1
|
Chen R, Chai X, Zhang Y, Zhou T, Xia Y, Jiang X, Lv B, Zhang J, Zhou L, Tian X, Wang R, Mao L, Zhao F, Zhang H, Hu J, Qiu J, Zou Z, Chen C. Novel role of FTO in regulation of gut-brain communication via Desulfovibrio fairfieldensis-produced hydrogen sulfide under arsenic exposure. Gut Microbes 2025; 17:2438471. [PMID: 39852343 PMCID: PMC11776478 DOI: 10.1080/19490976.2024.2438471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025] Open
Abstract
Fat mass and obesity-associated protein (FTO) is the key demethylase that reverses the abnormally altered N6-methyladenosine (m6A) modification in eukaryotic cells under environmental pollutants exposure. Arsenic is an environmental metalloid and can cause severe symptoms in human mainly through drinking water. However, there is no specific treatment for its toxic effects due to the uncovered mechanisms. We previously revealed that exposure to arsenic increased the level of m6A via down-regulation of FTO, which might serve as a potential target for intervention against arsenic-related disorders. In this study, our results demonstrated that chronic exposure to arsenic significantly disrupted the intestinal barrier and microenvironment. Also, this administration resulted in the enhancement of m6A modification and the reduction of FTO expression in the intestine. By using both CRISPR/Cas9-based FTO knock-in strategy and adeno-associated virus (AAV)-mediated overexpression of FTO in the intestine, we established for the first time that up-regulation of FTO remarkably ameliorated arsenic-induced disruption of intestinal barriers and altered microenvironment of mice. We also firstly identified a dominant gut microbial species, Desulfovibrio fairfieldensis, which was sharply reduced in arsenic-exposed mice, was able to proceed arsenic-induced neurobehavioral impairments by declining the levels of its major metabolite hydrogen sulfide. Administration of Desulfovibrio fairfieldensis could significantly alleviate the neurotoxicity of arsenic. Intriguingly, the beneficial effects of FTO against arsenic neurotoxicity possibly occurred through a novel gut-brain communication via Desulfovibrio fairfieldensis and its produced hydrogen sulfide. Collectively, these findings will provide new ideas for understanding the mechanisms of arsenic-induced toxic effects from a gut-brain communication perspective, and will assist the development of explicit intervention strategy via regulation of a new potential target FTO for prevention and treatment against arsenic-related both intestinal and neurological disorders.
Collapse
Affiliation(s)
- Ruonan Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoqin Chai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yunxiao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Tianxiu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bo Lv
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruonan Wang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Li Y, Xue J, Ma Y, Ye K, Zhao X, Ge F, Zheng F, Liu L, Gao X, Wang D, Xia Q. The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. Neural Regen Res 2025; 20:1582-1598. [PMID: 38845217 PMCID: PMC11688559 DOI: 10.4103/nrr.nrr-d-23-01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Liang Z, Jin N, Guo W. Neural stem cell heterogeneity in adult hippocampus. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:6. [PMID: 40053275 DOI: 10.1186/s13619-025-00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
Adult neurogenesis is a unique cellular process of the ongoing generation of new neurons throughout life, which primarily occurs in the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. In the adult DG, newly generated granule cells from neural stem cells (NSCs) integrate into existing neural circuits, significantly contributing to cognitive functions, particularly learning and memory. Recently, more and more studies have shown that rather than being a homogeneous population of identical cells, adult NSCs are composed of multiple subpopulations that differ in their morphology and function. In this study, we provide an overview of the origin, regional characteristics, prototypical morphology, and molecular factors that contribute to NSC heterogeneity. In particular, we discuss the molecular mechanisms underlying the balance between activation and quiescence of NSCs. In summary, this review highlights that deciphering NSC heterogeneity in the adult brain is a challenging but critical step in advancing our understanding of tissue-specific stem cells and the process of neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Nuomeng Jin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
4
|
Zhang Z, Zheng Z, Chen Y, Niu X, Ouyang T, Wang D. Mechanism of USP18-Mediated NCOA4 m6A Modification Via Maintaining FTO Stability In Regulating Ferritinophagy-Mediated Ferroptosis in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2025; 62:3848-3862. [PMID: 39331352 DOI: 10.1007/s12035-024-04494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
This study aimed to explore whether USP18 regulates cerebral ischemia-reperfusion (I/R) injury via fat mass and obesity-associated proteins (FTO)-mediated NCOA4. Middle cerebral artery occlusion (MCAO) models were established in mice, and PC-12 cells treated with oxygen-glucose deprivation and reperfusion (OGD/R) were used as in vitro models. The USP18 lentiviral vector was transfected into cells in vitro and MCAO mice to observe its effect on ferroptosis. The relationship between USP18 and FTO was assessed using Co-IP and western blot. The effect of FTO on NCOA4 m6A modification was also elucidated. Overexpression of USP18 in MCAO models decreased cerebral infarct size and attenuated pathological conditions in mouse brain tissues. Moreover, USP18 reduced iron content, MDA, ROS, and LDH release, increased GSH levels and cell viability in both MCAO models and OGD/R cells, and promoted LC3 expression and autophagy flux. In vitro experiments on neurons showed that USP18 maintained FTO stability. The presence of FTO-m6A-YTFDH1-NCOA4 was also verified in neurons. Both in vivo and in vitro experiments showed that FTO and NCOA4 abrogated the protective effects of USP18 against ferritinophagy-mediated ferroptosis. Notably, USP18 maintains FTO stability, contributing to the removal of NCOA4 m6A modification and the suppression of NCOA4 translation, which consequently inhibits ferritinophagy-mediated ferroptosis to attenuate cerebral I/R injury.
Collapse
Affiliation(s)
- Zongyong Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Zongqing Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yibiao Chen
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Xuegang Niu
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Taohui Ouyang
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Dengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
5
|
Irisarri A, Corral A, Perez-Salvador N, Bellver-Sanchis A, Ribalta-Vilella M, Bentanachs R, Alegret M, Laguna JC, Barroso E, Palomer X, Ortuño-Sahagún D, Vázquez-Carrera M, Pallàs M, Herrero L, Griñán-Ferré C. FTO inhibition mitigates high-fat diet-induced metabolic disturbances and cognitive decline in SAMP8 mice. Mol Med 2025; 31:73. [PMID: 39984825 PMCID: PMC11843768 DOI: 10.1186/s10020-025-01126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
This study investigated the effects of fat mass and obesity-associated (FTO) inhibition on cognitive function and metabolic parameters of senescence-accelerated mouse prone 8 (SAMP8) mice fed a high-fat diet (HFD). SAMP8 mice fed an HFD exhibited increased body weight, impaired glucose tolerance, and elevated serum leptin levels. In epididymal white adipose tissue (eWAT), pharmacological treatment with FB23, a well-established FTO inhibitor, increased leptin production and modulated genes involved in lipid metabolism (Cpt1a, Atgl, Hsl, Fas), oxidative stress (OS) (Bip, Edem), and inflammation (Mcp1, Tnfα). Expression of hepatic genes related to lipid metabolism (Cpt1a, Atgl, Mgl, Dgat2, Srebp, Plin2) and OS (catalase, Edem) were modulated by FB23, although hepatic steatosis remained unchanged. Remarkably, FB23 treatment increased m6A RNA methylation in the brain, accompanied by changes in N6-methyladenosine (m6A)-regulatory enzymes and modulation of neuroinflammatory markers (Il6, Mcp1, iNOS). FTO inhibition reduced the activity of matrix metalloproteases (Mmp2, Mmp9) and altered IGF1 signaling (Igf1, Pten). Notably, enhanced leptin signaling was observed through increased expression of immediate early genes (Arc, Fos) and the transcription factor Stat3. Improved synaptic plasticity was evident, as shown by increased levels of neurotrophic factors (Bdnf, Ngf) and restored neurite length and spine density. Consistent with these findings, behavioral tests demonstrated that FB23 treatment effectively rescued cognitive impairments in SAMP8 HFD mice. The novel object recognition test (NORT) and object location test (OLT) revealed that treated mice exhibited enhanced short- and long-term memory and spatial memory compared to the HFD control group. Additionally, the open field test showed a reduction in anxiety-like behavior after treatment with FB23. In conclusion, pharmacological FTO inhibition ameliorated HFD-induced metabolic disturbances and cognitive decline in SAMP8 mice. These results suggest that targeting FTO may be a promising therapeutic approach to counteract obesity-induced cognitive impairment and age-related neurodegeneration.
Collapse
Grants
- PID2021-122116OB-100 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PDC2022-133441-I00 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PID2020-114953RB-C21 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PID2022-139016OA-I00 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- CIBERDEM CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
- 2021 SGR 00357 the Government of Catalonia
- CB06/03/0001 CIBEROBN
- 2021SGR00367 Carlos III Health Institute project and the Government of Catalonia
- Producte 0092 Departament d'Empresa i Coneixement de la Generalitat de Catalunya 2023
- Llavor 005 and 007 Departament d'Empresa i Coneixement de la Generalitat de Catalunya 2023
- Departament d’Empresa i Coneixement de la Generalitat de Catalunya 2023
Collapse
Affiliation(s)
- Alba Irisarri
- pHD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Ana Corral
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Núria Perez-Salvador
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Marta Ribalta-Vilella
- pHD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Roger Bentanachs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain.
