1
|
Sahoo SS, Khiami M, Wlodarski MW. Inducible pluripotent stem cell models to study bone marrow failure and MDS predisposition syndromes. Exp Hematol 2024:104669. [PMID: 39491640 DOI: 10.1016/j.exphem.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as powerful tools for in vitro modeling of bone marrow failure (BMF) syndromes and hereditary conditions predisposing to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). This review synthesizes recent advances in iPSC-based disease modeling for various inherited BMF/MDS disorders, including Fanconi anemia, dyskeratosis congenita, Diamond Blackfan anemia syndrome, Shwachman-Diamond syndrome, and severe congenital neutropenia as well as GATA2, RUNX1, ETV6, ANKRD26, SAMD9, SAMD9L, and ADH5/ALDH2 syndromes. Although the majority of these iPSC lines are derived from patient cells, some are generated by introducing patient-specific mutations into healthy iPSC backgrounds, offering complementary approaches to disease modeling. The review highlights the ability of iPSCs to recapitulate key disease phenotypes, such as impaired hematopoietic differentiation, telomere dysfunction, and defects in DNA repair or ribosome biogenesis. We discuss how these models have enhanced our understanding of disease pathomechanisms, hematopoietic defects, and potential therapeutic approaches. Challenges in generating and maintaining disease-specific iPSCs are examined, particularly for disorders involving DNA repair. We emphasize the necessity of creating isogenic controls to elucidate genotype-phenotype relationships. Furthermore, we address limitations of current iPSC models, including genetic variability among iPSC clones derived from the same patient, and difficulties in achieving robust engraftment of iPSC-derived hematopoietic progenitor cells in mouse transplantation models. The review also explores future directions, including the potential of iPSC models for drug discovery and personalized medicine approaches. This review underscores the significance of iPSC technology in advancing our understanding of inherited hematopoietic disorders and its potential to inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Majd Khiami
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
2
|
Herrera ML, Paraíso-Luna J, Bustos-Martínez I, Barco Á. Targeting epigenetic dysregulation in autism spectrum disorders. Trends Mol Med 2024; 30:1028-1046. [PMID: 38971705 DOI: 10.1016/j.molmed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Autism spectrum disorders (ASD) comprise a range of neurodevelopmental pathologies characterized by deficits in social interaction and repetitive behaviors, collectively affecting almost 1% of the worldwide population. Deciphering the etiology of ASD has proven challenging due to the intricate interplay of genetic and environmental factors and the variety of molecular pathways affected. Epigenomic alterations have emerged as key players in ASD etiology. Their research has led to the identification of biomarkers for diagnosis and pinpointed specific gene targets for therapeutic interventions. This review examines the role of epigenetic alterations, resulting from both genetic and environmental influences, as a central causative factor in ASD, delving into its contribution to pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Juan Paraíso-Luna
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Isabel Bustos-Martínez
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
3
|
Grigor’eva EV, Karapetyan LV, Malakhova AA, Medvedev SP, Minina JM, Hayrapetyan VH, Vardanyan VS, Zakian SM, Arakelyan A, Zakharyan R. Generation of iPSCs from a Patient with the M694V Mutation in the MEFV Gene Associated with Familial Mediterranean Fever and Their Differentiation into Macrophages. Int J Mol Sci 2024; 25:6102. [PMID: 38892289 PMCID: PMC11173119 DOI: 10.3390/ijms25116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Familial Mediterranean fever (FMF) is a systemic autoinflammatory disorder caused by inherited mutations in the MEFV (Mediterranean FeVer) gene, located on chromosome 16 (16p13.3) and encoding the pyrin protein. Despite the existing data on MEFV mutations, the exact mechanism of their effect on the development of the pathological processes leading to the spontaneous and recurrent autoinflammatory attacks observed in FMF, remains unclear. Induced pluripotent stem cells (iPSCs) are considered an important tool to study the molecular genetic mechanisms of various diseases due to their ability to differentiate into any cell type, including macrophages, which contribute to the development of FMF. In this study, we developed iPSCs from an Armenian patient with FMF carrying the M694V, p.(Met694Val) (c.2080A>G, rs61752717) pathogenic mutation in exon 10 of the MEFV gene. As a result of direct differentiation, macrophages expressing CD14 and CD45 surface markers were obtained. We found that the morphology of macrophages derived from iPSCs of a patient with the MEFV mutation significantly differed from that of macrophages derived from iPSCs of a healthy donor carrying the wild-type MEFV gene.
