1
|
Varshavskaya KB, Barykin EP, Timoshenko RV, Kolmogorov VS, Erofeev AS, Gorelkin PV, Mitkevich VA, Makarov AA. Post-translational modifications of beta-amyloid modulate its effect on cell mechanical properties and influence cytoskeletal signaling cascades. Front Mol Neurosci 2024; 17:1501874. [PMID: 39610710 PMCID: PMC11602469 DOI: 10.3389/fnmol.2024.1501874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Post-translational modifications of beta-amyloid (Aβ) play an important role in the pathogenesis of Alzheimer's disease (AD). Aβ modifications such as Ser8 phosphorylation (pS8-Aβ42) and Asp7 isomerization (iso-Aβ42) can significantly alter the properties of Aβ and have been detected in vivo. One of the reasons for the different pathogenicity of Aβ isoforms may be the activation of different signaling cascades leading to changes in the mechanical properties of cells. In this paper, we used correlative scanning ion-conductance microscopy (SICM) and Pt-nanoelectrodes to compare the effects of Aβ isoforms on the Young's modulus of SH-SY5Y cells and the level of ROS. It was found that unmodified Aβ42 resulted in the largest increase in cell Young's modulus of all isoforms after 4 h of incubation, while pS8-Aβ42 induced the greatest increase in stiffness and ROS levels after 24 h of incubation. Analysis of signaling proteins involved in the regulation of the actin cytoskeleton showed that Aβ42, pS8-Aβ42 and iso-Aβ42 have different effects on cofilin, GSK3β, LIMK, ERK and p38. This indicates that post-translational modifications of Aβ modulate its effect on neuronal cells through the activation of various signaling cascades, which affects the mechanical properties of cells.
Collapse
Affiliation(s)
| | | | - Roman V. Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Vasilii S. Kolmogorov
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
| | | | | |
Collapse
|
2
|
Wang X, Ma L, Lu D, Zhao G, Ren H, Lin Q, Jia M, Huang F, Wang S, Xu Z, Yang Z, Chu Y, Xu Z, Li W, Yu L, Jiang Q, Zhang C. Nuclear envelope budding inhibition slows down progerin-induced aging process. Proc Natl Acad Sci U S A 2024; 121:e2321378121. [PMID: 39352925 PMCID: PMC11474064 DOI: 10.1073/pnas.2321378121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/08/2024] [Indexed: 10/04/2024] Open
Abstract
Progerin causes Hutchinson-Gilford progeria syndrome (HGPS), but how progerin accelerates aging is still an interesting question. Here, we provide evidence linking nuclear envelope (NE) budding and accelerated aging. Mechanistically, progerin disrupts nuclear lamina to induce NE budding in concert with lamin A/C, resulting in transport of chromatin into the cytoplasm where it is removed via autophagy, whereas emerin antagonizes this process. Primary cells from both HGPS patients and mouse models express progerin and display NE budding and chromatin loss, and ectopically expressing progerin in cells can mimic this process. More excitingly, we screen a NE budding inhibitor chaetocin by high-throughput screening, which can dramatically sequester progerin from the NE and prevent this NE budding through sustaining ERK1/2 activation. Chaetocin alleviates NE budding-induced chromatin loss and ameliorates HGPS defects in cells and mice and significantly extends lifespan of HGPS mice. Collectively, we propose that progerin-induced NE budding participates in the induction of progeria, highlight the roles of chaetocin and sustained ERK1/2 activation in anti-aging, and provide a distinct avenue for treating HGPS.
Collapse
Affiliation(s)
- Xiangyang Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, China
| | - Lin Ma
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Di Lu
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Gan Zhao
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - He Ren
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Qiaoyu Lin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Mingkang Jia
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Fan Huang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Shan Wang
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Zhe Xu
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Zhou Yang
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Yan Chu
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Zigang Xu
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Wei Li
- Genetics and Birth Defects Control Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing100045, China
| | - Li Yu
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing100871, China
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, China
| |
Collapse
|
3
|
Yuce K. The Application of Mesenchymal Stem Cells in Different Cardiovascular Disorders: Ways of Administration, and the Effectors. Stem Cell Rev Rep 2024; 20:1671-1691. [PMID: 39023739 DOI: 10.1007/s12015-024-10765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The heart is an organ with a low ability to renew and repair itself. MSCs have cell surface markers such as CD45-, CD34-, CD31-, CD4+, CD11a+, CD11b+, CD15+, CD18+, CD25+, CD49d+, CD50+, CD105+, CD73+, CD90+, CD9+, CD10+, CD106+, CD109+, CD127+, CD120a+, CD120b+, CD124+, CD126+, CD140a+, CD140b+, adherent properties and the ability to differentiate into cells such as adipocytes, osteoblasts and chondrocytes. Autogenic, allogeneic, normal, pretreated and genetically modified MSCs and secretomes are used in preclinical and clinical studies. MSCs and their secretomes (the total released molecules) generally have cardioprotective effects. Studies on cardiovascular diseases using MSCs and their secretomes include myocardial infraction/ischemia, fibrosis, hypertrophy, dilated cardiomyopathy and atherosclerosis. Stem cells or their secretomes used for this purpose are administered to the heart via intracoronary (Antegrade intracoronary and retrograde coronary venous injection), intramyocardial (Transendocardial and epicardial injection) and intravenous routes. The protective effects of MSCs and their secretomes on the heart are generally attributed to their differentiation into cardiomyocytes and endothelial cells, their immunomodulatory properties, paracrine effects, increasing blood vessel density, cardiac remodeling, and ejection fraction and decreasing apoptosis, the size of the wound, end-diastolic volume, end-systolic volume, ventricular myo-mass, fibrosis, matrix metalloproteins, and oxidative stress. The present review aims to assist researchers and physicians in selecting the appropriate cell type, secretomes, and technique to increase the chance of success in designing therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Kemal Yuce
- Physiology, Department of Basic Medical Sciences, Medicine Faculty, Selcuk University, Konya, Türkiye.
| |
Collapse
|
4
|
Iwanski JB, Pappas CT, Mayfield RM, Farman GP, Ahrens-Nicklas R, Churko JM, Gregorio CC. Leiomodin 2 neonatal dilated cardiomyopathy mutation results in altered actin gene signatures and cardiomyocyte dysfunction. NPJ Regen Med 2024; 9:21. [PMID: 39285234 PMCID: PMC11405699 DOI: 10.1038/s41536-024-00366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Neonatal dilated cardiomyopathy (DCM) is a poorly understood muscular disease of the heart. Several homozygous biallelic variants in LMOD2, the gene encoding the actin-binding protein Leiomodin 2, have been identified to result in severe DCM. Collectively, LMOD2-related cardiomyopathies present with cardiac dilation and decreased heart contractility, often resulting in neonatal death. Thus, it is evident that Lmod2 is essential to normal human cardiac muscle function. This study aimed to understand the underlying pathophysiology and signaling pathways related to the first reported LMOD2 variant (c.1193 G > A, p.Trp398*). Using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model harboring the homologous mutation to the patient, we discovered dysregulated actin-thin filament lengths, altered contractility and calcium handling properties, as well as alterations in the serum response factor (SRF)-dependent signaling pathway. These findings reveal that LMOD2 may be regulating SRF activity in an actin-dependent manner and provide a potential new strategy for the development of biologically active molecules to target LMOD2-related cardiomyopathies.
