1
|
Du R, Zhou C, Chen S, Li T, Lin Y, Xu A, Huang Y, Mei H, Huang X, Tan D, Zheng R, Liang C, Cai Y, Shao Y, Zhang W, Liu L, Zeng C. Atypical phenotypes and novel OCRL variations in southern Chinese patients with Lowe syndrome. Pediatr Nephrol 2024; 39:2377-2391. [PMID: 38589698 DOI: 10.1007/s00467-024-06356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Lowe syndrome is characterized by the presence of congenital cataracts, psychomotor retardation, and dysfunctional proximal renal tubules. This study presents a case of an atypical phenotype, investigates the genetic characteristics of eight children diagnosed with Lowe syndrome in southern China, and performs functional analysis of the novel variants. METHODS Whole-exome sequencing was conducted on eight individuals diagnosed with Lowe syndrome from three medical institutions in southern China. Retrospective collection and analysis of clinical and genetic data were performed, and functional analysis was conducted on the five novel variants. RESULTS In our cohort, the clinical symptoms of the eight Lowe syndrome individuals varied. One patient was diagnosed with Lowe syndrome but did not present with congenital cataracts. Common features among all patients included cognitive impairment, short stature, and low molecular weight proteinuria. Eight variations in the OCRL gene were identified, encompassing three previously reported and five novel variations. Among the novel variations, three nonsense mutations were determined to be pathogenic, and two patients harboring novel missense variations of uncertain significance exhibited severe typical phenotypes. Furthermore, all novel variants were associated with altered protein expression levels and impacted primary cilia formation. CONCLUSION This study describes the first case of an atypical Lowe syndrome patient without congenital cataracts in China and performs a functional analysis of novel variants in the OCRL gene, thereby expanding the understanding of the clinical manifestations and genetic diversity associated with Lowe syndrome.
Collapse
Affiliation(s)
- Rong Du
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Chengcheng Zhou
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Shehong Chen
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Tong Li
- Department of Pediatric Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huifen Mei
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Xiaoli Huang
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Dongdong Tan
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Ruidan Zheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Cuili Liang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yanna Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yongxian Shao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China.
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China.
| |
Collapse
|
2
|
Chen S, Lo CH, Liu Z, Wang Q, Ning K, Li T, Sun Y. Base editing correction of OCRL in Lowe syndrome: ABE-mediated functional rescue in patient-derived fibroblasts. Hum Mol Genet 2024; 33:1142-1151. [PMID: 38557732 DOI: 10.1093/hmg/ddae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Lowe syndrome, a rare X-linked multisystem disorder presenting with major abnormalities in the eyes, kidneys, and central nervous system, is caused by mutations in OCRL gene (NG_008638.1). Encoding an inositol polyphosphate 5-phosphatase, OCRL catalyzes the hydrolysis of PI(4,5)P2 into PI4P. There are no effective targeted treatments for Lowe syndrome. Here, we demonstrate a novel gene therapy for Lowe syndrome in patient fibroblasts using an adenine base editor (ABE) that can efficiently correct pathogenic point mutations. We show that ABE8e-NG-based correction of a disease-causing mutation in a Lowe patient-derived fibroblast line containing R844X mutation in OCRL gene, restores OCRL expression at mRNA and protein levels. It also restores cellular abnormalities that are hallmarks of OCRL dysfunction, including defects in ciliogenesis, microtubule anchoring, α-actinin distribution, and F-actin network. The study indicates that ABE-mediated gene therapy is a feasible treatment for Lowe syndrome, laying the foundation for therapeutic application of ABE in the currently incurable disease.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
| | - Zhiquan Liu
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
| | - Tingting Li
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong district, Shanghai 200120, China
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
- Palo Alto Veterans Administration, 3801 Miranda Avenue, Palo Alto, CA 94304, United States
| |
Collapse
|
3
|
Huang L, Zhang Y, Fu H, Gu W, Mao J. A missense mutant of ocrl1 promotes apoptosis of tubular epithelial cells and disrupts endocytosis and the cell cycle of podocytes in Dent-2 Disease. Cell Commun Signal 2023; 21:256. [PMID: 38049819 PMCID: PMC10696739 DOI: 10.1186/s12964-023-01272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/13/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND This study aimed to identify an orcl1 mutation in a patient with Dent-2 Disease and investigate the underlying mechanisms. METHODS The ocrl1 mutation was identified through exome sequencing. Knockdown of orcl1 and overexpression of the orcl1 mutant were performed in HK-2 and MPC5 cells to study its function, while flow cytometry measured reactive oxygen species (ROS), phosphatidylserine levels, and cell apoptosis. Scanning electron microscopy observed crystal adhesion, while transmission electron microscopy examined kidney tissue pathology. Laser scanning confocal microscopy was used to examine endocytosis, and immunohistochemical and immunofluorescence assays detected protein expression. Additionally, podocyte-specific orcl1 knockout mice were generated to investigate the role of orcl1 in vivo. RESULTS We identified a mutation resulting in the replacement of Histidine with Arginine at position 318 (R318H) in ocrl1 in the proband. orcl1 was widely expressed in the kidney. In vitro experiments showed that knockdown of orcl1 and overexpression of ocrl1 mutant increased ROS, phosphatidylserine exocytosis, crystal adhesion, and cell apoptosis in HK-2 cells. Knockdown of orcl1 in podocytes reduced endocytosis and disrupted the cell cycle while increasing cell migration. In vivo studies in mice showed that conditional deletion of orcl1 in podocytes caused glomerular dysfunction, including proteinuria and fibrosis. CONCLUSION This study identified an R318H mutation in orcl1 in a patient with Dent-2 Disease. This mutation may contribute to renal injury by promoting ROS production and inducing cell apoptosis in tubular cells, while disrupting endocytosis and the cell cycle, and promoting cell migration of podocytes. Video Abstract.
