, including mitochondria-related genes and FIG 4, are also described with their genetic interactants. In addition, we introduce Sotos syndrome caused by mutations in the epigenetic regulator gene NSD1. Lastly, several genes and pathways that commonly interact with ALS- and/or CMT-causing genes are described. In the case of ALS and CMT that have many causative genes, it may be not practical to perform gene therapy for each of the many disease-causing genes. The possible uses of the common genes and pathways as novel diagnosis markers and effective therapeutic targets are discussed.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto, 619-0237, Japan
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
8
|
Navaratnarajah T, Anand R, Reichert AS, Distelmaier F. The relevance of mitochondrial morphology for human disease. Int J Biochem Cell Biol 2021; 134:105951. [PMID: 33610749 DOI: 10.1016/j.biocel.2021.105951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Mitochondria are highly dynamic organelles, which undergo frequent structural and metabolic changes to fulfil cellular demands. To facilitate these processes several proteins are required to regulate mitochondrial shape and interorganellar communication. These proteins include the classical mitochondrial fusion (MFN1, MFN2, and OPA1) and fission proteins (DRP1, MFF, FIS1, etc.) as well as several other proteins that are directly or indirectly involved in these processes (e.g. YME1L, OMA1, INF2, GDAP1, MIC13, etc.). During the last two decades, inherited genetic defects in mitochondrial fusion and fission proteins have emerged as an important class of neurodegenerative human diseases with variable onset ranging from infancy to adulthood. So far, no causal treatment strategies are available for these disorders. In this review, we provide an overview about the current knowledge on mitochondrial dynamics under physiological conditions. Moreover, we describe human diseases, which are associated with genetic defects in these pathways.
Collapse
Affiliation(s)
- Tharsini Navaratnarajah
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
9
|
Mitochondria and calcium defects correlate with axonal dysfunction in GDAP1-related Charcot-Marie-Tooth mouse model. Neurobiol Dis 2021; 152:105300. [PMID: 33582224 DOI: 10.1016/j.nbd.2021.105300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Ganglioside-induced differentiation associated protein 1 (GDAP1) gene encodes a protein of the mitochondrial outer membrane and of the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs) and lysosomes. Since mutations in GDAP1 cause Charcot-Marie-Tooth, an inherited motor and sensory neuropathy, its function is essential for peripheral nerve physiology. Our previous studies showed structural and functional defects in mitochondria and their contacts when GDAP1 is depleted. Nevertheless, the underlying axonal pathophysiological events remain unclear. Here, we have used embryonic motor neurons (eMNs) cultures from Gdap1 knockout (Gdap1-/-) mice to investigate in vivo mitochondria and calcium homeostasis in the axons. We imaged mitochondrial axonal transport and we found a defective pattern in the Gdap1-/- eMNs. We also detected pathological and functional mitochondria membrane abnormalities with a drop in ATP production and a deteriorated bioenergetic status. Another consequence of the loss of GDAP1 in the soma and axons of eMNs was the in vivo increase calcium levels in both basal conditions and during recovery after neuronal stimulation with glutamate. Further, we found that glutamate-stimulation of respiration was lower in Gdap1-/- eMNs showing that the basal bioenergetics failure jeopardizes a full respiratory response and prevents a rapid return of calcium to basal levels. Together, our results demonstrate that the loss of GDAP1 critically compromises the morphology and function of mitochondria and its relationship with calcium homeostasis in the soma and axons, offering important insight into the cellular mechanisms associated with axonal degeneration of GDAP1-related CMT neuropathies and the relevance that axon length may have.
Collapse
|
10
|
Hu Z, Mao C, Wang H, Zhang Z, Zhang S, Luo H, Tang M, Yang J, Yuan Y, Wang Y, Liu Y, Fan L, Zhang Q, Yao D, Liu F, Schisler JC, Shi C, Xu Y. CHIP protects against MPP +/MPTP-induced damage by regulating Drp1 in two models of Parkinson's disease. Aging (Albany NY) 2021; 13:1458-1472. [PMID: 33472166 PMCID: PMC7834979 DOI: 10.18632/aging.202389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 09/18/2020] [Indexed: 04/22/2023]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD). Carboxyl terminus of Hsp70-interacting protein (CHIP) is a key regulator of mitochondrial dynamics, and mutations in CHIP or deficits in its expression have been associated with various neurological diseases. This study explores the protective role of CHIP in cells and murine PD models. In SH-SY5Y cell line, overexpression of CHIP improved the cell viability and increased the ATP levels upon treatment with 1-methyl-4-phenylpyridinium (MPP+). To achieve CHIP overexpression in animal models, we intravenously injected mice with AAV/BBB, a new serotype of adeno-associated virus that features an enhanced capacity to cross the blood-brain barrier. We also generated gene knock-in mice that overexpressed CHIP in neural tissue. Our results demonstrated that CHIP overexpression in mice suppressed 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced damage, including movement impairments, motor coordination, and spontaneous locomotor activity, as well as loss of dopaminergic neurons. In vitro and in vivo experiments showed that overexpression of CHIP inhibited the pathological increase in Drp1 observed in the PD models, suggesting that CHIP regulates Drp1 degradation to attenuate MPP+/MPTP-induced injury. We conclude that CHIP plays a protective role in MPP+/MPTP-induced PD models. Our experiments further revealed that CHIP maintains the integrity of mitochondria.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Qimeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dabao Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jonathan C. Schisler
