1
|
Murphy J, Kirk CW, Lambert DM, McGorrian C, Walsh R, McVeigh TP, Prendiville T, Ward D, Galvin J, Lynch SA. Diagnostic yield from cardiac gene testing for inherited cardiac conditions and re-evaluation of pre-ACMG variants of uncertain significance. Ir J Med Sci 2024; 193:1775-1785. [PMID: 38489124 DOI: 10.1007/s11845-024-03650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Inherited cardiomyopathies (HCM, DCM, ACM) and cardiac ion channelopathies (long QT/Brugada syndromes, CPVT) are associated with significant morbidity and mortality; however, diagnosis of a familial pathogenic variant in a proband allows for subsequent cascade screening of their at-risk relatives. AIMS We investigated the diagnostic yield from cardiac gene panel testing and reviewed variants of uncertain significance from patients attending three specialist cardiogenetics services in Ireland in the years 2002 to 2020. RESULTS Reviewing molecular genetic diagnostic reports of 834 patients from 820 families, the initial diagnostic yield of pathogenic/likely pathogenic variants was 237/834 patients (28.4%), increasing to 276/834 patients (33.1%) following re-evaluation of cases with variant(s) of uncertain significance. Altogether, 42/85 patients with VUS reviewed (49.4%) had a re-classification that could change their clinical management. Females were more likely to carry pathogenic/likely pathogenic variants than males (139/374, 37.2% vs 137/460, 29.8%, respectively, p = 0.03), and the diagnostic yields were highest in the 0 to < 2 years age group (6/12, 50.0%) and amongst those tested for cardiomyopathy gene panels (13/35, 37.1%). Variants in the MYBPC3/MYH7 (87/109, 79.8%) and KCNQ1/KCNH2 (91/100, 91.0%) genes were the predominant genetic causes for hypertrophic cardiomyopathy and long QT syndrome, respectively. CONCLUSION Our study highlights the importance of collation and review of pre-ACMG genetic variants to increase diagnostic utility of genetic testing for inherited heart disease. Almost half of patients with pre-ACMG VUS reviewed had their variant re-classified to likely pathogenic/likely benign which resulted in a positive clinical impact for patients and their families.
Collapse
Affiliation(s)
- Jane Murphy
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Claire W Kirk
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Deborah M Lambert
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine McGorrian
- Family Heart Screening Clinic, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Terri P McVeigh
- Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, United Kingdom
| | - Terence Prendiville
- Department of Cardiology, Children's Health Ireland at Crumlin, Crumlin, Dublin 12, Ireland
| | - Deirdre Ward
- Centre for Cardiac Risk in the Young Persons, Tallaght University Hospital, Dublin 24, Ireland
| | - Joseph Galvin
- Family Heart Screening Clinic, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Crumlin, Dublin 12, Ireland
| |
Collapse
|
2
|
Gallego-Delgado M, Cámara-Checa A, Rubio-Alarcón M, Heredero-Jung D, de la Fuente-Blanco L, Rapún J, Plata-Izquierdo B, Pérez-Martín S, Cebrián J, Moreno de Redrojo L, García-Berrocal B, Delpón E, Sánchez PL, Villacorta E, Caballero R. Variable Penetrance and Expressivity of a Rare Pore Loss-of-Function Mutation (p.L889V) of Nav1.5 Channels in Three Spanish Families. Int J Mol Sci 2024; 25:4686. [PMID: 38731905 PMCID: PMC11083067 DOI: 10.3390/ijms25094686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
A novel rare mutation in the pore region of Nav1.5 channels (p.L889V) has been found in three unrelated Spanish families that produces quite diverse phenotypic manifestations (Brugada syndrome, conduction disease, dilated cardiomyopathy, sinus node dysfunction, etc.) with variable penetrance among families. We clinically characterized the carriers and recorded the Na+ current (INa) generated by p.L889V and native (WT) Nav1.5 channels, alone or in combination, to obtain further insight into the genotypic-phenotypic relationships in patients carrying SCN5A mutations and in the molecular determinants of the Nav1.5 channel function. The variant produced a strong dominant negative effect (DNE) since the peak INa generated by p.L889V channels expressed in Chinese hamster ovary cells, either alone (-69.4 ± 9.0 pA/pF) or in combination with WT (-62.2 ± 14.6 pA/pF), was significantly (n ≥ 17, p < 0.05) reduced compared to that generated by WT channels alone (-199.1 ± 44.1 pA/pF). The mutation shifted the voltage dependence of channel activation and inactivation to depolarized potentials, did not modify the density of the late component of INa, slightly decreased the peak window current, accelerated the recovery from fast and slow inactivation, and slowed the induction kinetics of slow inactivation, decreasing the fraction of channels entering this inactivated state. The membrane expression of p.L889V channels was low, and in silico molecular experiments demonstrated profound alterations in the disposition of the pore region of the mutated channels. Despite the mutation producing a marked DNE and reduction in the INa and being located in a critical domain of the channel, its penetrance and expressivity are quite variable among the carriers. Our results reinforce the argument that the incomplete penetrance and phenotypic variability of SCN5A loss-of-function mutations are the result of a combination of multiple factors, making it difficult to predict their expressivity in the carriers despite the combination of clinical, genetic, and functional studies.
Collapse
Affiliation(s)
- María Gallego-Delgado
- Department of Cardiology, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain; (M.G.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
| | - Anabel Cámara-Checa
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - Marcos Rubio-Alarcón
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - David Heredero-Jung
- Department of Biochemistry, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain
| | - Laura de la Fuente-Blanco
- Department of Cardiology, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain; (M.G.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
| | - Josu Rapún
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - Beatriz Plata-Izquierdo
- Department of Pediatrics, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y Leon (SACYL), CIBERCV, 37007 Salamaca, Spain;
| | - Sara Pérez-Martín
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - Jorge Cebrián
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - Lucía Moreno de Redrojo
- Department of Cardiology, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain; (M.G.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
| | - Belén García-Berrocal
- Department of Biochemistry, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain
| | - Eva Delpón
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - Pedro L. Sánchez
- Department of Cardiology, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain; (M.G.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
| | - Eduardo Villacorta
- Department of Cardiology, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain; (M.G.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
| | - Ricardo Caballero
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
3
|
Pironet A, Vandewiele F, Vennekens R. Exploring the role of TRPM4 in calcium-dependent triggered activity and cardiac arrhythmias. J Physiol 2024; 602:1605-1621. [PMID: 37128952 DOI: 10.1113/jp283831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Cardiac arrhythmias pose a major threat to a patient's health, yet prove to be often difficult to predict, prevent and treat. A key mechanism in the occurrence of arrhythmias is disturbed Ca2+ homeostasis in cardiac muscle cells. As a Ca2+-activated non-selective cation channel, TRPM4 has been linked to Ca2+-induced arrhythmias, potentially contributing to translating an increase in intracellular Ca2+ concentration into membrane depolarisation and an increase in cellular excitability. Indeed, evidence from genetically modified mice, analysis of mutations in human patients and the identification of a TRPM4 blocking compound that can be applied in vivo further underscore this hypothesis. Here, we provide an overview of these data in the context of our current understanding of Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Andy Pironet
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frone Vandewiele
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Roberts JD, Chalazan B, Andrade JG, Macle L, Nattel S, Tadros R. Clinical Genetic Testing for Atrial Fibrillation: Are We There Yet? Can J Cardiol 2024; 40:540-553. [PMID: 38551553 DOI: 10.1016/j.cjca.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 11/19/2023] [Indexed: 04/13/2024] Open
Abstract
Important progress has been made toward unravelling the complex genetics underlying atrial fibrillation (AF). Initial studies were aimed to identify monogenic causes; however, it has become increasingly clear that the most common predisposing genetic substrate for AF is polygenic. Despite intensive investigations, there is robust evidence for rare variants for only a limited number of genes and cases. Although the current yield for genetic testing in early onset AF might be modest, there is an increasing appreciation that genetic culprits for potentially life-threatening ventricular cardiomyopathies and channelopathies might initially present with AF. The potential clinical significance of this recognition is highlighted by evidence that suggests that identification of a pathogenic or likely pathogenic rare variant in a patient with early onset AF is associated with an increased risk of death. These findings suggest that it might be warranted to screen patients with early onset AF for these potentially more sinister cardiac conditions. Beyond facilitating the early identification of genetic culprits associated with potentially malignant phenotypes, insight into underlying AF genetic substrates might improve the selection of patients for existing therapies and guide the development of novel ones. Herein, we review the evidence that links genetic factors to AF, then discuss an approach to using genetic testing for early onset AF patients in the present context, and finally consider the potential value of genetic testing in the foreseeable future. Although further work might be necessary before recommending uniform integration of genetic testing in cases of early onset AF, ongoing research increasingly highlights its potential contributions to clinical care.
Collapse
Affiliation(s)
- Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | - Brandon Chalazan
- Division of Biochemical Genetics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason G Andrade
- Centre for Cardiovascular Innovation and Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurent Macle
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
5
|
Chiang DY, Verkerk AO, Victorio R, Shneyer BI, van der Vaart B, Jouni M, Narendran N, Kc A, Sampognaro JR, Vetrano-Olsen F, Oh JS, Buys E, de Jonge B, Shah DA, Kiviniemi T, Burridge PW, Bezzina CR, Akhmanova A, MacRae CA. The Role of MAPRE2 and Microtubules in Maintaining Normal Ventricular Conduction. Circ Res 2024; 134:46-59. [PMID: 38095085 DOI: 10.1161/circresaha.123.323231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Brugada syndrome is associated with loss-of-function SCN5A variants, yet these account for only ≈20% of cases. A recent genome-wide association study identified a novel locus within MAPRE2, which encodes EB2 (microtubule end-binding protein 2), implicating microtubule involvement in Brugada syndrome. METHODS A mapre2 knockout zebrafish model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated protein 9) and validated by Western blot. Larval hearts at 5 days post-fertilization were isolated for voltage mapping and immunocytochemistry. Adult fish hearts were used for ECG, patch clamping, and immunocytochemistry. Morpholinos were injected into embryos at 1-cell stage for knockdown experiments. A transgenic zebrafish line with cdh2 tandem fluorescent timer was used to study adherens junctions. Microtubule plus-end tracking and patch clamping were performed in human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) with MAPRE2 knockdown and knockout, respectively. RESULTS Voltage mapping of mapre2 knockout hearts showed a decrease in ventricular maximum upstroke velocity of the action potential and conduction velocity, suggesting loss of cardiac voltage-gated sodium channel function. ECG showed QRS prolongation in adult knockout fish, and patch clamping showed decreased sodium current density in knockout ventricular myocytes and arrhythmias in knockout iPSC-CMs. Confocal imaging showed disorganized adherens junctions and mislocalization of mature Ncad (N-cadherin) with mapre2 loss of function, associated with a decrease of detyrosinated tubulin. MAPRE2 knockdown in iPSC-CMs led to an increase in microtubule growth velocity and distance, indicating changes in microtubule dynamics. Finally, knockdown of ttl encoding tubulin tyrosine ligase in mapre2 knockout larvae rescued tubulin detyrosination and ventricular maximum upstroke velocity of the action potential. CONCLUSIONS Genetic ablation of mapre2 led to a decrease in voltage-gated sodium channel function, a hallmark of Brugada syndrome, associated with disruption of adherens junctions, decrease of detyrosinated tubulin as a marker of microtubule stability, and changes in microtubule dynamics. Restoration of the detyrosinated tubulin fraction with ttl knockdown led to rescue of voltage-gated sodium channel-related functional parameters in mapre2 knockout hearts. Taken together, our study implicates microtubule dynamics in the modulation of ventricular conduction.
Collapse
Affiliation(s)
- David Y Chiang
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C., R.V., N.N., A.K., J.R.S., F.V.-O., J.S.O., E.B., C.A.M.)
| | - Arie O Verkerk
- Department of Experimental Cardiology, Heart Center (A.O.V., C.R.B.), Academic Medical Center, Amsterdam UMC, the Netherlands
| | - Rachelle Victorio
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C., R.V., N.N., A.K., J.R.S., F.V.-O., J.S.O., E.B., C.A.M.)
| | - Boris I Shneyer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, the Netherlands (B.I.S., B.v.d.V., A.A.)
| | - Babet van der Vaart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, the Netherlands (B.I.S., B.v.d.V., A.A.)
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (M.J., D.A.S., P.W.B.)
| | - Nakul Narendran
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C., R.V., N.N., A.K., J.R.S., F.V.-O., J.S.O., E.B., C.A.M.)
| | - Ashmita Kc
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C., R.V., N.N., A.K., J.R.S., F.V.-O., J.S.O., E.B., C.A.M.)
| | - James R Sampognaro
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C., R.V., N.N., A.K., J.R.S., F.V.-O., J.S.O., E.B., C.A.M.)
| | - Franki Vetrano-Olsen
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C., R.V., N.N., A.K., J.R.S., F.V.-O., J.S.O., E.B., C.A.M.)
| | - John S Oh
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C., R.V., N.N., A.K., J.R.S., F.V.-O., J.S.O., E.B., C.A.M.)
| | - Eva Buys
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C., R.V., N.N., A.K., J.R.S., F.V.-O., J.S.O., E.B., C.A.M.)
| | - Berend de Jonge
- Department of Medical Biology (B.d.J.), Academic Medical Center, Amsterdam UMC, the Netherlands
| | - Disheet A Shah
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (M.J., D.A.S., P.W.B.)
| | - Tuomas Kiviniemi
- Heart Center, Turku University Hospital and University of Turku, Finland (T.K.)