Collapse
Affiliation(s)
- Limin Huang
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine. National Clinical Research Center for Child Health, Hangzhou, China
| | - Yingying Zhang
- Department of Pediatrics, Clinical Center of Pediatric Nephrology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haidong Fu
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine. National Clinical Research Center for Child Health, Hangzhou, China
| | - Weizhong Gu
- Department of Pathologyology, Children's Hospital, Zhejiang University School of Medicine. National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine. National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
4
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
5
|
Morleo M, Vieira HL, Pennekamp P, Palma A, Bento-Lopes L, Omran H, Lopes SS, Barral DC, Franco B. Crosstalk between cilia and autophagy: implication for human diseases. Autophagy 2023; 19:24-43. [PMID: 35613303 PMCID: PMC9809938 DOI: 10.1080/15548627.2022.2067383] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is a self-degradative process necessary for cells to maintain their energy balance during development and in response to nutrient deprivation. Autophagic processes are tightly regulated and have been found to be dysfunctional in several pathologies. Increasing experimental evidence points to the existence of an interplay between autophagy and cilia. Cilia are microtubule-based organelles protruding from the cell surface of mammalian cells that perform a variety of motile and sensory functions and, when dysfunctional, result in disorders known as ciliopathies. Indeed, selective autophagic degradation of ciliary proteins has been shown to control ciliogenesis and, conversely, cilia have been reported to control autophagy. Moreover, a growing number of players such as lysosomal and mitochondrial proteins are emerging as actors of the cilia-autophagy interplay. However, some of the published data on the cilia-autophagy axis are contradictory and indicate that we are just starting to understand the underlying molecular mechanisms. In this review, the current knowledge about this axis and challenges are discussed, as well as the implication for ciliopathies and autophagy-associated disorders.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Helena L.A. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital - IRCCS, Rome, Italy
| | - Liliana Bento-Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy,CONTACT Brunella Franco CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| |
Collapse
|
6
|
Chen C, Hu J, Ling K. The Role of Primary Cilia-Associated Phosphoinositide Signaling in Development. J Dev Biol 2022; 10:51. [PMID: 36547473 PMCID: PMC9785882 DOI: 10.3390/jdb10040051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Primary cilia are microtube-based organelles that extend from the cell surface and function as biochemical and mechanical extracellular signal sensors. Primary cilia coordinate a series of signaling pathways during development. Cilia dysfunction leads to a pleiotropic group of developmental disorders, termed ciliopathy. Phosphoinositides (PIs), a group of signaling phospholipids, play a crucial role in development and tissue homeostasis by regulating membrane trafficking, cytoskeleton reorganization, and organelle identity. Accumulating evidence implicates the involvement of PI species in ciliary defects and ciliopathies. The abundance and localization of PIs in the cell are tightly regulated by the opposing actions of kinases and phosphatases, some of which are recently discovered in the context of primary cilia. Here, we review several cilium-associated PI kinases and phosphatases, including their localization along cilia, function in regulating the ciliary biology under normal conditions, as well as the connection of their disease-associated mutations with ciliopathies.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
A case of Dent disease type 2 with large deletion of OCRL diagnosed after close examination of a school urinary test. CEN Case Rep 2022; 11:366-370. [PMID: 35098431 DOI: 10.1007/s13730-022-00685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022] Open
Abstract
A 7-year-old boy visited our hospital for a detailed examination of proteinuria identified in a school urinary test. He had short stature, misaligned teeth, and mild intellectual disability. A urinary examination identified mild proteinuria and extremely high levels of beta-2 microglobulin. On blood examination, his protein, albumin, and creatinine levels were found to be normal; however, his lactate dehydrogenase and creatinine phosphokinase levels were slightly elevated. Upon histological examination, no abnormalities in glomeruli or tubules were found. Considering these results, we diagnosed our patient with Dent disease type 2 (DD2). Although the whole exome sequencing revealed large deletion of OCRL, which was seen only in Lowe syndrome and not in DD2 previously, our final diagnosis for the patient is DD2. A phenotypic continuum exists between Dent disease and Lowe syndrome, and several factors modify the phenotypes caused by defects in OCRL. Although patients have thus far been diagnosed with DD2 or Lowe syndrome on the basis of their symptoms, accumulation and analysis of cases with OCRL defects may hereafter enable more accurate diagnoses.
Collapse
|
8
|
A 3D Renal Proximal Tubule on Chip Model Phenocopies Lowe Syndrome and Dent II Disease Tubulopathy. Int J Mol Sci 2021; 22:ijms22105361. [PMID: 34069732 PMCID: PMC8161077 DOI: 10.3390/ijms22105361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Lowe syndrome and Dent II disease are X-linked monogenetic diseases characterised by a renal reabsorption defect in the proximal tubules and caused by mutations in the OCRL gene, which codes for an inositol-5-phosphatase. The life expectancy of patients suffering from Lowe syndrome is largely reduced because of the development of chronic kidney disease and related complications. There is a need for physiological human in vitro models for Lowe syndrome/Dent II disease to study the underpinning disease mechanisms and to identify and characterise potential drugs and drug targets. Here, we describe a proximal tubule organ on chip model combining a 3D tubule architecture with fluid flow shear stress that phenocopies hallmarks of Lowe syndrome/Dent II disease. We demonstrate the high suitability of our in vitro model for drug target validation. Furthermore, using this model, we demonstrate that proximal tubule cells lacking OCRL expression upregulate markers typical for epithelial–mesenchymal transition (EMT), including the transcription factor SNAI2/Slug, and show increased collagen expression and deposition, which potentially contributes to interstitial fibrosis and disease progression as observed in Lowe syndrome and Dent II disease.
Collapse
|
9
|
Berquez M, Gadsby JR, Festa BP, Butler R, Jackson SP, Berno V, Luciani A, Devuyst O, Gallop JL. The phosphoinositide 3-kinase inhibitor alpelisib restores actin organization and improves proximal tubule dysfunction in vitro and in a mouse model of Lowe syndrome and Dent disease. Kidney Int 2020; 98:883-896. [PMID: 32919786 PMCID: PMC7550850 DOI: 10.1016/j.kint.2020.05.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Loss-of-function mutations in the OCRL gene, which encodes the phosphatidylinositol [PI] 4,5-bisphosphate [PI(4,5)P2] 5-phosphatase OCRL, cause defective endocytosis and proximal tubule dysfunction in Lowe syndrome and Dent disease 2. The defect is due to increased levels of PI(4,5)P2 and aberrant actin polymerization, blocking endosomal trafficking. PI 3-phosphate [PI(3)P] has been recently identified as a coactivator with PI(4,5)P2 in the actin pathway. Here, we tested the hypothesis that phosphoinositide 3-kinase (PI3K) inhibitors may rescue the endocytic defect imparted by OCRL loss, by rebalancing phosphoinositide signals to the actin machinery. The broad-range PI3K inhibitor copanlisib and class IA p110α PI3K inhibitor alpelisib reduced aberrant actin polymerization in OCRL-deficient human kidney cells in vitro. Levels of PI 3,4,5-trisphosphate, PI(4,5)P2 and PI(3)P were all reduced with alpelisib treatment, and siRNA knockdown of the PI3K catalytic subunit p110α phenocopied the actin phenotype. In a humanized OcrlY/- mouse model, alpelisib reduced endosomal actin staining while restoring stress fiber architecture and levels of megalin at the plasma membrane of proximal tubule cells, reflected by improved endocytic uptake of low molecular weight proteins in vivo. Thus, our findings support the link between phosphoinositide lipids, actin polymerization and endocytic trafficking in the proximal tubule and represent a proof-of-concept for repurposing alpelisib in Lowe syndrome/Dent disease 2.