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, and Department of Pathology and Lab Medicine at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Chen CX, Li JQ, Dong HL, Liu GL, Bai G, Wu ZY. Identification and functional characterization of novel GDAP1 variants in Chinese patients with Charcot-Marie-Tooth disease. Ann Clin Transl Neurol 2020; 7:2381-2392. [PMID: 33136338 PMCID: PMC7732252 DOI: 10.1002/acn3.51233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To identify and characterize the pathogenicity of novel variants in Chinese patients with Charcot–Marie–Tooth disease. Methods Multiplex ligation‐dependent probe amplification (MLPA) and whole‐exome sequencing (WES) were performed in 30 unrelated CMT patients. Minigene assay was used to verify the effect of a novel splicing variant (c.694+1G>A) on pre‐mRNA. Primary fibroblast cell lines were established from skin biopsies to characterize the biological effects of the novel variants p.L26R and p.S169fs. The mitochondrial structure was observed by an electron microscope. The expression level of protein was analyzed by Western Blotting. Mitochondrial dynamics and mitochondrial membrane potential (MMP, Δψm) were analyzed via immunofluorescence study. Mitochondrial ATP levels were analyzed via bioluminescence assay. The rate of oxygen consumption was measured with a Seahorse Bioscience XF‐96 extracellular flux analyzer. Results We identified 10 pathogenic variants in three known CMT related genes, including three novel variants (p.L26R, p.S169fs, c.694+1G>A) and one known pathogenic variant (p.R120W) in GDAP1. Further, we described the clinical features of patients carrying pathogenic variants in GDAP1 and found that almost all Chinese CMT patients with GDAP1 variants present axonal type. The effect of c.694+1G>A on pre‐mRNA was verified via minigene splice assay. Cellular biological effects showed ultrastructure damage of mitochondrial, reduced protein levels, different patterns of mitochondrial dynamics, decreased mitochondrial membrane potential (Δψm), ATP content, and defects in respiratory capacity in the patient carrying p.L26R and p.S169fs in GDAP1. Interpretation Our results broaden the genetic spectrum of GDAP1 and provided functional evidence for mitochondrial pathways in the pathogenesis of GDAP1 variants.
Collapse
Affiliation(s)
- Cong-Xin Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jia-Qi Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gong-Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ge Bai
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease. Int J Mol Sci 2020; 21:ijms21197419. [PMID: 33049996 PMCID: PMC7582988 DOI: 10.3390/ijms21197419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited peripheral neuropathies. CMT patients typically show slowly progressive muscle weakness and sensory loss in a distal dominant pattern in childhood. The diagnosis of CMT is based on clinical symptoms, electrophysiological examinations, and genetic testing. Advances in genetic testing technology have revealed the genetic heterogeneity of CMT; more than 100 genes containing the disease causative mutations have been identified. Because a single genetic alteration in CMT leads to progressive neurodegeneration, studies of CMT patients and their respective models revealed the genotype-phenotype relationships of targeted genes. Conventionally, rodents and cell lines have often been used to study the pathogenesis of CMT. Recently, Drosophila has also attracted attention as a CMT model. In this review, we outline the clinical characteristics of CMT, describe the advantages and disadvantages of using Drosophila in CMT studies, and introduce recent advances in CMT research that successfully applied the use of Drosophila, in areas such as molecules associated with mitochondria, endosomes/lysosomes, transfer RNA, axonal transport, and glucose metabolism.
Collapse
|
13
|
Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9040313. [PMID: 32326494 PMCID: PMC7222183 DOI: 10.3390/antiox9040313] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying some groups of rare diseases: Friedreich’s ataxia, diseases with neurodegeneration with brain iron accumulation, Charcot-Marie-Tooth as an example of rare neuromuscular disorders, inherited retinal dystrophies, progressive myoclonus epilepsies, and pediatric drug-resistant epilepsies. Despite the discrimination between cause and effect may not be easy on many occasions, all these conditions are Mendelian rare diseases that share oxidative stress as a common factor, and this may represent a potential target for therapies.