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (M.J., D.A.S., P.W.B.)
| | - Connie R Bezzina
- Department of Experimental Cardiology, Heart Center (A.O.V., C.R.B.), Academic Medical Center, Amsterdam UMC, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, the Netherlands (B.I.S., B.v.d.V., A.A.)
| | - Calum A MacRae
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C., R.V., N.N., A.K., J.R.S., F.V.-O., J.S.O., E.B., C.A.M.)
| |
Collapse
|
6
|
Cheniti G, Haissaguerre M, Dina C, Kamakura T, Duchateau J, Sacher F, Racine HP, Surget E, Simonet F, Gourraud JB, Sridi S, Cochet H, Andre C, Bouyer B, Chauvel R, Tixier R, Derval N, Pambrun T, Dubois R, Jais P, Nademanee K, Redon R, Schott JJ, Probst V, Hocini M, Barc J, Bernus O. Left Ventricular Abnormal Substrate in Brugada Syndrome. JACC Clin Electrophysiol 2023; 9:2041-2051. [PMID: 37480873 DOI: 10.1016/j.jacep.2023.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Slow-conductive structural abnormalities located in the epicardium of the right ventricle (RV) underlie Brugada syndrome (BrS). The extent of such substrate in the left ventricle (LV) has not been investigated. OBJECTIVES This study sought to characterize the extent of epicardial substrate abnormalities in BrS. METHODS We evaluated 22 consecutive patients (mean age 46 ± 11 years, 21 male) referred for recurrent ventricular arrhythmias (mean 10 ± 13 episodes) in the setting of BrS. The patients underwent clinical investigations and wide genetic screening to identify SCN5A mutations and common risk variants. High-density biventricular epicardial mapping was performed to detect prolonged (>70 ms) fragmented electrograms, indicating abnormal substrate area. RESULTS All patients presented with abnormal substrate in the epicardial anterior RV (27 ± 11 cm2). Abnormal substrate was also identified on the LV epicardium in 10 patients (45%), 9 at baseline and 1 after ajmaline infusion, covering 15 ± 11 cm2. Of these, 4 had severe LV fascicular blocks. Patients with LV substrate had a longer history of arrhythmia (11.4 ± 6.7 years vs 4.3 ± 4.3 years; P = 0.003), longer PR (217 ± 24 ms vs 171 ± 14 ms; P < 0.001) and HV (60 ± 12 ms vs 46 ± 5 ms; P = 0.005) intervals, and abnormal substrate also extending into the inferior RV (100% vs 33%; P = 0.001). SCN5A mutation was present in 70% of patients with LV substrate (vs 25%; P = 0.035). SCN5A BrS patients with recurrent ventricular arrhythmias present a higher polygenic risk score compared with a nonselected BrS population (median of differences: -0.86; 95% CI: -1.48 to -0.27; P = 0.02). CONCLUSIONS A subset of patients with BrS present an abnormal substrate extending onto the LV epicardium and inferior RV that is associated with SCN5A mutations and multigenic variants.
Collapse
Affiliation(s)
- Ghassen Cheniti
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France.
| | - Michel Haissaguerre
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Christian Dina
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Tsukasa Kamakura
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France
| | - Josselin Duchateau
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Frederic Sacher
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Hugo-Pierre Racine
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Elodie Surget
- Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Floriane Simonet
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jean-Baptiste Gourraud
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Soumaya Sridi
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Hubert Cochet
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Clementine Andre
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Benjamin Bouyer
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Remi Chauvel
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Romain Tixier
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Nicolas Derval
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Thomas Pambrun
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Remi Dubois
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Pierre Jais
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | | | - Richard Redon
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Vincent Probst
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Meleze Hocini
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| | - Julien Barc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Olivier Bernus
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France; Université de Bordeaux, CRCTB, INSERM, U1045, Pessac, France
| |
Collapse
|
7
|
Boutry S, Helaers R, Lenaerts T, Vikkula M. Rare variant association on unrelated individuals in case-control studies using aggregation tests: existing methods and current limitations. Brief Bioinform 2023; 24:bbad412. [PMID: 37974506 DOI: 10.1093/bib/bbad412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Over the past years, progress made in next-generation sequencing technologies and bioinformatics have sparked a surge in association studies. Especially, genome-wide association studies (GWASs) have demonstrated their effectiveness in identifying disease associations with common genetic variants. Yet, rare variants can contribute to additional disease risk or trait heterogeneity. Because GWASs are underpowered for detecting association with such variants, numerous statistical methods have been recently proposed. Aggregation tests collapse multiple rare variants within a genetic region (e.g. gene, gene set, genomic loci) to test for association. An increasing number of studies using such methods successfully identified trait-associated rare variants and led to a better understanding of the underlying disease mechanism. In this review, we compare existing aggregation tests, their statistical features and scope of application, splitting them into the five classical classes: burden, adaptive burden, variance-component, omnibus and other. Finally, we describe some limitations of current aggregation tests, highlighting potential direction for further investigations.
Collapse
Affiliation(s)
- Simon Boutry
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5) bte B1.74.06, 1200 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussels, 1050 Brussels, Belgium
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5) bte B1.74.06, 1200 Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussels, 1050 Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Artificial Intelligence laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Avenue Hippocrate 74 (+5) bte B1.74.06, 1200 Brussels, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
8
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Chui MMC, Mak CCY, Yu MHC, Wong SYY, Lun KS, Yung TC, Kwong AKY, Chow PC, Chung BHY. Evaluating High-Confidence Genes in Conotruncal Cardiac Defects by Gene Burden Analyses. J Am Heart Assoc 2023; 12:e028226. [PMID: 36789878 PMCID: PMC10111484 DOI: 10.1161/jaha.122.028226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background In nonsyndromic conotruncal cardiac defects, the use of next-generation sequencing for clinical diagnosis is increasingly adopted, but gene-disease associations in research are only partially translated to diagnostic panels, suggesting a need for evidence-based consensus. Methods and Results In an exome data set of 245 patients with conotruncal cardiac defects, we performed burden analysis on a high-confidence congenital heart disease gene list (n=132) with rare (<0.01%) and ultrarare (absent in the Genome Aggregation Database) protein-altering variants. Overall, we confirmed an excess of rare variants compared with ethnicity-matched controls and identified 2 known genes (GATA6, NOTCH1) and 4 candidate genes supported by the literature (ANKRD11, DOCK6, NPHP4, and STRA6). Ultrarare variant analysis was performed in combination with 3 other published studies (n=1451) and identified 3 genes (FLT4, NOTCH1, TBX1) to be significant, whereas a subgroup analysis involving 391 Chinese subjects identified only GATA6 as significant. Conclusions We suggest that these significant genes in our rare and ultrarare burden analyses warrant prioritization for clinical testing implied for rare inherited and de novo variants. Additionally, associations on ClinVar for these genes were predominantly variants of uncertain significance. Therefore, a more stringent assessment of gene-disease associations in a larger and ethnically diverse cohort is required to be prudent for future curation of conotruncal cardiac defect genes.
Collapse
Affiliation(s)
- Martin M C Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Mullin H C Yu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Sandra Y Y Wong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Kin-Shing Lun
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Tak-Cheung Yung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Anna K Y Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Pak-Cheong Chow
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine Queen Mary Hospital Hong Kong SAR China
| |
Collapse
|
10
|
Chitcharoen S, Phokaew C, Mauleekoonphairoj J, Khongphatthanayothin A, Sutjaporn B, Wandee P, Poovorawan Y, Nademanee K, Payungporn S. Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome. Genomics Inform 2022; 20:e44. [PMID: 36617651 PMCID: PMC9847385 DOI: 10.5808/gi.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/25/2022] [Indexed: 12/31/2022] Open
Abstract
Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performeda new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipelinewas applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had noviral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases andcontrols by blastn and blastx analysis. This study is the first report on the full-length HERV-Kassembled genomes in the Thai population. Furthermore, the HERV-K integration breakpointpositions were validated and compared between the case and control datasets. Interestingly,Brugada cases contained HERV-K integration breakpoints at promoters five times more oftenthan controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positionsthat were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and longnon-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the humangenome.
Collapse
Affiliation(s)
- Suwalak Chitcharoen
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand,Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand,Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author: E-mail:
| | - John Mauleekoonphairoj
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichai Khongphatthanayothin
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Bangkok General Hospital, Bangkok 10330, Thailand
| | - Boosamas Sutjaporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand,Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pharawee Wandee
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koonlawee Nademanee
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Pacific Rim Electrophysiology Research Institute, Bumrungrad Hospital, Bangkok 10110, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author: E-mail:
| |
Collapse
|
11
|
Genetic Profile and Clinical Characteristics of Brugada Syndrome in the Chinese Population. J Cardiovasc Dev Dis 2022; 9:jcdd9110369. [DOI: 10.3390/jcdd9110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Brugada syndrome (BrS) is an inheritable arrhythmia syndrome that can lead to sudden cardiac death in patients while the heart structure is normal. However, the genetic background of more than 65% of BrS probands remains unclear. Objectives: The purpose of this study is to report the variant spectrum in a Chinese cohort with suspected BrS and to analyze their distinct clinical and electrocardiographic features. Methods: Patients with suspected BrS from Tongji Hospital between 2008 and 2021 were analyzed retrospectively. Results: A total of 79 probands were included in this study. Patients with type 1 BrS electrocardiogram (ECG) had a prolonged QRS duration compared to patients with type 2/3 BrS ECG. Of them, 59 probands underwent genetic testing. Twenty-five patients (42.37%) showed abnormal genetic testing results, and eight of them (13.56%) carried pathogenic/likely pathogenic (P/LP) mutations. Mutation carriers presented much more prominent depolarization and repolarization abnormalities than non-carriers, including a prolonged P-wave duration, QRS duration, QTc interval, decreased QRS amplitude, and deviation of the electrocardiographic axes (T-wave axis and R-wave axis). Furthermore, our study identified four novel P/LP mutations: Q3508X in TTN, A990G in KCNH2, G1220E, and D372H (in a representative pedigree) in SCN5A. Conclusions: Our study showed the variant spectrum of a suspected Chinese BrS cohort, and we identified four novel P/LP mutations in TTN, KCNH2, and SCN5A.
Collapse
|
12
|
Di Resta C, Berg J, Villatore A, Maia M, Pili G, Fioravanti F, Tomaiuolo R, Sala S, Benedetti S, Peretto G. Concealed Substrates in Brugada Syndrome: Isolated Channelopathy or Associated Cardiomyopathy? Genes (Basel) 2022; 13:1755. [PMID: 36292641 PMCID: PMC9602309 DOI: 10.3390/genes13101755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 09/07/2024] Open
Abstract
Brugada syndrome (BrS) is an inherited autosomal dominant genetic disorder responsible for sudden cardiac death from malignant ventricular arrhythmia. The term "channelopathy" is nowadays used to classify BrS as a purely electrical disease, mainly occurring secondarily to loss-of-function mutations in the α subunit of the cardiac sodium channel protein Nav1.5. In this setting, arrhythmic manifestations of the disease have been reported in the absence of any apparent structural heart disease or cardiomyopathy. Over the last few years, however, a consistent amount of evidence has grown in support of myocardial structural and functional abnormalities in patients with BrS. In detail, abnormal ventricular dimensions, either systolic or diastolic dysfunctions, regional wall motion abnormalities, myocardial fibrosis, and active inflammatory foci have been frequently described, pointing to alternative mechanisms of arrhythmogenesis which challenge the definition of channelopathy. The present review aims to depict the status of the art of concealed arrhythmogenic substrates in BrS, often resulting from an advanced and multimodal diagnostic workup, to foster future preclinical and clinical research in support of the cardiomyopathic nature of the disease.
Collapse
Affiliation(s)
- Chiara Di Resta
- Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Jan Berg
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Villatore
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marianna Maia
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianluca Pili
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Fioravanti
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rossella Tomaiuolo
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Simone Sala
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Benedetti
- UOC Screening Neonatale e Malattie Metaboliche, ASST Fatebenefratelli Sacco Ospedale dei Bambini “Vittore Buzzi”, 20157 Milan, Italy
| | - Giovanni Peretto
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
13
|
Antzelevitch C, Di Diego JM. J wave syndromes: What's new? Trends Cardiovasc Med 2022; 32:350-363. [PMID: 34256120 PMCID: PMC8743304 DOI: 10.1016/j.tcm.2021.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Among the inherited ion channelopathies associated with potentially life-threatening ventricular arrhythmia syndromes in nominally structurally normal hearts are the J wave syndromes, which include the Brugada (BrS) and early repolarization (ERS) syndromes. These ion channelopathies are responsible for sudden cardiac death (SCD), most often in young adults in the third and fourth decade of life. Our principal goal in this review is to briefly outline the clinical characteristics, as well as the molecular, ionic, cellular, and genetic mechanisms underlying these primary electrical diseases that have challenged the cardiology community over the past two decades. In addition, we discuss our recently developed whole-heart experimental model of BrS, providing compelling evidence in support of the repolarization hypothesis for the BrS phenotype as well as novel findings demonstrating that voltage-gated sodium and transient outward current channels can modulate each other's function via trafficking and gating mechanisms with implications for improved understanding of the genetics of both cardiac and neuronal syndromes.