Collapse
Affiliation(s)
- Marine Berquez
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jonathan R Gadsby
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Richard Butler
- Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Stephen P Jackson
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Valeria Berno
- Experimental Imaging Center, ALEMBIC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| | - Jennifer L Gallop
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Conduit SE, Vanhaesebroeck B. Phosphoinositide lipids in primary cilia biology. Biochem J 2020; 477:3541-3565. [PMID: 32970140 PMCID: PMC7518857 DOI: 10.1042/bcj20200277] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a 'phosphoinositide map' of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E. Conduit
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| |
Collapse
|
11
|
Gianesello L, Del Prete D, Anglani F, Calò LA. Genetics and phenotypic heterogeneity of Dent disease: the dark side of the moon. Hum Genet 2020; 140:401-421. [PMID: 32860533 PMCID: PMC7889681 DOI: 10.1007/s00439-020-02219-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Dent disease is a rare genetic proximal tubulopathy which is under-recognized. Its phenotypic heterogeneity has led to several different classifications of the same disorder, but it is now widely accepted that the triad of symptoms low-molecular-weight proteinuria, hypercalciuria and nephrocalcinosis/nephrolithiasis are pathognomonic of Dent disease. Although mutations on the CLCN5 and OCRL genes are known to cause Dent disease, no such mutations are found in about 25–35% of cases, making diagnosis more challenging. This review outlines current knowledge regarding Dent disease from another perspective. Starting from the history of Dent disease, and reviewing the clinical details of patients with and without a genetic characterization, we discuss the phenotypic and genetic heterogeneity that typifies this disease. We focus particularly on all those confounding clinical signs and symptoms that can lead to a misdiagnosis. We also try to shed light on a concealed aspect of Dent disease. Although it is a proximal tubulopathy, its misdiagnosis may lead to patients undergoing kidney biopsy. In fact, some individuals with Dent disease have high-grade proteinuria, with or without hematuria, as in the clinical setting of glomerulopathy, or chronic kidney disease of uncertain origin. Although glomerular damage is frequently documented in Dent disease patients’ biopsies, there is currently no reliable evidence of renal biopsy being of either diagnostic or prognostic value. We review published histopathology reports of tubular and glomerular damage in these patients, and discuss current knowledge regarding the role of CLCN5 and OCRL genes in glomerular function.
Collapse
Affiliation(s)
- Lisa Gianesello
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Dorella Del Prete
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Franca Anglani
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy.
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| |
Collapse
|
12
|
Incomplete cryptic splicing by an intronic mutation of OCRL in patients with partial phenotypes of Lowe syndrome. J Hum Genet 2020; 65:831-839. [PMID: 32427950 DOI: 10.1038/s10038-020-0773-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 01/03/2023]
Abstract
Mutations of OCRL cause Lowe syndrome, which is characterised by congenital cataracts, infantile hypotonia with mental retardation, and renal tubular dysfunction and Dent-2 disease, which only affects the kidney. While few patients with an intermediate phenotype between these diseases have been reported, the mechanism underlying variability in the phenotype is unclear. We identified an intronic mutation, c.2257-5G>A, in intron 20 of OCRL in an older brother with atypical Lowe syndrome without eye involvement and a younger brother with renal phenotype alone. This mutation created a splice acceptor motif that was accompanied by a cryptic premature termination codon at the junction of exons 20 and 21. The mutation caused incomplete alternative splicing, which created a small amount of wild-type transcript and a relatively large amount of alternatively spliced transcript with a premature termination codon. In the patients' cells, the alternatively spliced transcript was degraded by nonsense-mediated decay and the wild-type transcript was significantly decreased, but not completely depleted. These findings imply that an intronic mutation creating an incomplete alternative splicing acceptor site results in a relatively low level of wild-type OCRL mRNA expression, leading to partial phenotypes of Lowe syndrome.
Collapse
|
13
|
Liu H, Barnes J, Pedrosa E, Herman NS, Salas F, Wang P, Zheng D, Lachman HM. Transcriptome analysis of neural progenitor cells derived from Lowe syndrome induced pluripotent stem cells: identification of candidate genes for the neurodevelopmental and eye manifestations. J Neurodev Disord 2020; 12:14. [PMID: 32393163 PMCID: PMC7212686 DOI: 10.1186/s11689-020-09317-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lowe syndrome (LS) is caused by loss-of-function mutations in the X-linked gene OCRL, which codes for an inositol polyphosphate 5-phosphatase that plays a key role in endosome recycling, clathrin-coated pit formation, and actin polymerization. It is characterized by congenital cataracts, intellectual and developmental disability, and renal proximal tubular dysfunction. Patients are also at high risk for developing glaucoma and seizures. We recently developed induced pluripotent stem cell (iPSC) lines from three patients with LS who have hypomorphic variants affecting the 3' end of the gene, and their neurotypical brothers to serve as controls. METHODS In this study, we used RNA sequencing (RNA-seq) to obtain transcriptome profiles in LS and control neural progenitor cells (NPCs). RESULTS In a comparison of the patient and control NPCs (n = 3), we found 16 differentially expressed genes (DEGs) at the multiple test adjusted p value (padj) < 0.1, with nine at padj < 0.05. Using nominal p value < 0.05, 319 DEGs were detected. The relatively small number of DEGs could be due to the fact that OCRL is not a transcription factor per se, although it could have secondary effects on gene expression through several different mechanisms. Although the number of DEGs passing multiple test correction was small, those that were found are quite consistent with some of the known molecular effects of OCRL protein, and the clinical manifestations of LS. Furthermore, using gene set enrichment analysis (GSEA), we found that genes increased expression in the patient NPCs showed enrichments of several gene ontology (GO) terms (false discovery rate < 0.25): telencephalon development, pallium development, NPC proliferation, and cortex development, which are consistent with a condition characterized by intellectual disabilities and psychiatric manifestations. In addition, a significant enrichment among the nominal DEGs for genes implicated in autism spectrum disorder (ASD) was found (e.g., AFF2, DNER, DPP6, DPP10, RELN, CACNA1C), as well as several that are strong candidate genes for the development of eye problems found in LS, including glaucoma. The most notable example is EFEMP1, a well-known candidate gene for glaucoma and other eye pathologies. CONCLUSION Overall, the RNA-seq findings present several candidate genes that could help explain the underlying basis for the neurodevelopmental and eye problems seen in boys with LS.