Collapse
|
14
|
Wolf C, López del Amo V, Arndt S, Bueno D, Tenzer S, Hanschmann EM, Berndt C, Methner A. Redox Modifications of Proteins of the Mitochondrial Fusion and Fission Machinery. Cells 2020; 9:cells9040815. [PMID: 32230997 PMCID: PMC7226787 DOI: 10.3390/cells9040815] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fusion and fission tailors the mitochondrial shape to changes in cellular homeostasis. Players of this process are the mitofusins, which regulate fusion of the outer mitochondrial membrane, and the fission protein DRP1. Upon specific stimuli, DRP1 translocates to the mitochondria, where it interacts with its receptors FIS1, MFF, and MID49/51. Another fission factor of clinical relevance is GDAP1. Here, we identify and discuss cysteine residues of these proteins that are conserved in phylogenetically distant organisms and which represent potential sites of posttranslational redox modifications. We reveal that worms and flies possess only a single mitofusin, which in vertebrates diverged into MFN1 and MFN2. All mitofusins contain four conserved cysteines in addition to cysteine 684 in MFN2, a site involved in mitochondrial hyperfusion. DRP1 and FIS1 are also evolutionarily conserved but only DRP1 contains four conserved cysteine residues besides cysteine 644, a specific site of nitrosylation. MFF and MID49/51 are only present in the vertebrate lineage. GDAP1 is missing in the nematode genome and contains no conserved cysteine residues. Our analysis suggests that the function of the evolutionarily oldest proteins of the mitochondrial fusion and fission machinery, the mitofusins and DRP1 but not FIS1, might be altered by redox modifications.
Collapse
Affiliation(s)
- Christina Wolf
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
| | - Víctor López del Amo
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sabine Arndt
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (S.A.); (S.T.)
| | - Diones Bueno
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (S.A.); (S.T.)
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (E.-M.H.); (C.B.)
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (E.-M.H.); (C.B.)
| | - Axel Methner
- Institute of Molecular Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (C.W.); (D.B.)
- Correspondence:
| |
Collapse
|
15
|
Prieto J, Ponsoda X, Izpisua Belmonte JC, Torres J. Mitochondrial dynamics and metabolism in induced pluripotency. Exp Gerontol 2020; 133:110870. [PMID: 32045634 DOI: 10.1016/j.exger.2020.110870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are controlled during the phenotypic transformation of a somatic cell into a pluripotent stem cell will be discussed.
Collapse
Affiliation(s)
- Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain.
| |
Collapse
|
16
|
Smith GA, Lin TH, Sheehan AE, Van der Goes van Naters W, Neukomm LJ, Graves HK, Bis-Brewer DM, Züchner S, Freeman MR. Glutathione S-Transferase Regulates Mitochondrial Populations in Axons through Increased Glutathione Oxidation. Neuron 2019; 103:52-65.e6. [PMID: 31101394 PMCID: PMC6616599 DOI: 10.1016/j.neuron.2019.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/13/2018] [Accepted: 04/10/2019] [Indexed: 01/14/2023]
Abstract
Mitochondria are essential in long axons to provide metabolic support and sustain neuron integrity. A healthy mitochondrial pool is maintained by biogenesis, transport, mitophagy, fission, and fusion, but how these events are regulated in axons is not well defined. Here, we show that the Drosophila glutathione S-transferase (GST) Gfzf prevents mitochondrial hyperfusion in axons. Gfzf loss altered redox balance between glutathione (GSH) and oxidized glutathione (GSSG) and initiated mitochondrial fusion through the coordinated action of Mfn and Opa1. Gfzf functioned epistatically with the thioredoxin peroxidase Jafrac1 and the thioredoxin reductase 1 TrxR-1 to regulate mitochondrial dynamics. Altering GSH:GSSG ratios in mouse primary neurons in vitro also induced hyperfusion. Mitochondrial changes caused deficits in trafficking, the metabolome, and neuronal physiology. Changes in GSH and oxidative state are associated with neurodegenerative diseases like Alzheimer's. Our demonstration that GSTs are key in vivo regulators of axonal mitochondrial length and number provides a potential mechanistic link.
Collapse
Affiliation(s)
- Gaynor A Smith
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK.
| | - Tzu-Huai Lin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy E Sheehan
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Lukas J Neukomm
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne VD, Switzerland
| | - Hillary K Graves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana M Bis-Brewer
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
17
|
Calcium Deregulation and Mitochondrial Bioenergetics in GDAP1-Related CMT Disease. Int J Mol Sci 2019; 20:ijms20020403. [PMID: 30669311 PMCID: PMC6359725 DOI: 10.3390/ijms20020403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/17/2022] Open
Abstract
The pathology of Charcot-Marie-Tooth (CMT), a disease arising from mutations in different genes, has been associated with an impairment of mitochondrial dynamics and axonal biology of mitochondria. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause several forms of CMT neuropathy, but the pathogenic mechanisms involved remain unclear. GDAP1 is an outer mitochondrial membrane protein highly expressed in neurons. It has been proposed to play a role in different aspects of mitochondrial physiology, including mitochondrial dynamics, oxidative stress processes, and mitochondrial transport along the axons. Disruption of the mitochondrial network in a neuroblastoma model of GDAP1-related CMT has been shown to decrease Ca2+ entry through the store-operated calcium entry (SOCE), which caused a failure in stimulation of mitochondrial respiration. In this review, we summarize the different functions proposed for GDAP1 and focus on the consequences for Ca2+ homeostasis and mitochondrial energy production linked to CMT disease caused by different GDAP1 mutations.