Collapse
Affiliation(s)
- Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lana V. Karapetyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Julia M. Minina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
| | - Varduhi H. Hayrapetyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| | - Valentina S. Vardanyan
- Department of Rheumatology, Yerevan State Medical University after Mkhitar Heratsi (YSMU), Yerevan 0025, Armenia;
- Department of Rheumatology, “Mikaelyan” Institute of Surgery, Yerevan 0052, Armenia
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.G.); (A.A.M.); (S.P.M.); (J.M.M.); (S.M.Z.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Arsen Arakelyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| | - Roksana Zakharyan
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian (Slavonic) University, Yerevan 0051, Armenia; (L.V.K.); (V.H.H.); (A.A.)
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia
| |
Collapse
|
4
|
Lewis J, Yaseen B, Saraf A. Novel 2D/3D Hybrid Organoid System for High-Throughput Drug Screening in iPSC Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591754. [PMID: 38746465 PMCID: PMC11092641 DOI: 10.1101/2024.04.29.591754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) allow for high-throughput evaluation of cardiomyocyte (CM) physiology in health and disease. While multimodality testing provides a large breadth of information related to electrophysiology, contractility, and intracellular signaling in small populations of iPSC-CMs, current technologies for analyzing these parameters are expensive and resource-intensive. We sought to design a 2D/3D hybrid organoid system and harness optical imaging techniques to assess electromechanical properties, calcium dynamics, and signal propagation across CMs in a high-throughput manner. We validated our methods using a doxorubicin-based system, as the drug has well-characterized cardiotoxic, pro-arrhythmic effects. hiPSCs were differentiated into CMs, assembled into organoids, and thereafter treated with doxorubicin. The organoids were then replated to form a hybrid 2D/3D iPSC-CM construct where the 3D cardiac organoids acted as the source of electromechanical activity which propagated outwards into a 2D iPSC-CM sheet. The organoid recapitulated cardiac structure and connectivity, while 2D CMs facilitated analysis at an individual cellular level which recreated numerous doxorubicin-induced electrophysiologic and propagation abnormalities. Thus, we have developed a novel 2D/3D hybrid organoid model that employs an integrated optical analysis platform to provide a reliable high-throughput method for studying cardiotoxicity, providing valuable data on calcium, contractility, and signal propagation.
Collapse
|
5
|
Palomino Lago E, Baird A, Blott SC, McPhail RE, Ross AC, Durward-Akhurst SA, Guest DJ. A Functional Single-Nucleotide Polymorphism Upstream of the Collagen Type III Gene Is Associated with Catastrophic Fracture Risk in Thoroughbred Horses. Animals (Basel) 2023; 14:116. [PMID: 38200847 PMCID: PMC10778232 DOI: 10.3390/ani14010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Fractures caused by bone overloading are a leading cause of euthanasia in Thoroughbred racehorses. The risk of fatal fracture has been shown to be influenced by both environmental and genetic factors but, to date, no specific genetic mechanisms underpinning fractures have been identified. In this study, we utilised a genome-wide polygenic risk score to establish an in vitro cell system to study bone gene regulation in horses at high and low genetic risk of fracture. Candidate gene expression analysis revealed differential expression of COL3A1 and STAT1 genes in osteoblasts derived from high- and low-risk horses. Whole-genome sequencing of two fracture cases and two control horses revealed a single-nucleotide polymorphism (SNP) upstream of COL3A1 that was confirmed in a larger cohort to be significantly associated with fractures. Bioinformatics tools predicted that this SNP may impact the binding of the transcription factor SOX11. Gene modulation demonstrated SOX11 is upstream of COL3A1, and the region binds to nuclear proteins. Furthermore, luciferase assays demonstrated that the region containing the SNP has promoter activity. However, the specific effect of the SNP depends on the broader genetic background of the cells and suggests other factors may also be involved in regulating COL3A1 expression. In conclusion, we have identified a novel SNP that is significantly associated with fracture risk and provide new insights into the regulation of the COL3A1 gene.