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Sun Q, Zhu J, Zhao X, Huang X, Qu W, Tang X, Ma D, Shu Q, Li X. Mettl3-m 6A-NPY axis governing neuron-microglia interaction regulates sleep amount of mice. Cell Discov 2025; 11:10. [PMID: 39905012 PMCID: PMC11794856 DOI: 10.1038/s41421-024-00756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/13/2024] [Indexed: 02/06/2025] Open
Abstract
Sleep behavior is regulated by diverse mechanisms including genetics, neuromodulation and environmental signals. However, it remains completely unknown regarding the roles of epitranscriptomics in regulating sleep behavior. In the present study, we showed that the deficiency of RNA m6A methyltransferase Mettl3 in excitatory neurons specifically induces microglia activation, neuroinflammation and neuronal loss in thalamus of mice. Mettl3 deficiency remarkably disrupts sleep rhythm and reduces the amount of non-rapid eye movement sleep. We also showed that Mettl3 regulates neuropeptide Y (NPY) via m6A modification and Mettl3 conditional knockout (cKO) mice displayed significantly decreased expression of NPY in thalamus. In addition, the dynamic distribution pattern of NPY is observed during wake-sleep cycle in cKO mice. Ectopic expression of Mettl3 and NPY significantly inhibits microglia activation and neuronal loss in thalamus, and restores the disrupted sleep behavior of cKO mice. Collectively, our study has revealed the critical function of Mettl3-m6A-NPY axis in regulating sleep behavior.
Collapse
Affiliation(s)
- Qihang Sun
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinpiao Zhu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Rehabilitation, Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xingsen Zhao
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Xiaoli Huang
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wenzheng Qu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xia Tang
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Daqing Ma
- Department of Rehabilitation, Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Division of Anesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Qiang Shu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xuekun Li
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Xiao M, Wang X, Xiao E, Ming Q. Overexpression of FTO alleviates traumatic brain injury induced posttraumatic epilepsy by upregulating NR4A2 expression via m6A demethylation. Funct Integr Genomics 2025; 25:17. [PMID: 39825968 DOI: 10.1007/s10142-024-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE. The results of electroencephalography showed that frequency of epilepsy in serious TBI model mice was more obvious. Using quantitative PCR (qPCR) and western blot analysis, we demonstrated that FTO and NR4A2 were downregulated, while m6A level of NR4A2 mRNA was upregulated in the hippocampus of serious TBI mice. Functionally, FTO overexpression was found to reduce epilepsy susceptibility, blood-brain barrier (BBB) disruption and neuronal damage in TBI mice, suggested a role for FTO in PTE. In addition, RNA-binding protein immunoprecipitation and dual-luciferase assay experiment showed that NR4A2 was a target of FTO, and FTO upregulated NR4A2 expression through m6A-YTHDF2 manner. Furthermore, the molecular and histological changes caused by FTO overexpression are markedly reversed by NR4A2 knockdown in TBI mice. Collectively, our results demonstrate that FTO alleviates epilepsy susceptibility and brain injury after TBI by mediating epigenetic up-regulation of NR4A2, which implicates it as a potential therapeutic target for PTE.
Collapse
MESH Headings
- Animals
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- Mice
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/metabolism
- Brain Injuries, Traumatic/complications
- Male
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Demethylation
- Up-Regulation
- Epilepsy, Post-Traumatic/genetics
- Epilepsy, Post-Traumatic/metabolism
- Epilepsy, Post-Traumatic/etiology
- Mice, Inbred C57BL
- Hippocampus/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Disease Models, Animal
- Blood-Brain Barrier/metabolism
- Adenosine/analogs & derivatives
Collapse
Affiliation(s)
- Manjun Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Xiaohong Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China
| | - Qianwen Ming
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China.
| |
Collapse
|
8
|
Liu L, Zhao YJ, Zhang F. RNA methylation modifications in neurodegenerative diseases: Focus on their enzyme system. J Adv Res 2025:S2090-1232(25)00027-X. [PMID: 39765326 DOI: 10.1016/j.jare.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) constitute a significant public health challenge, as they are increasingly contributing to global mortality and morbidity, particularly among the elderly population. Pathogenesis of NDs is intricate and multifactorial. Recently, post-transcriptional modifications (PTMs) of RNA, with a particular focus on mRNA methylation, have been gaining increasing attention. At present, several regulatory genes associated with mRNA methylation have been identified and closely associated with neurodegenerative disorders. AIM OF REVIEW This review aimed to summarize the RNA methylation enzymes system, including the writer, reader, and eraser proteins and delve into their functions in the central nervous system (CNS), hoping to open new avenues for exploring the mechanisms and therapeutic strategies for NDs. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently, studies have highlighted the critical role of RNA methylation in the development and function of the CNS, and abnormalities in this process may contribute to brain damage and NDs, aberrant expression of enzymes involved in RNA methylation has been implicated in the onset and development of NDs.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
9
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
10
|
Li X, Peng L, Yang X, Luo J, Wang J, Mou K, Zhou H, Luo Y, Xiang L. N6-methyladenosine RNA methylation, a new hallmark of metabolic reprogramming in the immune microenvironment. Front Immunol 2024; 15:1464042. [PMID: 39759516 PMCID: PMC11695279 DOI: 10.3389/fimmu.2024.1464042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
N6-methyladenosine is one of the most common and reversible post-transcriptional modifications in eukaryotes, and it is involved in alternative splicing and RNA transcription, degradation, and translation. It is well known that cancer cells acquire energy through metabolic reprogramming to exhibit various biological behaviors. Moreover, numerous studies have demonstrated that m6A induces cancer metabolic reprogramming by regulating the expression of core metabolic genes or by activating metabolic signaling pathways. Meanwhile, m6A modifications and related regulators are key targets in the regulation of immune effects. We further summarize how m6A modifications contribute to tumor metabolism, and how these events affect the tumor immune microenvironment, with a specific focus on different cell types. Finally, we focus on the specific applications of this field to tumor immunotherapy. We review the potential role of m6A in metabolic reprogramming of tumor immune microenvironment and its regulatory mechanism, with the aim of providing new targets for tumor metabolic regulation and immunotherapy.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xuelian Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Zhou L, Li R, Wang F, Zhou R, Xia Y, Jiang X, Cheng S, Wang F, Li D, Zhang J, Mao L, Cai X, Zhang H, Qiu J, Tian X, Zou Z, Chen C. N6-methyladenosine demethylase FTO regulates neuronal oxidative stress via YTHDC1-ATF3 axis in arsenic-induced cognitive dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135736. [PMID: 39265400 DOI: 10.1016/j.jhazmat.2024.135736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Excessive exposure to metals in daily life has been proposed as an environmental risk factor for neurological disorders. Oxidative stress is an inevitable stage involved in the neurotoxic effects induced by metals, nevertheless, the underlying mechanisms are still unclear. In this study, we used arsenic as a representative environmental heavy metal to induce neuronal oxidative stress and demonstrated that both in vitro and in vivo exposure to arsenic significantly increased the level of N6-methyladenosine (m6A) by down-regulating its demethylase FTO. Importantly, the results obtained from FTO transgenic mice and FTO overexpressed/knockout cells indicated that FTO likely regulated neuronal oxidative stress by modulating activating transcription factor 3 (ATF3) in a m6A-dependent manner. We also identified the specific m6A reader protein, YTHDC1, which interacted with ATF3 and thereby affecting its regulatory effects on oxidative stress. To further explore potential intervention strategies, cerebral metabolomics was conducted and we newly identified myo-inositol as a metabolite that exhibited potential in protecting against arsenic-induced oxidative stress and cognitive dysfunction. Overall, these findings provide new insights into the importance of the FTO-ATF3 signaling axis in neuronal oxidative stress from an m6A perspective, and highlight a beneficial metabolite that can counteract the oxidative stress induced by arsenic.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Renjie Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fu Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ruiqi Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fanghong Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Danyang Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Cai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China; Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
Xian Z, Tian L, Yao Z, Cao L, Jia Z, Li G. Mechanism of N6-Methyladenosine Modification in the Pathogenesis of Depression. Mol Neurobiol 2024:10.1007/s12035-024-04614-6. [PMID: 39551913 DOI: 10.1007/s12035-024-04614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common post-transcriptional RNA modifications, which plays a critical role in various bioprocesses such as immunological processes, stress response, cell self-renewal, and proliferation. The abnormal expression of m6A-related proteins may occur in the central nervous system, affecting neurogenesis, synapse formation, brain development, learning and memory, etc. Accumulating evidence is emerging that dysregulation of m6A contributes to the initiation and progression of psychiatric disorders including depression. Until now, the specific pathogenesis of depression has not been comprehensively clarified, and further investigations are warranted. Stress, inflammation, neurogenesis, and synaptic plasticity have been implicated as possible pathophysiological mechanisms underlying depression, in which m6A is extensively involved. Considering the extensive connections between depression and neurofunction and the critical role of m6A in regulating neurological function, it has been increasingly proposed that m6A may have an important role in the pathogenesis of depression; however, the results and the specific molecular mechanisms of how m6A methylation is involved in major depressive disorder (MDD) were varied and not fully understood. In this review, we describe the underlying molecular mechanisms between m6A and depression from several aspects including inflammation, stress, neuroplasticity including neurogenesis, and brain structure, which contain the interactions of m6A with cytokines, the HPA axis, BDNF, and other biological molecules or mechanisms in detail. Finally, we summarized the perspectives for the improved understanding of the pathogenesis of depression and the development of more effective treatment approaches for this disorder.