Collapse
Affiliation(s)
- Charles Antzelevitch
- Distinguished Professor Emeritus and Executive Director, Cardiovascular Research, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; Lankenau Institute for Medical Research, Wynnwoddm PA USA; Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia PA, USA.
| | | |
Collapse
|
14
|
Zhao Y, Jiang D, Xia Y. Editorial: Epigenetic and transcriptional networks underlying ventricular and atrial arrhythmias. Front Cardiovasc Med 2022; 9:978891. [PMID: 35966545 PMCID: PMC9372575 DOI: 10.3389/fcvm.2022.978891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, China,*Correspondence: Yuanyuan Zhao
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China,Dingsheng Jiang
| | - Yong Xia
- Division of Cardiology, Department of Molecular and Cellular Biochemistry, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States,Yong Xia
| |
Collapse
|
15
|
Mareddy C, ScM MT, McDaniel G, Monfredi O. Exercise in the Genetic Arrhythmia Syndromes - A Review. Clin Sports Med 2022; 41:485-510. [PMID: 35710274 DOI: 10.1016/j.csm.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Provide a brief summary of your article (100-150 words; no references or figures/tables). The synopsis appears only in the table of contents and is often used by indexing services such as PubMed. Genetic arrhythmia syndromes are rare, yet harbor the potential for highly consequential, often unpredictable arrhythmias or sudden death events. There has been historical uncertainty regarding the correct advice to offer to affected patients who are reasonably wanting to participate in sporting and athletic endeavors. In some cases, this had led to abundantly cautious disqualifications, depriving individuals from participation unnecessarily. Societal guidance and expert opinion has evolved significantly over the last decade or 2, along with our understanding of the genetics and natural history of these conditions, and the emphasis has switched toward shared decision making with respect to the decision to participate or not, with patients and families becoming better informed, and willing participants in the decision making process. This review aims to give a brief update of the salient issues for the busy physician concerning these syndromes and to provide a framework for approaching their management in the otherwise aspirational or keen sports participant.
Collapse
Affiliation(s)
- Chinmaya Mareddy
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, 1215 Lee St, Charlottesville, VA 22908, USA
| | - Matthew Thomas ScM
- Department of Pediatrics, P.O. Box 800386, Charlottesville, VA 22908, USA
| | - George McDaniel
- Department of Pediatric Cardiology, Battle Building 6th Floor, 1204 W. Main St, Charlottesville, VA 22903, USA
| | - Oliver Monfredi
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, 1215 Lee St, Charlottesville, VA 22908, USA.
| |
Collapse
|
16
|
Soh MS, Bagnall RD, Semsarian C, Scheffer IE, Berkovic SF, Reid CA. Rare SUDEP SCN5A variants cause changes in channel function implicating cardiac arrhythmia as a cause of death. Epilepsia 2022; 63:e57-e62. [PMID: 35397174 DOI: 10.1111/epi.17254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
Abstract
Sudden Unexpected Death in Epilepsy (SUDEP) is a leading cause of premature death in epilepsy. The underlying pathological mechanisms are likely to be multi-factorial. Cardiac arrhythmia has been suggested as a cause of death in some patients with SUDEP. SCN5A encodes the cardiac Nav 1.5 sodium channel. SCN5A variants that result in either loss or gain of channel function cause cardiac arrhythmias. Rare SCN5A variants have been reported in SUDEP cases but the impact of these variants on channel function is unknown. Here we use whole-cell voltage clamp recordings to perform functional analyses of rare SCN5A SUDEP variants, p.V223G, p.I397V and p.R523C. Expression and biophysical properties including activation, inactivation and recovery from inactivation were probed. Each SCN5A variant significantly impacted human NaV 1.5 channel function indicating that they could cause cardiac arrhythmias. The patient carrying the p.R523C variant was on lamotrigine, an antiseizure medication implicated in SUDEP. Therapeutic concentration of lamotrigine caused a slowing of the rate of recovery from inactivation and a hyperpolarizing shift in the voltage of inactivation of human NaV 1.5 wild-type, but not p.R523C channels, implicating a gene-by-drug interaction. These data suggest that SCN5A arrhythmogenic variants may confer increased risk of sudden death in individuals with epilepsy.
Collapse
Affiliation(s)
- Ming S Soh
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Ingrid E Scheffer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, VIC, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
17
|
Krahn AD, Behr ER, Hamilton R, Probst V, Laksman Z, Han HC. Brugada Syndrome. JACC Clin Electrophysiol 2022; 8:386-405. [PMID: 35331438 DOI: 10.1016/j.jacep.2021.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Brugada syndrome (BrS) is an "inherited" condition characterized by predisposition to syncope and cardiac arrest, predominantly during sleep. The prevalence is ∼1:2,000, and is more commonly diagnosed in young to middle-aged males, although patient sex does not appear to impact prognosis. Despite the perception of BrS being an inherited arrhythmia syndrome, most cases are not associated with a single causative gene variant. Electrocardiogram (ECG) findings support variable extent of depolarization and repolarization changes, with coved ST-segment elevation ≥2 mm and a negative T-wave in the right precordial leads. These ECG changes are often intermittent, and may be provoked by fever or sodium channel blocker challenge. Growing evidence from cardiac imaging, epicardial ablation, and pathology studies suggests the presence of an epicardial arrhythmic substrate within the right ventricular outflow tract. Risk stratification aims to identify those who are at increased risk of sudden cardiac death, with well-established factors being the presence of spontaneous ECG changes and a history of cardiac arrest or cardiogenic syncope. Current management involves conservative measures in asymptomatic patients, including fever management and drug avoidance. Symptomatic patients typically undergo implantable cardioverter defibrillator insertion, with quinidine and epicardial ablation used for patients with recurrent arrhythmia. This review summarizes our current understanding of BrS and provides clinicians with a practical approach to diagnosis and management.
Collapse
Affiliation(s)
- Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group and Cardiology Research Centre, St. George's, University of London and St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Robert Hamilton
- Department of Pediatrics (Cardiology), The Labatt Family Heart Centre and Translational Medicine, The Hospital for Sick Children & Research Institute and the University of Toronto, Toronto, Canada
| | - Vincent Probst
- Cardiologic Department and Reference Center for Hereditary Arrhythmic Diseases, Nantes University Hospital, Nantes, France
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui-Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Barc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, Jurgens SJ, Baudic M, Nicastro M, Potet F, Offerhaus JA, Walsh R, Choi SH, Verkerk AO, Mizusawa Y, Anys S, Minois D, Arnaud M, Duchateau J, Wijeyeratne YD, Muir A, Papadakis M, Castelletti S, Torchio M, Ortuño CG, Lacunza J, Giachino DF, Cerrato N, Martins RP, Campuzano O, Van Dooren S, Thollet A, Kyndt F, Mazzanti A, Clémenty N, Bisson A, Corveleyn A, Stallmeyer B, Dittmann S, Saenen J, Noël A, Honarbakhsh S, Rudic B, Marzak H, Rowe MK, Federspiel C, Le Page S, Placide L, Milhem A, Barajas-Martinez H, Beckmann BM, Krapels IP, Steinfurt J, Winkel BG, Jabbari R, Shoemaker MB, Boukens BJ, Škorić-Milosavljević D, Bikker H, Manevy FC, Lichtner P, Ribasés M, Meitinger T, Müller-Nurasyid M, Veldink JH, van den Berg LH, Van Damme P, Cusi D, Lanzani C, Rigade S, Charpentier E, Baron E, Bonnaud S, Lecointe S, Donnart A, Le Marec H, Chatel S, Karakachoff M, Bézieau S, London B, Tfelt-Hansen J, Roden D, Odening KE, Cerrone M, Chinitz LA, Volders PG, van de Berg MP, Laurent G, Faivre L, Antzelevitch C, Kääb S, Arnaout AA, Dupuis JM, Pasquie JL, Billon O, Roberts JD, Jesel L, Borggrefe M, Lambiase PD, Mansourati J, Loeys B, Leenhardt A, Guicheney P, Maury P, Schulze-Bahr E, Robyns T, Breckpot J, Babuty D, Priori SG, Napolitano C, de Asmundis C, Brugada P, Brugada R, Arbelo E, Brugada J, Mabo P, Behar N, Giustetto C, Molina MS, Gimeno JR, Hasdemir C, Schwartz PJ, Crotti L, McKeown PP, Sharma S, Behr ER, Haissaguerre M, Sacher F, Rooryck C, Tan HL, Remme CA, Postema PG, Delmar M, Ellinor PT, Lubitz SA, Gourraud JB, Tanck MW, George AL, MacRae CA, Burridge PW, Dina C, Probst V, Wilde AA, Schott JJ, Redon R, Bezzina CR. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat Genet 2022; 54:232-239. [PMID: 35210625 DOI: 10.1038/s41588-021-01007-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.
Collapse
Affiliation(s)
- Julien Barc
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France. .,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, .
| | - Rafik Tadros
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Charlotte Glinge
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - David Y Chiang
- Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Floriane Simonet
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Sean J Jurgens
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manon Baudic
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Michele Nicastro
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Franck Potet
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joost A Offerhaus
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Yuka Mizusawa
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Soraya Anys
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Damien Minois
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Marine Arnaud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Josselin Duchateau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Yanushi D Wijeyeratne
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.,Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Alison Muir
- Cardiology, Belfast Health and Social Care Trust and Queen's University Belfast, Belfast, UK
| | - Michael Papadakis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.,Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Silvia Castelletti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Margherita Torchio
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Cristina Gil Ortuño
- Cardiogenetic, Unidad de Cardiopatías Familiares, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, Murcia, Spain
| | - Javier Lacunza
- Cardiology, Unidad de Cardiopatías Familiares, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Daniela F Giachino
- Clinical and Biological Sciences, Medical Genetics, University of Torino, Orbassano, Italy.,Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Natascia Cerrato
- Medical Sciences, Cardiology, University of Torino, Torino, Italy
| | - Raphaël P Martins
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Medical Science Department, University of Girona, Girona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Biochemistry and Molecular Genetics Department, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Sonia Van Dooren
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Centre for Medical Genetics, research group Reproduction and Genetics, research cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Aurélie Thollet
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Florence Kyndt
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Andrea Mazzanti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | - Anniek Corveleyn
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Birgit Stallmeyer
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Sven Dittmann
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Johan Saenen
- Cardiology, Electrophysiology - Cardiogenetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Antoine Noël
- Department of Cardiology, University Hospital of Brest, Brest, France
| | | | - Boris Rudic
- Department 1st of Medicine, Cardiology, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Halim Marzak
- Department of Cardiology, University Hospital of Strasbourg, Strasbourg, France
| | - Matthew K Rowe
- Medicine, Cardiology, Western University, London, Ontario, Canada
| | - Claire Federspiel
- Department of Cardiovascular Medicine, Vendée Hospital, Service de Cardiologie, La Roche sur Yon, France
| | | | - Leslie Placide
- Department of Cardiology, CHU Montpellier, Montpellier, France
| | - Antoine Milhem
- Department of Cardiology, CH La Rochelle, La Rochelle, France
| | | | - Britt-Maria Beckmann
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,University Hospital of the Johann Wolfgang Goethe University Frankfurt, Institute of Legal Medicine, Frankfurt, Germany
| | - Ingrid P Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johannes Steinfurt
- Department of Cardiology and Angiology I, Heart Center, University Freiburg, Freiburg, Germany
| | - Bo Gregers Winkel
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Reza Jabbari
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Moore B Shoemaker
- Medicine, Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bas J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Doris Škorić-Milosavljević
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hennie Bikker
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Genome Diagnostics Laboratory, Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Federico C Manevy
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marta Ribasés
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,IBE, LMU Munich, Munich, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philip Van Damme
- Neurology Department University Hospital Leuven, Neuroscience Department KU Leuven, Center for Brain & Disease Research VIB, Leuven, Belgium
| | - Daniele Cusi
- Scientific Unit, Bio4Dreams - Business Nursery for Life Sciences, Milan, Italy
| | - Chiara Lanzani
- Nephrology, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Milan, Italy
| | - Sidwell Rigade
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Eric Charpentier
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Estelle Baron
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphanie Bonnaud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Simon Lecointe
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Audrey Donnart
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Hervé Le Marec
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphanie Chatel
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Matilde Karakachoff
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphane Bézieau
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Barry London
- Department of Internal Medicine, Division of Cardiovascular Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jacob Tfelt-Hansen
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dan Roden
- Medicine, Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Medicine, Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Medicine, Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University Freiburg, Freiburg, Germany.,Department of Cardiology, Translational Cardiology, University Hospital Bern, Bern, Switzerland
| | - Marina Cerrone
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | - Larry A Chinitz
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | - Paul G Volders
- Department of Cardiology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maarten P van de Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriel Laurent
- Cardiology Department, ImVia lab team IFTIM, University Hospital Dijon, Dijon, France
| | | | | | - Stefan Kääb
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partnersite Munich, Munich, Germany
| | | | | | - Jean-Luc Pasquie
- Department of Cardiology, CNRS UMR9214 - Inserm U1046 - PHYMEDEXP, Université de Montpellier et CHU Montpellier, Montpellier, France
| | - Olivier Billon
- Department of Cardiovascular Medicine, Vendée Hospital, Service de Cardiologie, La Roche sur Yon, France
| | - Jason D Roberts
- Medicine, Cardiology, Western University, London, Ontario, Canada
| | - Laurence Jesel
- Department of Cardiology, University Hospital of Strasbourg, Strasbourg, France.,INSERM 1260 - Regenerative Nanomedecine, University of Strasbourg, Strasbourg, France
| | - Martin Borggrefe
- Department 1st of Medicine, Cardiology, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Pier D Lambiase