Collapse
|
18
|
Calpena E, López Del Amo V, Chakraborty M, Llamusí B, Artero R, Espinós C, Galindo MI. The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. Dis Model Mech 2018; 11:dmm.029082. [PMID: 29208631 PMCID: PMC5818072 DOI: 10.1242/dmm.029082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier in Charcot–Marie–Tooth 2K peripheral neuropathy. Drosophila melanogaster has a single junctophilin (jp) gene, as is the case in all invertebrates, which might retain equivalent functions of the four homologous JPH genes present in mammalian genomes. Therefore, owing to the lack of putatively redundant genes, a jpDrosophila model could provide an excellent platform to model the Junctophilin-related diseases, to discover the ancestral functions of the JPH proteins and to reveal new pathways. By up- and downregulation of Jp in a tissue-specific manner in Drosophila, we show that altering its levels of expression produces a phenotypic spectrum characterized by muscular deficits, dilated cardiomyopathy and neuronal alterations. Importantly, our study has demonstrated that Jp modifies the neuronal degeneration in a Drosophila model of Huntington's disease, and it has allowed us to uncover an unsuspected functional relationship with the Notch pathway. Therefore, this Drosophila model has revealed new aspects of Junctophilin function that can be relevant for the disease mechanisms of their human counterparts. Summary: This work reveals that the Drosophila Junctophilin protein has similar functions to its mammalian homologues and uncovers new interactions of potential biomedical interest with Huntingtin and Notch signalling.
Collapse
Affiliation(s)
- Eduardo Calpena
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Víctor López Del Amo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain
| | - Mouli Chakraborty
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Beatriz Llamusí
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menendez Pelayo 4 acc 46010, Valencia, Spain.,Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, c/ Dr Moliner 50, 46100 Burjasot, Spain
| | - Carmen Espinós
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain.,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain
| | - Máximo I Galindo
- Program in Molecular Mechanisms of Disease, Centro de Investigación Príncipe Felipe (CIPF), c/ Eduardo Primo Yúfera no. 3, 46012 Valencia, Spain .,UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, 46012 Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| |
Collapse
|
19
|
Kalmar B, Innes A, Wanisch K, Kolaszynska AK, Pandraud A, Kelly G, Abramov AY, Reilly MM, Schiavo G, Greensmith L. Mitochondrial deficits and abnormal mitochondrial retrograde axonal transport play a role in the pathogenesis of mutant Hsp27-induced Charcot Marie Tooth Disease. Hum Mol Genet 2018; 26:3313-3326. [PMID: 28595321 PMCID: PMC5808738 DOI: 10.1093/hmg/ddx216] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/25/2017] [Indexed: 11/26/2022] Open
Abstract
Mutations in the small heat shock protein Hsp27, encoded by the HSPB1 gene, have been shown to cause Charcot Marie Tooth Disease type 2 (CMT-2) or distal hereditary motor neuropathy (dHMN). Protein aggregation and axonal transport deficits have been implicated in the disease. In this study, we conducted analysis of bidirectional movements of mitochondria in primary motor neuron axons expressing wild type and mutant Hsp27. We found significantly slower retrograde transport of mitochondria in Ser135Phe, Pro39Leu and Arg140Gly mutant Hsp27 expressing motor neurons than in wild type Hsp27 neurons, although anterograde movement velocities remained normal. Retrograde transport of other important cargoes, such as the p75 neurotrophic factor receptor was minimally altered in mutant Hsp27 neurons, implicating that axonal transport deficits primarily affect mitochondria and the axonal transport machinery itself is less affected. Investigation of mitochondrial function revealed a decrease in mitochondrial membrane potential in mutant Hsp27 expressing motor axons, as well as a reduction in mitochondrial complex 1 activity, increased vulnerability of mitochondria to mitochondrial stressors, leading to elevated superoxide release and reduced mitochondrial glutathione (GSH) levels, although cytosolic GSH remained normal. This mitochondrial redox imbalance in mutant Hsp27 motor neurons is likely to cause low level of oxidative stress, which in turn will contribute to, and indeed may be the underlying cause of the deficits in mitochondrial axonal transport. Together, these findings suggest that the mitochondrial abnormalities in mutant Hsp27-induced neuropathies may be a primary cause of pathology, leading to further deficits in the mitochondrial axonal transport and onset of disease.
Collapse
Affiliation(s)
| | - Amy Innes
- Sobell Department of Motor Neuroscience and Movement Disorders.,MRC Centre for Neuromuscular Diseases
| | - Klaus Wanisch
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, Queen Square, London WC1N 3BG, UK
| | | | - Amelie Pandraud
- MRC Centre for Neuromuscular Diseases.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, Queen Square, London WC1N 3BG, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1?1AT, UK
| | | | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, Queen Square, London WC1N 3BG, UK
| | | | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders.,MRC Centre for Neuromuscular Diseases
| |
Collapse
|
20
|
Rzepnikowska W, Kochański A. A role for the GDAP1 gene in the molecular pathogenesis of Charcot-Marie-Tooth disease. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Yamaguchi M, Takashima H. Drosophila Charcot-Marie-Tooth Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:97-117. [PMID: 29951817 DOI: 10.1007/978-981-13-0529-0_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) was initially described in 1886. It is characterized by defects in the peripheral nervous system, including sensory and motor neurons. Although more than 80 CMT-causing genes have been identified to date, an effective therapy has not yet been developed for this disease. Since Drosophila does not have axons surrounded by myelin sheaths or Schwann cells, the establishment of a demyelinating CMT model is not appropriate. In this chapter, after overviewing CMT, examples of Drosophila CMT models with axonal neuropathy and other animal CMT models are described.