Collapse
Grants
- R01HL123078 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL128906 NHLBI NIH HHS
- R01 HL164644 NHLBI NIH HHS
- R01 GM120137 NIGMS NIH HHS
- F30HL151139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32HL007249 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 HL007249 NHLBI NIH HHS
- R01 HL123078 NHLBI NIH HHS
- R01HL164644 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F30 HL151139 NHLBI NIH HHS
- R01GM120137 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Jessika B Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Rachel M Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Rebecca Ahrens-Nicklas
- Department of Pediatrics and Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jared M Churko
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA.
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA.
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Wu XY, Lee YK, Lau YM, Au KW, Tse YL, Ng KM, Wong CK, Tse HF. The Pathogenic Mechanisms of and Novel Therapies for Lamin A/C-Related Dilated Cardiomyopathy Based on Patient-Specific Pluripotent Stem Cell Platforms and Animal Models. Pharmaceuticals (Basel) 2024; 17:1030. [PMID: 39204134 PMCID: PMC11357512 DOI: 10.3390/ph17081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Variants (pathogenic) of the LMNA gene are a common cause of familial dilated cardiomyopathy (DCM), which is characterised by early-onset atrioventricular (AV) block, atrial fibrillation and ventricular tachyarrhythmias (VTs), and progressive heart failure. The unstable internal nuclear lamina observed in LMNA-related DCM is a consequence of the disassembly of lamins A and C. This suggests that LMNA variants produce truncated or alternative forms of protein that alter the nuclear structure and the signalling pathway related to cardiac muscle diseases. To date, the pathogenic mechanisms and phenotypes of LMNA-related DCM have been studied using different platforms, such as patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and transgenic mice. In this review, point variants in the LMNA gene that cause autosomal dominantly inherited forms of LMNA-related DCM are summarised. In addition, potential therapeutic targets based on preclinical studies of LMNA variants using transgenic mice and human iPSC-CMs are discussed. They include mitochondria deficiency, variants in nuclear deformation, chromatin remodelling, altered platelet-derived growth factor and ERK1/2-related pathways, and abnormal calcium handling.
Collapse
Affiliation(s)
- Xin-Yi Wu
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yee-Ki Lee
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yee-Man Lau
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Ka-Wing Au
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Yiu-Lam Tse
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Kwong-Man Ng
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
| | - Chun-Ka Wong
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (X.-Y.W.); (Y.-K.L.); (Y.-M.L.); (K.-W.A.); (Y.-L.T.); (K.-M.N.); (C.-K.W.)
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
6
|
Miura T, Kado J, Ashisuke K, Masuzawa M, Nakayama F. Sustained activation of the FGF1-MEK-ERK pathway inhibits proliferation, invasion and migration and enhances radiosensitivity in mouse angiosarcoma cells. JOURNAL OF RADIATION RESEARCH 2024; 65:303-314. [PMID: 38637316 PMCID: PMC11115473 DOI: 10.1093/jrr/rrae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/15/2023] [Indexed: 04/20/2024]
Abstract
Angiosarcoma is a rare refractory soft-tissue tumor with a poor prognosis and is treated by radiotherapy. The fibroblast growth factor 1 (FGF1) mutant, with enhanced thermostability due to several substituted amino acids, inhibits angiosarcoma cell metastasis, yet the mechanism of action is unclear. This study aims to clarify the FGF1 mutant mechanism of action using ISOS-1 mouse angiosarcoma cells. The wild-type FGF1 or FGF1 mutant was added to ISOS-1 cells and cultured, evaluating cell numbers over time. The invasive and migratory capacity of ISOS-1 cells was assessed by transwell analysis. ISOS-1 cell radiosensitivity was assessed by colony formation assay after X-ray irradiation. To examine whether mitogen-activated protein kinase (MEK) inhibitor counteracts the FGF1 mutant effects, a combination of MEK inhibitor and FGF1 mutant was added to ISOS-1 cells and cultured. The FGF1 mutant was observed to inhibit ISOS-1 cell proliferation, invasion and migration by sustained FGF1 signaling activation. A MEK inhibitor suppressed the FGF1 mutant-induced inhibition of proliferation, invasion and migration of ISOS-1 cells. Furthermore, the FGF1 mutant enhanced radiosensitivity of ISOS-1 cells, but MEK inhibition suppressed the increased radiosensitivity. In addition, we found that the FGF1 mutant strongly inhibits actin polymerization, suggesting that actin cytoskeletal dynamics are closely related to ISOS-1 cell radiosensitivity. Overall, this study demonstrated that in ISOS-1 cells, the FGF1 mutant inhibits proliferation, invasion and migration while enhancing radiosensitivity through sustained activation of the MEK-mediated signaling pathway.
Collapse
Affiliation(s)
- Taichi Miura
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Junko Kado
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazuma Ashisuke
- Radiation Effect Research Group, Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mikio Masuzawa
- Department of Dermatology, Iwase General Hospital, 20 Kitamachi, Sukagawa-shi, Fukushima 962-8503, Japan
| | - Fumiaki Nakayama
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
7
|
Tiwari V, Alam MJ, Bhatia M, Navya M, Banerjee SK. The structure and function of lamin A/C: Special focus on cardiomyopathy and therapeutic interventions. Life Sci 2024; 341:122489. [PMID: 38340979 DOI: 10.1016/j.lfs.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Madhavi Bhatia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Malladi Navya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
8
|
Hartley B, Bassiouni W, Roczkowsky A, Fahlman R, Schulz R, Julien O. Data-Independent Acquisition Proteomics and N-Terminomics Methods Reveal Alterations in Mitochondrial Function and Metabolism in Ischemic-Reperfused Hearts. J Proteome Res 2024; 23:844-856. [PMID: 38264990 PMCID: PMC10846531 DOI: 10.1021/acs.jproteome.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Myocardial ischemia-reperfusion (IR) (stunning) injury triggers changes in the proteome and degradome of the heart. Here, we utilize quantitative proteomics and comprehensive degradomics to investigate the molecular mechanisms of IR injury in isolated rat hearts. The control group underwent aerobic perfusion, while the IR injury group underwent 20 min of ischemia and 30 min of reperfusion to induce a stunning injury. As MMP-2 activation has been shown to contribute to myocardial injury, hearts also underwent IR injury with ARP-100, an MMP-2-preferring inhibitor, to dissect the contribution of MMP-2 to IR injury. Using data-independent acquisition (DIA) and mass spectroscopy, we quantified 4468 proteins in ventricular extracts, whereby 447 proteins showed significant alterations among the three groups. We then used subtiligase-mediated N-terminomic labeling to identify more than a hundred specific cleavage sites. Among these protease substrates, 15 were identified following IR injury. We identified alterations in numerous proteins involved in mitochondrial function and metabolism following IR injury. Our findings provide valuable insights into the biochemical mechanisms of myocardial IR injury, suggesting alterations in reactive oxygen/nitrogen species handling and generation, fatty acid metabolism, mitochondrial function and metabolism, and cardiomyocyte contraction.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Wesam Bassiouni
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Andrej Roczkowsky
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Richard Schulz
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
- Department
of Pediatrics, University of Alberta, Edmonton T6G 2S2, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
9
|
Macías Á, Nevado RM, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Dorado B, Benedicto I, Andrés V. Coronary and carotid artery dysfunction and K V7 overexpression in a mouse model of Hutchinson-Gilford progeria syndrome. GeroScience 2024; 46:867-884. [PMID: 37233881 PMCID: PMC10828489 DOI: 10.1007/s11357-023-00808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disease caused by expression of progerin, a lamin A variant that is also expressed at low levels in non-HGPS individuals. Although HGPS patients die predominantly from myocardial infarction and stroke, the mechanisms that provoke pathological alterations in the coronary and cerebral arteries in HGPS remain ill defined. Here, we assessed vascular function in the coronary arteries (CorAs) and carotid arteries (CarAs) of progerin-expressing LmnaG609G/G609G mice (G609G), both in resting conditions and after hypoxic stimulus. Wire myography, pharmacological screening, and gene expression studies demonstrated vascular atony and stenosis, as well as other functional alterations in progeroid CorAs and CarAs and aorta. These defects were associated with loss of vascular smooth muscle cells and overexpression of the KV7 family of voltage-dependent potassium channels. Compared with wild-type controls, G609G mice showed reduced median survival upon chronic isoproterenol exposure, a baseline state of chronic cardiac hypoxia characterized by overexpression of hypoxia-inducible factor 1α and 3α genes, and increased cardiac vascularization. Our results shed light on the mechanisms underlying progerin-induced coronary and carotid artery disease and identify KV7 channels as a candidate target for the treatment of HGPS.