Collapse
Affiliation(s)
- Hequn Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jesse Barnes
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nathaniel S. Herman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Franklin Salas
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
14
|
Festa BP, Berquez M, Gassama A, Amrein I, Ismail HM, Samardzija M, Staiano L, Luciani A, Grimm C, Nussbaum RL, De Matteis MA, Dorchies OM, Scapozza L, Wolfer DP, Devuyst O. OCRL deficiency impairs endolysosomal function in a humanized mouse model for Lowe syndrome and Dent disease. Hum Mol Genet 2020; 28:1931-1946. [PMID: 30590522 PMCID: PMC6548226 DOI: 10.1093/hmg/ddy449] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 11/29/2022] Open
Abstract
Mutations in OCRL encoding the inositol polyphosphate 5-phosphatase OCRL (Lowe oculocerebrorenal syndrome protein) disrupt phosphoinositide homeostasis along the endolysosomal pathway causing dysfunction of the cells lining the kidney proximal tubule (PT). The dysfunction can be isolated (Dent disease 2) or associated with congenital cataracts, central hypotonia and intellectual disability (Lowe syndrome). The mechanistic understanding of Dent disease 2/Lowe syndrome remains scarce due to limitations of animal models of OCRL deficiency. Here, we investigate the role of OCRL in Dent disease 2/Lowe syndrome by using OcrlY/− mice, where the lethal deletion of the paralogue Inpp5b was rescued by human INPP5B insertion, and primary culture of proximal tubule cells (mPTCs) derived from OcrlY/− kidneys. The OcrlY/− mice show muscular defects with dysfunctional locomotricity and present massive urinary losses of low-molecular-weight proteins and albumin, caused by selective impairment of receptor-mediated endocytosis in PT cells. The latter was due to accumulation of phosphatidylinositol 4,5–bisphosphate PI(4,5)P2 in endolysosomes, driving local hyper-polymerization of F-actin and impairing trafficking of the endocytic LRP2 receptor, as evidenced in OcrlY/− mPTCs. The OCRL deficiency was also associated with a disruption of the lysosomal dynamic and proteolytic activity. Partial convergence of disease-pathways and renal phenotypes observed in OcrlY/− and Clcn5Y/− mice suggest shared mechanisms in Dent diseases 1 and 2. These studies substantiate the first mouse model of Lowe syndrome and give insights into the role of OCRL in cellular trafficking of multiligand receptors. These insights open new avenues for therapeutic interventions in Lowe syndrome and Dent disease.
Collapse
Affiliation(s)
| | - Marine Berquez
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Alkaly Gassama
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Institute of Human Movement Sciences and Sport, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Hesham M Ismail
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Christian Grimm
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.,Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Robert L Nussbaum
- Department of Medicine and Institute of Human Genetics, University of California, San Francisco, CA, USA.,Invitae Corporation, San Francisco, CA, USA
| | | | - Olivier M Dorchies
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - David Paul Wolfer
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Institute of Human Movement Sciences and Sport, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Bell SJ, Oluonye N, Harding P, Moosajee M. Congenital cataract: a guide to genetic and clinical management. THERAPEUTIC ADVANCES IN RARE DISEASE 2020; 1:2633004020938061. [PMID: 37180497 PMCID: PMC10032449 DOI: 10.1177/2633004020938061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/05/2020] [Indexed: 05/13/2023]
Abstract
Worldwide 20,000-40,000 children with congenital or childhood cataract are born every year with varying degrees and patterns of lens opacification with a broad aetiology. In most cases of bilateral cataract, a causative genetic mutation can be identified, with autosomal dominant inheritance being most common in 44% of cases. Variants in genes involve lens-specific proteins or those that regulate eye development, thus giving rise to other associated ocular abnormalities. Approximately 15% of cases have systemic features, hence paediatric input is essential to minimise comorbidities and support overall development of children at high risk of visual impairment. In some metabolic conditions, congenital cataract may be the presenting sign, and therefore prompt diagnosis is important where there is an available treatment. Multidisciplinary management of children is essential, including ophthalmic surgeons, orthoptists, paediatricians, geneticists and genetic counsellors, and should extend beyond the medical team to include school and local paediatric visual support services. Early surgery and close follow up in ophthalmology is important to optimise visual potential and prevent amblyopia. Routine genetic testing is essential for the complete clinical management of patients, with next-generation sequencing of 115 genes shown to expedite molecular diagnosis, streamline care pathways and inform genetic counselling and reproductive options for the future. Lay abstract Childhood cataract: how to manage patients Cataract is a clouding of the lens in the eye. Cataract occurring in children has many different causes, which may include infections passed from mother to child during pregnancy, trauma, medications and exposure to radiation. In most cases of cataract occurring in both eyes, a genetic cause can be found which may be inherited from parents or occur sporadically in the developing baby itself while in the womb. Cataracts may occur on their own, with other eye conditions or be present with other disorders in the body as part of a syndrome. Genetic testing is important for all children with cataract as it can provide valuable information about cause, inheritance and risk to further children and signpost any other features of the disease in the rest of the body, permitting the assembly of the correct multidisciplinary care team. Genetic testing currently involves screening for mutations in 115 genes already known to cause cataract and has been shown to expedite diagnosis and help better manage children. Genetic counselling services can support families in understanding their diagnosis and inform future family planning. In order to optimise vision, early surgery for cataract in children is important. This is because the brain is still developing and an unobstructed pathway for light to reach the back of the eye is required for normal visual development. Any obstruction (such as cataract) if left untreated may lead to permanent sight impairment or blindness, even if it is removed later. A multidisciplinary team involved in the care of a child with cataract should include ophthalmic surgeons, orthoptists, paediatricians, geneticists and genetic counsellors, and should extend beyond the medical team to include school and local child visual support services. They will help to diagnose and manage systemic conditions, optimise vision potential and help patients and their families access best supportive care.