Collapse
Affiliation(s)
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
22
|
Melatonin Treatment Reduces Oxidative Damage and Normalizes Plasma Pro-Inflammatory Cytokines in Patients Suffering from Charcot-Marie-Tooth Neuropathy: A Pilot Study in Three Children. Molecules 2017; 22:molecules22101728. [PMID: 29036910 PMCID: PMC6151441 DOI: 10.3390/molecules22101728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a motor and sensory neuropathy comprising a heterogeneous group of inherited diseases. The CMT1A phenotype is predominant in the 70% of CMT patients, with nerve conduction velocity reduction and hypertrophic demyelination. These patients have elevated oxidative stress and chronic inflammation. Currently, there is no effective cure for CMT; herein, we investigated whether melatonin treatment may reduce the inflammatory and oxidative damage in CMT1A patients. Three patients, aged 8–10 years, were treated with melatonin (60 mg at 21:00 h plus 10 mg at 09:00 h), and plasma levels of lipid peroxidation (LPO), nitrites (NOx), IL-1β, IL-2, IL-6, TNF-α, INF-γ, oxidized to reduced glutathione (GSSG/GSH) ratio, and the activities of superoxide dismutase (SOD), glutathione-S transferase (GST), glutathione peroxidase (GPx), and reductase (GRd), were determined in erythrocytes at 3 and 6 months of treatment. Healthy age- and sex-matched subjects were used as controls. The results showed increased activities of SOD, GST, GPx, and GRd in CMT1A patients, which were reduced at 3 and 6 months of treatment. The GSSG/GSH ratio significantly increased in the patients, returning to control values after melatonin treatment. The inflammatory process was confirmed by the elevation of all proinflammatory cytokines measured, which were also normalized by melatonin. LPO and NOx, which also were elevated in the patients, were normalized by melatonin. The results document beneficial effects of the use of melatonin in CMT1A patients to reduce the hyperoxidative and inflammatory condition, which may correlate with a reduction of the degenerative process.
Collapse
|
23
|
Mitochondrial Dynamics: In Cell Reprogramming as It Is in Cancer. Stem Cells Int 2017; 2017:8073721. [PMID: 28484497 PMCID: PMC5412136 DOI: 10.1155/2017/8073721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/19/2017] [Indexed: 12/29/2022] Open
Abstract
Somatic cells can be reprogrammed into a pluripotent cellular state similar to that of embryonic stem cells. Given the significant physiological differences between the somatic and pluripotent cells, cell reprogramming is associated with a profound reorganization of the somatic phenotype at all levels. The remodeling of mitochondrial morphology is one of these dramatic changes that somatic cells have to undertake during cell reprogramming. Somatic cells transform their tubular and interconnected mitochondrial network to the fragmented and isolated organelles found in pluripotent stem cells early during cell reprogramming. Accordingly, mitochondrial fission, the process whereby the mitochondria divide, plays an important role in the cell reprogramming process. Here, we present an overview of the importance of mitochondrial fission in both cell reprogramming and cellular transformation.
Collapse
|
24
|
Molecular pathogenesis of peripheral neuropathies: insights from Drosophila models. Curr Opin Genet Dev 2017; 44:61-73. [PMID: 28213160 DOI: 10.1016/j.gde.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 01/18/2023]
Abstract
Peripheral neuropathies are characterized by degeneration of peripheral motor, sensory and/or autonomic axons, leading to progressive distal muscle weakness, sensory deficits and/or autonomic dysfunction. Acquired peripheral neuropathies, e.g., as a side effect of chemotherapy, are distinguished from inherited peripheral neuropathies (IPNs). Drosophila models for chemotherapy-induced peripheral neuropathy and several IPNs have provided novel insight into the molecular mechanisms underlying axonal degeneration. Forward genetic screens have predictive value for discovery of human IPN genes, and the pathogenicity of novel mutations in known IPN genes can be evaluated in Drosophila. Future screens for genes and compounds that modify Drosophila IPN phenotypes promise to make valuable contributions to unraveling the molecular pathogenesis and identification of therapeutic targets for these incurable diseases.