Collapse
Affiliation(s)
- Álvaro Macías
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rosa M Nevado
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina González-Gómez
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Gonzalo
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jesús Andrés-Manzano
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Dorado
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Benedicto
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040, Madrid, Spain
| | - Vicente Andrés
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Shehjar F, Almarghalani DA, Mahajan R, Hasan SAM, Shah ZA. The Multifaceted Role of Cofilin in Neurodegeneration and Stroke: Insights into Pathogenesis and Targeting as a Therapy. Cells 2024; 13:188. [PMID: 38247879 PMCID: PMC10814918 DOI: 10.3390/cells13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This comprehensive review explores the complex role of cofilin, an actin-binding protein, across various neurodegenerative diseases (Alzheimer's, Parkinson's, schizophrenia, amyotrophic lateral sclerosis (ALS), Huntington's) and stroke. Cofilin is an essential protein in cytoskeletal dynamics, and any dysregulation could lead to potentially serious complications. Cofilin's involvement is underscored by its impact on pathological hallmarks like Aβ plaques and α-synuclein aggregates, triggering synaptic dysfunction, dendritic spine loss, and impaired neuronal plasticity, leading to cognitive decline. In Parkinson's disease, cofilin collaborates with α-synuclein, exacerbating neurotoxicity and impairing mitochondrial and axonal function. ALS and frontotemporal dementia showcase cofilin's association with genetic factors like C9ORF72, affecting actin dynamics and contributing to neurotoxicity. Huntington's disease brings cofilin into focus by impairing microglial migration and influencing synaptic plasticity through AMPA receptor regulation. Alzheimer's, Parkinson's, and schizophrenia exhibit 14-3-3 proteins in cofilin dysregulation as a shared pathological mechanism. In the case of stroke, cofilin takes center stage, mediating neurotoxicity and neuronal cell death. Notably, there is a potential overlap in the pathologies and involvement of cofilin in various diseases. In this context, referencing cofilin dysfunction could provide valuable insights into the common pathologies associated with the aforementioned conditions. Moreover, this review explores promising therapeutic interventions, including cofilin inhibitors and gene therapy, demonstrating efficacy in preclinical models. Challenges in inhibitor development, brain delivery, tissue/cell specificity, and long-term safety are acknowledged, emphasizing the need for precision drug therapy. The call to action involves collaborative research, biomarker identification, and advancing translational efforts. Cofilin emerges as a pivotal player, offering potential as a therapeutic target. However, unraveling its complexities requires concerted multidisciplinary efforts for nuanced and effective interventions across the intricate landscape of neurodegenerative diseases and stroke, presenting a hopeful avenue for improved patient care.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Daniyah A. Almarghalani
- Stroke Research Unit, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Syed A.-M. Hasan
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
11
|
Angelini A, Trial J, Saltzman AB, Malovannaya A, Cieslik KA. A defective mechanosensing pathway affects fibroblast-to-myofibroblast transition in the old male mouse heart. iScience 2023; 26:107283. [PMID: 37520701 PMCID: PMC10372839 DOI: 10.1016/j.isci.2023.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
The cardiac fibroblast interacts with an extracellular matrix (ECM), enabling myofibroblast maturation via a process called mechanosensing. Although in the aging male heart, ECM is stiffer than in the young mouse, myofibroblast development is impaired, as demonstrated in 2-D and 3-D experiments. In old male cardiac fibroblasts, we found a decrease in actin polymerization, α-smooth muscle actin (α-SMA), and Kindlin-2 expressions, the latter an effector of the mechanosensing. When Kindlin-2 levels were manipulated via siRNA interference, young fibroblasts developed an old-like fibroblast phenotype, whereas Kindlin-2 overexpression in old fibroblasts reversed the defective phenotype. Finally, inhibition of overactivated extracellular regulated kinases 1 and 2 (ERK1/2) in the old male fibroblasts rescued actin polymerization and α-SMA expression. Pathological ERK1/2 overactivation was also attenuated by Kindlin-2 overexpression. In contrast, old female cardiac fibroblasts retained an operant mechanosensing pathway. In conclusion, we identified defective components of the Kindlin/ERK/actin/α-SMA mechanosensing axis in aged male fibroblasts.
Collapse
Affiliation(s)
- Aude Angelini
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - JoAnn Trial
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alexander B. Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Katarzyna A. Cieslik
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Yamada S, Ko T, Ito M, Sassa T, Nomura S, Okuma H, Sato M, Imasaki T, Kikkawa S, Zhang B, Yamada T, Seki Y, Fujita K, Katoh M, Kubota M, Hatsuse S, Katagiri M, Hayashi H, Hamano M, Takeda N, Morita H, Takada S, Toyoda M, Uchiyama M, Ikeuchi M, Toyooka K, Umezawa A, Yamanishi Y, Nitta R, Aburatani H, Komuro I. TEAD1 trapping by the Q353R-Lamin A/C causes dilated cardiomyopathy. SCIENCE ADVANCES 2023; 9:eade7047. [PMID: 37058558 PMCID: PMC10104473 DOI: 10.1126/sciadv.ade7047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Mutations in the LMNA gene encoding Lamin A and C (Lamin A/C), major components of the nuclear lamina, cause laminopathies including dilated cardiomyopathy (DCM), but the underlying molecular mechanisms have not been fully elucidated. Here, by leveraging single-cell RNA sequencing (RNA-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), protein array, and electron microscopy analysis, we show that insufficient structural maturation of cardiomyocytes owing to trapping of transcription factor TEA domain transcription factor 1 (TEAD1) by mutant Lamin A/C at the nuclear membrane underlies the pathogenesis of Q353R-LMNA-related DCM. Inhibition of the Hippo pathway rescued the dysregulation of cardiac developmental genes by TEAD1 in LMNA mutant cardiomyocytes. Single-cell RNA-seq of cardiac tissues from patients with DCM with the LMNA mutation confirmed the dysregulated expression of TEAD1 target genes. Our results propose an intervention for transcriptional dysregulation as a potential treatment of LMNA-related DCM.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuro Sassa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiromichi Okuma
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Bo Zhang
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Takanobu Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Yuka Seki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanna Fujita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Manami Katoh
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Masayuki Kubota
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Hatsuse
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromu Hayashi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masashi Toyoda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masashi Ikeuchi
- Division of Biofunctional Restoration, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Wang Y, Dobreva G. Epigenetics in LMNA-Related Cardiomyopathy. Cells 2023; 12:cells12050783. [PMID: 36899919 PMCID: PMC10001118 DOI: 10.3390/cells12050783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mutations in the gene for lamin A/C (LMNA) cause a diverse range of diseases known as laminopathies. LMNA-related cardiomyopathy is a common inherited heart disease and is highly penetrant with a poor prognosis. In the past years, numerous investigations using mouse models, stem cell technologies, and patient samples have characterized the phenotypic diversity caused by specific LMNA variants and contributed to understanding the molecular mechanisms underlying the pathogenesis of heart disease. As a component of the nuclear envelope, LMNA regulates nuclear mechanostability and function, chromatin organization, and gene transcription. This review will focus on the different cardiomyopathies caused by LMNA mutations, address the role of LMNA in chromatin organization and gene regulation, and discuss how these processes go awry in heart disease.