Collapse
Affiliation(s)
| | - Ngozi Oluonye
- Department of Genetics, Moorfields Eye Hospital,
London, UK
- Department of Ophthalmology, Great Ormond Street
Hospital for Children, London, UK
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology 11-43 Bath Street
London EC1V 9EL, UK
- Department of Genetics, Moorfields Eye Hospital,
London, UK
- Department of Ophthalmology, Great Ormond Street
Hospital for Children, London, UK
| |
Collapse
|
16
|
Gliozzi ML, Espiritu EB, Shipman KE, Rbaibi Y, Long KR, Roy N, Duncan AW, Lazzara MJ, Hukriede NA, Baty CJ, Weisz OA. Effects of Proximal Tubule Shortening on Protein Excretion in a Lowe Syndrome Model. J Am Soc Nephrol 2019; 31:67-83. [PMID: 31676724 DOI: 10.1681/asn.2019020125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/24/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Lowe syndrome (LS) is an X-linked recessive disorder caused by mutations in OCRL, which encodes the enzyme OCRL. Symptoms of LS include proximal tubule (PT) dysfunction typically characterized by low molecular weight proteinuria, renal tubular acidosis (RTA), aminoaciduria, and hypercalciuria. How mutant OCRL causes these symptoms isn't clear. METHODS We examined the effect of deleting OCRL on endocytic traffic and cell division in newly created human PT CRISPR/Cas9 OCRL knockout cells, multiple PT cell lines treated with OCRL-targeting siRNA, and in orcl-mutant zebrafish. RESULTS OCRL-depleted human cells proliferated more slowly and about 10% of them were multinucleated compared with fewer than 2% of matched control cells. Heterologous expression of wild-type, but not phosphatase-deficient, OCRL prevented the accumulation of multinucleated cells after acute knockdown of OCRL but could not rescue the phenotype in stably edited knockout cell lines. Mathematic modeling confirmed that reduced PT length can account for the urinary excretion profile in LS. Both ocrl mutant zebrafish and zebrafish injected with ocrl morpholino showed truncated expression of megalin along the pronephric kidney, consistent with a shortened S1 segment. CONCLUSIONS Our data suggest a unifying model to explain how loss of OCRL results in tubular proteinuria as well as the other commonly observed renal manifestations of LS. We hypothesize that defective cell division during kidney development and/or repair compromises PT length and impairs kidney function in LS patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Nairita Roy
- Department of Pathology, McGowan Institute for Regenerative Medicine, and Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania
| | - Andrew W Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, and Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia; and
| | - Neil A Hukriede
- Department of Developmental Biology, and.,Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine,
| |
Collapse
|
17
|
The Autophagy-Cilia Axis: An Intricate Relationship. Cells 2019; 8:cells8080905. [PMID: 31443299 PMCID: PMC6721705 DOI: 10.3390/cells8080905] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023] Open
Abstract
Primary cilia are microtubule-based organelles protruding from the surface of almost all vertebrate cells. This organelle represents the cell’s antenna which acts as a communication hub to transfer extracellular signals into intracellular responses during development and in tissue homeostasis. Recently, it has been shown that loss of cilia negatively regulates autophagy, the main catabolic route of the cell, probably utilizing the autophagic machinery localized at the peri-ciliary compartment. On the other side, autophagy influences ciliogenesis in a context-dependent manner, possibly to ensure that the sensing organelle is properly formed in a feedback loop model. In this review we discuss the recent literature and propose that the autophagic machinery and the ciliary proteins are functionally strictly related to control both autophagy and ciliogenesis. Moreover, we report examples of diseases associated with autophagic defects which cause cilia abnormalities, and propose and discuss the hypothesis that, at least some of the clinical manifestations observed in human diseases associated to ciliary disfunction may be the result of a perturbed autophagy.
Collapse
|
18
|
Luscher A, Fröhlich F, Barisch C, Littlewood C, Metcalfe J, Leuba F, Palma A, Pirruccello M, Cesareni G, Stagi M, Walther TC, Soldati T, De Camilli P, Swan LE. Lowe syndrome-linked endocytic adaptors direct membrane cycling kinetics with OCRL in Dictyostelium discoideum. Mol Biol Cell 2019; 30:2268-2282. [PMID: 31216233 PMCID: PMC6743453 DOI: 10.1091/mbc.e18-08-0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/17/2019] [Accepted: 06/10/2019] [Indexed: 11/23/2022] Open
Abstract
Mutations of the inositol 5-phosphatase OCRL cause Lowe syndrome (LS), characterized by congenital cataract, low IQ, and defective kidney proximal tubule resorption. A key subset of LS mutants abolishes OCRL's interactions with endocytic adaptors containing F&H peptide motifs. Converging unbiased methods examining human peptides and the unicellular phagocytic organism Dictyostelium discoideum reveal that, like OCRL, the Dictyostelium OCRL orthologue Dd5P4 binds two proteins closely related to the F&H proteins APPL1 and Ses1/2 (also referred to as IPIP27A/B). In addition, a novel conserved F&H interactor was identified, GxcU (in Dictyostelium) and the Cdc42-GEF FGD1-related F-actin binding protein (Frabin) (in human cells). Examining these proteins in D. discoideum, we find that, like OCRL, Dd5P4 acts at well-conserved and physically distinct endocytic stations. Dd5P4 functions in coordination with F&H proteins to control membrane deformation at multiple stages of endocytosis and suppresses GxcU-mediated activity during fluid-phase micropinocytosis. We also reveal that OCRL/Dd5P4 acts at the contractile vacuole, an exocytic osmoregulatory organelle. We propose F&H peptide-containing proteins may be key modifiers of LS phenotypes.
Collapse
Affiliation(s)
- Alexandre Luscher
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Florian Fröhlich
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Department of Genetics and Complex Diseases, Harvard School of Public Health, and Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Clare Littlewood
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Joe Metcalfe
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Florence Leuba
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Anita Palma
- Department of Biology, University of Rome, 00133 Rome, Italy
| | - Michelle Pirruccello
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Gianni Cesareni
- Department of Biology, University of Rome, 00133 Rome, Italy
| | - Massimiliano Stagi
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Tobias C. Walther
- Department of Genetics and Complex Diseases, Harvard School of Public Health, and Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Laura E. Swan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| |
Collapse
|
19
|
Zhou FQ, Wang QW, Liu ZZ, Zhang XL, Wang DN, Dongye MM, Lin HT, Chen WR. Novel mutation in OCRL leading to a severe form of Lowe syndrome. Int J Ophthalmol 2019; 12:1057-1060. [PMID: 31341792 DOI: 10.18240/ijo.2019.07.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate the phenotype and genotype of a family with X-linked recessive Lowe syndrome. METHODS All the members in the Chinese pedigree underwent comprehensive ophthalmologic and systemic examinations. Genomic DNA was isolated from peripheral blood of the pedigree members and 100 unrelated healthy Chinese subjects. Direct sequencing was performed to screen the exons and intron boundaries of OCRL. RESULTS The ophthalmological and systemic examinations suggested that the affected individual had Lowe syndrome. The phenotype in the pedigree is severe and consistent among all the affected individuals except for an individual who additionally suffered from congenital heart disease and laryngeal cartilage dysplasia. Directional Sanger sequencing identified a complex mutation c.(2368_2368delG; c.2370A>C) in the Rho-GTPase activating protein domain. This complex mutation causes termination of protein synthesis at amino acid 824 and result in a new peptide with 823 amino acids (p.Ala790ProfsX34). This mutation was not detected in 100 unrelated healthy Chinese subjects. CONCLUSION Our findings expand the phenotypic and genotypic spectrum of Lowe syndrome.