Collapse
|
25
|
Atkinson D, Nikodinovic Glumac J, Asselbergh B, Ermanoska B, Blocquel D, Steiner R, Estrada-Cuzcano A, Peeters K, Ooms T, De Vriendt E, Yang XL, Hornemann T, Milic Rasic V, Jordanova A. Sphingosine 1-phosphate lyase deficiency causes Charcot-Marie-Tooth neuropathy. Neurology 2017; 88:533-542. [PMID: 28077491 DOI: 10.1212/wnl.0000000000003595] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To identify the unknown genetic cause in a nuclear family with an axonal form of peripheral neuropathy and atypical disease course. METHODS Detailed neurologic, electrophysiologic, and neuropathologic examinations of the patients were performed. Whole exome sequencing of both affected individuals was done. The effect of the identified sequence variations was investigated at cDNA and protein level in patient-derived lymphoblasts. The plasma sphingoid base profile was analyzed. Functional consequences of neuron-specific downregulation of the gene were studied in Drosophila. RESULTS Both patients present an atypical form of axonal peripheral neuropathy, characterized by acute or subacute onset and episodes of recurrent mononeuropathy. We identified compound heterozygous mutations cosegregating with disease and absent in controls in the SGPL1 gene, encoding sphingosine 1-phosphate lyase (SPL). The p.Ser361* mutation triggers nonsense-mediated mRNA decay. The missense p.Ile184Thr mutation causes partial protein degradation. The plasma levels of sphingosine 1-phosphate and sphingosine/sphinganine ratio were increased in the patients. Neuron-specific downregulation of the Drosophila orthologue impaired the morphology of the neuromuscular junction and caused progressive degeneration of the chemosensory neurons innervating the wing margin bristles. CONCLUSIONS We suggest SPL deficiency as a cause of a distinct form of Charcot-Marie-Tooth disease in humans, thus extending the currently recognized clinical and genetic spectrum of inherited peripheral neuropathies. Our data emphasize the importance of sphingolipid metabolism for neuronal function.
Collapse
Affiliation(s)
- Derek Atkinson
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Jelena Nikodinovic Glumac
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Bob Asselbergh
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Biljana Ermanoska
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - David Blocquel
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Regula Steiner
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Alejandro Estrada-Cuzcano
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Kristien Peeters
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Tinne Ooms
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Els De Vriendt
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Xiang-Lei Yang
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Thorsten Hornemann
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland
| | - Vedrana Milic Rasic
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland.
| | - Albena Jordanova
- From the Molecular Neurogenomics Group (D.A., B.E., A.E.-C., K.P., T.O., E.D.V., A.J.), VIB Department of Molecular Genetics (B.A.), University of Antwerp, Belgium; Clinic for Neurology and Psychiatry for Children and Youth (J.N.G), Belgrade, Serbia; Faculty of Medicine (V.M.R.), Clinic for Neurology and Psychiatry for Children and Youth, University of Belgrade, Serbia; Departments of Chemical Physiology and Cell and Molecular Biology (D.B., X.-L.Y.), The Scripps Research Institute, La Jolla, CA; and Institute of Clinical Chemistry (R.S., T.H.), University Hospital Zurich, University of Zurich, Switzerland.
| |
Collapse
|
26
|
López Del Amo V, Palomino-Schätzlein M, Seco-Cervera M, García-Giménez JL, Pallardó FV, Pineda-Lucena A, Galindo MI. A Drosophila model of GDAP1 function reveals the involvement of insulin signalling in the mitochondria-dependent neuromuscular degeneration. Biochim Biophys Acta Mol Basis Dis 2017; 1863:801-809. [PMID: 28065847 DOI: 10.1016/j.bbadis.2017.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/07/2023]
Abstract
Charcot-Marie-Tooth disease is a rare peripheral neuropathy for which there is no specific treatment. Some forms of Charcot-Marie-Tooth are due to mutations in the GDAP1 gene. A striking feature of mutations in GDAP1 is that they have a variable clinical manifestation, according to disease onset and progression, histology and mode of inheritance. Studies in cellular and animal models have revealed a role of GDAP1 in mitochondrial morphology and distribution, calcium homeostasis and oxidative stress. To get a better understanding of the disease mechanism we have generated models of over-expression and RNA interference of the Drosophila Gdap1 gene. In order to get an overview about the changes that Gdap1 mutations cause in our disease model, we have combined a comprehensive determination of the metabolic profile in the flies by nuclear magnetic resonance spectroscopy with gene expression analyses and biophysical tests. Our results revealed that both up- and down-regulation of Gdap1 results in an early systemic inactivation of the insulin pathway before the onset of neuromuscular degeneration, followed by an accumulation of carbohydrates and an increase in the β-oxidation of lipids. Our findings are in line with emerging reports of energy metabolism impairments linked to different types of neural pathologies caused by defective mitochondrial function, which is not surprising given the central role of mitochondria in the control of energy metabolism. The relationship of mitochondrial dynamics with metabolism during neurodegeneration opens new avenues to understand the cause of the disease, and for the discovery of new biomarkers and treatments.