Collapse
Affiliation(s)
- Esther Palomino Lago
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (E.P.L.); (A.C.R.)
| | - Arabella Baird
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
| | - Sarah C. Blott
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Rhona E. McPhail
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
| | - Amy C. Ross
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (E.P.L.); (A.C.R.)
| | - Sian A. Durward-Akhurst
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Deborah J. Guest
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (E.P.L.); (A.C.R.)
| |
Collapse
|
6
|
Shang Y, Liu R, Gan J, Yang Y, Sun L. Construction of cardiac fibrosis for biomedical research. SMART MEDICINE 2023; 2:e20230020. [PMID: 39188350 PMCID: PMC11235890 DOI: 10.1002/smmd.20230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2023] [Indexed: 08/28/2024]
Abstract
Cardiac remodeling is critical for effective tissue recuperation, nevertheless, excessive formation and deposition of extracellular matrix components can result in the onset of cardiac fibrosis. Despite the emergence of novel therapies, there are still no lifelong therapeutic solutions for this issue. Understanding the detrimental cardiac remodeling may aid in the development of innovative treatment strategies to prevent or reverse fibrotic alterations in the heart. Further combining the latest understanding of disease pathogenesis with cardiac tissue engineering has provided the conversion of basic laboratory studies into the therapy of cardiac fibrosis patients as an increasingly viable prospect. This review presents the current main mechanisms and the potential tissue engineering of cardiac fibrosis. Approaches using biomedical materials-based cardiac constructions are reviewed to consider key issues for simulating in vitro cardiac fibrosis, outlining a future perspective for preclinical applications.
Collapse
Affiliation(s)
- Yixuan Shang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yuzhi Yang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
7
|
Wang Y, Xue Y, Guo HD. Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction. Front Pharmacol 2022; 13:1013740. [PMID: 36330092 PMCID: PMC9622800 DOI: 10.3389/fphar.2022.1013740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of global mortality, in which myocardial infarction accounts for 46% of total deaths. Although good progress has been achieved in medication and interventional techniques, a proven method to repair the damaged myocardium has not yet been determined. Stem cell therapy for damaged myocardial repair has evolved into a promising treatment for ischemic heart disease. However, low retention and poor survival of the injected stem cells are the major obstacles to achieving the intended therapeutic effects. Chinese botanical and other natural drug substances are a rich source of effective treatment for various diseases. As such, numerous studies have revealed the role of Chinese medicine in stem cell therapy for myocardial infarction treatment, including promoting proliferation, survival, migration, angiogenesis, and differentiation of stem cells. Here, we discuss the potential and limitations of stem cell therapy, as well as the regulatory mechanism of Chinese medicines underlying stem cell therapy. We focus on the evidence from pre-clinical trials and clinical practices, and based on traditional Chinese medicine theories, we further summarize the mechanisms of Chinese medicine treatment in stem cell therapy by the commonly used prescriptions. Despite the pre-clinical evidence showing that traditional Chinese medicine is helpful in stem cell therapy, there are still some limitations of traditional Chinese medicine therapy. We also systematically assess the detailed experimental design and reliability of included pharmacological research in our review. Strictly controlled animal models with multi-perspective pharmacokinetic profiles and high-grade clinical evidence with multi-disciplinary efforts are highly demanded in the future.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hai-dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Perea-Gil I, Seeger T, Bruyneel AAN, Termglinchan V, Monte E, Lim EW, Vadgama N, Furihata T, Gavidia AA, Arthur Ataam J, Bharucha N, Martinez-Amador N, Ameen M, Nair P, Serrano R, Kaur B, Feyen DAM, Diecke S, Snyder MP, Metallo CM, Mercola M, Karakikes I. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. Eur Heart J 2022; 43:3477-3489. [PMID: 35728000 PMCID: PMC9794189 DOI: 10.1093/eurheartj/ehac305] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Timon Seeger
- Department of Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Arne A N Bruyneel
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vittavat Termglinchan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Takaaki Furihata
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra A Gavidia
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Jennifer Arthur Ataam
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nike Bharucha
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noel Martinez-Amador