Collapse
Affiliation(s)
- Yinuo Wang
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| |
Collapse
|
14
|
Li CC, Chi XJ, Wang J, Potter AL, Wang XJ, Yang CFJ. Small molecule RAF265 as an antiviral therapy acts against HSV-1 by regulating cytoskeleton rearrangement and cellular translation machinery. J Med Virol 2023; 95:e28226. [PMID: 36251738 DOI: 10.1002/jmv.28226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Department of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Alexandra L Potter
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chi-Fu Jeffrey Yang
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Actin-microtubule cytoskeletal interplay mediated by MRTF-A/SRF signaling promotes dilated cardiomyopathy caused by LMNA mutations. Nat Commun 2022; 13:7886. [PMID: 36550158 PMCID: PMC9780334 DOI: 10.1038/s41467-022-35639-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) cause dilated cardiomyopathy associated with increased activity of ERK1/2 in the heart. We recently showed that ERK1/2 phosphorylates cofilin-1 on threonine 25 (phospho(T25)-cofilin-1) that in turn disassembles the actin cytoskeleton. Here, we show that in muscle cells carrying a cardiomyopathy-causing LMNA mutation, phospho(T25)-cofilin-1 binds to myocardin-related transcription factor A (MRTF-A) in the cytoplasm, thus preventing the stimulation of serum response factor (SRF) in the nucleus. Inhibiting the MRTF-A/SRF axis leads to decreased α-tubulin acetylation by reducing the expression of ATAT1 gene encoding α-tubulin acetyltransferase 1. Hence, tubulin acetylation is decreased in cardiomyocytes derived from male patients with LMNA mutations and in heart and isolated cardiomyocytes from Lmnap.H222P/H222P male mice. In Atat1 knockout mice, deficient for acetylated α-tubulin, we observe left ventricular dilation and mislocalization of Connexin 43 (Cx43) in heart. Increasing α-tubulin acetylation levels in Lmnap.H222P/H222P mice with tubastatin A treatment restores the proper localization of Cx43 and improves cardiac function. In summary, we show for the first time an actin-microtubule cytoskeletal interplay mediated by cofilin-1 and MRTF-A/SRF, promoting the dilated cardiomyopathy caused by LMNA mutations. Our findings suggest that modulating α-tubulin acetylation levels is a feasible strategy for improving cardiac function.
Collapse
|
16
|
Hui J, Stjepić V, Nakamura M, Parkhurst SM. Wrangling Actin Assemblies: Actin Ring Dynamics during Cell Wound Repair. Cells 2022; 11:2777. [PMID: 36139352 PMCID: PMC9497110 DOI: 10.3390/cells11182777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/18/2022] Open
Abstract
To cope with continuous physiological and environmental stresses, cells of all sizes require an effective wound repair process to seal breaches to their cortex. Once a wound is recognized, the cell must rapidly plug the injury site, reorganize the cytoskeleton and the membrane to pull the wound closed, and finally remodel the cortex to return to homeostasis. Complementary studies using various model organisms have demonstrated the importance and complexity behind the formation and translocation of an actin ring at the wound periphery during the repair process. Proteins such as actin nucleators, actin bundling factors, actin-plasma membrane anchors, and disassembly factors are needed to regulate actin ring dynamics spatially and temporally. Notably, Rho family GTPases have been implicated throughout the repair process, whereas other proteins are required during specific phases. Interestingly, although different models share a similar set of recruited proteins, the way in which they use them to pull the wound closed can differ. Here, we describe what is currently known about the formation, translocation, and remodeling of the actin ring during the cell wound repair process in model organisms, as well as the overall impact of cell wound repair on daily events and its importance to our understanding of certain diseases and the development of therapeutic delivery modalities.
Collapse
Affiliation(s)
| | | | | | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
17
|
Jia H, Sun Y, Yao W, Chen Z, Yang S, Wang C, Lu S. A novel deletion mutation accompanied by a point mutation in Lamin A/C gene: Screened from a dilated cardiomyopathy family. Perfusion 2022; 38:826-836. [PMID: 35514053 DOI: 10.1177/02676591221090587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND There are 30%-40% of patients with dilated cardiomyopathy (DCM) having genetic causes, among which Lamin A and C gene (LMNA) mutation is the second most frequent DCM-related mutation, and Lamin A/C may be involved in the pathogenesis of DCM through the regulation of gene transcription or the direct effect of cell structure. Methods: Echocardiography and electrocardiogram were used to diagnose DCM and arrhythmia in a DCM family. Then, linked mutations on LMNA were screened out by high-throughput sequencing and verified by Sanger sequencing in all research individuals. Meanwhile, Human Genome Variation Society (HGVS) and Integrative Genomics Viewer (IGV) were used to analyse the characteristics of the mutated Lamin A/C protein. Finally, mutated-type and wild-type LMNA plasmid was transfected into AC-16 cardiomyocytes with the form of a lentivirus vector, and its effect on nucleus and actin was studied by immunofluorescence detection. RESULTS In this study, we found a new frame-shifted mutation of LMNA (p.Ser414Alafs*66) linked with another point mutation from a DCM family by using High-throughput sequencing, and this deletion mutation led to a truncation of Lamin A/C. By analysing the clinical characteristics of this DCM family, we found that all DCM patients with arrhythmia were carriers of this co-segregation mutation. In the cytological experiment, we found that the mutated-type transfections showed weaker fluorescent intensities on both actin and cell nucleus. CONCLUSIONS A co-segregation mutation of LMNA (Point mutation chr1 156107548 c.1712 G>A and truncated frame-shifted mutation chr1 156106086 c.1240delA) was found from a DCM family, and this type of mutation could participate in the pathogenesis of DCM by affecting the expression of actin.