Collapse
Affiliation(s)
- Víctor López Del Amo
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain
| | | | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, Universitat de València, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, Universitat de València, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Federico Vicente Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, Universitat de València, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Antonio Pineda-Lucena
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Máximo Ibo Galindo
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; IDM-Institute of Molecular Recognition, Universidad Politécnica de Valencia, 46022 Valencia, Spain; UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, Valencia, Spain.
| |
Collapse
|
27
|
Prieto J, León M, Ponsoda X, García-García F, Bort R, Serna E, Barneo-Muñoz M, Palau F, Dopazo J, López-García C, Torres J. Dysfunctional mitochondrial fission impairs cell reprogramming. Cell Cycle 2016; 15:3240-3250. [PMID: 27753531 DOI: 10.1080/15384101.2016.1241930] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have recently shown that mitochondrial fission is induced early in reprogramming in a Drp1-dependent manner; however, the identity of the factors controlling Drp1 recruitment to mitochondria was unexplored. To investigate this, we used a panel of RNAi targeting factors involved in the regulation of mitochondrial dynamics and we observed that MiD51, Gdap1 and, to a lesser extent, Mff were found to play key roles in this process. Cells derived from Gdap1-null mice were used to further explore the role of this factor in cell reprogramming. Microarray data revealed a prominent down-regulation of cell cycle pathways in Gdap1-null cells early in reprogramming and cell cycle profiling uncovered a G2/M growth arrest in Gdap1-null cells undergoing reprogramming. High-Content analysis showed that this growth arrest was DNA damage-independent. We propose that lack of efficient mitochondrial fission impairs cell reprogramming by interfering with cell cycle progression in a DNA damage-independent manner.
Collapse
Affiliation(s)
- Javier Prieto
- a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain
| | - Marian León
- a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain
| | - Xavier Ponsoda
- a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain
| | - Francisco García-García
- b Computational Genomics Department , Centro de Investigación Principe Felipe , Valencia , Spain.,c CIBER de Enfermedades Raras (CIBERER), ISCIII , Valencia , Spain
| | - Roque Bort
- d Unidad de Hepatología Experimental, CIBEREHD, IIS La Fe. , Valencia , Spain
| | - Eva Serna
- e Unidad Central de Investigación-INCLIVA, Universidad de Valencia , Valencia , Spain
| | - Manuela Barneo-Muñoz
- c CIBER de Enfermedades Raras (CIBERER), ISCIII , Valencia , Spain.,f Institut de Recerca Pediàtrica Hospital San Joan de Déu , Barcelona , Spain
| | - Francesc Palau
- c CIBER de Enfermedades Raras (CIBERER), ISCIII , Valencia , Spain.,f Institut de Recerca Pediàtrica Hospital San Joan de Déu , Barcelona , Spain
| | - Joaquín Dopazo
- b Computational Genomics Department , Centro de Investigación Principe Felipe , Valencia , Spain.,c CIBER de Enfermedades Raras (CIBERER), ISCIII , Valencia , Spain
| | - Carlos López-García
- a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain
| | - Josema Torres
- a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain
| |
Collapse
|
28
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
29
|
Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Arnauné-Pelloquin L, Davezac N, Mils V, Miquel MC, Rojo M, Belenguer P. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 2015; 90:3-19. [PMID: 26494254 DOI: 10.1016/j.nbd.2015.10.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/16/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are dynamic organelles that continually move, fuse and divide. The dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs, keeps mitochondria in good health by restoring or removing damaged organelles or precipitates cells in apoptosis in cases of severe defects. Mitochondrial fusion and fission are essential in mammals and their disturbances are associated with several diseases. However, while mitochondrial fusion/fission dynamics, and the proteins that control these processes, are ubiquitous, associated diseases are primarily neurological disorders. Accordingly, inactivation of the main actors of mitochondrial fusion/fission dynamics is associated with defects in neuronal development, plasticity and functioning, both ex vivo and in vivo. Here, we present the central actors of mitochondrial fusion and fission and review the role of mitochondrial dynamics in neuronal physiology and pathophysiology. Particular emphasis is placed on the three main actors of these processes i.e. DRP1,MFN1-2, and OPA1 as well as on GDAP1, a protein of the mitochondrial outer membrane preferentially expressed in neurons. This article is part of a Special Issue entitled: Mitochondria & Brain.
Collapse
Affiliation(s)
- A M Bertholet
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - T Delerue
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - A M Millet
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M F Moulis
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - C David
- CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France
| | - M Daloyau
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - L Arnauné-Pelloquin
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - N Davezac
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - V Mils
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M C Miquel
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M Rojo
- CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France.
| | - P Belenguer
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
30
|
Calpena E, Palau F, Espinós C, Galindo MI. Evolutionary History of the Smyd Gene Family in Metazoans: A Framework to Identify the Orthologs of Human Smyd Genes in Drosophila and Other Animal Species. PLoS One 2015; 10:e0134106. [PMID: 26230726 PMCID: PMC4521844 DOI: 10.1371/journal.pone.0134106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023] Open
Abstract
The Smyd gene family code for proteins containing a conserved core consisting of a SET domain interrupted by a MYND zinc finger. Smyd proteins are important in epigenetic control of development and carcinogenesis, through posttranslational modifications in histones and other proteins. Previous reports indicated that the Smyd family is quite variable in metazoans, so a rigorous phylogenetic reconstruction of this complex gene family is of central importance to understand its evolutionary history and functional diversification or conservation. We have performed a phylogenetic analysis of Smyd protein sequences, and our results show that the extant metazoan Smyd genes can be classified in three main classes, Smyd3 (which includes chordate-specific Smyd1 and Smyd2 genes), Smyd4 and Smyd5. In addition, there is an arthropod-specific class, SmydA. While the evolutionary history of the Smyd3 and Smyd5 classes is relatively simple, the Smyd4 class has suffered several events of gene loss, gene duplication and lineage-specific expansions in the animal phyla included in our analysis. A more specific study of the four Smyd4 genes in Drosophila melanogaster shows that they are not redundant, since their patterns of expression are different and knock-down of individual genes can have dramatic phenotypes despite the presence of the other family members.