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Mohamed Ameen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pooja Nair
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Balpreet Kaur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Dries A M Feyen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Pendse S, Vaidya A, Kale V. Clinical applications of pluripotent stem cells and their derivatives: current status and future perspectives. Regen Med 2022; 17:677-690. [PMID: 35703035 DOI: 10.2217/rme-2022-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) can differentiate into specific cell types and thus hold great promise in regenerative medicine to treat certain diseases. Hence, several studies have been performed harnessing their salutary properties in regenerative medicine. Despite several challenges associated with the clinical applications of PSCs, worldwide efforts are harnessing their potential in the regeneration of damaged tissues. Several clinical trials have been performed using PSCs or their derivatives. However, the delay in publishing the data obtained in the trials has led to a lack of awareness about their outcomes, resulting in apprehension about cellular therapies. Here, the authors review the published papers containing data from recent clinical trials done with PSCs. PSC-derived extracellular vesicles hold great potential in regenerative therapy. Since published papers containing the data obtained in clinical trials on PSC-derived extracellular vesicles are not available yet, the authors have reviewed some of the pre-clinical work done with them.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| |
Collapse
|
10
|
The Induced Pluripotent Stem Cells in Articular Cartilage Regeneration and Disease Modelling: Are We Ready for Their Clinical Use? Cells 2022; 11:cells11030529. [PMID: 35159338 PMCID: PMC8834349 DOI: 10.3390/cells11030529] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The development of induced pluripotent stem cells has brought unlimited possibilities to the field of regenerative medicine. This could be ideal for treating osteoarthritis and other skeletal diseases, because the current procedures tend to be short-term solutions. The usage of induced pluripotent stem cells in the cell-based regeneration of cartilage damages could replace or improve on the current techniques. The patient’s specific non-invasive collection of tissue for reprogramming purposes could also create a platform for drug screening and disease modelling for an overview of distinct skeletal abnormalities. In this review, we seek to summarise the latest achievements in the chondrogenic differentiation of pluripotent stem cells for regenerative purposes and disease modelling.
Collapse
|
11
|
Goodwin-Trotman M, Patel K, Granata A. An hiPSC-Derived In Vitro Model of the Blood-Brain Barrier. Methods Mol Biol 2022; 2492:103-116. [PMID: 35733040 DOI: 10.1007/978-1-0716-2289-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human induced pluripotent stem cells (hiPSC) offer a tractable system to model the blood-brain barrier (BBB). Here we detail the assembly of a triple co-culture hiPSC-BBB model, using hiPSC-derived brain microvascular endothelial cells (BMEC), astrocytes, and mural cells (MC). Transendothelial electrical resistance (TEER) and sodium fluorescein (NaFl) permeability can be used to test the barrier properties. The model has applications in studying BBB-related pathology and for drug screening.
Collapse
Affiliation(s)
- Mary Goodwin-Trotman
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Krushangi Patel
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alessandra Granata
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Hwang JJ, Choi J, Rim YA, Nam Y, Ju JH. Application of Induced Pluripotent Stem Cells for Disease Modeling and 3D Model Construction: Focus on Osteoarthritis. Cells 2021; 10:cells10113032. [PMID: 34831254 PMCID: PMC8622662 DOI: 10.3390/cells10113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have shown promising potential, specifically because of their accessibility and plasticity. Hence, the clinical applicability of iPSCs was investigated in various fields of research. However, only a few iPSC studies pertaining to osteoarthritis (OA) have been performed so far, despite the high prevalence rate of degenerative joint disease. In this review, we discuss some of the most recent applications of iPSCs in disease modeling and the construction of 3D models in various fields, specifically focusing on osteoarthritis and OA-related conditions. Notably, we comprehensively reviewed the successful results of iPSC-derived disease models in recapitulating OA phenotypes for both OA and early-onset OA to encompass their broad etiology. Moreover, the latest publications with protocols that have used iPSCs to construct 3D models in recapitulating various conditions, particularly the OA environment, were further discussed. With the overall optimistic results seen in both fields, iPSCs are expected to be more widely used for OA disease modeling and 3D model construction, which could further expand OA drug screening, risk assessment, and therapeutic capabilities.