Collapse
Affiliation(s)
- Hao Jia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wangchao Yao
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenhang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuyang Lu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Macías Á, Díaz-Larrosa JJ, Blanco Y, Fanjul V, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, da Rocha AM, Ponce-Balbuena D, Allan A, Filgueiras-Rama D, Jalife J, Andrés V. Paclitaxel mitigates structural alterations and cardiac conduction system defects in a mouse model of Hutchinson-Gilford progeria syndrome. Cardiovasc Res 2022; 118:503-516. [PMID: 33624748 PMCID: PMC8803078 DOI: 10.1093/cvr/cvab055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare laminopathy caused by expression of progerin, a lamin A variant, also present at low levels in non-HGPS individuals. HGPS patients age and die prematurely, predominantly from cardiovascular complications. Progerin-induced cardiac repolarization defects have been described previously, although the underlying mechanisms are unknown. METHODS AND RESULTS We conducted studies in heart tissue from progerin-expressing LmnaG609G/G609G (G609G) mice, including microscopy, intracellular calcium dynamics, patch-clamping, in vivo magnetic resonance imaging, and electrocardiography. G609G mouse cardiomyocytes showed tubulin-cytoskeleton disorganization, t-tubular system disruption, sarcomere shortening, altered excitation-contraction coupling, and reductions in ventricular thickening and cardiac index. G609G mice exhibited severe bradycardia, and significant alterations of atrio-ventricular conduction and repolarization. Most importantly, 50% of G609G mice had altered heart rate variability, and sinoatrial block, both significant signs of premature cardiac aging. G609G cardiomyocytes had electrophysiological alterations, which resulted in an elevated action potential plateau and early afterdepolarization bursting, reflecting slower sodium current inactivation and long Ca+2 transient duration, which may also help explain the mild QT prolongation in some HGPS patients. Chronic treatment with low-dose paclitaxel ameliorated structural and functional alterations in G609G hearts. CONCLUSIONS Our results demonstrate that tubulin-cytoskeleton disorganization in progerin-expressing cardiomyocytes causes structural, cardiac conduction, and excitation-contraction coupling defects, all of which can be partially corrected by chronic treatment with low dose paclitaxel.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Anti-Arrhythmia Agents/pharmacology
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Cytoskeleton/pathology
- Disease Models, Animal
- Excitation Contraction Coupling/drug effects
- Female
- Genetic Predisposition to Disease
- Heart Conduction System/drug effects
- Heart Conduction System/metabolism
- Heart Conduction System/physiopathology
- Heart Rate/drug effects
- Lamin Type A/genetics
- Lamin Type A/metabolism
- Male
- Mice, Mutant Strains
- Mutation
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Paclitaxel/pharmacology
- Progeria/drug therapy
- Progeria/genetics
- Progeria/metabolism
- Progeria/physiopathology
- Refractory Period, Electrophysiological/drug effects
- Swine
- Swine, Miniature
- Tubulin/metabolism
- Mice
Collapse
Affiliation(s)
- Álvaro Macías
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - J Jaime Díaz-Larrosa
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Yaazan Blanco
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Víctor Fanjul
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Cristina González-Gómez
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Pilar Gonzalo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - María Jesús Andrés-Manzano
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Andre Monteiro da Rocha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Andrew Allan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - David Filgueiras-Rama
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Cardiology, Cardiac Electrophysiology Unit, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Myocardial, Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - José Jalife
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
- Myocardial, Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Vicente Andrés
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
19
|
van Wijk SW, Su W, Wijdeveld LFJM, Ramos KS, Brundel BJJM. Cytoskeletal Protein Variants Driving Atrial Fibrillation: Potential Mechanisms of Action. Cells 2022; 11:416. [PMID: 35159226 PMCID: PMC8834312 DOI: 10.3390/cells11030416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The most common clinical tachyarrhythmia, atrial fibrillation (AF), is present in 1-2% of the population. Although common risk factors, including hypertension, diabetes, and obesity, frequently underlie AF onset, it has been recognized that in 15% of the AF population, AF is familial. In these families, genome and exome sequencing techniques identified variants in the non-coding genome (i.e., variant regulatory elements), genes encoding ion channels, as well as genes encoding cytoskeletal (-associated) proteins. Cytoskeletal protein variants include variants in desmin, lamin A/C, titin, myosin heavy and light chain, junctophilin, nucleoporin, nesprin, and filamin C. These cytoskeletal protein variants have a strong association with the development of cardiomyopathy. Interestingly, AF onset is often represented as the initial manifestation of cardiac disease, sometimes even preceding cardiomyopathy by several years. Although emerging research findings reveal cytoskeletal protein variants to disrupt the cardiomyocyte structure and trigger DNA damage, exploration of the pathophysiological mechanisms of genetic AF is still in its infancy. In this review, we provide an overview of cytoskeletal (-associated) gene variants that relate to genetic AF and highlight potential pathophysiological pathways that drive this arrhythmia.
Collapse
Affiliation(s)
| | | | | | | | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (S.W.v.W.); (W.S.); (L.F.J.M.W.); (K.S.R.)
| |
Collapse
|
20
|
Yang J, Argenziano MA, Burgos Angulo M, Bertalovitz A, Beidokhti MN, McDonald TV. Phenotypic Variability in iPSC-Induced Cardiomyocytes and Cardiac Fibroblasts Carrying Diverse LMNA Mutations. Front Physiol 2021; 12:778982. [PMID: 34975533 PMCID: PMC8716763 DOI: 10.3389/fphys.2021.778982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Mutations in the LMNA gene (encoding lamin A/C) are a significant cause of familial arrhythmogenic cardiomyopathy. Although the penetrance is high, there is considerable phenotypic variability in disease onset, rate of progression, arrhythmias, and severity of myopathy. To begin to address whether this variability stems from specific LMNA mutation sites and types, we generated seven patient-specific induced pluripotent stem cell (iPSC) lines with various LMNA mutations. IPSC-derived cardiomyocytes (iCMs) and cardiac fibroblasts (iCFs) were differentiated from each line for phenotypic analyses. LMNA expression and extracellular signal-regulated kinase pathway activation were perturbed to differing degrees in both iCMs and iCFs from the different lines. Enhanced apoptosis was observed in iCMs but not in iCFs. Markedly diverse irregularities of nuclear membrane morphology were present in iCFs but not iCMs, while iCMs demonstrated variable sarcomere disarray. Heterogenous electrophysiological aberrations assayed by calcium indicator imaging and multi-electrode array suggest differing substrates for arrhythmia that were accompanied by variable ion channel gene expression in the iCMs. Coculture studies suggest enhancement of the LMNA mutation effects on electrophysiological function exerted by iCFs. This study supports the utility of patient-specific iPSC experimental platform in the exploration of mechanistic and phenotypic heterogeneity of different mutations within a cardiac disease-associated gene. The addition of genetically defined coculture of cardiac-constituent non-myocytes further expands the capabilities of this approach.
Collapse
Affiliation(s)
- Jiajia Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mariana A. Argenziano
- Heart Institute, Department of Medicine (Division of Cardiovascular Sciences), Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mariana Burgos Angulo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Alexander Bertalovitz
- Heart Institute, Department of Medicine (Division of Cardiovascular Sciences), Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Maliheh Najari Beidokhti
- Heart Institute, Department of Medicine (Division of Cardiovascular Sciences), Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Thomas V. McDonald
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Heart Institute, Department of Medicine (Division of Cardiovascular Sciences), Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Thomas V. McDonald,
| |
Collapse
|
21
|
Preclinical Advances of Therapies for Laminopathies. J Clin Med 2021; 10:jcm10214834. [PMID: 34768351 PMCID: PMC8584472 DOI: 10.3390/jcm10214834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Laminopathies are a group of rare disorders due to mutation in LMNA gene. Depending on the mutation, they may affect striated muscles, adipose tissues, nerves or are multisystemic with various accelerated ageing syndromes. Although the diverse pathomechanisms responsible for laminopathies are not fully understood, several therapeutic approaches have been evaluated in patient cells or animal models, ranging from gene therapies to cell and drug therapies. This review is focused on these therapies with a strong focus on striated muscle laminopathies and premature ageing syndromes.