- Cardiology, Medicine, Barts Heart Centre, London, UK.,Institute of Cardiovasculr Science, UCL, Population Health, UCL, London, UK
| | | | - Bart Loeys
- Center for Medical Genetics, Cardiogenetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Antoine Leenhardt
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Cardiology, Hopital Bichat, Paris, France
| | - Pascale Guicheney
- Sorbonne Université, Paris, France.,UMR_S1166, Faculté de médecine, Sorbonne Université, INSERM, Paris, France
| | - Philippe Maury
- Service de cardiologie, Hôpital Rangueil, CHU de Toulouse, Toulouse, France
| | - Eric Schulze-Bahr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Tomas Robyns
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium.,Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | | | - Silvia G Priori
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo Napolitano
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Carlo de Asmundis
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis, Brussel-Vrije Universiteit Brussel, ERN Heart Guard Center, Brussels, Belgium.,IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Brugada
- Heart Rhythm Management Center, UZ Brussel-VUB, Brussels, Belgium
| | - Ramon Brugada
- Hospital Trueta, CiberCV, University of Girona, IDIBGI, Girona, Spain, Barcelona, Spain
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Philippe Mabo
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Nathalie Behar
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Carla Giustetto
- Medical Sciences, Cardiology, University of Torino, Torino, Italy
| | - Maria Sabater Molina
- Cardiogenetic, Unidad de Cardiopatías Familiares, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, Murcia, Spain
| | - Juan R Gimeno
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Cardiology, Unidad de Cardiopatías Familiares, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Bornova, Turkey
| | - Peter J Schwartz
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Lia Crotti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Pascal P McKeown
- Cardiology, Belfast Health and Social Care Trust and Queen's University Belfast, Belfast, UK
| | - Sanjay Sharma
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.,Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Elijah R Behr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.,Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Michel Haissaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Caroline Rooryck
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France.,Université de Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Bordeaux, France
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carol A Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter G Postema
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Delmar
- Medicine, Cardiology, New York University School of Medicine, New York, NY, USA
| | - Patrick T Ellinor
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital and Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Steven A Lubitz
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital and Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jean-Baptiste Gourraud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Michael W Tanck
- Clinical Epidemiology, Biostatistics and Bioinformatics, Clinical Methods and Public Health, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Calum A MacRae
- Medicine, Cardiovascular Medicine, Genetics and Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christian Dina
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Vincent Probst
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Arthur A Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Jacques Schott
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Richard Redon
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Connie R Bezzina
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, . .,Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Ishikawa T, Kimoto H, Mishima H, Yamagata K, Ogata S, Aizawa Y, Hayashi K, Morita H, Nakajima T, Nakano Y, Nagase S, Murakoshi N, Kowase S, Ohkubo K, Aiba T, Morimoto S, Ohno S, Kamakura S, Nogami A, Takagi M, Karakachoff M, Dina C, Schott JJ, Yoshiura KI, Horie M, Shimizu W, Nishimura K, Kusano K, Makita N. Functionally validated SCN5A variants allow interpretation of pathogenicity and prediction of lethal events in Brugada syndrome. Eur Heart J 2021; 42:2854-2863. [PMID: 34219138 DOI: 10.1093/eurheartj/ehab254] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS The prognostic value of genetic variants for predicting lethal arrhythmic events (LAEs) in Brugada syndrome (BrS) remains controversial. We investigated whether the functional curation of SCN5A variations improves prognostic predictability. METHODS AND RESULTS Using a heterologous expression system and whole-cell patch clamping, we functionally characterized 22 variants of unknown significance (VUSs) among 55 SCN5A mutations previously curated using in silico prediction algorithms in the Japanese BrS registry (n = 415). According to the loss-of-function (LOF) properties, SCN5A mutation carriers (n = 60) were divided into two groups: LOF-SCN5A mutations and non-LOF SCN5A variations. Functionally proven LOF-SCN5A mutation carriers (n = 45) showed significantly severer electrocardiographic conduction abnormalities and worse prognosis associated with earlier manifestations of LAEs (7.9%/year) than in silico algorithm-predicted SCN5A carriers (5.1%/year) or all BrS probands (2.5%/year). Notably, non-LOF SCN5A variation carriers (n = 15) exhibited no LAEs during the follow-up period. Multivariate analysis demonstrated that only LOF-SCN5A mutations and a history of aborted cardiac arrest were significant predictors of LAEs. Gene-based association studies using whole-exome sequencing data on another independent SCN5A mutation-negative BrS cohort (n = 288) showed no significant enrichment of rare variants in 16 985 genes including 22 non-SCN5A BrS-associated genes as compared with controls (n = 372). Furthermore, rare variations of non-SCN5A BrS-associated genes did not affect LAE-free survival curves. CONCLUSION In vitro functional validation is key to classifying the pathogenicity of SCN5A VUSs and for risk stratification of genetic predictors of LAEs. Functionally proven LOF-SCN5A mutations are genetic burdens of sudden death in BrS, but evidence for other BrS-associated genes is elusive.
Collapse
Affiliation(s)
- Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita 5648565, Japan
| | - Hiroki Kimoto
- Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 8528523, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 8528523, Japan
| | - Kenichiro Yamagata
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita 5648565, Japan
| | - Soshiro Ogata
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita 5648565, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiovascular Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita 2860048, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takaramachi, Kanazawa 9208641, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 7008558, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi 3710034, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University, 1-2-3 Kasumi, Hiroshima 7348551, Japan
| | - Satoshi Nagase
- Department of Advanced Arrhythmia and Translational Medical Science, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita 5648565, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 3058575, Japan
| | - Shinya Kowase
- Department of Heart Rhythm Management, Yokohama Rosai Hospital, 3211 Kozukue-Cho, Yokohama 2220036, Japan
| | - Kimie Ohkubo
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamimachi, Tokyo 1738610, Japan
| | - Takeshi Aiba
- Department of Clinical Laboratory, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita 5648565, Japan
| | - Shimpei Morimoto
- Innovation Platform & Office for Precision Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 8528501, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita 5648565, Japan
| | - Shiro Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita 5648565, Japan
| | - Akihiko Nogami
- Department of Cardiology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 3058575, Japan
| | - Masahiko Takagi
- Division of Cardiac Arrhythmia, Kansai Medical University, 10-15 Fumizonomachi, Moriguchi 5708507, Japan
| | - Matilde Karakachoff
- L'institut du Thorax, CHU Nantes, 1 Place Alexis-Ricordeau, Nantes 44007, France
| | - Christian Dina
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, 8 Quai Moncousu, Nantes 44007, France
| | - Jean-Jacques Schott
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, 8 Quai Moncousu, Nantes 44007, France
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 8528523, Japan
| | - Minoru Horie
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Setatsukiwa-cho, Ohtsu 5202192, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5 Sendagi, Tokyo 1138603, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita 5648565, Japan
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita 5648565, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita 5648565, Japan
| |
Collapse
|
20
|
Zhang Z, Chen H, Chen W, Zhang Z, Li R, Xu J, Yang C, Chen M, Liu S, Li Y, Wang T, Tu X, Huang Z. Genetic Characteristics and Transcriptional Regulation of Sodium Channel Related Genes in Chinese Patients With Brugada Syndrome. Front Cardiovasc Med 2021; 8:714844. [PMID: 34422936 PMCID: PMC8374431 DOI: 10.3389/fcvm.2021.714844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the genetic characteristics and transcriptional regulation of the SCN5A gene of Brugada syndrome (BrS) patients in China. Methods: Using PubMed, Medline, China National Knowledge Internet (CNKI), and Wanfang Database, Chinese patients with BrS who underwent SCN5A gene testing were studied. Results: A total of 27 suitable studies involving Chinese BrS patients who underwent the SCN5A gene test were included. A total of 55 SCN5A gene mutations/variations were reported in Chinese BrS patients, including 10 from southern China and 45 from northern China. Mutations/variations of BrS patients from southern China mostly occurred in the regions of the α-subunit of Nav1.5, including DIII (Domain III), DIV, DIII-DIV, C-terminus regions, and the 3'UTR region. Furthermore, we analyzed the post-transcriptional modifications (PTMs) throughout the Nav1.5 protein encoded by SCN5A and found that the PTM changes happened in 72.7% of BrS patients from southern China and 26.7% from northern China. Conclusions: SCN5A mutations/variations of BrS patients in southern China mostly occurred in the DIII-DIV to C-terminus region and the 3'-UTR region of the SCN5A gene, different from northern China. PTM changes were consistent with the mutation/variation distribution of SCN5A, which might be involved in the regulation of the pathogenesis of BrS patients.
Collapse
Affiliation(s)
- Ziguan Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongwei Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenbo Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhenghao Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Runjing Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiajia Xu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Cui Yang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Minwei Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shixiao Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yanling Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - TzungDau Wang
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, China
| | - Xin Tu
- Cardio-X Center, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengrong Huang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Glinge C, Lahrouchi N, Jabbari R, Tfelt-Hansen J, Bezzina CR. Genome-wide association studies of cardiac electrical phenotypes. Cardiovasc Res 2021; 116:1620-1634. [PMID: 32428210 PMCID: PMC7341169 DOI: 10.1093/cvr/cvaa144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
The genetic basis of cardiac electrical phenotypes has in the last 25 years been the subject of intense investigation. While in the first years, such efforts were dominated by the study of familial arrhythmia syndromes, in recent years, large consortia of investigators have successfully pursued genome-wide association studies (GWAS) for the identification of single-nucleotide polymorphisms that govern inter-individual variability in electrocardiographic parameters in the general population. We here provide a review of GWAS conducted on cardiac electrical phenotypes in the last 14 years and discuss the implications of these discoveries for our understanding of the genetic basis of disease susceptibility and variability in disease severity. Furthermore, we review functional follow-up studies that have been conducted on GWAS loci associated with cardiac electrical phenotypes and highlight the challenges and opportunities offered by such studies.
Collapse
Affiliation(s)
- Charlotte Glinge
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 7, 2100 Copenhagen, Denmark
| | - Najim Lahrouchi
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Reza Jabbari
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 7, 2100 Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 7, 2100 Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Frederik V's Vej, 2100 Copenhagen, Denmark
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
22
|
Behr ER. The genomic architecture of the Brugada syndrome. Heart Rhythm 2021; 18:1707-1708. [PMID: 34389501 DOI: 10.1016/j.hrthm.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Elijah R Behr
- Mayo Clinic Healthcare, London, United Kingdom; St. George's University Hospitals, NHS Foundation Trust, London, United Kingdom; Cardiology Section and Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's University of London, London, United Kingdom.
| |
Collapse
|
23
|
Behr ER, Ben-Haim Y, Ackerman MJ, Krahn AD, Wilde AAM. Brugada syndrome and reduced right ventricular outflow tract conduction reserve: a final common pathway? Eur Heart J 2021; 42:1073-1081. [PMID: 33421051 DOI: 10.1093/eurheartj/ehaa1051] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) was first described as a primary electrical disorder predisposing to the risk of sudden cardiac death and characterized by right precordial lead ST elevation. Early description of right ventricular structural abnormalities and of right ventricular outflow tract (RVOT) conduction delay in BrS patients set the stage for the current controversy over the pathophysiology underlying the syndrome: channelopathy or cardiomyopathy; repolarization or depolarization. This review examines the current understanding of the BrS substrate, its genetic and non-genetic basis, theories of pathophysiology, and the clinical implications thereof. We propose that the final common pathway for BrS could be viewed as a disease of 'reduced RVOT conduction reserve'.
Collapse
Affiliation(s)
- Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.,St. George's University Hospitals NHS Foundation Trust, Cranmer Terrace, London SW17 0RE, UK.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart (ERN GUARDHEART http://guardheart.ern-net.eu).,European Cardiac Arrhythmia Genetics Focus Group (ECGen), EHRA
| | - Yael Ben-Haim
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.,St. George's University Hospitals NHS Foundation Trust, Cranmer Terrace, London SW17 0RE, UK.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart (ERN GUARDHEART http://guardheart.ern-net.eu)
| | - Michael J Ackerman
- Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic, Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Andrew D Krahn
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart (ERN GUARDHEART http://guardheart.ern-net.eu).,European Cardiac Arrhythmia Genetics Focus Group (ECGen), EHRA.,Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
24
|
Ben-Haim Y, Asimaki A, Behr ER. Brugada syndrome and arrhythmogenic cardiomyopathy: overlapping disorders of the connexome? Europace 2021; 23:653-664. [PMID: 33200179 DOI: 10.1093/europace/euaa277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) and Brugada syndrome (BrS) are inherited diseases characterized by an increased risk for arrhythmias and sudden cardiac death. Possible overlap between the two was suggested soon after the description of BrS. Since then, various studies focusing on different aspects have been published pointing to similar findings in the two diseases. More recent findings on the structure of the cardiac cell-cell junctions may unite the pathophysiology of both diseases and give further evidence to the theory that they may in part be variants of the same disease spectrum. In this review, we aim to summarize the studies indicating the pathophysiological, genetic, structural, and electrophysiological overlap between ACM and BrS.