Collapse
Affiliation(s)
- Zhuohang Xian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liangjing Tian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhixuan Yao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhilin Jia
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gangqin Li
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Woudenberg T, van der Bent ML, Kremer V, Waas ISE, Daemen MJAP, Boon RA, Quax PHA, Nossent AY. Site-specific m6A-miR-494-3p, not unmethylated miR-494-3p, compromises blood brain barrier by targeting tight junction protein 1 in intracranial atherosclerosis. Br J Pharmacol 2024. [PMID: 39419283 DOI: 10.1111/bph.17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Intracranial atherosclerosis is one of the most common causes of ischaemic stroke. However, there is a substantial knowledge gap on the development of intracranial atherosclerosis. Intracranial arteries are characterized by an upregulation of tight junctions between endothelial cells, which control endothelial permeability. We investigated the role of N6-methyladenosine (m6A), a common RNA modification, on endothelial integrity, focusing on the pro-atherogenic microRNA miR-494-3p and tight junction proteins TJP1 and PECAM1. EXPERIMENTAL APPROACH We assessed the m6A landscape, along with the expression of miR-494-3p, TJP1 and PECAM1 in postmortem human vertebral arteries (VA), internal carotid arteries (ICA), and middle cerebral arteries (MCA) with various stages of intimal thickening and plaque formation. The interactions between m6A-modified miR-494-3p mimics, TJP1 and PECAM1, were investigated in vitro using primary human (brain) endothelial cells. KEY RESULTS Increased m6A expression was observed in the luminal lining of atherosclerosis-affected VAs, accompanied by reduced TJP1 and PECAM1, but not VE-cadherin, expression. Colocalization of m6A and miR-494-3p in the luminal lining of VA plaques was confirmed, indicating m6A methylation of miR-494-3p in intracranial atherosclerosis. Moreover, site-specific m6A-modification of miR-494-3p led to repression specifically of TJP1 protein expression at cell-cell junctions of brain microvascular endothelial cells, while unmodified miR-494-3p showed no effect. CONCLUSIONS AND IMPLICATIONS This study highlights increasing m6A levels during intracranial atherogenesis. Increases in m6A-miR-494-3p contribute to the observed decreased TJP1 expression in endothelial cell-cell junctions. This is likely to have a negative effect on endothelial integrity and may thus accelerate intracranial atherosclerosis progression.
Collapse
Affiliation(s)
- Tamar Woudenberg
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - M Leontien van der Bent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Veerle Kremer
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location VUMc, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ingeborg S E Waas
- Department of Pathology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location VUMc, Vrije Universiteit, Amsterdam, The Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - A Yaël Nossent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Özgüldez HÖ, Bulut-Karslioğlu A. Dormancy, Quiescence, and Diapause: Savings Accounts for Life. Annu Rev Cell Dev Biol 2024; 40:25-49. [PMID: 38985838 DOI: 10.1146/annurev-cellbio-112122-022528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.
Collapse
Affiliation(s)
- Hatice Özge Özgüldez
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| |
Collapse
|
15
|
Shi JX, Zhang ZC, Yin HZ, Piao XJ, Liu CH, Liu QJ, Zhang JC, Zhou WX, Liu FC, Yang F, Wang YF, Liu H. RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy. Mol Cancer 2024; 23:213. [PMID: 39342168 PMCID: PMC11437708 DOI: 10.1186/s12943-024-02132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
The pursuit of innovative therapeutic strategies in oncology remains imperative, given the persistent global impact of cancer as a leading cause of mortality. Immunotherapy is regarded as one of the most promising techniques for systemic cancer therapies among the several therapeutic options available. Nevertheless, limited immune response rates and immune resistance urge us on an augmentation for therapeutic efficacy rather than sticking to conventional approaches. Ferroptosis, a novel reprogrammed cell death, is tightly correlated with the tumor immune environment and interferes with cancer progression. Highly mutant or metastasis-prone tumor cells are more susceptible to iron-dependent nonapoptotic cell death. Consequently, ferroptosis-induction therapies hold the promise of overcoming resistance to conventional treatments. The most prevalent post-transcriptional modification, RNA m6A modification, regulates the metabolic processes of targeted RNAs and is involved in numerous physiological and pathological processes. Aberrant m6A modification influences cell susceptibility to ferroptosis, as well as the expression of immune checkpoints. Clarifying the regulation of m6A modification on ferroptosis and its significance in tumor cell response will provide a distinct method for finding potential targets to enhance the effectiveness of immunotherapy. In this review, we comprehensively summarized regulatory characteristics of RNA m6A modification on ferroptosis and discussed the role of RNA m6A-mediated ferroptosis on immunotherapy, aiming to enhance the effectiveness of ferroptosis-sensitive immunotherapy as a treatment for immune-resistant malignancies.
Collapse
Affiliation(s)
- Jun-Xiao Shi
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Zhi-Chao Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Hao-Zan Yin
- The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Xian-Jie Piao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Cheng-Hu Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Qian-Jia Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Jia-Cheng Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Wen-Xuan Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Fu-Chen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Biosafety Defense, Ministry of Education, Shanghai, 200433, China.
- Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| | - Yue-Fan Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
16
|
Xia W, Liu Y, Lu J, Cheung HH, Meng Q, Huang B. RNA methylation in neurodevelopment and related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1723-1732. [PMID: 39344412 PMCID: PMC11693867 DOI: 10.3724/abbs.2024159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Biological development and genetic information transfer are governed by genetic, epigenetic, transcriptional, and posttranscriptional mechanisms. RNA methylation, the attachment of methyl (-CH 3) groups to RNA molecules, is a posttranscriptional modification that has gained increasing attention in recent years because of its role in RNA epitranscriptomics. RNA modifications (RMs) influence various aspects of RNA metabolism and are involved in the regulation of diverse biological processes and diseases. Neural cell types emerge at specific stages of brain development, and recent studies have revealed that neurodevelopment, aging, and disease are tightly linked to transcriptome dysregulation. In this review, we discuss the roles of N6-methyladenine (m6A) and 5-methylcytidine (m5C) RNA modifications in neurodevelopment, physiological functions, and related diseases.
Collapse
Affiliation(s)
- Wenjuan Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Hoi-Hung Cheung
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong 999077China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| |
Collapse
|
17
|
Papadimitriou E, Thomaidou D. Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming. Neural Regen Res 2024; 19:1929-1939. [PMID: 38227517 DOI: 10.4103/1673-5374.390976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/08/2023] [Indexed: 01/17/2024] Open
Abstract
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches. A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic, transcriptional, and post-transcriptional regulation. Understanding these neurogenic mechanisms is of major importance, not only for shedding light on very complex and crucial developmental processes, but also for the identification of putative reprogramming factors, that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate. The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors, as well as repressor complexes, have been identified and employed in direct reprogramming protocols to convert non-neuronal cells, into functional neurons. The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer, strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function. In particular, recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis, such as alternative splicing, polyadenylation, stability, and translation. Apart from the RNA binding proteins, microRNAs, a class of small non-coding RNAs that block the translation of their target mRNAs, have also been shown to play crucial roles in all the stages of the neurogenic process, from neural stem/progenitor cell proliferation, neuronal differentiation and migration, to functional maturation. Here, we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process, giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs. Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming, we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors, highlighting the so far known mechanisms of their reprogramming action.
Collapse
|
18
|
Li X, Yu H, Li D, Liu N. LINE-1 transposable element renaissance in aging and age-related diseases. Ageing Res Rev 2024; 100:102440. [PMID: 39059477 DOI: 10.1016/j.arr.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Transposable elements (TEs) are essential components of eukaryotic genomes and subject to stringent regulatory mechanisms to avoid their potentially deleterious effects. However, numerous studies have verified the resurrection of TEs, particularly long interspersed nuclear element-1 (LINE-1), during preimplantation development, aging, cancer, and other age-related diseases. The LINE-1 family has also been implicated in several aging-related processes, including genomic instability, loss of heterochromatin, DNA methylation, and the senescence-associated secretory phenotype (SASP). Additionally, the role of the LINE-1 family in cancer development has also been substantiated. Research in this field has offered valuable insights into the functional mechanisms underlying LINE-1 activity, enhancing our understanding of aging regulation. This review provides a comprehensive summary of current findings on LINE-1 and their roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Xiang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Saville L, Wu L, Habtewold J, Cheng Y, Gollen B, Mitchell L, Stuart-Edwards M, Haight T, Mohajerani M, Zovoilis A. NERD-seq: a novel approach of Nanopore direct RNA sequencing that expands representation of non-coding RNAs. Genome Biol 2024; 25:233. [PMID: 39198865 PMCID: PMC11351768 DOI: 10.1186/s13059-024-03375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are frequently documented RNA modification substrates. Nanopore Technologies enables the direct sequencing of RNAs and the detection of modified nucleobases. Ordinarily, direct RNA sequencing uses polyadenylation selection, studying primarily mRNA gene expression. Here, we present NERD-seq, which enables detection of multiple non-coding RNAs, excluded by the standard approach, alongside natively polyadenylated transcripts. Using neural tissues as a proof of principle, we show that NERD-seq expands representation of frequently modified non-coding RNAs, such as snoRNAs, snRNAs, scRNAs, srpRNAs, tRNAs, and rRFs. NERD-seq represents an RNA-seq approach to simultaneously study mRNA and ncRNA epitranscriptomes in brain tissues and beyond.