Collapse
Affiliation(s)
- Joel Jihwan Hwang
- College of Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA;
| | - Jinhyeok Choi
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Yoojun Nam
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
| | - Ji Hyeon Ju
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
13
|
Advances in stem cell research for the treatment of primary hypogonadism. Nat Rev Urol 2021; 18:487-507. [PMID: 34188209 DOI: 10.1038/s41585-021-00480-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
In Leydig cell dysfunction, cells respond weakly to stimulation by pituitary luteinizing hormone, and, therefore, produce less testosterone, leading to primary hypogonadism. The most widely used treatment for primary hypogonadism is testosterone replacement therapy (TRT). However, TRT causes infertility and has been associated with other adverse effects, such as causing erythrocytosis and gynaecomastia, worsening obstructive sleep apnoea and increasing cardiovascular morbidity and mortality risks. Stem-cell-based therapy that re-establishes testosterone-producing cell lineages in the body has, therefore, become a promising prospect for treating primary hypogonadism. Over the past two decades, substantial advances have been made in the identification of Leydig cell sources for use in transplantation surgery, including the artificial induction of Leydig-like cells from different types of stem cells, for example, stem Leydig cells, mesenchymal stem cells, and pluripotent stem cells (PSCs). PSC-derived Leydig-like cells have already provided a powerful in vitro model to study the molecular mechanisms underlying Leydig cell differentiation and could be used to treat men with primary hypogonadism in a more specific and personalized approach.
Collapse
|
14
|
Bansal P, Ahern DT, Kondaveeti Y, Qiu CW, Pinter SF. Contiguous erosion of the inactive X in human pluripotency concludes with global DNA hypomethylation. Cell Rep 2021; 35:109215. [PMID: 34107261 PMCID: PMC8267460 DOI: 10.1016/j.celrep.2021.109215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Female human pluripotent stem cells (hPSCs) routinely undergo inactive X (Xi) erosion. This progressive loss of key repressive features follows the loss of XIST expression, the long non-coding RNA driving X inactivation, and causes reactivation of silenced genes across the eroding X (Xe). To date, the sporadic and progressive nature of erosion has obscured its scale, dynamics, and key transition events. To address this problem, we perform an integrated analysis of DNA methylation (DNAme), chromatin accessibility, and gene expression across hundreds of hPSC samples. Differential DNAme orders female hPSCs across a trajectory from initiation to terminal Xi erosion. Our results identify a cis-regulatory element crucial for XIST expression, trace contiguously growing reactivated domains to a few euchromatic origins, and indicate that the late-stage Xe impairs DNAme genome-wide. Surprisingly, from this altered regulatory landscape emerge select features of naive pluripotency, suggesting that its link to X dosage may be partially conserved in human embryonic development. Reactivation of the silenced X in human female iPSC/ESCs compromises their utility. Bansal et al. perform an integrated genomics analysis to reveal a prevalent X erosion trajectory that they validate in long-term culture. Starting with XIST loss, this trajectory indicates that reactivation may spread contiguously from escapees to silenced genes.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Catherine W Qiu
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Stefan F Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
15
|
García-Huerta P, Troncoso-Escudero P, Wu D, Thiruvalluvan A, Cisternas-Olmedo M, Henríquez DR, Plate L, Chana-Cuevas P, Saquel C, Thielen P, Longo KA, Geddes BJ, Lederkremer GZ, Sharma N, Shenkman M, Naphade S, Sardi SP, Spichiger C, Richter HG, Court FA, Tshilenge KT, Ellerby LM, Wiseman RL, Gonzalez-Billault C, Bergink S, Vidal RL, Hetz C. Insulin-like growth factor 2 (IGF2) protects against Huntington's disease through the extracellular disposal of protein aggregates. Acta Neuropathol 2020; 140:737-764. [PMID: 32642868 PMCID: PMC8513574 DOI: 10.1007/s00401-020-02183-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/06/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species.
Collapse
Affiliation(s)
- Paula García-Huerta
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
| | - Di Wu
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arun Thiruvalluvan
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marisol Cisternas-Olmedo
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
| | - Daniel R Henríquez
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Department of Cell Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lars Plate
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pedro Chana-Cuevas
- Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Cristian Saquel
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
| | - Peter Thielen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA
| | | | | | - Gerardo Z Lederkremer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Neeraj Sharma
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Marina Shenkman
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Swati Naphade
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - S Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA
| | - Carlos Spichiger
- Faculty of Sciences, Institute of Biochemistry and Microbiology, University Austral of Chile, Valdivia, Chile
| | - Hans G Richter
- Faculty of Medicine, Institute of Anatomy, Histology and Pathology, University Austral of Chile, Valdivia, Chile
| | - Felipe A Court
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Christian Gonzalez-Billault
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Department of Cell Biology, Faculty of Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rene L Vidal
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile.