Collapse
Affiliation(s)
- Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Angeliki Asimaki
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Elijah R Behr
- Institute of Molecular and Clinical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Precision Medicine Approaches to Cardiac Arrhythmias: JACC Focus Seminar 4/5. J Am Coll Cardiol 2021; 77:2573-2591. [PMID: 34016268 DOI: 10.1016/j.jacc.2021.03.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
In the initial 3 papers in this Focus Seminar series, the fundamentals and key concepts of precision medicine were reviewed, followed by a focus on precision medicine in the context of vascular disease and cardiomyopathy. For the remaining 2 papers, we focus on precision medicine in the context of arrhythmias. Specifically, in this fourth paper we focus on long QT syndrome, Brugada syndrome, and atrial fibrillation. The final (fifth) paper will deal with catecholaminergic polymorphic ventricular tachycardia. These arrhythmias represent a spectrum of disease ranging from common to relatively rare, with very different genetic and environmental causative factors, and with differing clinical manifestations that range from almost no consequences to lethality in childhood or adolescence if untreated. Accordingly, the emerging precision medicine approaches to these arrhythmias vary significantly, but several common themes include increased use of genetic testing, avoidance of triggers, and personalized risk stratification to guide the use of arrhythmia-specific therapies.
Collapse
|
26
|
Man JCK, Bosada FM, Scholman KT, Offerhaus JA, Walsh R, van Duijvenboden K, van Eif VWW, Bezzina CR, Verkerk AO, Boukens BJ, Barnett P, Christoffels VM. Variant Intronic Enhancer Controls SCN10A-short Expression and Heart Conduction. Circulation 2021; 144:229-242. [PMID: 33910361 DOI: 10.1161/circulationaha.121.054083] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genetic variants in SCN10A, encoding the neuronal voltage-gated sodium channel NaV1.8, are strongly associated with atrial fibrillation, Brugada syndrome, cardiac conduction velocities, and heart rate. The cardiac function of SCN10A has not been resolved, however, and diverging mechanisms have been proposed. Here, we investigated the cardiac expression of SCN10A and the function of a variant-sensitive intronic enhancer previously linked to the regulation of SCN5A, encoding the major essential cardiac sodium channel NaV1.5. METHODS The expression of SCN10A was investigated in mouse and human hearts. With the use of CRISPR/Cas9 genome editing, the mouse intronic enhancer was disrupted, and mutant mice were characterized by transcriptomic and electrophysiological analyses. The association of genetic variants at SCN5A-SCN10A enhancer regions and gene expression were evaluated by genome-wide association studies single-nucleotide polymorphism mapping and expression quantitative trait loci analysis. RESULTS We found that cardiomyocytes of the atria, sinoatrial node, and ventricular conduction system express a short transcript comprising the last 7 exons of the gene (Scn10a-short). Transcription occurs from an intronic enhancer-promoter complex, whereas full-length Scn10a transcript was undetectable in the human and mouse heart. Expression quantitative trait loci analysis revealed that the genetic variants in linkage disequilibrium with genetic variant rs6801957 in the intronic enhancer associate with SCN10A transcript levels in the heart. Genetic modification of the enhancer in the mouse genome led to reduced cardiac Scn10a-short expression in atria and ventricles, reduced cardiac sodium current in atrial cardiomyocytes, atrial conduction slowing and arrhythmia, whereas the expression of Scn5a, the presumed enhancer target gene, remained unaffected. In patch-clamp transfection experiments, expression of Scn10a-short-encoded NaV1.8-short increased NaV1.5-mediated sodium current. We propose that noncoding genetic variation modulates transcriptional regulation of Scn10a-short in cardiomyocytes that impacts NaV1.5-mediated sodium current and heart rhythm. CONCLUSIONS Genetic variants in and around SCN10A modulate enhancer function and expression of a cardiac-specific SCN10A-short transcript. We propose that noncoding genetic variation modulates transcriptional regulation of a functional C-terminal portion of NaV1.8 in cardiomyocytes that impacts on NaV1.5 function, cardiac conduction velocities, and arrhythmia susceptibility.
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Koen T Scholman
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Joost A Offerhaus
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Roddy Walsh
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent W W van Eif
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Phil Barnett
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| |
Collapse
|
27
|
Dose response to nadolol in congenital long QT syndrome. Heart Rhythm 2021; 18:1377-1383. [PMID: 33905813 DOI: 10.1016/j.hrthm.2021.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Beta-blocker therapy is the cornerstone of treatment for patients with long QT syndrome (LQTS). Few details on the dose to be used are available. As the response is variable between patients, we systematically evaluated the effect of treatment by performing an exercise test. OBJECTIVE The purpose of this study was to explore dose response to nadolol on exercise test in LQTS patients in order to propose a more personalized therapeutic approach. METHODS LQTS patients followed at the Reference Centre for Hereditary Arrhythmic Diseases of Nantes with at least 1 exercise test under nadolol were included retrospectively between 1993 and 2017. All patients underwent gradual cycle exercise tests. Doses adjusted to weight and response to treatment were recorded and evaluated by the percentage of age-predicted maximum heart rate reached on exercise test. RESULTS Ninety-five patients were included in the study, and 337 stress tests under nadolol were analyzed. No correlation existed between dose and percentage of age-predicted maximum heart rate on exercise tests. Twenty-one patients were overresponders, mostly LQTS1, and 20 were underresponders, mainly LQTS2 (P = .0229). Forty-two patients had at least 3 stress tests under nadolol. We found a negative correlation between dose change and percentage of age-predicted maximum heart rate change (P <.0001). We then proposed a table to adapt dose according to exercise test response. CONCLUSION Our study demonstrated a major variability of dose response to nadolol in patients with LQTS, thus underlining the need for a tailored dosage for each patient. Intraindividual analysis showed a relatively constant dose-response relationship, allowing guided dose adaptation after the first exercise test.
Collapse
|
28
|
iPSC-Cardiomyocyte Models of Brugada Syndrome-Achievements, Challenges and Future Perspectives. Int J Mol Sci 2021; 22:ijms22062825. [PMID: 33802229 PMCID: PMC8001521 DOI: 10.3390/ijms22062825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited cardiac arrhythmia that predisposes to ventricular fibrillation and sudden cardiac death. It originates from oligogenic alterations that affect cardiac ion channels or their accessory proteins. The main hurdle for the study of the functional effects of those variants is the need for a specific model that mimics the complex environment of human cardiomyocytes. Traditionally, animal models or transient heterologous expression systems are applied for electrophysiological investigations, each of these models having their limitations. The ability to create induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), providing a source of human patient-specific cells, offers new opportunities in the field of cardiac disease modelling. Contemporary iPSC-CMs constitute the best possible in vitro model to study complex cardiac arrhythmia syndromes such as BrS. To date, thirteen reports on iPSC-CM models for BrS have been published and with this review we provide an overview of the current findings, with a focus on the electrophysiological parameters. We also discuss the methods that are used for cell derivation and data acquisition. In the end, we critically evaluate the knowledge gained by the use of these iPSC-CM models and discuss challenges and future perspectives for iPSC-CMs in the study of BrS and other arrhythmias.
Collapse
|
29
|
Belbachir N, Portero V, Al Sayed ZR, Gourraud JB, Dilasser F, Jesel L, Guo H, Wu H, Gaborit N, Guilluy C, Girardeau A, Bonnaud S, Simonet F, Karakachoff M, Pattier S, Scott C, Burel S, Marionneau C, Chariau C, Gaignerie A, David L, Genin E, Deleuze JF, Dina C, Sauzeau V, Loirand G, Baró I, Schott JJ, Probst V, Wu JC, Redon R, Charpentier F, Le Scouarnec S. RRAD mutation causes electrical and cytoskeletal defects in cardiomyocytes derived from a familial case of Brugada syndrome. Eur Heart J 2020; 40:3081-3094. [PMID: 31114854 DOI: 10.1093/eurheartj/ehz308] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/13/2018] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS The Brugada syndrome (BrS) is an inherited cardiac disorder predisposing to ventricular arrhythmias. Despite considerable efforts, its genetic basis and cellular mechanisms remain largely unknown. The objective of this study was to identify a new susceptibility gene for BrS through familial investigation. METHODS AND RESULTS Whole-exome sequencing performed in a three-generation pedigree with five affected members allowed the identification of one rare non-synonymous substitution (p.R211H) in RRAD, the gene encoding the RAD GTPase, carried by all affected members of the family. Three additional rare missense variants were found in 3/186 unrelated index cases. We detected higher levels of RRAD transcripts in subepicardium than in subendocardium in human heart, and in the right ventricle outflow tract compared to the other cardiac compartments in mice. The p.R211H variant was then subjected to electrophysiological and structural investigations in human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs). Cardiomyocytes derived from induced pluripotent stem cells from two affected family members exhibited reduced action potential upstroke velocity, prolonged action potentials and increased incidence of early afterdepolarizations, with decreased Na+ peak current amplitude and increased Na+ persistent current amplitude, as well as abnormal distribution of actin and less focal adhesions, compared with intra-familial control iPSC-CMs Insertion of p.R211H-RRAD variant in control iPSCs by genome editing confirmed these results. In addition, iPSC-CMs from affected patients exhibited a decreased L-type Ca2+ current amplitude. CONCLUSION This study identified a potential new BrS-susceptibility gene, RRAD. Cardiomyocytes derived from induced pluripotent stem cells expressing RRAD variant recapitulated single-cell electrophysiological features of BrS, including altered Na+ current, as well as cytoskeleton disturbances.
Collapse
Affiliation(s)
- Nadjet Belbachir
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent Portero
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Zeina R Al Sayed
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Jean-Baptiste Gourraud
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Florian Dilasser
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Laurence Jesel
- CHU Strasbourg, Service de Cardiologie, Strasbourg, France
| | - Hongchao Guo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Haodi Wu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathalie Gaborit
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | | | - Aurore Girardeau
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Stephanie Bonnaud
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Floriane Simonet
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Matilde Karakachoff
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | | | - Carol Scott
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Sophie Burel
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Céline Marionneau
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Caroline Chariau
- INSERM, CNRS, UNIV Nantes, CHU Nantes, SFR François Bonamy, iPSC core facility, Nantes, France
| | - Anne Gaignerie
- INSERM, CNRS, UNIV Nantes, CHU Nantes, SFR François Bonamy, iPSC core facility, Nantes, France
| | - Laurent David
- INSERM, CNRS, UNIV Nantes, CHU Nantes, SFR François Bonamy, iPSC core facility, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, UNIV Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Génomique, CEA, Evry, France
| | - Christian Dina
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Vincent Sauzeau
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Gervaise Loirand
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Isabelle Baró
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| | - Jean-Jacques Schott
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Vincent Probst
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Joseph C Wu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Redon
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Flavien Charpentier
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France.,l'institut du thorax, CHU Nantes, Nantes, France
| | - Solena Le Scouarnec
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France
| |
Collapse
|
30
|
Ovics P, Regev D, Baskin P, Davidor M, Shemer Y, Neeman S, Ben-Haim Y, Binah O. Drug Development and the Use of Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Disease Modeling and Drug Toxicity Screening. Int J Mol Sci 2020; 21:E7320. [PMID: 33023024 PMCID: PMC7582587 DOI: 10.3390/ijms21197320] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
: Over the years, numerous groups have employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as a superb human-compatible model for investigating the function and dysfunction of cardiomyocytes, drug screening and toxicity, disease modeling and for the development of novel drugs for heart diseases. In this review, we discuss the broad use of iPSC-CMs for drug development and disease modeling, in two related themes. In the first theme-drug development, adverse drug reactions, mechanisms of cardiotoxicity and the need for efficient drug screening protocols-we discuss the critical need to screen old and new drugs, the process of drug development, marketing and Adverse Drug reactions (ADRs), drug-induced cardiotoxicity, safety screening during drug development, drug development and patient-specific effect and different mechanisms of ADRs. In the second theme-using iPSC-CMs for disease modeling and developing novel drugs for heart diseases-we discuss the rationale for using iPSC-CMs and modeling acquired and inherited heart diseases with iPSC-CMs.