Collapse
Affiliation(s)
- Luke Saville
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Li Wu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
| | - Jemaneh Habtewold
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
| | - Yubo Cheng
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Babita Gollen
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Liam Mitchell
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Matthew Stuart-Edwards
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Travis Haight
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Athanasios Zovoilis
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada.
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada.
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
20
|
Shang Q, Zhang L, Xiao B, Yang J, Sun J, Gao X, Huang Y, Wang Z. Juvenile bright light exposure ameliorates adult behavioral abnormalities by enhancing neurogenesis in a N-methyl-D-aspartate receptor dysfunction mouse model relevant for cognitive impairment in schizophrenia. Behav Brain Res 2024; 472:115157. [PMID: 39047873 DOI: 10.1016/j.bbr.2024.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Exposure to light has been demonstrated to stimulate brain regions associated with cognition; however, investigations into its cognitive-enhancing effects have primarily focused on wild-type rodents. This study seeks to elucidate how bright light exposure mitigates cognitive deficits associated with schizophrenia by examining its impact on hippocampal neurogenesis and its potential to alleviate sub-chronic MK-801-induced cognitive impairments in mice. Following three weeks of juvenile bright light exposure (5-8 weeks old), significant increases in proliferating neurons (BrdU+) and immature neurons (DCX+ cells) were observed in the dentate gyrus (DG) and lateral ventricle of MK-801-treated mice. Long-term bright light treatment further promoted the differentiation of BrdU+ cells into immature neurons (BrdU+ DCX+ cells), mature neurons (BrdU+ NeuN+ cells), or astrocytes (BrdU+ GFAP+ cells) in the hippocampal DG. This augmented neurogenesis correlated with the attenuation of sub-chronic MK- 801-induced cognitive deficits, as evidenced by enhancements in Y-maze, novel object recognition (NOR), novel location recognition (NLR), and Morris water maze (MWM) test performances. These findings suggest a promising noninvasive clinical approach for alleviating cognitive impairments associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qing Shang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Lizhi Zhang
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Biao Xiao
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Jianhong Yang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Jie Sun
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Xiang Gao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yi Huang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Zhengchun Wang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
21
|
Yang H, Xuan L, Wang S, Luo H, Duan X, Guo J, Cui S, Xin J, Hao J, Li X, Chen J, Sun F, Hu X, Li S, Zhang Y, Jiao L, Yang B, Sun L. LncRNA CCRR maintains Ca 2+ homeostasis against myocardial infarction through the FTO-SERCA2a pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1601-1619. [PMID: 38761356 DOI: 10.1007/s11427-023-2527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 05/20/2024]
Abstract
Cardiac conduction regulatory RNA (CCRR) has been documented as an antiarrhythmic lncRNA in our earlier investigation. This study aimed to evaluate the effects of CCRR on SERCA2a and the associated Ca2+ homeostasis in myocardial infarction (MI). Overexpression of CCRR via AAV9-mediated delivery not only partially reversed ischemia-induced contractile dysfunction but also alleviated abnormal Ca2+ homeostasis and reduced the heightened methylation level of SERCA2a following MI. These effects were also observed in CCRR over-expressing transgenic mice. A conserved sequence domain of CCRR mimicked the protective function observed with the full length. Furthermore, silencing CCRR in healthy mice led to intracellular Ca2+ overloading of cardiomyocytes. CCRR increased SERCA2a protein stability by upregulating FTO expression. The direct interaction between CCRR and FTO protein was characterized by RNA-binding protein immunoprecipitation (RIP) analysis and RNA pulldown experiments. Activation of NFATc3 was identified as an upstream mechanism responsible for CCRR downregulation in MI. This study demonstrates that CCRR is a protective lncRNA that acts by maintaining the function of FTO, thereby reducing the m6A RNA methylation level of SERCA2a, ultimately preserving calcium homeostasis for myocardial contractile function in MI. Therefore, CCRR may be considered a promising therapeutic strategy with a beneficial role in cardiac pathology.
Collapse
Affiliation(s)
- Hua Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lina Xuan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Wang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Huishan Luo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaomeng Duan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianjun Guo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shijia Cui
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jieru Xin
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Junwei Hao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiufang Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jun Chen
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feihan Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaolin Hu
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Siyun Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Zhang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lei Jiao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Lihua Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
22
|
Yang L, Qi G, Rao W, Cen Y, Chen L, Li W, Pang Y. Aluminum causes irreversible damage to the development of hippocampal neurons by regulating m6A RNA methylation. Toxicol Lett 2024; 399:34-42. [PMID: 39009234 DOI: 10.1016/j.toxlet.2024.07.908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
The underlying mechanism of the aluminum (Al) on neurotoxicity remains unclear. We explored whether the impairment of hippocampal neurons induced by developmental Al exposure was associated with the m6A RNA modification in mice. In this study, the pregnant female mice were administered 4 mg/mL aluminum-lactate from gestational day (GD) 6 to postnatal day (PND) 21. On PND 21, 10 offsprings per group were euthanized by exsanguination from the abdominal aorta after deep anesthetization. The other offsprings which treated with aluminum-lactate on maternal generation were divided into two groups and given 0 (PND60a) and 4 mg/mL (PND60b) aluminum-lactate in their drinking water until PND 60. Significant neuronal injuries of hippocampus as well as a reduction in the m6A RNA modification and the expression of methylase were observed at PND 21 and PND 60a mice. The results indicated that Al-induced developmental neurotoxicity could persist into adulthood despite no sustained Al accumulation. m6A RNA modification had a crucial role in developmental neurotoxicity induced by Al. In addition, Al exposure during the embryonic to adult stages can cause more severe nerve damage and decline of m6A RNA modification. Collectively, these results suggest that the mechanism underlying Al-induced neurotoxicity appears to involve m6A RNA modification.
Collapse
Affiliation(s)
- Lingling Yang
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Guangzi Qi
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Key Laboratory of Research on Environment and Population Health in aluminium mining areas (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Wenlian Rao
- College of Basic Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yufang Cen
- College of Basic Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenxue Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510080, China.
| | - Yaqin Pang
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Key Laboratory of Research on Environment and Population Health in aluminium mining areas (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China.
| |
Collapse
|
23
|
Meng X, Wang Y, Zhao W, Chen Y, Li W, Peng K, Xu H, Yang Y, Shan X, Huo W, Liu H, Ji F. Identification of differential m6A RNA methylomes and ALKBH5 as a potential prevention target in the developmental neurotoxicity induced by multiple sevoflurane exposures. FASEB J 2024; 38:e23793. [PMID: 39003634 DOI: 10.1096/fj.202400664r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Sevoflurane, as a commonly used inhaled anesthetic for pediatric patients, has been reported that multiple sevoflurane exposures are associated with a greater risk of developing neurocognitive disorder. N6-Methyladenosine (m6A), as the most common mRNA modification in eukaryotes, has emerged as a crucial regulator of brain function in processes involving synaptic plasticity, learning and memory, and neurodevelopment. Nevertheless, the relevance of m6A RNA methylation in the multiple sevoflurane exposure-induced developmental neurotoxicity remains mostly elusive. Herein, we evaluated the genome-wide m6A RNA modification and gene expression in hippocampus of mice that received with multiple sevoflurane exposures using m6A-sequencing (m6A-seq) and RNA-sequencing (RNA-seq). We discovered 19 genes with differences in the m6A methylated modification and differential expression in the hippocampus. Among these genes, we determined that a total of nine differential expressed genes may be closely associated with the occurrence of developmental neurotoxicity induced by multiple sevoflurane exposures. We further found that the alkB homolog 5 (ALKBH5), but not methyltransferase-like 3 (METTL3) and Wilms tumor 1-associated protein (WTAP), were increased in the hippocampus of mice that received with multiple sevoflurane exposures. And the IOX1, as an inhibitor of ALKBH5, significantly improved the learning and memory defects and reduced neuronal damage in the hippocampus of mice induced by multiple sevoflurane exposures. The current study revealed the role of m6A methylated modification and m6A-related regulators in sevoflurane-induced cognitive impairment, which might provide a novel insight into identifying biomarkers and therapeutic strategies for inhaled anesthetic-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Xiaowen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Yichan Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Weiming Zhao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Ying Chen
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenting Li
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Hanbing Xu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Yufan Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Xisheng Shan
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Wenwen Huo
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Huayue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
- Ambulatory Surgery Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
24
|
Cai W, Forsell Y, Lavebratt C, Melas PA. Examining the association between the FTO gene and neuroticism reveals indirect effects on subjective well-being and problematic alcohol use. Sci Rep 2024; 14:17566. [PMID: 39080362 PMCID: PMC11289395 DOI: 10.1038/s41598-024-68578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Associations between the fat mass and obesity-associated (FTO) gene and obesity are well-established. However, recent studies have linked FTO to addiction phenotypes and dopaminergic signaling, thus suggesting broader psychiatric implications. We explored this assumption by conducting a phenome-wide association study across 4756 genome-wide association studies, identifying 23-26 psychiatric traits associated with FTO at the multiple-corrected significance level. These traits clustered into four categories: substance use, chronotype/sleep, well-being, and neuroticism. To validate these findings, we analyzed a functionally suggestive FTO variant (rs1421085) in a separate cohort, examining its impact on (i) alcohol use based on the Alcohol Use Disorders Identification Test (AUDIT), (ii) subjective well-being based on the WHO (Ten) Well-Being Index, and (iii) neuroticism based on Schafer's Five Factor Model or the Karolinska Scales of Personality. Our results confirmed a direct association between rs1421085 and neuroticism that was independent of age, sex, alcohol use, body mass index (BMI), and childhood adversities. Interestingly, while no direct association with alcohol intake was observed, both cross-sectional and lagged longitudinal mediation analyses uncovered indirect relationships between rs1421085 and problematic alcohol use (AUDIT-P), with increased neuroticism acting as the intermediary. Mediation analyses also supported an indirect effect of rs1421085 on lower well-being through the pathways of increased neuroticism and BMI. Our study is the first to validate a direct association between FTO and neuroticism. However, additional studies are warranted to affirm the causal pathways linking FTO to well-being and alcohol use through neuroticism.