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile.
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| |
Collapse
|
16
|
Utami KH, Skotte NH, Colaço AR, Yusof NABM, Sim B, Yeo XY, Bae HG, Garcia-Miralles M, Radulescu CI, Chen Q, Chaldaiopoulou G, Liany H, Nama S, Peteri UKA, Sampath P, Castrén ML, Jung S, Mann M, Pouladi MA. Integrative Analysis Identifies Key Molecular Signatures Underlying Neurodevelopmental Deficits in Fragile X Syndrome. Biol Psychiatry 2020; 88:500-511. [PMID: 32653109 DOI: 10.1016/j.biopsych.2020.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 03/26/2020] [Accepted: 05/02/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by epigenetic silencing of FMR1 and loss of FMRP expression. Efforts to understand the molecular underpinnings of the disease have been largely performed in rodent or nonisogenic settings. A detailed examination of the impact of FMRP loss on cellular processes and neuronal properties in the context of isogenic human neurons remains lacking. METHODS Using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to introduce indels in exon 3 of FMR1, we generated an isogenic human pluripotent stem cell model of FXS that shows complete loss of FMRP expression. We generated neuronal cultures and performed genome-wide transcriptome and proteome profiling followed by functional validation of key dysregulated processes. We further analyzed neurodevelopmental and neuronal properties, including neurite length and neuronal activity, using multielectrode arrays and patch clamp electrophysiology. RESULTS We showed that the transcriptome and proteome profiles of isogenic FMRP-deficient neurons demonstrate perturbations in synaptic transmission, neuron differentiation, cell proliferation and ion transmembrane transporter activity pathways, and autism spectrum disorder-associated gene sets. We uncovered key deficits in FMRP-deficient cells demonstrating abnormal neural rosette formation and neural progenitor cell proliferation. We further showed that FMRP-deficient neurons exhibit a number of additional phenotypic abnormalities, including neurite outgrowth and branching deficits and impaired electrophysiological network activity. These FMRP-deficient related impairments have also been validated in additional FXS patient-derived human-induced pluripotent stem cell neural cells. CONCLUSIONS Using isogenic human pluripotent stem cells as a model to investigate the pathophysiology of FXS in human neurons, we reveal key neural abnormalities arising from the loss of FMRP.
Collapse
Affiliation(s)
- Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Niels H Skotte
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N, Denmark
| | - Ana R Colaço
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N, Denmark
| | | | - Bernice Sim
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Xin Yi Yeo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Han-Gyu Bae
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Carola I Radulescu
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore; UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Qiyu Chen
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Georgia Chaldaiopoulou
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Herty Liany
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Srikanth Nama
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Ulla-Kaisa A Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Prabha Sampath
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sangyong Jung
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N, Denmark
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A∗STAR), Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Kanchan K, Iyer K, Yanek LR, Carcamo-Orive I, Taub MA, Malley C, Baldwin K, Becker LC, Broeckel U, Cheng L, Cowan C, D'Antonio M, Frazer KA, Quertermous T, Mostoslavsky G, Murphy G, Rabinovitch M, Rader DJ, Steinberg MH, Topol E, Yang W, Knowles JW, Jaquish CE, Ruczinski I, Mathias RA. Genomic integrity of human induced pluripotent stem cells across nine studies in the NHLBI NextGen program. Stem Cell Res 2020; 46:101803. [PMID: 32442913 PMCID: PMC7575060 DOI: 10.1016/j.scr.2020.101803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) lines have previously been generated through the NHLBI sponsored NextGen program at nine individual study sites. Here, we examined the structural integrity of 506 hiPSC lines as determined by copy number variations (CNVs). We observed that 149 hiPSC lines acquired 258 CNVs relative to donor DNA. We identified six recurrent regions of CNVs on chromosomes 1, 2, 3, 16 and 20 that overlapped with cancer associated genes. Furthermore, the genes mapping to regions of acquired CNVs show an enrichment in cancer related biological processes (IL6 production) and signaling cascades (JNK cascade & NFκB cascade). The genomic region of instability on chr20 (chr20q11.2) includes transcriptomic signatures for cancer associated genes such as ID1, BCL2L1, TPX2, PDRG1 and HCK. Of these HCK shows statistically significant differential expression between carrier and non-carrier hiPSC lines. Overall, while a low level of genomic instability was observed in the NextGen generated hiPSC lines, the observation of structural instability in regions with known cancer associated genes substantiates the importance of systematic evaluation of genetic variations in hiPSCs before using them as disease/research models.