Collapse
Affiliation(s)
- Paz Ovics
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Danielle Regev
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Mor Davidor
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Shunit Neeman
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George’s University of London, London SW17 0RE, UK;
- Cardiology Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| |
Collapse
|
31
|
A high number of ‘natural’ mitochondrial DNA polymorphisms in a symptomatic Brugada syndrome type 1 patient. J Genet 2020. [DOI: 10.1007/s12041-020-01228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Abstract
The main inherited cardiac arrhythmias are long QT syndrome, short QT syndrome, catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome. These rare diseases are often the underlying cause of sudden cardiac death in young individuals and result from mutations in several genes encoding ion channels or proteins involved in their regulation. The genetic defects lead to alterations in the ionic currents that determine the morphology and duration of the cardiac action potential, and individuals with these disorders often present with syncope or a life-threatening arrhythmic episode. The diagnosis is based on clinical presentation and history, the characteristics of the electrocardiographic recording at rest and during exercise and genetic analyses. Management relies on pharmacological therapy, mostly β-adrenergic receptor blockers (specifically, propranolol and nadolol) and sodium and transient outward current blockers (such as quinidine), or surgical interventions, including left cardiac sympathetic denervation and implantation of a cardioverter-defibrillator. All these arrhythmias are potentially life-threatening and have substantial negative effects on the quality of life of patients. Future research should focus on the identification of genes associated with the diseases and other risk factors, improved risk stratification and, in particular for Brugada syndrome, effective therapies.
Collapse
|
33
|
Modena M, Castiglione V, Aretini P, Mazzanti CM, Chiti E, Giannoni A, Emdin M, Di Paolo M. Unveiling a sudden unexplained death case by whole exome sequencing and bioinformatic analysis. Mol Genet Genomic Med 2020; 8:e1182. [PMID: 32101375 PMCID: PMC7196487 DOI: 10.1002/mgg3.1182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sudden unexplained death (SUD) refers to cases of sudden death where autopsy fails to identify any cardiac or extracardiac underlying cause. Guideline-directed standard genetic testing identifies a disease-causing mutation in less than one-third of cases of SUD. Conversely, whole exome sequencing (WES) may provide the key to solve most cases of SUD even after several years from the subject's death. METHODS We report on a case of sudden unexpected death of a 37-year-old male, with inconclusive autopsy conducted 14 years ago. A recent reevaluation through WES was performed on DNA extracted from left ventricular samples. A multiple step process including several "in silico" tools was applied to identify potentially pathogenic variants. Data analysis was based on a 562 gene panel, including 234 candidate genes associated with sudden cardiac death or heart diseases, with the addition of 328 genes highly expressed in the heart. WebGestalt algorithms were used for association enrichment analysis of all genes with detected putative pathogenic variants. RESULTS WES analysis identified four potentially pathogenic variants: RYR2:c.12168G>T, TTN:c.11821C>T (rs397517804), MYBPC3:c.1255C>T (rs368770848), and ACADVL:c.848T>C (rs113994167). WebGestalt algorithms indicated that their combination holds an unfavorable arrhythmic susceptibility which conceivably caused the occurrence of the events leading to our subject's sudden death. CONCLUSION Associating WES technique with online prediction algorithms may allow the recognition of genetic mutations potentially responsible for otherwise unexplained deaths.
Collapse
Affiliation(s)
- Martina Modena
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Fondazione Pisana per la Scienza ONLUSPisaItaly
| | - Vincenzo Castiglione
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Cardiology DivisionUniversity of PisaPisaItaly
| | | | | | - Enrica Chiti
- Institute of Legal MedicineUniversity of PisaPisaItaly
| | - Alberto Giannoni
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Fondazione Toscana Gabriele MonasterioPisaItaly
| | - Michele Emdin
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Fondazione Toscana Gabriele MonasterioPisaItaly
| | | |
Collapse
|
34
|
Shimizu A, Zankov DP, Sato A, Komeno M, Toyoda F, Yamazaki S, Makita T, Noda T, Ikawa M, Asano Y, Miyashita Y, Takashima S, Morita H, Ishikawa T, Makita N, Hitosugi M, Matsuura H, Ohno S, Horie M, Ogita H. Identification of transmembrane protein 168 mutation in familial Brugada syndrome. FASEB J 2020; 34:6399-6417. [PMID: 32175648 DOI: 10.1096/fj.201902991r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Brugada syndrome (BrS) is an inherited channelopathy responsible for almost 20% of sudden cardiac deaths in patients with nonstructural cardiac diseases. Approximately 70% of BrS patients, the causative gene mutation(s) remains unknown. In this study, we used whole exome sequencing to investigate candidate mutations in a family clinically diagnosed with BrS. A heterozygous 1616G>A substitution (R539Q mutation) was identified in the transmembrane protein 168 (TMEM168) gene of symptomatic individuals. Similar to endogenous TMEM168, both TMEM168 wild-type (WT) and mutant proteins that were ectopically induced in HL-1 cells showed nuclear membrane localization. A significant decrease in Na+ current and Nav 1.5 protein expression was observed in HL-1 cardiomyocytes expressing mutant TMEM168. Ventricular tachyarrhythmias and conduction disorders were induced in the heterozygous Tmem168 1616G>A knock-in mice by pharmacological stimulation, but not in WT mice. Na+ current was reduced in ventricular cardiomyocytes isolated from the Tmem168 knock-in heart, and Nav 1.5 expression was also impaired. This impairment was dependent on increased Nedd4-2 binding to Nav 1.5 and subsequent ubiquitination. Collectively, our results show an association between the TMEM168 1616G>A mutation and arrhythmogenesis in a family with BrS.
Collapse
Affiliation(s)
- Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Dimitar P Zankov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.,Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Masahiro Komeno
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Futoshi Toyoda
- Division of Cell Physiology, Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Satoru Yamazaki
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshinori Makita
- Division of Cardiac Electrophysiology, Department of Cardiovascular Center, Osaka Red Cross Hospital, Osaka, Japan
| | - Taichi Noda
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahito Ikawa
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yohei Miyashita
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masahito Hitosugi
- Department of Legal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Matsuura
- Division of Cell Physiology, Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan.,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | - Minoru Horie
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
35
|
Rowe MK, Roberts JD. The evolution of gene-guided management of inherited arrhythmia syndromes: Peering beyond monogenic paradigms towards comprehensive genomic risk scores. J Cardiovasc Electrophysiol 2020; 31:2998-3008. [PMID: 32107815 DOI: 10.1111/jce.14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Inherited arrhythmia syndromes have traditionally been viewed as monogenic forms of disease whose pathophysiology is driven by a single highly penetrant rare genetic variant. Although an accurate depiction of a proportion of genetic variants, the variable penetrance frequently noted in genotype positive families and the presence of sporadic genotype negative cases have long highlighted a more nuanced truth being operative. Coupled with our more recent recognition that many rare variants implicated in inherited arrhythmia syndromes possess unexpectedly high allele frequencies within the general population, these observations have contributed to the realization that a spectrum of pathogenicity exists among clinically relevant genetic variants. Notably, variable mutation pathogenicity and corresponding variable degrees of penetrance emphasize a limitation of contemporary guidelines, which attempt to dichotomize genetic variants as pathogenic or benign. Recognition of the existence of low and intermediate penetrant variants insufficient to be causative for disease in isolation has served to emphasize the importance of additional genetic, clinical, and environmental factors in the pathogenesis of rare inherited arrhythmia syndromes. Despite being rare, it has also become increasingly evident that common genetic variants play critical roles in both heritable channelopathies and cardiomyopathies and in aggregate may even be the primary drivers in certain instances, such as genotype negative Brugada syndrome. Our growing realization that the genetic substrates of inherited arrhythmia syndromes have intricacies that extend beyond traditionally perceived monogenic paradigms has highlighted a potential value of leveraging more comprehensive genomic risk scores for predicting disease development and arrhythmic risk.
Collapse
Affiliation(s)
- Matthew K Rowe
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
36
|
Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, Govind R, Mazaika E, de Marvao A, Dawes TJ, Felkin LE, Ahmad M, Theotokis PI, Edwards E, Ing AY, Thomson KL, Chan LL, Sim D, Baksi AJ, Pantazis A, Roberts AM, Watkins H, Funke B, O’Regan DP, Olivotto I, Barton PJ, Prasad SK, Cook SA, Ware JS, Walsh R. Reevaluating the Genetic Contribution of Monogenic Dilated Cardiomyopathy. Circulation 2020; 141:387-398. [PMID: 31983221 PMCID: PMC7004454 DOI: 10.1161/circulationaha.119.037661] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is genetically heterogeneous, with >100 purported disease genes tested in clinical laboratories. However, many genes were originally identified based on candidate-gene studies that did not adequately account for background population variation. Here we define the frequency of rare variation in 2538 patients with DCM across protein-coding regions of 56 commonly tested genes and compare this to both 912 confirmed healthy controls and a reference population of 60 706 individuals to identify clinically interpretable genes robustly associated with dominant monogenic DCM. METHODS We used the TruSight Cardio sequencing panel to evaluate the burden of rare variants in 56 putative DCM genes in 1040 patients with DCM and 912 healthy volunteers processed with identical sequencing and bioinformatics pipelines. We further aggregated data from 1498 patients with DCM sequenced in diagnostic laboratories and the Exome Aggregation Consortium database for replication and meta-analysis. RESULTS Truncating variants in TTN and DSP were associated with DCM in all comparisons. Variants in MYH7, LMNA, BAG3, TNNT2, TNNC1, PLN, ACTC1, NEXN, TPM1, and VCL were significantly enriched in specific patient subsets, with the last 2 genes potentially contributing primarily to early-onset forms of DCM. Overall, rare variants in these 12 genes potentially explained 17% of cases in the outpatient clinic cohort representing a broad range of adult patients with DCM and 26% of cases in the diagnostic referral cohort enriched in familial and early-onset DCM. Although the absence of a significant excess in other genes cannot preclude a limited role in disease, such genes have limited diagnostic value because novel variants will be uninterpretable and their diagnostic yield is minimal. CONCLUSIONS In the largest sequenced DCM cohort yet described, we observe robust disease association with 12 genes, highlighting their importance in DCM and translating into high interpretability in diagnostic testing. The other genes analyzed here will need to be rigorously evaluated in ongoing curation efforts to determine their validity as Mendelian DCM genes but have limited value in diagnostic testing in DCM at present. This data will contribute to community gene curation efforts and will reduce erroneous and inconclusive findings in diagnostic testing.
Collapse
Affiliation(s)
- Francesco Mazzarotto
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (F.M., I.O.)
- Department of Experimental and Clinical Medicine, University of Florence, Italy (F.M., I.O.)
| | - Upasana Tayal
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Rachel J. Buchan
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - William Midwinter
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Alicja Wilk
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Nicola Whiffin
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Medical Research Council-London Institute of Medical Sciences (N.W. A.d.M., T.J.W.D., D.P.O., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Risha Govind
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Erica Mazaika
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Antonio de Marvao
- Medical Research Council-London Institute of Medical Sciences (N.W. A.d.M., T.J.W.D., D.P.O., S.A.C., J.S.W.), Imperial College London, United Kingdom
| | - Timothy J.W. Dawes
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Medical Research Council-London Institute of Medical Sciences (N.W. A.d.M., T.J.W.D., D.P.O., S.A.C., J.S.W.), Imperial College London, United Kingdom
| | - Leanne E. Felkin
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Mian Ahmad
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Pantazis I. Theotokis
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Elizabeth Edwards
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Alexander Y. Ing
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA (A.Y.I.)
| | - Kate L. Thomson
- Oxford Medical Genetics Laboratory, Oxford University Hospitals National Health Service Foundation Trust, The Churchill Hospital, United Kingdom (K.L.T.)
- Radcliffe Department of Medicine, University of Oxford, United Kingdom (K.L.T., H.W.)
| | | | - David Sim
- National Heart Centre Singapore (L.L.H.C., D.S., S.A.C.)
| | - A. John Baksi
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Antonis Pantazis
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Angharad M. Roberts
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Hugh Watkins
- Radcliffe Department of Medicine, University of Oxford, United Kingdom (K.L.T., H.W.)
| | - Birgit Funke
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston (B.F.)
| | - Declan P. O’Regan
- Medical Research Council-London Institute of Medical Sciences (N.W. A.d.M., T.J.W.D., D.P.O., S.A.C., J.S.W.), Imperial College London, United Kingdom
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (F.M., I.O.)
- Department of Experimental and Clinical Medicine, University of Florence, Italy (F.M., I.O.)
| | - Paul J.R. Barton
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Sanjay K. Prasad
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Stuart A. Cook
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Medical Research Council-London Institute of Medical Sciences (N.W. A.d.M., T.J.W.D., D.P.O., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
- National Heart Centre Singapore (L.L.H.C., D.S., S.A.C.)
- Duke-National University of Singapore Medical School (S.A.C.)
| | - James S. Ware
- National Heart and Lung Institute (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., T.J.W.D., L.E.F., M.A., P.I.T., E.E., A.J.B., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Medical Research Council-London Institute of Medical Sciences (N.W. A.d.M., T.J.W.D., D.P.O., S.A.C., J.S.W.), Imperial College London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom (F.M., U.T., R.J.B., W.M., A.W., N.W., R.G., E.M., L.E.F., M.A., P.I.T., E.E., A.J.B., A.A.P., A.M.R., P.J.R.B., S.K.P., S.A.C., J.S.W.)