Collapse
Affiliation(s)
- Wenjie Cai
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Philippe A Melas
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176, Stockholm, Sweden.
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, 11364, Stockholm, Sweden.
| |
Collapse
|
25
|
Feng S, Tellaetxe-Abete M, Zhang Y, Peng Y, Zhou H, Dong M, Larrea E, Xue L, Zhang L, Koziol MJ. Single-cell discovery of m 6A RNA modifications in the hippocampus. Genome Res 2024; 34:822-836. [PMID: 39009472 PMCID: PMC11293556 DOI: 10.1101/gr.278424.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
N 6-Methyladenosine (m6A) is a prevalent and highly regulated RNA modification essential for RNA metabolism and normal brain function. It is particularly important in the hippocampus, where m6A is implicated in neurogenesis and learning. Although extensively studied, its presence in specific cell types remains poorly understood. We investigated m6A in the hippocampus at a single-cell resolution, revealing a comprehensive landscape of m6A modifications within individual cells. Through our analysis, we uncovered transcripts exhibiting a dense m6A profile, notably linked to neurological disorders such as Alzheimer's disease. Our findings suggest a pivotal role of m6A-containing transcripts, particularly in the context of CAMK2A neurons. Overall, this work provides new insights into the molecular mechanisms underlying hippocampal physiology and lays the foundation for future studies investigating the dynamic nature of m6A RNA methylation in the healthy and diseased brain.
Collapse
Affiliation(s)
- Shuangshuang Feng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Maitena Tellaetxe-Abete
- Intelligent Systems Group, Computer Science Faculty, University of the Basque Country, Donostia/San Sebastian 20018, Spain
| | - Yujie Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Yan Peng
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
- Peking University, Beijing, 100871, China
| | - Han Zhou
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Mingjie Dong
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Erika Larrea
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
- Tsinghua University, Beijing 100084, China
| | - Liang Xue
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Magdalena J Koziol
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China;
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| |
Collapse
|
26
|
Qiao Y, Mei Y, Xia M, Luo D, Gao L. The role of m6A modification in the risk prediction and Notch1 pathway of Alzheimer's disease. iScience 2024; 27:110235. [PMID: 39040060 PMCID: PMC11261416 DOI: 10.1016/j.isci.2024.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/17/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
N6-methyladenosine (m6A) methylation and abnormal immune responses are implicated in neurodegenerative diseases, yet their relationship in Alzheimer's disease (AD) remains unclear. We obtained AD datasets from GEO databases and used AD mouse and cell models, observing abnormal expression of m6A genes in the AD group, alongside disruptions in the immune microenvironment. Key m6A genes (YTHDF2, LRPPRC, and FTO) selected by machine learning were associated with the Notch pathway, with FTO and Notch1 displaying the strongest correlation. Specifically, FTO expression decreased and m6A methylation of Notch1 increased in AD mouse and cell models. We further silenced FTO expression in HT22 cells, resulting in upregulation of the Notch1 signaling pathway. Additionally, increased Notch1 expression in dendritic cells heightened inflammatory cytokine secretion in vitro. These results suggest that reduced FTO expression may contribute to the pathogenesis of AD by activating the Notch1 pathway to interfere with the immune response.
Collapse
Affiliation(s)
- Yingdan Qiao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yingna Mei
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Minqi Xia
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Deng Luo
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
27
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
28
|
Liu T, Li H, Wan Y, Shi G, Zhao Y, Liu Y, Fan X. METTL14-mediated upregulation of lncRNA HOTAIR represses PP1α expression by promoting H3K4me1 demethylation in oxycodone-treated mice. CNS Neurosci Ther 2024; 30:e14830. [PMID: 39046182 PMCID: PMC11267563 DOI: 10.1111/cns.14830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 07/25/2024] Open
Abstract
N6-methyladenosine (m6A) methylation is a vital epigenetic mechanism associated with drug addiction. However, the relationship between m6A modification and oxycodone rewarding is less well explored. Based on an open field test, the present study evaluated oxycodone rewarding using chromatin immunoprecipitation PCR, immunofluorescence, and RNA sequencing. A marked increase in METTL14 protein and a decrease in PP1α protein due to oxycodone abundance in the striatal neurons were observed in a dose- and time-dependent manner. Oxycodone markedly increased LSD1 expression, and decreased H3K4me1 expression in the striatum. In the open field test, intra-striatal injection of METTL14 siRNA, HOTAIR siRNA, or LSD1 shRNA blocked oxycodone-induced increase in locomotor activity. The downregulation of PP1α was also inhibited after treatment with METTL14/HOTAIR siRNA and LSD1 shRNA. Enhanced binding of LSD1 with CoRest and of CoRest with the PP1α gene induced by oxycodone was also reversed by LSD1 shRNA. In addition, H3K4me1 demethylation was also blocked by the treatment. In summary, the investigation confirmed that METTL14-mediated upregulation of HOTAIR resulted in the repression of PP1α, which in turn facilitated the recruitment of LSD1, thus catalyzing H3K4me1 demethylation and promoting oxycodone addiction.
Collapse
Affiliation(s)
- Tian‐Cong Liu
- Department of OtolaryngologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Hong‐Xi Li
- Department of Pain ManagementShengjing Hospital of China Medical UniversityShenyangChina
| | - Yu‐Xiao Wan
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Guang Shi
- Department of NeurologyThe People's Hospital of Liaoning ProvinceShenyangChina
| | - Yun‐Peng Zhao
- Department of PharmacyShengjing Hospital of China Medical UniversityShenyangChina
| | - Yi‐Fei Liu
- Department of PharmacyShengjing Hospital of China Medical UniversityShenyangChina
| | - Xin‐Yu Fan
- Department of PharmacyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
29
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
30
|
Guo H, Sun Q, Huang X, Wang X, Zhang F, Qu W, Liu J, Cheng X, Zhu Q, Yi W, Shu Q, Li X. Fucosyltransferase 8 regulates adult neurogenesis and cognition of mice by modulating the Itga6-PI3K/Akt signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1427-1440. [PMID: 38523237 DOI: 10.1007/s11427-023-2510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024]
Abstract
Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.
Collapse
Affiliation(s)
- Hongfeng Guo
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Qihang Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xiaohao Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Feng Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Jinling Liu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
31
|
Xu P, Zhao Y, Feng Y, Zhao M, Zhao R. Deoxynivalenol induces m 6A-mediated upregulation of p21 and growth arrest of mouse hippocampal neuron cells in vitro. Cell Biol Toxicol 2024; 40:41. [PMID: 38833095 PMCID: PMC11150311 DOI: 10.1007/s10565-024-09872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Hippocampal neurons maintain the ability of proliferation throughout life to support neurogenesis. Deoxynivalenol (DON) is a mycotoxin that exhibits brain toxicity, yet whether and how DON affects hippocampal neurogenesis remains unknown. Here, we use mouse hippocampal neuron cells (HT-22) as a model to illustrate the effects of DON on neuron proliferation and to explore underlying mechanisms. DON exposure significantly inhibits the proliferation of HT-22 cells, which is associated with an up-regulation of cell cycle inhibitor p21 at both mRNA and protein levels. Global and site-specific m6A methylation levels on the 3'UTR of p21 mRNA are significantly increased in response to DON treatment, whereas inhibition of m6A hypermethylation significantly alleviates DON-induced cell cycle arrest. Further mechanistic studies indicate that the m6A readers YTHDF1 and IGF2BP1 are responsible for m6A-mediated increase in p21 mRNA stability. Meanwhile, 3'UTR of E3 ubiquitin ligase TRIM21 mRNA is also m6A hypermethylated, and another m6A reader YTHDF2 binds to the m6A sites, leading to decreased TRIM21 mRNA stability. Consequently, TRIM21 suppression impairs ubiquitin-mediated p21 protein degradation. Taken together, m6A-mediated upregulation of p21, at both post-transcriptional and post-translational levels, contributes to DON-induced inhibition of hippocampal neuron proliferation. These results may provide new insights for epigenetic therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Peirong Xu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yulan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mindie Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Wang Y, Wu Z, He Y, Zeng X, Gu Z, Zhou X, Si W, Chen D. Fat mass and obesity-associated protein regulates RNA methylation associated with spatial cognitive dysfunction after chronic cerebral hypoperfusion. Neuropeptides 2024; 105:102428. [PMID: 38583362 DOI: 10.1016/j.npep.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
RNA methylation can epigenetically regulate learning and memory. However, it is unclear whether RNA methylation plays a critical role in the pathophysiology of Vascular dementia (VD). Here, we report that expression of the fat mass and obesity associated gene (FTO), an RNA demethylase, is downregulated in the hippocampus in models of VD. Through prediction and dual-luciferase reporters validation studies, we observed that miRNA-711 was upregulated after VD and could bind to the 3'-untranslated region of FTO mRNA and regulate its expression in vitro. Methylated RNA immunoprecipitation (MeRIP)-qPCR assay and functional study confirmed that Syn1 was an important target gene of FTO. This suggests that FTO is an important regulator of Syn1. FTO upregulation by inhibition of miR-711 in the hippocampus relieves synaptic association protein and synapse deterioration in vivo, whereas FTO downregulation by miR-711 agomir in the hippocampus leads to aggravate the synapse deterioration. FTO upregulation by inhibition of miR-711 relieves cognitive impairment of rats VD model, whereas FTO downregulation by miR-711 deteriorate cognitive impairment. Our findings suggest that FTO is a regulator of a mechanism underlying RNA methylation associated with spatial cognitive dysfunction after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zimei Wu
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yuyang He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaoying Zeng
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zijuan Gu
- Shenzhen BaoAn District Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xianxi Zhou
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenwen Si
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
33
|
Song J, Hao J, Lu Y, Ding X, Li M, Xin Y. Increased m 6A modification of BDNF mRNA via FTO promotes neuronal apoptosis following aluminum-induced oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123848. [PMID: 38548149 DOI: 10.1016/j.envpol.2024.123848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is a new epigenetic molecular mechanism involved in various biological or pathological processes. Exposure to aluminum (Al) has been considered to promote neuronal apoptosis resulting in cognitive dysfunction, yet whether m6A modification participates in the underlying mechanism remains largely unknown. Here, rats exposed to aluminum-maltolate [Al(mal)3] for 90 days showed impaired learning and memory function and elevated apoptosis, which were related to the increased m6A level and decreased fat mass and obesity-associated protein (FTO, an m6A demethylase) in the hippocampus. Accordingly, similar results presented in PC12 cells following Al(mal)3 treatment and FTO overexpression relieved the increased apoptosis and m6A level in vitro. Next, we identified brain-derived neurotrophic factor (BDNF) as the functional downstream target of FTO in a m6A-dependent manner. Furthermore, it was found that as the onset of aluminum neurotoxicity, oxidative stress may be the upstream regulator of FTO in aluminum-induced apoptosis. Taken together, these results suggest that increased m6A modification of BDNF mRNA via FTO promotes neuronal apoptosis following aluminum-induced oxidative stress.