Collapse
|
22
|
Bamburg JR, Minamide LS, Wiggan O, Tahtamouni LH, Kuhn TB. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration. Cells 2021; 10:cells10102726. [PMID: 34685706 PMCID: PMC8534876 DOI: 10.3390/cells10102726] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins of the actin depolymerizing factor (ADF)/cofilin family are ubiquitous among eukaryotes and are essential regulators of actin dynamics and function. Mammalian neurons express cofilin-1 as the major isoform, but ADF and cofilin-2 are also expressed. All isoforms bind preferentially and cooperatively along ADP-subunits in F-actin, affecting the filament helical rotation, and when either alone or when enhanced by other proteins, promotes filament severing and subunit turnover. Although self-regulating cofilin-mediated actin dynamics can drive motility without post-translational regulation, cells utilize many mechanisms to locally control cofilin, including cooperation/competition with other proteins. Newly identified post-translational modifications function with or are independent from the well-established phosphorylation of serine 3 and provide unexplored avenues for isoform specific regulation. Cofilin modulates actin transport and function in the nucleus as well as actin organization associated with mitochondrial fission and mitophagy. Under neuronal stress conditions, cofilin-saturated F-actin fragments can undergo oxidative cross-linking and bundle together to form cofilin-actin rods. Rods form in abundance within neurons around brain ischemic lesions and can be rapidly induced in neurites of most hippocampal and cortical neurons through energy depletion or glutamate-induced excitotoxicity. In ~20% of rodent hippocampal neurons, rods form more slowly in a receptor-mediated process triggered by factors intimately connected to disease-related dementias, e.g., amyloid-β in Alzheimer’s disease. This rod-inducing pathway requires a cellular prion protein, NADPH oxidase, and G-protein coupled receptors, e.g., CXCR4 and CCR5. Here, we will review many aspects of cofilin regulation and its contribution to synaptic loss and pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Correspondence: ; Tel.: +1-970-988-9120; Fax: +1-970-491-0494
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - O’Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Biology and Biotechnology, The Hashemite University, Zarqa 13115, Jordan
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, AK 99775, USA
| |
Collapse
|
23
|
Vignier N, Chatzifrangkeskou M, Pinton L, Wioland H, Marais T, Lemaitre M, Le Dour C, Peccate C, Cardoso D, Schmitt A, Wu W, Biferi MG, Naouar N, Macquart C, Beuvin M, Decostre V, Bonne G, Romet-Lemonne G, Worman HJ, Tedesco FS, Jégou A, Muchir A. The non-muscle ADF/cofilin-1 controls sarcomeric actin filament integrity and force production in striated muscle laminopathies. Cell Rep 2021; 36:109601. [PMID: 34433058 PMCID: PMC8411111 DOI: 10.1016/j.celrep.2021.109601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.
Collapse
Affiliation(s)
- Nicolas Vignier
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Maria Chatzifrangkeskou
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Luca Pinton
- Department of Cell and Developmental Biology, University College London, London, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Hugo Wioland
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Thibaut Marais
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, UMS28, Phénotypage du Petit Animal, Paris, France
| | - Caroline Le Dour
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Cécile Peccate
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Déborah Cardoso
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Alain Schmitt
- Université de Paris, INSERM, CNRS, Institut Cochin, 75005 Paris, France
| | - Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Maria-Grazia Biferi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Naïra Naouar
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Coline Macquart
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Maud Beuvin
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Valérie Decostre
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | | | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK; Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; The Francis Crick Institute, London, UK
| | - Antoine Jégou
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France.
| |
Collapse
|
24
|
Onoue K, Wakimoto H, Jiang J, Parfenov M, DePalma S, Conner D, Gorham J, McKean D, Seidman JG, Seidman CE, Saito Y. Cardiomyocyte Proliferative Capacity Is Restricted in Mice With Lmna Mutation. Front Cardiovasc Med 2021; 8:639148. [PMID: 34250035 PMCID: PMC8260675 DOI: 10.3389/fcvm.2021.639148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/21/2021] [Indexed: 02/01/2023] Open
Abstract
LMNA is one of the leading causative genes of genetically inherited dilated cardiomyopathy (DCM). Unlike most DCM-causative genes, which encode sarcomeric or sarcomere-related proteins, LMNA encodes nuclear envelope proteins, lamin A and C, and does not directly associate with contractile function. However, a mutation in this gene could lead to the development of DCM. The molecular mechanism of how LMNA mutation contributes to DCM development remains largely unclear and yet to be elucidated. The objective of this study was to clarify the mechanism of developing DCM caused by LMNA mutation. Methods and Results: We assessed cardiomyocyte phenotypes and characteristics focusing on cell cycle activity in mice with Lmna mutation. Both cell number and cell size were reduced, cardiomyocytes were immature, and cell cycle activity was retarded in Lmna mutant mice at both 5 weeks and 2 years of age. RNA-sequencing and pathway analysis revealed "proliferation of cells" had the most substantial impact on Lmna mutant mice. Cdkn1a, which encodes the cell cycle regulating protein p21, was strongly upregulated in Lmna mutants, and upregulation of p21 was confirmed by Western blot and immunostaining. DNA damage, which is known to upregulate Cdkn1a, was more abundantly detected in Lmna mutant mice. To assess the proliferative capacity of cardiomyocytes, the apex of the neonate mouse heart was resected, and recovery from the insult was observed. A restricted cardiomyocyte proliferating capacity after resecting the apex of the heart was observed in Lmna mutant mice. Conclusions: Our results strongly suggest that loss of lamin function contributes to impaired cell proliferation through cell cycle defects. The inadequate inborn or responsive cell proliferation capacity plays an essential role in developing DCM with LMNA mutation.
Collapse
Affiliation(s)
- Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Jiangming Jiang
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Michael Parfenov
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Steven DePalma
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - David Conner
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - David McKean
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States.,Division of Cardiovascular Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, United States
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
25
|
Skeletal and Cardiac Muscle Disorders Caused by Mutations in Genes Encoding Intermediate Filament Proteins. Int J Mol Sci 2021; 22:ijms22084256. [PMID: 33923914 PMCID: PMC8073371 DOI: 10.3390/ijms22084256] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
Intermediate filaments are major components of the cytoskeleton. Desmin and synemin, cytoplasmic intermediate filament proteins and A-type lamins, nuclear intermediate filament proteins, play key roles in skeletal and cardiac muscle. Desmin, encoded by the DES gene (OMIM *125660) and A-type lamins by the LMNA gene (OMIM *150330), have been involved in striated muscle disorders. Diseases include desmin-related myopathy and cardiomyopathy (desminopathy), which can be manifested with dilated, restrictive, hypertrophic, arrhythmogenic, or even left ventricular non-compaction cardiomyopathy, Emery–Dreifuss Muscular Dystrophy (EDMD2 and EDMD3, due to LMNA mutations), LMNA-related congenital Muscular Dystrophy (L-CMD) and LMNA-linked dilated cardiomyopathy with conduction system defects (CMD1A). Recently, mutations in synemin (SYNM gene, OMIM *606087) have been linked to cardiomyopathy. This review will summarize clinical and molecular aspects of desmin-, lamin- and synemin-related striated muscle disorders with focus on LMNA and DES-associated clinical entities and will suggest pathogenetic hypotheses based on the interplay of desmin and lamin A/C. In healthy muscle, such interplay is responsible for the involvement of this network in mechanosignaling, nuclear positioning and mitochondrial homeostasis, while in disease it is disturbed, leading to myocyte death and activation of inflammation and the associated secretome alterations.