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, University of Amsterdam, The Netherlands (R.W.)
| |
Collapse
|
37
|
Arnaud M, Berthome P, Tixier R, Briand J, Geoffroy O, Le Guillou X, Babuty D, Mansourati J, Jesel L, Dupuis JM, Bru P, Kyndt F, Guyomarch B, Thollet A, Behar N, Mabo P, Sacher F, Probst V, Gourraud JB. Number of electrocardiogram leads in the diagnosis of spontaneous Brugada syndrome. Arch Cardiovasc Dis 2019; 113:152-158. [PMID: 31787523 DOI: 10.1016/j.acvd.2019.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND The recently recommended single lead-based criterion for the diagnosis of Brugada syndrome may lead to overdiagnosis of this disorder and overestimation of the risk of sudden cardiac death. AIM To investigate the value of a single-lead diagnosis in patients with Brugada syndrome and a spontaneous type 1 electrocardiogram. METHODS Consecutive patients with Brugada syndrome were included in a multicentre prospective registry; only those with a spontaneous type 1 electrocardiogram were enrolled. Clinical and electrocardiogram data were reviewed by two physicians blinded to the patients' clinical and genetic status. RESULTS Among 1613 patients, 505 (31%) were enrolled (79% male; mean age 46±15 years). A spontaneous type 1 electrocardiogram pattern was found in one lead in 250 patients (group 1), in two leads in 227 patients (group 2) and in three leads in 27 patients (group 3). Groups were similar except for individuals in group 3, who presented more frequently a fragmented QRS complex, an early repolarization pattern and a prolonged Tpeak-Tend interval. After a mean follow-up of 6.4±4.7 years, ventricular arrhythmia, sudden cardiac death or implantable cardiac defibrillator shock occurred in 46 (9%) patients, without differences between groups. CONCLUSION The prognosis of Brugada syndrome with a spontaneous type 1 electrocardiogram pattern does not appear to be affected by the number of leads required for the diagnosis.
Collapse
Affiliation(s)
- Marine Arnaud
- L'Institut du thorax, Inserm, CNRS, université de Nantes, CHU de Nantes, 44093 Nantes, France
| | | | - Romain Tixier
- Service de cardiologie, Liryc, CHU de Bordeaux, 33600 Pessac, France
| | - Jean Briand
- Service de cardiologie, CHU de Rennes, 35000 Rennes, France
| | - Olivier Geoffroy
- Service de cardiologie, CHU de La Réunion, 97400 Saint-Denis, Reunion
| | - Xavier Le Guillou
- L'Institut du thorax, Inserm, CNRS, université de Nantes, CHU de Nantes, 44093 Nantes, France
| | | | | | - Laurence Jesel
- Service de cardiologie, CHRU de Strasbourg, 67091 Strasbourg, France
| | | | - Paul Bru
- Service de cardiologie, GH La Rochelle, 17019 La Rochelle, France
| | - Florence Kyndt
- L'Institut du thorax, Inserm, CNRS, université de Nantes, CHU de Nantes, 44093 Nantes, France
| | - Béatrice Guyomarch
- L'Institut du thorax, Inserm, CNRS, université de Nantes, CHU de Nantes, 44093 Nantes, France
| | - Aurélie Thollet
- L'Institut du thorax, Inserm, CNRS, université de Nantes, CHU de Nantes, 44093 Nantes, France
| | - Nathalie Behar
- Service de cardiologie, CHU de Rennes, 35000 Rennes, France
| | - Philippe Mabo
- Service de cardiologie, CHU de Rennes, 35000 Rennes, France
| | - Frédéric Sacher
- Service de cardiologie, Liryc, CHU de Bordeaux, 33600 Pessac, France
| | - Vincent Probst
- L'Institut du thorax, Inserm, CNRS, université de Nantes, CHU de Nantes, 44093 Nantes, France
| | - Jean-Baptiste Gourraud
- L'Institut du thorax, Inserm, CNRS, université de Nantes, CHU de Nantes, 44093 Nantes, France.
| |
Collapse
|
38
|
Cerrone M, Remme CA, Tadros R, Bezzina CR, Delmar M. Beyond the One Gene-One Disease Paradigm: Complex Genetics and Pleiotropy in Inheritable Cardiac Disorders. Circulation 2019; 140:595-610. [PMID: 31403841 DOI: 10.1161/circulationaha.118.035954] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inheritable cardiac disorders, which may be associated with cardiomyopathic changes, are often associated with increased risk of sudden death in the young. Early linkage analysis studies in Mendelian forms of these diseases, such as hypertrophic cardiomyopathy and long-QT syndrome, uncovered large-effect genetic variants that contribute to the phenotype. In more recent years, through genotype-phenotype studies and methodological advances in genetics, it has become evident that most inheritable cardiac disorders are not monogenic but, rather, have a complex genetic basis wherein multiple genetic variants contribute (oligogenic or polygenic inheritance). Conversely, studies on genes underlying these disorders uncovered pleiotropic effects, with a single gene affecting multiple and apparently unrelated phenotypes. In this review, we explore these 2 phenomena: on the one hand, the evidence that variants in multiple genes converge to generate one clinical phenotype, and, on the other, the evidence that variants in one gene can lead to apparently unrelated phenotypes. Although multiple conditions are addressed to illustrate these concepts, the experience obtained in the study of long-QT syndrome, Brugada syndrome, and arrhythmogenic cardiomyopathy, and in the study of functions related to SCN5A (the gene coding for the α-subunit of the most abundant sodium channel in the heart) and PKP2 (the gene coding for the desmosomal protein plakophilin-2), as well, is discussed in more detail.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H. Charney Division of Cardiology (M.C., M.D.), NYU School of Medicine, New York.,Inherited Arrhythmias Clinic and Heart Rhythm Center, Leon H. Charney Division of Cardiology (M.C.), NYU School of Medicine, New York
| | - Carol Ann Remme
- Inherited Arrhythmias Clinic and Heart Rhythm Center, Leon H. Charney Division of Cardiology (M.C.), NYU School of Medicine, New York
| | - Rafik Tadros
- Amsterdam UMC, University of Amsterdam, Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, AMC Heart Center, The Netherlands (C.A.R., C.R.B.)
| | - Connie R Bezzina
- Inherited Arrhythmias Clinic and Heart Rhythm Center, Leon H. Charney Division of Cardiology (M.C.), NYU School of Medicine, New York
| | - Mario Delmar
- Leon H. Charney Division of Cardiology (M.C., M.D.), NYU School of Medicine, New York
| |
Collapse
|
39
|
Sutterland AL, Blom MT, Ladee K, Lubbers JJM, Cohen D, de Haan L, Tan HL. Increased prevalence of ECG suspicious for Brugada Syndrome in recent onset schizophrenia spectrum disorders. Schizophr Res 2019; 210:59-65. [PMID: 31248748 DOI: 10.1016/j.schres.2019.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Schizophrenia is associated with an increased risk of sudden cardiac death, traditionally attributed to prolonged QTc interval and increased prevalence of cardiovascular risk factors. However, defective ion channels implicated in both schizophrenia and Brugada Syndrome (BrS) may be associated with an increased risk of cardiac arrhythmias. Moreover, these cardiac arrhythmias can be provoked by various drugs, including psychotropic drugs. OBJECTIVE To assess the prevalence of the occurrence of ECG suspicious for BrS (suspect BrS-ECG) and the prevalence of BrS in patients with recent onset schizophrenia spectrum disorders (SSD). METHODS In this case-control study, ECGs of 388 patients with recent onset SSD admitted between 2006 and 2015 and 844 healthy controls were made. All persons who had a suspect BrS-ECG were offered an ajmaline provocation test to diagnose or exclude BrS. Data on possible confounders were ascertained. Patients with and without suspect BrS-ECG were compared regarding clinical and ECG variables. RESULTS Suspect BrS-ECG was found in 33 patients (8.5%) and 13 healthy controls (1.5%), with an adjusted Odds Ratio of 3.5 (p < 0.0001). This finding was not explained by potential confounders such as gender, age, ethnicity, cannabis use, cardiovascular risk factors, medication use or serum electrolytes. BrS was confirmed in three patients and one control. CONCLUSION A considerable subset of patients with recent onset SSD have suspect BrS-ECG, extending earlier findings in patients with chronic schizophrenia. Screening for BrS in schizophrenia could be relevant both to prevent sudden cardiac death and to identify a subgroup of patients with possible ion-channel dysfunctioning.
Collapse
Affiliation(s)
- Arjen L Sutterland
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Early Psychosis Section, Amsterdam, the Netherlands.
| | - Marieke T Blom
- Amsterdam UMC, University of Amsterdam, Department of Cardiology, Heart Center, Amsterdam, the Netherlands
| | - Katinka Ladee
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Early Psychosis Section, Amsterdam, the Netherlands
| | - Jorieke J M Lubbers
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Early Psychosis Section, Amsterdam, the Netherlands
| | - Dan Cohen
- Mental Health Service North-Holland North, Department of Community Mental Health, Heerhugowaard, the Netherlands
| | - Lieuwe de Haan
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Early Psychosis Section, Amsterdam, the Netherlands
| | - Hanno L Tan
- Amsterdam UMC, University of Amsterdam, Department of Cardiology, Heart Center, Amsterdam, the Netherlands
| |
Collapse
|
40
|
Affiliation(s)
- Elijah R Behr
- Cardiology Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’s, University of London, London, UK
| |
Collapse
|
41
|
Monasky MM, Micaglio E, Ciconte G, Benedetti S, Di Resta C, Vicedomini G, Borrelli V, Ghiroldi A, Piccoli M, Anastasia L, Santinelli V, Ferrari M, Pappone C. Genotype/Phenotype Relationship in a Consanguineal Family With Brugada Syndrome Harboring the R1632C Missense Variant in the SCN5A Gene. Front Physiol 2019; 10:666. [PMID: 31191357 PMCID: PMC6546918 DOI: 10.3389/fphys.2019.00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a known cause of sudden cardiac death. The genetic basis of BrS is not well understood, and no one single gene is linked to even a majority of BrS cases. However, mutations in the gene SCN5A are the most common, although the high amount of phenotypic variability prevents a clear correlation between genotype and phenotype. Research techniques are limited, as most BrS cases still remain without a genetic diagnosis, thus impairing the implementation of experimental models representative of a general pathogenetic mechanism. In the present study, we report the largest family to-date with the segregation of the heterozygous variant NM_198056:c.4894C>T (p.Arg1632Cys) in the SCN5A gene. The genotype-phenotype relationship observed suggests a likely pathogenic effect of this variant. Functional studies to better understand the molecular effects of this variant are warranted.
Collapse
Affiliation(s)
- Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Sara Benedetti
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Di Resta
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Gabriele Vicedomini
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Valeria Borrelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Marco Piccoli
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Vincenzo Santinelli
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Maurizio Ferrari
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy.,Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
42
|
Kapplinger JD, Pundi KN, Larson NB, Callis TE, Tester DJ, Bikker H, Wilde AAM, Ackerman MJ. Yield of the RYR2 Genetic Test in Suspected Catecholaminergic Polymorphic Ventricular Tachycardia and Implications for Test Interpretation. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001424. [PMID: 29453246 DOI: 10.1161/circgen.116.001424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/18/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathogenic RYR2 variants account for ≈60% of clinically definite cases of catecholaminergic polymorphic ventricular tachycardia. However, the rate of rare benign RYR2 variants identified in the general population remains a challenge for genetic test interpretation. Therefore, we examined the results of the RYR2 genetic test among patients referred for commercial genetic testing and examined factors impacting variant interpretability. METHODS Frequency and location comparisons were made for RYR2 variants identified among 1355 total patients of varying clinical certainty and 60 706 Exome Aggregation Consortium controls. The impact of the clinical phenotype on the yield of RYR2 variants was examined. Six in silico tools were assessed using patient- and control-derived variants. RESULTS A total of 18.2% (218/1200) of patients referred for commercial testing hosted rare RYR2 variants, statistically less than the 59% (46/78) yield among clinically definite cases, resulting in a much higher potential genetic false discovery rate among referrals considering the 3.2% background rate of rare, benign RYR2 variants. Exclusion of clearly putative pathogenic variants further complicates the interpretation of the next novel RYR2 variant. Exonic/topologic analyses revealed overrepresentation of patient variants in exons covering only one third of the protein. In silico tools largely failed to show evidence toward enhancement of variant interpretation. CONCLUSIONS Current expert recommendations have resulted in increased use of RYR2 genetic testing in patients with questionable clinical phenotypes. Using the largest to date catecholaminergic polymorphic ventricular tachycardia patient versus control comparison, this study highlights important variables in the interpretation of variants to overcome the 3.2% background rate that confounds RYR2 variant interpretation.