Collapse
Affiliation(s)
- Kanika Kanchan
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kruthika Iyer
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa R Yanek
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ivan Carcamo-Orive
- Department of Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Margaret A Taub
- Department of Biostatistics, Bloomberg School of Public health, Johns Hopkins University, Baltimore, MD, USA
| | - Claire Malley
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kristin Baldwin
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Lewis C Becker
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ulrich Broeckel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Linzhao Cheng
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chad Cowan
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matteo D'Antonio
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kelly A Frazer
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Thomas Quertermous
- Department of Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Gustavo Mostoslavsky
- The Center for Regenerative Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - George Murphy
- The Center for Regenerative Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Marlene Rabinovitch
- Department of Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin H Steinberg
- Department of Medicine, Section of Hematology-Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Eric Topol
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenli Yang
- Penn Center for Pulmonary Biology and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua W Knowles
- Department of Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public health, Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Richards DJ, Li Y, Kerr CM, Yao J, Beeson GC, Coyle RC, Chen X, Jia J, Damon B, Wilson R, Starr Hazard E, Hardiman G, Menick DR, Beeson CC, Yao H, Ye T, Mei Y. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng 2020; 4:446-462. [PMID: 32284552 PMCID: PMC7422941 DOI: 10.1038/s41551-020-0539-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Environmental factors are the largest contributors to cardiovascular disease. Here we show that cardiac organoids that incorporate an oxygen-diffusion gradient and that are stimulated with the neurotransmitter noradrenaline model the structure of the human heart after myocardial infarction (by mimicking the infarcted, border and remote zones), and recapitulate hallmarks of myocardial infarction (in particular, pathological metabolic shifts, fibrosis and calcium handling) at the transcriptomic, structural and functional levels. We also show that the organoids can model hypoxia-enhanced doxorubicin cardiotoxicity. Human organoids that model diseases with non-genetic pathological factors could help with drug screening and development.
Collapse
Affiliation(s)
- Dylan J Richards
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Immunology Translational Sciences, Janssen Research and Development, LLC, Spring House, PA, USA
| | - Yang Li
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Charles M Kerr
- Molecular Cell Biology and Pathology Program, Medical University of South Carolina, Charleston, SC, USA
| | - Jenny Yao
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Gyda C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Coyle
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Xun Chen
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Brooke Damon
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Robert Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - E Starr Hazard
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Hardiman
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Donald R Menick
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC, USA
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Hai Yao
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Tong Ye
- Bioengineering Department, Clemson University, Clemson, SC, USA.
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
Reducing mitomycin-C-induced ROS levels in mouse feeder cells improves induced pluripotent stem cell colony growth. Biotechniques 2020; 68:270-274. [PMID: 31939319 DOI: 10.2144/btn-2019-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chemically defined stem cell culture media are often costly, and the use of mitotically arrested mouse embryonic fibroblasts (MEFs) as feeder cells is a popular and cost-efficient way to maintain induced pluripotent stem cells (iPSCs). However, the commonly used mitotic inhibitor mitomycin-C (MMC) is known to cause cellular metabolic stress. Therefore, our aim was to determine whether such stress in feeder cells indirectly affects iPSC growth during coculture. We report that prolonged exposure to MMC causes metabolic stress in MEFs in the form of oxidative dysregulation. Through optimization of MMC exposure time, we show how to effectively arrest MEFs without inducing oxidative stress, thus promoting significantly better colony growth rates (p < 0.05), improved viability and longer periods between passages of iPSCs in coculture.