Collapse
Affiliation(s)
- Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of coal environmental pathogenicity and prevention, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China.
| | - Jiarui Hao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of coal environmental pathogenicity and prevention, Taiyuan, China
| | - Yang Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xiaohui Ding
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of coal environmental pathogenicity and prevention, Taiyuan, China
| | - Mujia Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Yulu Xin
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| |
Collapse
|
34
|
Wang HQ, Ma YR, Zhang YX, Wei FH, Zheng Y, Ji ZH, Guo HX, Wang T, Zhang JB, Yuan B. GnRH-driven FTO-mediated RNA m 6A modification promotes gonadotropin synthesis and secretion. BMC Biol 2024; 22:104. [PMID: 38702712 PMCID: PMC11069278 DOI: 10.1186/s12915-024-01905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.
Collapse
Affiliation(s)
- Hao-Qi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yi-Ran Ma
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yu-Xin Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| |
Collapse
|
35
|
Martinez-Feduchi P, Jin P, Yao B. Epigenetic modifications of DNA and RNA in Alzheimer's disease. Front Mol Neurosci 2024; 17:1398026. [PMID: 38726308 PMCID: PMC11079283 DOI: 10.3389/fnmol.2024.1398026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common form of dementia. There are two main types of AD: familial and sporadic. Familial AD is linked to mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2). On the other hand, sporadic AD is the more common form of the disease and has genetic, epigenetic, and environmental components that influence disease onset and progression. Investigating the epigenetic mechanisms associated with AD is essential for increasing understanding of pathology and identifying biomarkers for diagnosis and treatment. Chemical covalent modifications on DNA and RNA can epigenetically regulate gene expression at transcriptional and post-transcriptional levels and play protective or pathological roles in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
36
|
González-Iglesias A, Arcas A, Domingo-Muelas A, Mancini E, Galcerán J, Valcárcel J, Fariñas I, Nieto MA. Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche. Nat Commun 2024; 15:2837. [PMID: 38565566 PMCID: PMC10987655 DOI: 10.1038/s41467-024-47092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes associated with both multipotency maintenance and neural differentiation, but the mechanism that prevents conflicts in fate decisions due to these opposing transcriptional programmes is unknown. Here we describe intron detention as such control mechanism. In NSCs, while multiple mRNAs from stemness genes are spliced and exported to the cytoplasm, transcripts from differentiation genes remain unspliced and detained in the nucleus, and the opposite is true under neural differentiation conditions. We also show that m6A methylation is the mechanism that releases intron detention and triggers nuclear export, enabling rapid and synchronized responses. m6A RNA methylation operates as an on/off switch for transcripts with antagonistic functions, tightly controlling the timing of NSCs commitment to differentiation.
Collapse
Affiliation(s)
| | - Aida Arcas
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
| | - Ana Domingo-Muelas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Instituto de Biotecnología y Biomedicina, Universidad de Valencia, Burjassot, 46100, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
- Carlos Simon Foundation, 46980, Paterna, Valencia, Spain
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Igenomix Foundation, 46980, Paterna, Valencia, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Instituto de Biotecnología y Biomedicina, Universidad de Valencia, Burjassot, 46100, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
37
|
Leonetti AM, Galluzzo IR, McLean TAD, Stefanelli G, Ramnaraign F, Holm S, Winston SM, Reeves IL, Brimble MA, Walters BJ. The role of the m6A/m demethylase FTO in memory is both task and sex-dependent in mice. Neurobiol Learn Mem 2024; 210:107903. [PMID: 38403011 DOI: 10.1016/j.nlm.2024.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Formation of long-term memories requires learning-induced changes in both transcription and translation. Epitranscriptomic modifications of RNA recently emerged as critical regulators of RNA dynamics, whereby adenosine methylation (m6A) regulates translation, mRNA stability, mRNA localization, and memory formation. Prior work demonstrated a pro-memory phenotype of m6A, as loss of m6A impairs and loss of the m6A/m demethylase FTO improves memory formation. Critically, these experiments focused exclusively on aversive memory tasks and were only performed in male mice. Here we show that the task type and sex of the animal alter effects of m6A on memory, whereby FTO-depletion impaired object location memory in male mice, in contrast to the previously reported beneficial effects of FTO depletion on aversive memory. Additionally, we show that female mice have no change in performance after FTO depletion, demonstrating that sex of the mouse is a critical variable for understanding how m6A contributes to memory formation. Our study provides the first evidence for FTO regulation of non-aversive spatial memory and sexspecific effects of m6A, suggesting that identification of differentially methylated targets in each sex and task will be critical for understanding how epitranscriptomic modifications regulate memory.
Collapse
Affiliation(s)
- Amanda M Leonetti
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| | - Isabella R Galluzzo
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| | - Timothy A D McLean
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| | - Gilda Stefanelli
- Department of Biology, University of Ottawa, Ottawa, Marie-Curie Private, ON K1N 9A, Canada.
| | - Fiona Ramnaraign
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Samuel Holm
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Stephen M Winston
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Isaiah L Reeves
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Mark A Brimble
- Dept of Host-Microbe Interactions, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Brandon J Walters
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
38
|
Perlegos AE, Byrns CN, Bonini NM. Cell type-specific regulation of m 6 A modified RNAs in the aging Drosophila brain. Aging Cell 2024; 23:e14076. [PMID: 38205931 PMCID: PMC10928574 DOI: 10.1111/acel.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The aging brain is highly vulnerable to cellular stress, and neurons employ numerous mechanisms to combat neurotoxic proteins and promote healthy brain aging. The RNA modification m6 A is highly enriched in the Drosophila brain and is critical for the acute heat stress response of the brain. Here we examine m6 A in the fly brain with the chronic stresses of aging and degenerative disease. m6 A levels dynamically increased with both age and disease in the brain, marking integral neuronal identity and signaling pathway transcripts that decline in level with age and disease. Unexpectedly, there is opposing impact of m6 A transcripts in neurons versus glia, which conferred different outcomes on animal health span upon Mettl3 knockdown to reduce m6 A: whereas Mettl3 function is normally beneficial to neurons, it is deleterious to glia. Moreover, knockdown of Mettl3 in glial tauopathy reduced tau pathology and increased animal survival. These findings provide mechanistic insight into regulation of m6 A modified transcripts with age and disease, highlighting an overall beneficial function of Mettl3 in neurons in response to chronic stresses, versus a deleterious impact in glia.