Collapse
Affiliation(s)
- Feng-Qi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China.,New England College of Optometry, Boston, MA 02115, USA
| | - Qi-Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Zhen-Zhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xu-Lin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Dong-Ni Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Mei-Mei Dongye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Hao-Tian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Wei-Rong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
20
|
Zaniew M, Bökenkamp A, Kolbuc M, La Scola C, Baronio F, Niemirska A, Szczepanska M, Bürger J, La Manna A, Miklaszewska M, Rogowska-Kalisz A, Gellermann J, Zampetoglou A, Wasilewska A, Roszak M, Moczko J, Krzemien A, Runowski D, Siten G, Zaluska-Lesniewska I, Fonduli P, Zurrida F, Paglialonga F, Gucev Z, Paripovic D, Rus R, Said-Conti V, Sartz L, Chung WY, Park SJ, Lee JW, Park YH, Ahn YH, Sikora P, Stefanidis CJ, Tasic V, Konrad M, Anglani F, Addis M, Cheong HI, Ludwig M, Bockenhauer D. Long-term renal outcome in children with OCRL mutations: retrospective analysis of a large international cohort. Nephrol Dial Transplant 2018; 33:85-94. [PMID: 27708066 DOI: 10.1093/ndt/gfw350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022] Open
Abstract
Background Lowe syndrome (LS) and Dent-2 disease (DD2) are disorders associated with mutations in the OCRL gene and characterized by progressive chronic kidney disease (CKD). Here, we aimed to investigate the long-term renal outcome and identify potential determinants of CKD and its progression in children with these tubulopathies. Methods Retrospective analyses were conducted of clinical and genetic data in a cohort of 106 boys (LS: 88 and DD2: 18). For genotype-phenotype analysis, we grouped mutations according to their type and localization. To investigate progression of CKD we used survival analysis by Kaplan-Meier method using stage 3 CKD as the end-point. Results Median estimated glomerular filtration rate (eGFR) was lower in the LS group compared with DD2 (58.8 versus 87.4 mL/min/1.73 m2, P < 0.01). CKD stage II-V was found in 82% of patients, of these 58% and 28% had moderate-to-severe CKD in LS and DD2, respectively. Three patients (3%), all with LS, developed stage 5 of CKD. Survival analysis showed that LS was also associated with a faster CKD progression than DD2 (P < 0.01). On multivariate analysis, eGFR was dependent only on age (b = -0.46, P < 0.001). Localization, but not type of mutations, tended to correlate with eGFR. There was also no significant association between presence of nephrocalcinosis, hypercalciuria, proteinuria and number of adverse clinical events and CKD. Conclusions CKD is commonly found in children with OCRL mutations. CKD progression was strongly related to the underlying diagnosis but did not associate with clinical parameters, such as nephrocalcinosis or proteinuria.
Collapse
Affiliation(s)
- Marcin Zaniew
- Children's Hospital, Poznan, Poland.,Polish Registry of Inherited Tubulopathies (POLtube), Polish Society of Pediatric Nephrology, Poland
| | - Arend Bökenkamp
- Department of Pediatrics, VU Medical Center, Amsterdam, The Netherlands
| | | | - Claudio La Scola
- Nephrology and Dialysis Unit, Department of Woman, Child and Urological Diseases, Azienda Ospedaliero-Universitaria 'Sant'Orsola-Malpighi', Bologna, Italy
| | - Federico Baronio
- Endocrinology Unit, Department of Woman, Child and Urological Diseases, Azienda Ospedaliero-Universitaria 'Sant'Orsola-Malpighi', Bologna, Italy
| | - Anna Niemirska
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Maria Szczepanska
- Chair and Clinical Department of Pediatrics, SMDZ in Zabrze, SUM in Katowice, Katowice, Poland
| | - Julia Bürger
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Angela La Manna
- Department of Pediatrics, II University of Naples, Naples, Italy
| | - Monika Miklaszewska
- Department of Pediatric Nephrology, Collegium Medicum of the Jagiellonian University, Cracow, Poland
| | - Anna Rogowska-Kalisz
- Department of Pediatrics, Immunology and Nephrology, Polish Mothers Memorial Hospital Research Institute, Lódz, Poland
| | - Jutta Gellermann
- Department of Pediatric Nephrology, Charité Universitätsmedizin Berlin, Charité Children's Hospital, Berlin, Germany
| | | | - Anna Wasilewska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Roszak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Moczko
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Dariusz Runowski
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Iga Zaluska-Lesniewska
- Department of Pediatrics, Medical University of Gdansk, Nephrology and Hypertension, Gdansk, Poland
| | | | - Franca Zurrida
- Pediatric Nephrology, Hospital G.Brotzu, Cagliari, Italy
| | - Fabio Paglialonga
- Pediatric Nephrology and Dialysis Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Zoran Gucev
- University Children's Hospital, Medical Faculty Skopje, Skopje, Macedonia
| | - Dusan Paripovic
- Nephrology Department, University Children's Hospital, Belgrade, Serbia
| | - Rina Rus
- Division of Nephrology, University Children's Hospital, Ljubljana, Slovenia
| | | | - Lisa Sartz
- Department of Pediatric and Adolescent Medicine, Skåne University Hospital, Lund, Sweden
| | - Woo Yeong Chung
- Department of Pediatrics, Inje University Busan Paik Hospital, Busan, Korea
| | - Se Jin Park
- Department of Pediatrics, Ajou University Daewoo Hospital, Geoje, Korea
| | - Jung Won Lee
- Department of Pediatrics, Ehwa University Mokdong Hospital, Seoul, Korea
| | - Yong Hoon Park
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| | - Yo Han Ahn
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Przemyslaw Sikora
- Polish Registry of Inherited Tubulopathies (POLtube), Polish Society of Pediatric Nephrology, Poland.,Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | | | - Velibor Tasic
- University Children's Hospital, Medical Faculty Skopje, Skopje, Macedonia
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Franca Anglani
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Department of Medicine, University of Padova, Padova, Italy
| | - Maria Addis
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Detlef Bockenhauer
- University College London, Institute of Child Health and Great Ormond Street Hospital for Children, National Health Service Trust, London, UK
| |
Collapse
|
21
|
Abstract
Phosphoinositides (PIs) play pivotal roles in the regulation of many biological processes. The quality and quantity of PIs is regulated in time and space by the activity of PI kinases and PI phosphatases. The number of PI-metabolizing enzymes exceeds the number of PIs with, in many cases, more than one enzyme controlling the same biochemical step. This would suggest that the PI system has an intrinsic ability to buffer and compensate for the absence of a specific enzymatic activity. However, there are several examples of severe inherited human diseases caused by mutations in one of the PI enzymes, although other enzymes with the same activity are fully functional. The kidney depends strictly on PIs for physiological processes, such as cell polarization, filtration, solute reabsorption, and signal transduction. Indeed, alteration of the PI system in the kidney very often results in pathological conditions, both inherited and acquired. Most of the knowledge of the roles that PIs play in the kidney comes from the study of KO animal models for genes encoding PI enzymes and from the study of human genetic diseases, such as Lowe syndrome/Dent disease 2 and Joubert syndrome, caused by mutations in the genes encoding the PI phosphatases, OCRL and INPP5E, respectively.