Collapse
|
20
|
Bragança J, Lopes JA, Mendes-Silva L, Almeida Santos JM. Induced pluripotent stem cells, a giant leap for mankind therapeutic applications. World J Stem Cells 2019; 11:421-430. [PMID: 31396369 PMCID: PMC6682501 DOI: 10.4252/wjsc.v11.i7.421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSC) technology has propelled the field of stem cells biology, providing new cells to explore the molecular mechanisms of pluripotency, cancer biology and aging. A major advantage of human iPSC, compared to the pluripotent embryonic stem cells, is that they can be generated from virtually any embryonic or adult somatic cell type without destruction of human blastocysts. In addition, iPSC can be generated from somatic cells harvested from normal individuals or patients, and used as a cellular tool to unravel mechanisms of human development and to model diseases in a manner not possible before. Besides these fundamental aspects of human biology and physiology that are revealed using iPSC or iPSC-derived cells, these cells hold an immense potential for cell-based therapies, and for the discovery of new or personalized pharmacological treatments for many disorders. Here, we review some of the current challenges and concerns about iPSC technology. We introduce the potential held by iPSC for research and development of novel health-related applications. We briefly present the efforts made by the scientific and clinical communities to create the necessary guidelines and regulations to achieve the highest quality standards in the procedures for iPSC generation, characterization and long-term preservation. Finally, we present some of the audacious and pioneer clinical trials in progress with iPSC-derived cells.
Collapse
Affiliation(s)
- José Bragança
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal
- ABC - Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - João André Lopes
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal
| | - João Miguel Almeida Santos
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal
| |
Collapse
|
21
|
Alari V, Russo S, Terragni B, Ajmone PF, Sironi A, Catusi I, Calzari L, Concolino D, Marotta R, Milani D, Giardino D, Mantegazza M, Gervasini C, Finelli P, Larizza L. iPSC-derived neurons of CREBBP- and EP300-mutated Rubinstein-Taybi syndrome patients show morphological alterations and hypoexcitability. Stem Cell Res 2018; 30:130-140. [PMID: 29883886 DOI: 10.1016/j.scr.2018.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/09/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022] Open
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare neurodevelopmental disorder characterized by distinctive facial features, growth retardation, broad thumbs and toes and mild to severe intellectual disability, caused by heterozygous mutations in either CREBBP or EP300 genes, encoding the homologous CBP and p300 lysine-acetyltransferases and transcriptional coactivators. No RSTS in vitro induced Pluripotent Stem Cell (iPSC)-neuronal model is available yet to achieve mechanistic insights on cognitive impairment of RSTS patients. We established iPSC-derived neurons (i-neurons) from peripheral blood cells of three CREBBP- and two EP300-mutated patients displaying different levels of intellectual disability, and four unaffected controls. Pan neuronal and cortical-specific markers were expressed by all patients' i-neurons. Altered morphology of patients' differentiating neurons, showing reduced branch length and increased branch number, and hypoexcitability of differentiated neurons emerged as potential disease biomarkers. Anomalous neuronal morphology and reduced excitability varied across different RSTS patients' i-neurons. Further studies are needed to validate these markers and assess whether they reflect cognitive and behavioural impairment of the donor patients.
Collapse
Affiliation(s)
- Valentina Alari
- Laboratory of Medical Cytogenetics and Molecular Genetics, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, 20145 Milano, Italy
| | - Silvia Russo
- Laboratory of Medical Cytogenetics and Molecular Genetics, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, 20145 Milano, Italy
| | - Benedetta Terragni
- Dept. of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133 Milano, Italy
| | - Paola Francesca Ajmone
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Alessandra Sironi
- Laboratory of Medical Cytogenetics and Molecular Genetics, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, 20145 Milano, Italy
| | - Ilaria Catusi
- Laboratory of Medical Cytogenetics and Molecular Genetics, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, 20145 Milano, Italy
| | - Luciano Calzari
- Laboratory of Medical Cytogenetics and Molecular Genetics, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, 20145 Milano, Italy
| | - Daniela Concolino
- Pediatrics Unit, Department of Medical and Surgical Science, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Rosa Marotta
- Pediatrics Unit, Department of Medical and Surgical Science, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Daniela Giardino
- Laboratory of Medical Cytogenetics and Molecular Genetics, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, 20145 Milano, Italy
| | - Massimo Mantegazza
- Dept. of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133 Milano, Italy; Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, LabEx ICST, 06560 Valbonne-Sophia Antipolis, France; Université Côte d'Azur (UCA), 06560 Valbonne-Sophia Antipolis, France
| | - Cristina Gervasini
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy
| | - Palma Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, 20145 Milano, Italy
| | - Lidia Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, 20145 Milano, Italy.
| |
Collapse
|