Collapse
Affiliation(s)
- Alexandra E. Perlegos
- Neuroscience Graduate Group, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - China N. Byrns
- Neuroscience Graduate Group, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Medical Scientist Training Program, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nancy M. Bonini
- Neuroscience Graduate Group, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
39
|
Zhang Y, Gong X. Fat mass and obesity associated protein inhibits neuronal ferroptosis via the FYN/Drp1 axis and alleviate cerebral ischemia/reperfusion injury. CNS Neurosci Ther 2024; 30:e14636. [PMID: 38430221 PMCID: PMC10908355 DOI: 10.1111/cns.14636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVES FTO is known to be involved in cerebral ischemia/reperfusion (I/R) injury. However, its related specific mechanisms during this condition warrant further investigations. This study aimed at exploring the impacts of FTO and the FYN/DRP1 axis on mitochondrial fission, oxidative stress (OS), and ferroptosis in cerebral I/R injury and the underlying mechanisms. METHODS The cerebral I/R models were established in mice via the temporary middle cerebral artery occlusion/reperfusion (tMCAO/R) and hypoxia/reoxygenation models were induced in mouse hippocampal neurons via oxygen-glucose deprivation/reoxygenation (OGD/R). After the gain- and loss-of-function assays, related gene expression was detected, along with the examination of mitochondrial fission, OS- and ferroptosis-related marker levels, neuronal degeneration and cerebral infarction, and cell viability and apoptosis. The binding of FTO to FYN, m6A modification levels of FYN, and the interaction between FYN and Drp1 were evaluated. RESULTS FTO was downregulated and FYN was upregulated in tMCAO/R mouse models and OGD/R cell models. FTO overexpression inhibited mitochondrial fission, OS, and ferroptosis to suppress cerebral I/R injury in mice, which was reversed by further overexpressing FYN. FTO overexpression also suppressed mitochondrial fission and ferroptosis to increase cell survival and inhibit cell apoptosis in OGD/R cell models, which was aggravated by additionally inhibiting DRP1. FTO overexpression inhibited FYN expression via the m6A modification to inactive Drp1 signaling, thus reducing mitochondrial fission and ferroptosis and enhancing cell viability in cells. CONCLUSIONS FTO overexpression suppressed FYN expression through m6A modification, thereby subduing Drp1 activity and relieving cerebral I/R injury.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Emergency, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanChina
| | - Xin Gong
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanChina
| |
Collapse
|
40
|
Zhang S, Cui K, Li Y, Fan Y, Wang D, Yao X, Fang B. The m 6A methylation and expression profiles of mouse neural stem cells after hypoxia/reoxygenation. Stem Cell Res Ther 2024; 15:43. [PMID: 38360659 PMCID: PMC10870567 DOI: 10.1186/s13287-024-03658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion injury to the central nervous system often causes severe complications. The activation of endogenous neural stem cells (NSCs) is considered a promising therapeutic strategy for nerve repair. However, the specific biological processes and molecular mechanisms of NSC activation remain unclear, and the role of N6-methyladenosine (m6A) methylation modification in this process has not been explored. METHODS NSCs were subjected to hypoxia/reoxygenation (H/R) to simulate ischemia-reperfusion in vivo. m6A RNA methylation quantitative kit was used to measure the total RNA m6A methylation level. Quantitative real-time PCR was used to detect methyltransferase and demethylase mRNA expression levels. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were conducted for NSCs in control and H/R groups, and the sequencing results were analyzed using bioinformatics. Finally, the migration ability of NSCs was identified by wound healing assays, and the proliferative capacity of NSCs was assessed using the cell counting kit-8, EdU assays and cell spheroidization assays. RESULTS Overall of m6A modification level and Mettl14 mRNA expression increased in NSCs after H/R treatment. The m6A methylation and expression profiles of mRNAs in NSCs after H/R are described for the first time. Through the joint analysis of MeRIP-seq and RNA-seq results, we verified the proliferation of NSCs after H/R, which was regulated by m6A methylation modification. Seven hub genes were identified to play key roles in the regulatory process. Knockdown of Mettl14 significantly inhibited the proliferation of NSCs. In addition, separate analysis of the MeRIP-seq results suggested that m6A methylation regulates cell migration and differentiation in ways other than affecting mRNA expression. Subsequent experiments confirmed the migration ability of NSCs was suppressed by knockdown of Mettl14. CONCLUSION The biological behaviors of NSCs after H/R are closely related to m6A methylation of mRNAs, and Mettl14 was confirmed to be involved in cell proliferation and migration.
Collapse
Affiliation(s)
- Shaoqiong Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Kaile Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yiting Fan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Dongxu Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Xingen Yao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
41
|
Lan L, Peng S, Zhang R, He H, Yang Y, Xi B, Zhang J. Serum proteomic biomarker investigation of vascular depression using data-independent acquisition: a pilot study. Front Aging Neurosci 2024; 16:1341374. [PMID: 38384936 PMCID: PMC10879412 DOI: 10.3389/fnagi.2024.1341374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background Vascular depression (VaD) is a depressive disorder closely associated with cerebrovascular disease and vascular risk factors. It remains underestimated owing to challenging diagnostics and limited information regarding the pathophysiological mechanisms of VaD. The purpose of this study was to analyze the proteomic signatures and identify the potential biomarkers with diagnostic significance in VaD. Methods Deep profiling of the serum proteome of 35 patients with VaD and 36 controls was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Functional enrichment analysis of the quantified proteins was based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Reactome databases. Machine learning algorithms were used to screen candidate proteins and develop a protein-based model to effectively distinguish patients with VaD. Results There were 29 up-regulated and 31 down-regulated proteins in the VaD group compared to the controls (|log2FC| ≥ 0.26, p ≤ 0.05). Enrichment pathways analyses showed that neurobiological processes related to synaptic vesicle cycle and axon guidance may be dysregulated in VaD. Extrinsic component of synaptic vesicle membrane was the most enriched term in the cellular components (CC) terms. 19 candidate proteins were filtered for further modeling. A nomogram was developed with the combination of HECT domain E3 ubiquitin protein ligase 3 (HECTD3), Nidogen-2 (NID2), FTO alpha-ketoglutarate-dependent dioxygenase (FTO), Golgi membrane protein 1 (GOLM1), and N-acetylneuraminate lyase (NPL), which could be used to predict VaD risk with favorable efficacy. Conclusion This study offers a comprehensive and integrated view of serum proteomics and contributes to a valuable proteomics-based diagnostic model for VaD.
Collapse
Affiliation(s)
- Liuyi Lan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sisi Peng
- Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ran Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Haoying He
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yong Yang
- SpecAlly Life Technology Co., Ltd., Wuhan, China
| | - Bing Xi
- SpecAlly Life Technology Co., Ltd., Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Yan H, Huang W, Rao J, Yan D, Yuan J. Demethylase FTO-Mediated m6A Modification of lncRNA MEG3 Activates Neuronal Pyroptosis via NLRP3 Signaling in Cerebral Ischemic Stroke. Mol Neurobiol 2024; 61:1023-1043. [PMID: 37676392 DOI: 10.1007/s12035-023-03622-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Neuronal death following ischemia is the primary cause of death and disability in patients with ischemic stroke. N6-methyladenosine (m6A) modification plays essential role in various physiological and pathological conditions, but its role and mechanism in ischemic neuronal death remain unclear. In the present study, neuronal pyroptosis was an important event in brain injury caused by ischemic stroke, and the upregulation of long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) following cerebral ischemia was a key factor in activating ischemic neuronal pyroptosis via NLRP3/caspase-1/GSDMD signaling. Moreover, we first demonstrated that the demethylase fat mass and obesity-associated protein (FTO), which was decreased following ischemia, regulated MEG3 expression in an m6A-dependent manner by affecting its stability, thereby activating neuronal pyroptosis via NLRP3/caspase-1/GSDMD signaling, and ultimately leading to ischemic brain damage. Therefore, the present study provides new insights for the mechanism of ischemic stroke, and suggests that FTO may be a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Wenxian Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Jie Rao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
43
|
Zhang F, Ignatova VV, Ming GL, Song H. Advances in brain epitranscriptomics research and translational opportunities. Mol Psychiatry 2024; 29:449-463. [PMID: 38123727 PMCID: PMC11116067 DOI: 10.1038/s41380-023-02339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valentina V Ignatova
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Liu S, Song S, Wang S, Cai T, Qin L, Wang X, Zhu G, Wang H, Yang W, Fang C, Wei Y, Zhou F, Yu Y, Lin S, Peng S, Li L. Hypothalamic FTO promotes high-fat diet-induced leptin resistance in mice through increasing CX3CL1 expression. J Nutr Biochem 2024; 123:109512. [PMID: 37907171 DOI: 10.1016/j.jnutbio.2023.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Long-term consumption of a high-fat diet (HFD) disrupts energy homeostasis and leads to weight gain. The fat mass and obesity-associated (FTO) gene has been consistently identified to be associated with HFD-induced obesity. The hypothalamus is crucial for regulating energy balance, and HFD-induced hypothalamic leptin resistance contributes to obesity. FTO, an N6-methyladenosine (m6A) RNA methylation regulator, may be a key mediator of leptin resistance. However, the exact mechanisms remain unclear. Therefore, the present study aims to investigate the association between FTO and leptin resistance. After HFD or standard diet (SD) feeding in male mice for 22 weeks, m6A-sequencing and western blotting assays were used to identify target genes and assess protein level, and molecular interaction changes. CRISPR/Cas9 gene knockout system was employed to investigate the potential function of FTO in leptin resistance and obesity. Our data showed that chemokine (C-X3-C motif) ligand 1 (CX3CL1) was a direct downstream target of FTO-mediated m6A modification. Furthermore, upregulation of FTO/CX3CL1 and suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus impaired leptin-signal transducer and activator of transcription 3 signaling, resulting in leptin resistance and obesity. Compared to wild-type (WT) mice, FTO deficiency in leptin receptor-expressing neurons of the hypothalamus significantly inhibited the upregulation of CX3CL1 and SOCS3, and partially ameliorating leptin resistance under HFD conditions. Our findings reveal that FTO involved in the hypothalamic leptin resistance and provides novel insight into the function of FTO in the contribution to hypothalamic leptin resistance and obesity.