Collapse
Affiliation(s)
- Jamie D Kapplinger
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Krishna N Pundi
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Nicholas B Larson
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Thomas E Callis
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - David J Tester
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Hennie Bikker
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Arthur A M Wilde
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Michael J Ackerman
- From the Mayo Clinic School of Medicine (J.D.K., M.J.A.), Medical Scientist Training Program (J.D.K., M.J.A.), Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (J.D.K., D.J.T., M.J.A.), Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (N.B.L.), Division of Heart Rhythm Services, Department of Cardiovascular Diseases (D.J.T., M.J.A.), and Division of Pediatric Cardiology, Department of Pediatrics (M.J.A.), Mayo Clinic, Rochester, MN; Department of Medicine, Stanford University, Stanford, CA (K.N.P.); Transgenomic Inc, New Haven, CT (T.E.C.); and Department of Clinical Genetics (H.B.) and Heart Centre, Department of Clinical and Experimental Cardiology (A.A.M.W.), Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Abstract
Brugada syndrome is an inherited, rare cardiac arrhythmogenic disease, associated with sudden cardiac death. It accounts for up to 20% of sudden deaths in patients without structural cardiac abnormalities. The majority of mutations involve the cardiac sodium channel gene SCN5A and give rise to classical abnormal electrocardiogram with ST segment elevation in the right precordial leads V1 to V3 and a predisposition to ventricular fibrillation. The pathophysiological mechanisms of Brugada syndrome have been investigated using model systems including transgenic mice, canine heart preparations, and expression systems to study different SCN5A mutations. These models have a number of limitations. The recent development of pluripotent stem cell technology creates an opportunity to study cardiomyocytes derived from patients and healthy individuals. To date, only a few studies have been done using Brugada syndrome patient-specific iPS-CM, which have provided novel insights into the mechanisms and pathophysiology of Brugada syndrome. This review provides an evaluation of the strengths and limitations of each of these model systems and summarizes the key mechanisms that have been identified to date.
Collapse
|
44
|
Romero J, Li DL, Avendano R, Diaz JC, Tung R, Di Biase L. Brugada Syndrome: Progress in Genetics, Risk Stratification and Management. Arrhythm Electrophysiol Rev 2019; 8:19-27. [PMID: 30918663 PMCID: PMC6434506 DOI: 10.15420/aer.2018.66.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brugada syndrome (BrS) is one of the most common causes of sudden cardiac death in normal structural heart individuals. First characterised in 1992, the global prevalence of BrS is unclear, with estimates placing it at around 0.05% and presenting most frequently in southeast Asian countries. This review aims to summarise the development in the understanding of BrS and, importantly, progress in its management, underpinned by knowledge regarding its genetics and molecular mechanisms. It also provides update on risk stratification and promising new therapies for BrS, including epicardial ablation. Future studies are required to increase understanding of the pathogenesis of this disease and to guide clinical practice.
Collapse
Affiliation(s)
- Jorge Romero
- Montefiore Medical Center, Albert Einstein College of Medicine Bronx, NY, US
| | - Dan L Li
- Montefiore Medical Center, Albert Einstein College of Medicine Bronx, NY, US.,Cardiovascular Division, Department of Medicine, Vanderbilt University Medical Center Nashville, TN, US
| | - Ricardo Avendano
- Montefiore Medical Center, Albert Einstein College of Medicine Bronx, NY, US.,Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, US
| | - Juan Carlos Diaz
- Montefiore Medical Center, Albert Einstein College of Medicine Bronx, NY, US
| | - Roderick Tung
- University of Chicago, School of Medicine Chicago, IL, US
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine Bronx, NY, US
| |
Collapse
|
45
|
Large next-generation sequencing gene panels in genetic heart disease: yield of pathogenic variants and variants of unknown significance. Neth Heart J 2019; 27:304-309. [PMID: 30847666 PMCID: PMC6533346 DOI: 10.1007/s12471-019-1250-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Genetic heterogeneity is common in inherited cardiac diseases. Next-generation sequencing gene panels are therefore suitable for genetic diagnosis. We describe the results of implementation of cardiomyopathy and arrhythmia gene panels in clinical care. Methods We present detection rates for variants with unknown (class 3), likely (class 4), and certain (class 5) pathogenicity in cardiogenetic gene panels since their introduction into diagnostics. Results In 936 patients tested on the arrhythmia panel, likely pathogenic and pathogenic variants were detected in 8.8% (4.6% class 5; 4.2% class 4), and one or multiple class 3 variants in 34.8%. In 1970 patients tested on the cardiomyopathy panel, likely pathogenic and pathogenic variants were detected in 19.8% (12.0% class 5; 7.9% class 4), and one or multiple class 3 variants in 40.8%. Detection rates of all different classes of variants increased with the increasing number of genes on the cardiomyopathy gene panel. Multiple variants were detected in 11.7% and 28.5% of patients on the arrhythmia and cardiomyopathy panels respectively. In more recent larger versions of the cardiomyopathy gene panel the detection rate of likely pathogenic and pathogenic variants only slightly increased, but was associated with a large increase of class 3 variants. Conclusion Overall detection rates (class 3, 4, and 5 variants) in a diagnostic setting are 44% and 61% for the arrhythmia and cardiomyopathy gene panel respectively, with only a small minority of likely pathogenic and pathogenic variants (8.8% and 19.8% respectively). Larger gene panels can increase the detection rate of likely pathogenic and pathogenic variants, but mainly increase the frequency of variants of unknown pathogenicity. Electronic supplementary material The online version of this article (10.1007/s12471-019-1250-5) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Chen CYJ, Lu TP, Lin LY, Liu YB, Ho LT, Huang HC, Lai LP, Hwang JJ, Yeh SFS, Wu CK, Juang JMJ, Antzelevitch C. Impact of Ancestral Differences and Reassessment of the Classification of Previously Reported Pathogenic Variants in Patients With Brugada Syndrome in the Genomic Era: A SADS-TW BrS Registry. Front Genet 2019; 9:680. [PMID: 30662450 PMCID: PMC6328444 DOI: 10.3389/fgene.2018.00680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a heritable disease that results in sudden cardiac death. In the exome/genomic era, certain reported pathogenic variants in some genetic diseases have been reclassified as benign owing to their high frequency in some ancestries. In the present study, we comprehensively reassessed all previously reported pathogenic variants of BrS. We collected all pathogenic variants of BrS reported in the Human Gene Mutation Database and ClinVar throughout April 2017. We compared the minor allele frequency (MAF) of each variant among different ancestries by searching public whole-genome and exome databases. After considering the maximum credible allele frequency, variants with a MAF ≥ 0.001 were considered to be of questionable pathogenicity. We also investigated the percentage of SCN5A variants with a MAF ≥ 0.001 in 124 BrS patients from the Han Chinese population. We collected a total of 440 BrS variants, of which 18 had a MAF ≥ 0.001. There was a greater percentage of non-SCN5A variants with a MAF ≥ 0.001 than of SCN5A variants (21.8 versus 1.6%, p < 0.0001). There were fewer frameshift and nonsense mutations than missense mutations (0.9 versus 5.6%, p = 0.032). Of the 18 variants, 14 (77.8%) were present only in the reference Asian population. In our cohort, we identified two SCN5A variants (p.A226V and p.V1340I) with MAFs ≥ 0.001 (0.45%). In conclusion, ancestral differences are important when considering the pathogenicity of BrS variants, especially in the case of missense variants and non-SCN5A variants, which may be pathogenic in some ancestries but only disease-predisposing in others.
Collapse
Affiliation(s)
- Ching-Yu Julius Chen
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Pin Lu
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Lian-Yu Lin
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Bin Liu
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ting Ho
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ling-Ping Lai
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Juey-Jen Hwang
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Fan Sherri Yeh
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cho-Kai Wu
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyh-Ming Jimmy Juang
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA, United States.,Lankenau Heart Institute, Wynnewood, PA, United States.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
47
|
Lu HM, Li S, Black MH, Lee S, Hoiness R, Wu S, Mu W, Huether R, Chen J, Sridhar S, Tian Y, McFarland R, Dolinsky J, Tippin Davis B, Mexal S, Dunlop C, Elliott A. Association of Breast and Ovarian Cancers With Predisposition Genes Identified by Large-Scale Sequencing. JAMA Oncol 2019; 5:51-57. [PMID: 30128536 PMCID: PMC6439764 DOI: 10.1001/jamaoncol.2018.2956] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
Importance Since the discovery of BRCA1 and BRCA2, multiple high- and moderate-penetrance genes have been reported as risk factors for hereditary breast cancer, ovarian cancer, or both; however, it is unclear whether these findings represent the complete genetic landscape of these cancers. Systematic investigation of the genetic contributions to breast and ovarian cancers is needed to confirm these findings and explore potentially new associations. Objective To confirm reported and identify additional predisposition genes for breast or ovarian cancer. Design, Setting, and Participants In this sample of 11 416 patients with clinical features of breast cancer, ovarian cancer, or both who were referred for genetic testing from 1200 hospitals and clinics across the United States and of 3988 controls who were referred for genetic testing for noncancer conditions between 2014 and 2015, whole-exome sequencing was conducted and gene-phenotype associations were examined. Case-control analyses using the Genome Aggregation Database as a set of reference controls were also conducted. Main Outcomes and Measures Breast cancer risk associated with pathogenic variants among 625 cancer predisposition genes; association of identified predisposition breast or ovarian cancer genes with the breast cancer subtypes invasive ductal, invasive lobular, hormone receptor-positive, hormone receptor-negative, and male, and with early-onset disease. Results Of 9639 patients with breast cancer, 3960 (41.1%) were early-onset cases (≤45 years at diagnosis) and 123 (1.3%) were male, with men having an older age at diagnosis than women (mean [SD] age, 61.8 [12.8] vs 48.6 [11.4] years). Of 2051 women with ovarian cancer, 445 (21.7%) received a diagnosis at 45 years or younger. Enrichment of pathogenic variants were identified in 4 non-BRCA genes associated with breast cancer risk: ATM (odds ratio [OR], 2.97; 95% CI, 1.67-5.68), CHEK2 (OR, 2.19; 95% CI, 1.40-3.56), PALB2 (OR, 5.53; 95% CI, 2.24-17.65), and MSH6 (OR, 2.59; 95% CI, 1.35-5.44). Increased risk for ovarian cancer was associated with 4 genes: MSH6 (OR, 4.16; 95% CI, 1.95-9.47), RAD51C (OR, not estimable; false-discovery rate-corrected P = .004), TP53 (OR, 18.50; 95% CI, 2.56-808.10), and ATM (OR, 2.85; 95% CI, 1.30-6.32). Neither the MRN complex genes nor CDKN2A was associated with increased breast or ovarian cancer risk. The findings also do not support previously reported breast cancer associations with the ovarian cancer susceptibility genes BRIP1, RAD51C, and RAD51D, or mismatch repair genes MSH2 and PMS2. Conclusions and Relevance The results of this large-scale exome sequencing of patients and controls shed light on both well-established and controversial non-BRCA predisposition gene associations with breast or ovarian cancer reported to date and may implicate additional breast or ovarian cancer susceptibility gene candidates involved in DNA repair and genomic maintenance.
Collapse
Affiliation(s)
| | - Shuwei Li
- Ambry Genetics, Aliso Viejo, California
| | | | - Shela Lee
- Ambry Genetics, Aliso Viejo, California
- Now with Simcere Pharmaceutical, Jiangsu, China
| | | | - Sitao Wu
- Ambry Genetics, Aliso Viejo, California
| | - Wenbo Mu
- Ambry Genetics, Aliso Viejo, California
| | - Robert Huether
- Ambry Genetics, Aliso Viejo, California
- Tempus, Chicago, Illinois
| | | | - Srijani Sridhar
- Ambry Genetics, Aliso Viejo, California
- Intellia Therapeutics, Cambridge, Massachusetts
| | - Yuan Tian
- Ambry Genetics, Aliso Viejo, California
| | - Rachel McFarland
- Ambry Genetics, Aliso Viejo, California
- Department of Epidemiology, School of Medicine,
University of California, Irvine
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Skinner JR, Winbo A, Abrams D, Vohra J, Wilde AA. Channelopathies That Lead to Sudden Cardiac Death: Clinical and Genetic Aspects. Heart Lung Circ 2019; 28:22-30. [DOI: 10.1016/j.hlc.2018.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022]
|
50
|
An African loss-of-function CACNA1C variant p.T1787M associated with a risk of ventricular fibrillation. Sci Rep 2018; 8:14619. [PMID: 30279520 PMCID: PMC6168548 DOI: 10.1038/s41598-018-32867-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
Calcium regulation plays a central role in cardiac function. Several variants in the calcium channel Cav1.2 have been implicated in arrhythmic syndromes. We screened patients with Brugada syndrome, short QT syndrome, early repolarisation syndrome, and idiopathic ventricular fibrillation to determine the frequency and pathogenicity of Cav1.2 variants. Cav1.2 related genes, CACNA1C, CACNB2 and CACNA2D1, were screened in 65 probands. Missense variants were introduced in the Cav1.2 alpha subunit plasmid by mutagenesis to assess their pathogenicity using patch clamp approaches. Six missense variants were identified in CACNA1C in five individuals. Five of them, A1648T, A1689T, G1795R, R1973Q, C1992F, showed no major alterations of the channel function. The sixth C-terminal variant, Cavα1c-T1787M, present mostly in the African population, was identified in two patients with resuscitated cardiac arrest. The first patient originated from Cameroon and the second was an inhabitant of La Reunion Island with idiopathic ventricular fibrillation originating from Purkinje tissues. Patch-clamp analysis revealed that Cavα1c-T1787M reduces the calcium and barium currents by increasing the auto-inhibition mediated by the C-terminal part and increases the voltage-dependent inhibition. We identified a loss-of-function variant, Cavα1c-T1787M, present in 0.8% of the African population, as a new risk factor for ventricular arrhythmia.
Collapse
|