Collapse
Affiliation(s)
- Leopoldo Staiano
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy .,University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
22
|
Barnes J, Salas F, Mokhtari R, Dolstra H, Pedrosa E, Lachman HM. Modeling the neuropsychiatric manifestations of Lowe syndrome using induced pluripotent stem cells: defective F-actin polymerization and WAVE-1 expression in neuronal cells. Mol Autism 2018; 9:44. [PMID: 30147856 PMCID: PMC6094927 DOI: 10.1186/s13229-018-0227-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/29/2018] [Indexed: 12/12/2022] Open
Abstract
Background Lowe syndrome (LS) is a rare genetic disorder caused by loss of function mutations in the X-linked gene, OCRL, which codes for inositol polyphosphate 5-phosphatase. LS is characterized by the triad of congenital cataracts, neurodevelopmental impairment (primarily intellectual and developmental disabilities [IDD]), and renal proximal tubular dysfunction. Studies carried out over the years have shown that hypomorphic mutations in OCRL adversely affect endosome recycling and actin polymerization in kidney cells and patient-derived fibroblasts. The renal problem has been traced to an impaired recycling of megalin, a multi-ligand receptor that plays a key role in the reuptake of lipoproteins, amino acids, vitamin-binding proteins, and hormones. However, the neurodevelopmental aspects of the disorder have been difficult to study because the mouse knockout (KO) model does not display LS-related phenotypes. Fortunately, the discovery of induced pluripotent stem (iPS) cells has provided an opportunity to grow patient-specific neurons, which can be used to model neurodevelopmental disorders in vitro, as demonstrated in the many studies that have been published in the past few years in autism spectrum disorders (ASD), schizophrenia (SZ), bipolar disorder (BD), and IDD. Methods We now report the first findings in neurons and neural progenitor cells (NPCs) generated from iPS cells derived from patients with LS and their typically developing male siblings, as well as an isogenic line in which the OCRL gene has been incapacitated by a null mutation generated using CRISPR-Cas9 gene editing. Results We show that neuronal cells derived from patient-specific iPS cells containing hypomorphic variants are deficient in their capacity to produce F-filamentous actin (F-actin) fibers. Abnormalities were also found in the expression of WAVE-1, a component of the WAVE regulatory complex (WRC) that regulates actin polymerization. Curiously, neuronal cells carrying the engineered OCRL null mutation, in which OCRL protein is not expressed, did not show similar defects in F-actin and WAVE-1 expression. This is similar to the apparent lack of a phenotype in the mouse Ocrl KO model, and suggests that in the complete absence of OCRL protein, as opposed to producing a dysfunctional protein, as seen with the hypomorphic variants, there is partial compensation for the F-actin/WAVE-1 regulating function of OCRL. Conclusions Alterations in F-actin polymerization and WRC have been found in a number of genetic subgroups of IDD and ASD. Thus, LS, a very rare genetic condition, is linked to a more expansive family of genes responsible for neurodevelopmental disorders that have shared pathogenic features. Electronic supplementary material The online version of this article (10.1186/s13229-018-0227-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesse Barnes
- 1Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Franklin Salas
- 2Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ryan Mokhtari
- 3Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Hedwig Dolstra
- 4Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Erika Pedrosa
- 2Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert M Lachman
- 1Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,2Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA.,5Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA.,6Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
23
|
Abstract
Lowe syndrome is an X-linked disease that is characterized by congenital cataracts, central hypotonia, intellectual disability and renal Fanconi syndrome. The disease is caused by mutations in OCRL, which encodes an inositol polyphosphate 5-phosphatase (OCRL) that acts on phosphoinositides - quantitatively minor constituents of cell membranes that are nonetheless pivotal regulators of intracellular trafficking. In this Review we summarize the considerable progress made over the past decade in understanding the cellular roles of OCRL in regulating phosphoinositide balance along the endolysosomal pathway, a fundamental system for the reabsorption of proteins and solutes by proximal tubular cells. We discuss how studies of OCRL have led to important discoveries about the basic mechanisms of membrane trafficking and describe the key features and limitations of the currently available animal models of Lowe syndrome. Mutations in OCRL can also give rise to a milder pathology, Dent disease 2, which is characterized by renal Fanconi syndrome in the absence of extrarenal pathologies. Understanding how mutations in OCRL give rise to two clinical entities with differing extrarenal manifestations represents an opportunity to identify molecular pathways that could be targeted to develop treatments for these conditions.
Collapse
|
24
|
Duran D, Jin SC, DeSpenza T, Nelson-Williams C, Cogal AG, Abrash EW, Harris PC, Lieske JC, Shimshak SJ, Mane S, Bilguvar K, DiLuna ML, Günel M, Lifton RP, Kahle KT. Digenic mutations of human OCRL paralogs in Dent's disease type 2 associated with Chiari I malformation. Hum Genome Var 2016; 3:16042. [PMID: 28018608 PMCID: PMC5143364 DOI: 10.1038/hgv.2016.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023] Open
Abstract
OCRL1 and its paralog INPP5B encode phosphatidylinositol 5-phosphatases that localize to the primary cilium and have roles in ciliogenesis. Mutations in OCRL1 cause the X-linked Dent disease type 2 (DD2; OMIM# 300555), characterized by low-molecular weight proteinuria, hypercalciuria, and the variable presence of cataracts, glaucoma and intellectual disability without structural brain anomalies. Disease-causing mutations in INPP5B have not been described in humans. Here, we report the case of an 11-year-old boy with short stature and an above-average IQ; severe proteinuria, hypercalciuria and osteopenia resulting in a vertebral compression fracture; and Chiari I malformation with cervico-thoracic syringohydromyelia requiring suboccipital decompression. Sequencing revealed a novel, de novo DD2-causing 462 bp deletion disrupting exon 3 of OCRL1 and a maternally inherited, extremely rare (ExAC allele frequency 8.4×10−6) damaging missense mutation in INPP5B (p.A51V). This mutation substitutes an evolutionarily conserved amino acid in the protein’s critical PH domain. In silico analyses of mutation impact predicted by SIFT, PolyPhen2, MetaSVM and CADD algorithms were all highly deleterious. Together, our findings report a novel association of DD2 with Chiari I malformation and syringohydromyelia, and document the effects of digenic mutation of human OCRL paralogs. These findings lend genetic support to the hypothesis that impaired ciliogenesis may contribute to the development of Chiari I malformation, and implicates OCRL-dependent PIP3 metabolism in this mechanism.