Collapse
|
26
|
Crasto S, My I, Di Pasquale E. The Broad Spectrum of LMNA Cardiac Diseases: From Molecular Mechanisms to Clinical Phenotype. Front Physiol 2020; 11:761. [PMID: 32719615 PMCID: PMC7349320 DOI: 10.3389/fphys.2020.00761] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations of Lamin A/C gene (LMNA) cause laminopathies, a group of disorders associated with a wide spectrum of clinically distinct phenotypes, affecting different tissues and organs. Heart involvement is frequent and leads to cardiolaminopathy LMNA-dependent cardiomyopathy (LMNA-CMP), a form of dilated cardiomyopathy (DCM) typically associated with conduction disorders and arrhythmias, that can manifest either as an isolated event or as part of a multisystem phenotype. Despite the recent clinical and molecular developments in the field, there is still lack of knowledge linking specific LMNA gene mutations to the distinct clinical manifestations. Indeed, the severity and progression of the disease have marked interindividual variability, even amongst members of the same family. Studies conducted so far have described Lamin A/C proteins involved in diverse biological processes, that span from a structural role in the nucleus to the regulation of response to mechanical stress and gene expression, proposing various mechanistic hypotheses. However, none of those is per se able to fully justify functional and clinical phenotypes of LMNA-CMP; therefore, the role of Lamin A/C in cardiac pathophysiology still represents an open question. In this review we provide an update on the state-of-the-art studies on cardiolaminopathy, in the attempt to draw a line connecting molecular mechanisms to clinical manifestations. While investigators in this field still wonder about a clear genotype/phenotype correlation in LMNA-CMP, our intent here is to recapitulate common mechanistic hypotheses that link different mutations to similar clinical presentations.
Collapse
Affiliation(s)
- Silvia Crasto
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| | - Ilaria My
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Elisa Di Pasquale
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB) - UOS of Milan, National Research Council (CNR), Milan, Italy
| |
Collapse
|
27
|
Lin EW, Brady GF, Kwan R, Nesvizhskii AI, Omary MB. Genotype-phenotype analysis of LMNA-related diseases predicts phenotype-selective alterations in lamin phosphorylation. FASEB J 2020; 34:9051-9073. [PMID: 32413188 PMCID: PMC8059629 DOI: 10.1096/fj.202000500r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Laminopathies are rare diseases associated with mutations in LMNA, which encodes nuclear lamin A/C. LMNA variants lead to diverse tissue-specific phenotypes including cardiomyopathy, lipodystrophy, myopathy, neuropathy, progeria, bone/skin disorders, and overlap syndromes. The mechanisms underlying these heterogeneous phenotypes remain poorly understood, although post-translational modifications, including phosphorylation, are postulated as regulators of lamin function. We catalogued all known lamin A/C human mutations and their associated phenotypes, and systematically examined the putative role of phosphorylation in laminopathies. In silico prediction of specific LMNA mutant-driven changes to lamin A phosphorylation and protein structure was performed using machine learning methods. Some of the predictions we generated were validated via assessment of ectopically expressed wild-type and mutant LMNA. Our findings indicate phenotype- and mutant-specific alterations in lamin phosphorylation, and that some changes in phosphorylation may occur independently of predicted changes in lamin protein structure. Therefore, therapeutic targeting of phosphorylation in the context of laminopathies will likely require mutant- and kinase-specific approaches.
Collapse
Affiliation(s)
- Eric W Lin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Graham F Brady
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
28
|
Cowan JR, Salyer L, Wright NT, Kinnamon DD, Amaya P, Jordan E, Bamshad MJ, Nickerson DA, Hershberger RE. SOS1 Gain-of-Function Variants in Dilated Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002892. [PMID: 32603605 DOI: 10.1161/circgen.119.002892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a genetically heterogeneous cardiac disease characterized by progressive ventricular enlargement and reduced systolic function. Here, we report genetic and functional analyses implicating the rat sarcoma signaling protein, SOS1 (Son of sevenless homolog 1), in DCM pathogenesis. METHODS Exome sequencing was performed on 412 probands and family members from our DCM cohort, identifying several SOS1 variants with potential disease involvement. As several lines of evidence have implicated dysregulated rat sarcoma signaling in the pathogenesis of DCM, we assessed functional impact of each variant on the activation of ERK (extracellular signal-regulated kinase), AKT (protein kinase B), and JNK (c-Jun N-terminal kinase) pathways. Relative expression levels were determined by Western blot in HEK293T cells transfected with variant or wild-type human SOS1 expression constructs. RESULTS A rare SOS1 variant [c.571G>A, p.(Glu191Lys)] was found to segregate alongside an A-band TTN truncating variant in a pedigree with aggressive, early-onset DCM. Reduced disease severity in the absence of the SOS1 variant suggested its potential involvement as a genetic risk factor for DCM in this family. Exome sequencing identified 5 additional SOS1 variants with potential disease involvement in 4 other families [c.1820T>C, p.(Ile607Thr); c.2156G>C, p.(Gly719Ala); c.2230A>G, p.(Arg744Gly); c.2728G>C, p.(Asp910His); c.3601C>T, p.(Arg1201Trp)]. Impacted amino acids occupied a number of functional domains relevant to SOS1 activity, including the N-terminal histone fold, as well as the C-terminal REM (rat sarcoma exchange motif), CDC25 (cell division cycle 25), and PR (proline-rich) tail domains. Increased phosphorylated ERK expression relative to wild-type levels was seen for all 6 SOS1 variants, paralleling known disease-relevant SOS1 signaling profiles. CONCLUSIONS These data support gain-of-function variation in SOS1 as a contributing factor to isolated DCM.
Collapse
Affiliation(s)
- Jason R Cowan
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Lorien Salyer
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA (N.T.W.)
| | - Daniel D Kinnamon
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Pedro Amaya
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Elizabeth Jordan
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| | - Michael J Bamshad
- Department of Pediatrics (M.J.B.), University of Washington, Seattle
| | | | - Ray E Hershberger
- Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.,Division of Cardiovascular Medicine (R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus
| |
Collapse
|
29
|
Antoku S, Wu W, Joseph LC, Morrow JP, Worman HJ, Gundersen GG. ERK1/2 Phosphorylation of FHOD Connects Signaling and Nuclear Positioning Alternations in Cardiac Laminopathy. Dev Cell 2020; 51:602-616.e12. [PMID: 31794718 DOI: 10.1016/j.devcel.2019.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/06/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the lamin A/C gene (LMNA) cause cardiomyopathy and also disrupt nuclear positioning in fibroblasts. LMNA mutations causing cardiomyopathy elevate ERK1/2 activity in the heart, and inhibition of the ERK1/2 kinase activity ameliorates pathology, but the downstream effectors remain largely unknown. We now show that cardiomyocytes from mice with an Lmna mutation and elevated cardiac ERK1/2 activity have altered nuclear positioning. In fibroblasts, ERK1/2 activation negatively regulated nuclear movement by phosphorylating S498 of FHOD1. Expression of an unphosphorylatable FHOD1 variant rescued the nuclear movement defect in fibroblasts expressing a cardiomyopathy-causing lamin A mutant. In hearts of mice with LMNA mutation-induced cardiomyopathy, ERK1/2 mediated phosphorylation of FHOD3, an isoform highly expressed in cardiac tissue. Phosphorylation of FHOD1 and FHOD3 inhibited their actin bundling activity. These results show that phosphorylation of FHOD proteins by ERK1/2 is a critical switch for nuclear positioning and may play a role in the pathogenesis of cardiomyopathy caused by LMNA mutations.