Collapse
Affiliation(s)
- Eduardo Calpena
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Francesc Palau
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Carmen Espinós
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Máximo Ibo Galindo
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- * E-mail:
| |
Collapse
|
31
|
Zorzano A, Claret M. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front Aging Neurosci 2015; 7:101. [PMID: 26113818 PMCID: PMC4461829 DOI: 10.3389/fnagi.2015.00101] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/11/2015] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy (ADOA). Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.
Collapse
Affiliation(s)
- Antonio Zorzano
- Molecular Medicine Program, Institute of Research in Biomedicine (IRB Barcelona) Barcelona, Spain ; Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Barcelona, Spain
| | - Marc Claret
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Barcelona, Spain ; Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| |
Collapse
|
32
|
Pareyson D, Saveri P, Sagnelli A, Piscosquito G. Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett 2015; 596:66-77. [PMID: 25847151 DOI: 10.1016/j.neulet.2015.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Peripheral nerves have peculiar energetic requirements because of considerable length of axons and therefore correct mitochondria functioning and distribution along nerves is fundamental. Mitochondrial dynamics refers to the continuous change in size, shape, and position of mitochondria within cells. Abnormalities of mitochondrial dynamics produced by mutations in proteins involved in mitochondrial fusion (mitofusin-2, MFN2), fission (ganglioside-induced differentiation-associated protein-1, GDAP1), and mitochondrial axonal transport usually present with a Charcot-Marie-Tooth disease (CMT) phenotype. MFN2 mutations cause CMT type 2A by altering mitochondrial fusion and trafficking along the axonal microtubule system. CMT2A is an axonal autosomal dominant CMT type which in most cases is characterized by early onset and rather severe course. GDAP1 mutations also alter fission, fusion and transport of mitochondria and are associated either with recessive demyelinating (CMT4A) and axonal CMT (AR-CMT2K) and, less commonly, with dominant, milder, axonal CMT (CMT2K). OPA1 (Optic Atrophy-1) is involved in fusion of mitochondrial inner membrane, and its heterozygous mutations lead to early-onset and progressive dominant optic atrophy which may be complicated by other neurological symptoms including peripheral neuropathy. Mutations in several proteins fundamental for the axonal transport or forming the axonal cytoskeleton result in peripheral neuropathy, i.e., CMT, distal hereditary motor neuropathy (dHMN) or hereditary sensory and autonomic neuropathy (HSAN), as well as in hereditary spastic paraplegia. Indeed, mitochondrial transport involves directly or indirectly components of the kinesin superfamily (KIF5A, KIF1A, KIF1B), responsible of anterograde transport, and of the dynein complex and related proteins (DYNC1H1, dynactin, dynamin-2), implicated in retrograde flow. Microtubules, neurofilaments, and chaperones such as heat shock proteins (HSPs) also have a fundamental role in mitochondrial transport and mutations in some of related encoding genes cause peripheral neuropathy (TUBB3, NEFL, HSPB1, HSPB8, HSPB3, DNAJB2). In this review, we address the abnormalities in mitochondrial dynamics and their role in determining CMT disease and related neuropathies.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy.
| | - Paola Saveri
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| | - Anna Sagnelli
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| | - Giuseppe Piscosquito
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| |
Collapse
|
33
|
Barneo-Muñoz M, Juárez P, Civera-Tregón A, Yndriago L, Pla-Martin D, Zenker J, Cuevas-Martín C, Estela A, Sánchez-Aragó M, Forteza-Vila J, Cuezva JM, Chrast R, Palau F. Lack of GDAP1 induces neuronal calcium and mitochondrial defects in a knockout mouse model of charcot-marie-tooth neuropathy. PLoS Genet 2015; 11:e1005115. [PMID: 25860513 PMCID: PMC4393229 DOI: 10.1371/journal.pgen.1005115] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.
Collapse
Affiliation(s)
- Manuela Barneo-Muñoz
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - Paula Juárez
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - Azahara Civera-Tregón
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Laura Yndriago
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - David Pla-Martin
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - Jennifer Zenker
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Carmen Cuevas-Martín
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Anna Estela
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
| | - María Sánchez-Aragó
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jerónimo Forteza-Vila
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Instituto Valenciano de Patología, Catholic University of Valencia, Valencia, Spain
| | - José M. Cuezva
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Francesc Palau
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Valencia and Madrid, Spain
- University of Castilla-La Mancha School of Medicine at Ciudad Real, Ciudad Real, Spain
| |
Collapse
|