Collapse
Affiliation(s)
- Daniel Duran
- Department of Neurosurgery, Yale School of Medicine , New Haven, CT, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine , New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale School of Medicine , New Haven, CT, USA
| | - Carol Nelson-Williams
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andrea G Cogal
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine , Rochester, MN, USA
| | - Elizabeth W Abrash
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine , Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA; O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Serena Je Shimshak
- Department of Neurosurgery, Yale School of Medicine , New Haven, CT, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale School of Medicine, Yale University , New Haven, CT, USA
| | - Kaya Bilguvar
- Yale Center for Genome Analysis, Yale School of Medicine, Yale University , New Haven, CT, USA
| | - Michael L DiLuna
- Department of Neurosurgery, Yale School of Medicine , New Haven, CT, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA; Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Rendu J, Montjean R, Coutton C, Suri M, Chicanne G, Petiot A, Brocard J, Grunwald D, Pietri Rouxel F, Payrastre B, Lunardi J, Dorseuil O, Marty I, Fauré J. Functional Characterization and Rescue of a Deep Intronic Mutation in OCRL Gene Responsible for Lowe Syndrome. Hum Mutat 2016; 38:152-159. [PMID: 27790796 DOI: 10.1002/humu.23139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
Abstract
Dent-2 disease and Lowe syndrome are two pathologies caused by mutations in inositol polyphosphate 5-phosphatase OCRL gene. Both conditions share proximal tubulopathy evolving to chronic kidney failure. Lowe syndrome is in addition defined by a bilateral congenital cataract, intellectual disability, and hypotonia. The pathology evolves in two decades to a severe condition with renal complications and a fatal issue. We describe here a proof of principle for a targeted gene therapy on a mutation of the OCRL gene that is associated with Lowe syndrome. The affected patient bears a deep intronic mutation inducing a pseudo-exon inclusion in the mRNA, leading to a OCRL-1 protein loss. An exon-skipping strategy was designed to correct the effect of the mutation in cultured cells. We show that a recombinant U7-modified small RNA efficiently triggered the restoration of normal OCRL expression at mRNA and protein levels in patient's fibroblasts. Moreover, the PI(4,5)P2 accumulation and cellular alterations that are hallmark of OCRL-1 dysfunction were also rescued. Altogether, we provide evidence that the restoration of OCRL-1 protein, even at a reduced level, through RNA-based therapy represents a potential therapeutic approach for patients with OCRL splice mutations.
Collapse
Affiliation(s)
- John Rendu
- Cellular Myology and Pathology, INSERM, U1216, Grenoble, France.,Grenoble Institut of Neurosciences, Université Grenoble Alpes, France.,Biochimie Génétique et Moléculaire, CHU Grenoble Alpes, France
| | - Rodrick Montjean
- Institut Cochin, INSERM U1016, Paris, France.,CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Charles Coutton
- Laboratoire de Génétique Chromosomique, CHU Grenoble Alpes, France
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Gaetan Chicanne
- I2MC, INSERM U1048, Toulouse, France.,Laboratoire d'Hématologie, CHU de Toulouse, France
| | - Anne Petiot
- Cellular Myology and Pathology, INSERM, U1216, Grenoble, France.,Grenoble Institut of Neurosciences, Université Grenoble Alpes, France
| | - Julie Brocard
- Cellular Myology and Pathology, INSERM, U1216, Grenoble, France.,Grenoble Institut of Neurosciences, Université Grenoble Alpes, France
| | - Didier Grunwald
- Cellular Myology and Pathology, INSERM, U1216, Grenoble, France.,Grenoble Institut of Neurosciences, Université Grenoble Alpes, France
| | - France Pietri Rouxel
- Research Center of Myology, INSERM UMRS974, Paris, France.,CNRS FRE3617, UPMC, Paris, France
| | - Bernard Payrastre
- I2MC, INSERM U1048, Toulouse, France.,Laboratoire d'Hématologie, CHU de Toulouse, France
| | - Joel Lunardi
- Cellular Myology and Pathology, INSERM, U1216, Grenoble, France.,Grenoble Institut of Neurosciences, Université Grenoble Alpes, France.,Biochimie Génétique et Moléculaire, CHU Grenoble Alpes, France
| | - Olivier Dorseuil
- Institut Cochin, INSERM U1016, Paris, France.,CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Isabelle Marty
- Cellular Myology and Pathology, INSERM, U1216, Grenoble, France.,Grenoble Institut of Neurosciences, Université Grenoble Alpes, France
| | - Julien Fauré
- Cellular Myology and Pathology, INSERM, U1216, Grenoble, France.,Grenoble Institut of Neurosciences, Université Grenoble Alpes, France.,Biochimie Génétique et Moléculaire, CHU Grenoble Alpes, France
| |
Collapse
|
26
|
Abstract
The oculocerebrorenal syndrome of Lowe is a rare X-linked multisystemic disorder characterized by the triad of congenital cataracts, intellectual disability, and proximal renal tubular dysfunction. Whereas the ocular manifestations and severe muscular hypotonia are the typical first diagnostic clues apparent at birth, the manifestations of incomplete renal Fanconi syndrome are often recognized only later in life. Other characteristic features are progressive severe growth retardation and behavioral problems, with tantrums. Many patients develop a debilitating arthropathy. Treatment is symptomatic, and the life span rarely exceeds 40 years. The causative oculocerebrorenal syndrome of Lowe gene (OCRL) encodes the inositol polyphosphate 5-phosphatase OCRL-1. OCRL variants have not only been found in classic Lowe syndrome, but also in patients with a predominantly renal phenotype classified as Dent disease type 2 (Dent-2). Recent data indicate that there is a phenotypic continuum between Dent-2 disease and Lowe syndrome, suggesting that there are individual differences in the ability to compensate for the loss of enzyme function. Extensive research has demonstrated that OCRL-1 is involved in multiple intracellular processes involving endocytic trafficking and actin skeleton dynamics. This explains the multi-organ manifestations of the disease. Still, the mechanisms underlying the wide phenotypic spectrum are poorly understood, and we are far from a causative therapy. In this review, we provide an update on clinical and molecular genetic findings in Lowe syndrome and the cellular and physiological functions of OCRL-1.
Collapse
|