Collapse
Affiliation(s)
- Shujing Liu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Shiyu Song
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Shuan Wang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Tonghui Cai
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P.R. China
| | - Lian Qin
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Xinzhuang Wang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Guangming Zhu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Haibo Wang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Wenqi Yang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Chunlu Fang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Yuan Wei
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Fu Zhou
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Yang Yu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China
| | - Shaozhang Lin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P.R. China.
| | - Shuang Peng
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China.
| | - Liangming Li
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China.
| |
Collapse
|
45
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
46
|
Zang S, Yin X, Li P. FTO-mediated m 6A demethylation regulates GnRH expression in the hypothalamus via the PLCβ3/Ca 2+/CAMK signalling pathway. Commun Biol 2023; 6:1297. [PMID: 38129517 PMCID: PMC10739951 DOI: 10.1038/s42003-023-05677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
N6-methyladenosine (m6A) plays a crucial role in the development and functional homeostasis of the central nervous system. The fat mass and obesity-associated (FTO) gene, which is highly expressed in the hypothalamus, is closely related to female pubertal development. In this study, we found that m6A methylation decreased in the hypothalamus gradually with puberty and decreased in female rats with precocious puberty. FTO expression was increased at the same time. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed that the m6A methylation of PLCβ3, a key enzyme of the Ca2+ signalling pathway, was decreased significantly in the hypothalamus in precocious rats. Upregulating FTO increased PLCβ3 expression and activated the Ca2+ signalling pathway, which promoted GnRH expression. Dual-luciferase reporter and MeRIP-qPCR assays confirmed that FTO regulated m6A demethylation of PLCβ3 and promoted PLCβ3 expression. Upon overexpressing FTO in the hypothalamic arcuate nucleus (ARC) in female rats, we observed advanced puberty onset. Meanwhile, PLCβ3 and GnRH expression in the hypothalamus increased significantly, and the Ca2+ signalling pathway was activated. Our study demonstrates that FTO enhances GnRH expression, which promotes puberty onset, by regulating m6A demethylation of PLCβ3 and activating the Ca2+ signalling pathway.
Collapse
Affiliation(s)
- Shaolian Zang
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Xiaoqin Yin
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China.
| | - Pin Li
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China.
| |
Collapse
|
47
|
Zhou B. Bioinformatics analysis identifies potential m6A hub genes in the pathogenesis of intracerebral hemorrhage. J Neuroimmunol 2023; 385:578224. [PMID: 37907028 DOI: 10.1016/j.jneuroim.2023.578224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a type of stroke associated with a high rate of disability and mortality. The role of N6-methyladenosine (m6A) in ICH remains unclear. METHODS Screening of m6A DEGs by differentially expressed genes (DEGs) analysis. m6A hub genes in ICH were identified by protein-protein interaction (PPI) networks. Pearson correlation tests were used to explore the relationship between m6A hub genes and DNA methylation. m6A hub genes were examined by ROC curves for their ability to predict ICH occurrence. Immune cell infiltration and m6A hub gene correlation in ICH were analysed using the CIBERSORT algorithm. Construction of ceRNA networks and enrichment analysis by GO/KEGG. RESULTS A total of 12 m6A regulatory enzymes were differentially expressed after ICH. the PPI network screened three m6A hub genes, including YTHDF2, FTO and HNRNPA2B1. A high expression of YTHDF2 was associated with DNA hypomethylation after ICH and could better predict the development of ICH. yTHDF2 was associated with high infiltration of M1 macrophages after ICH. A ceRNA network was constructed based on the m6A central gene with target genes enriched in transcriptional regulation and the LKB1 signalling pathway. CONCLUSION M6A modifications are involved in the progression of ICH. YTHDF2, an m6A key gene, may regulate ICH progression by promoting infiltration of M1 macrophages or through the ceRNA network.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Neurosurgery, the First People's Hospital of Jiashan County, Jiaxing City, Zhejiang Province, PR China.
| |
Collapse
|
48
|
Deng J, Liao Y, Chen J, Chen A, Wu S, Huang Y, Qian H, Gao F, Wu G, Chen Y, Chen X, Zheng X. N6-methyladenosine demethylase FTO regulates synaptic and cognitive impairment by destabilizing PTEN mRNA in hypoxic-ischemic neonatal rats. Cell Death Dis 2023; 14:820. [PMID: 38092760 PMCID: PMC10719319 DOI: 10.1038/s41419-023-06343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) can result in significant global rates of neonatal death or permanent neurological disability. N6-methyladenosine (m6A) modification of RNA influences fundamental aspects of RNA metabolism, and m6A dysregulation is implicated in various neurological diseases. However, the biological roles and clinical significance of m6A in HIBD remain unclear. We currently evaluated the effect of HIBD on cerebral m6A methylation in RNAs in neonatal rats. The m6A dot blot assay showed a global augmentation in RNA m6A methylation post-HI. Herein, we also report on demethylase FTO, which is markedly downregulated in the hippocampus and is the main factor involved with aberrant m6A modification following HI. By conducting a comprehensive analysis of RNA-seq data and m6A microarray results, we found that transcripts with m6A modifications were more highly expressed overall than transcripts without m6A modifications. The overexpression of FTO resulted in the promotion of Akt/mTOR pathway hyperactivation, while simultaneously inhibiting autophagic function. This is carried out by the demethylation activity of FTO, which selectively demethylates transcripts of phosphatase and tensin homolog (PTEN), thus promoting its degradation and reduced protein expression after HI. Moreover, the synaptic and neurocognitive disorders induced by HI were effectively reversed through the overexpression of FTO in the hippocampus. Cumulatively, these findings demonstrate the functional importance of FTO-dependent hippocampal m6A methylome in cognitive function and provides novel mechanistic insights into the therapeutic potentials of FTO in neonatal HIBD.
Collapse
Affiliation(s)
- Jianhui Deng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Jianghu Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Andi Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Shuyan Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yongxin Huang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Haitao Qian
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Guixi Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yisheng Chen
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China.
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of Belt and Road, Fuzhou, China.
| |
Collapse
|
49
|
Li C, Li B, Wang H, Qu L, Liu H, Weng C, Han J, Li Y. Role of N6-methyladenosine methylation in glioma: recent insights and future directions. Cell Mol Biol Lett 2023; 28:103. [PMID: 38072944 PMCID: PMC10712162 DOI: 10.1186/s11658-023-00514-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Glioma is the most pervasive intracranial tumor in the central nervous system (CNS), with glioblastoma (GBM) being the most malignant type having a highly heterogeneous cancer cell population. There is a significantly high mortality rate in GBM patients. Molecular biomarkers related to GBM malignancy may have prognostic values in predicting survival outcomes and therapeutic responses, especially in patients with high-grade gliomas. In particular, N6-methyladenine (m6A) mRNA modification is the most abundant form of post-transcriptional RNA modification in mammals and is involved in regulating mRNA translation and degradation. Cumulative findings indicate that m6A methylation plays a crucial part in neurogenesis and glioma pathogenesis. In this review, we summarize recent advances regarding the functional significance of m6A modification and its regulatory factors in glioma occurrence and progression. Significant advancement of m6A methylation-associated regulators as potential therapeutic targets is also discussed.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Bowen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hui Wang
- Department of Acupuncture, Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang, 277000, Shandong, China
| | - Linglong Qu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hui Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Suzhou Research Institute of Shandong University, Suzhou 215123, China.
| |
Collapse
|
50
|
Zhu J, Cheng X, Naumovski N, Hu L, Wang K. Epigenetic regulation by quercetin: a comprehensive review focused on its biological mechanisms. Crit Rev Food Sci Nutr 2023; 65:627-646. [PMID: 38062765 DOI: 10.1080/10408398.2023.2278760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Epigenetics regulates gene expression and play significant roles across diverse disease states. Epigenetics mechanisms, including DNA methylation, histone modifications, microRNAs/lncRNA, and N6-methyladenosine (m6A) RNA methylation, elicit heritable but reversible modifications in gene expression without modifying the DNA sequence. Recent research suggests that certain natural phytochemicals with chemopreventive properties have the potential to function as epigenetic regulators. Quercetin, a derivative of natural flavonoid glycosides and a constituent of the human diet, is linked to a variety of health benefits including anti-inflammatory, anticancer activity, antiapoptotic, antihypertensive, and neuroprotective effects. Recent findings suggest that quercetin possesses the ability to modulate canonical biochemical signaling pathways and exert an impact on epigenetic networks. This review aims to synthesize the most recent research findings that elucidate the potential biological effects of quercetin and its influence on in vitro and in vivo models via epigenetic mechanisms. In light of our findings, it is evident that quercetin possesses the potential to function as an exemplary instance of naturally derived phytochemicals, which can be effectively employed as a pivotal constituent in functional foods and dietary supplements aimed at the amelioration of various ailments. More specifically, its mechanism of action involves the alteration of diverse epigenetic targets.
Collapse
Affiliation(s)
- Jinfeng Zhu
- School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions. Soochow University, Suzhou, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma, Italy
| | - Xiaju Cheng
- School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions. Soochow University, Suzhou, China
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
- Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | - Lin Hu
- School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions. Soochow University, Suzhou, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|