Collapse
Affiliation(s)
- Susumu Antoku
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Wu
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Leroy C Joseph
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - John P Morrow
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J Worman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
30
|
Mutated lamin A modulates stiffness in muscle cells. Biochem Biophys Res Commun 2020; 529:861-867. [PMID: 32540097 DOI: 10.1016/j.bbrc.2020.05.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
The cytoskeleton is a complex network interlinking filaments that extend throughout the cytoplasm from the nucleus to the plasma membrane. Three major types of filaments are found in the cytoskeleton: actin filaments, microtubules, and intermediate filaments. They play a key role in the ability of cells to both resist mechanical stress and generate force. However, the precise involvement of intermediate filament proteins in these processes remains unclear. Here, we focused on nuclear A-type lamins, which are connected to the cytoskeleton via the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Using micro-constriction rheology, we investigated the impact of A-type lamins (p.H222P) mutation on the mechanical properties of muscle cells. We demonstrate that the expression of point mutation of lamin A in muscle cells increases cellular stiffness compared with cells expressing wild type lamin A and that the chemical agent selumetinib, an inhibitor of the ERK1/2 signaling, reversed the mechanical alterations in mutated cells. These results highlight the interplay between A-type lamins and mechano-signaling, which are supported by cell biology measurements.
Collapse
|
31
|
Morales Rodriguez B, Domínguez-Rodríguez A, Benitah JP, Lefebvre F, Marais T, Mougenot N, Beauverger P, Bonne G, Briand V, Gómez AM, Muchir A. Activation of sarcolipin expression and altered calcium cycling in LMNA cardiomyopathy. Biochem Biophys Rep 2020; 22:100767. [PMID: 32490213 PMCID: PMC7261707 DOI: 10.1016/j.bbrep.2020.100767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiomyopathy caused by A-type lamins gene (LMNA) mutations (LMNA cardiomyopathy) is associated with dysfunction of the heart, often leading to heart failure. LMNA cardiomyopathy is highly penetrant with bad prognosis with no specific therapy available. Searching for alternative ways to halt the progression of LMNA cardiomyopathy, we studied the role of calcium homeostasis in the evolution of this disease. We showed that sarcolipin, an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) was abnormally elevated in the ventricular cardiomyocytes of mutated mice compared with wild type mice, leading to an alteration of calcium handling. This occurs early in the progression of the disease, when the left ventricular function was not altered. We further demonstrated that down regulation of sarcolipin using adeno-associated virus (AAV) 9-mediated RNA interference delays cardiac dysfunction in mouse model of LMNA cardiomyopathy. These results showed a novel role for sarcolipin on calcium homeostasis in heart and open perspectives for future therapeutic interventions to LMNA cardiomyopathy. Sarcolipin, an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) was abnormally elevated in the cardiac muscle of a mouse model of cardiomyopathy caused by LMNA mutations. The elevation of sarcolipin expression leads to an alteration of calcium handling. Down regulation of sarcolipin using adeno-associated virus (AAV) 9-mediated RNA interference delays cardiac dysfunction in mouse model of cardiomyopathy caused by LMNA mutations.
Collapse
Affiliation(s)
| | - Alejandro Domínguez-Rodríguez
- Inserm, Univ. Paris-Sud, Université Paris-Saclay, UMR-S 1180, “Signaling and Cardiovascular Pathophysiology”, Châtenay-Malabry, France
| | - Jean-Pierre Benitah
- Inserm, Univ. Paris-Sud, Université Paris-Saclay, UMR-S 1180, “Signaling and Cardiovascular Pathophysiology”, Châtenay-Malabry, France
| | - Florence Lefebvre
- Inserm, Univ. Paris-Sud, Université Paris-Saclay, UMR-S 1180, “Signaling and Cardiovascular Pathophysiology”, Châtenay-Malabry, France
| | | | - Nathalie Mougenot
- Sorbonne Université, INSERM, UMS28 Phénotypage du Petit animal, Paris, F-75013, France
| | | | - Gisèle Bonne
- Sorbonne Université, INSERM UMRS974, Paris, France
| | | | - Ana-María Gómez
- Inserm, Univ. Paris-Sud, Université Paris-Saclay, UMR-S 1180, “Signaling and Cardiovascular Pathophysiology”, Châtenay-Malabry, France
| | - Antoine Muchir
- Sorbonne Université, INSERM UMRS974, Paris, France
- Corresponding author.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in EMD encoding emerin and LMNA encoding A-type lamins, proteins of the nuclear envelope. In the past decade, there has been an extraordinary burst of research on the nuclear envelope. Discoveries resulting from this basic research have implications for better understanding the pathogenesis and developing treatments for EDMD. RECENT FINDINGS Recent clinical research has confirmed that EDMD is one of several overlapping skeletal muscle phenotypes that can result from mutations in EMD and LMNA with dilated cardiomyopathy as a common feature. Basic research on the nuclear envelope has provided new insights into how A-type lamins and emerin function in force transmission throughout the cell, which may be particularly important in striated muscle. Much of the recent research has focused on the heart and LMNA mutations. Prevalence and outcome studies have confirmed the relative severity of cardiac disease. Robust mouse models of EDMD caused by LMNA mutations has allowed for further insight into pathogenic mechanisms and potentially beneficial therapeutic approaches. SUMMARY Recent clinical and basic research on EDMD is gradually being translated to clinical practice and possibly novel therapies.
Collapse
|
33
|
Thomasson R, Vignier N, Peccate C, Mougenot N, Noirez P, Muchir A. Alteration of performance in a mouse model of Emery-Dreifuss muscular dystrophy caused by A-type lamins gene mutation. Hum Mol Genet 2020; 28:2237-2244. [PMID: 31220270 DOI: 10.1093/hmg/ddz056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
Autosomal Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the lamin A/C gene (LMNA) encoding A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. Classically, the disease manifests as scapulo-humero-peroneal muscle wasting and weakness, early joint contractures and dilated cardiomyopathy with conduction blocks; however, variable skeletal muscle involvement can be present. Previously, we and other demonstrated altered activity of signaling pathways in hearts and striated muscles of LmnaH222P/H222P mice, a model of autosomal EDMD. We showed that blocking their activation improved cardiac function. However, the evaluation of the benefit of these treatments on the whole organism is suffering from a better knowledge of the performance in mouse models. We show in the present study that LmnaH222P/H222P mice display a significant loss of lean mass, consistent with the dystrophic process. This is associated with altered VO2 peak and respiratory exchange ratio. These results showed for the first time that LmnaH222P/H222P mice have decreased performance and provided a new useful means for future therapeutic interventions on this model of EDMD.
Collapse
Affiliation(s)
- Rémi Thomasson
- Université Sorbonne Paris Cité, EA7329, Université Paris Descartes, Paris, France
| | - Nicolas Vignier
- Sorbonne Université, INSERM, UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Cecile Peccate
- Sorbonne Université, INSERM, UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, INSERM, UMS28, Phénotypage du Petit Animal, Paris F-75013, France
| | - Philippe Noirez
- Université Sorbonne Paris Cité, EA7329, Université Paris Descartes, Paris, France.,Institute for Research in Medicine and Epidemiology of Sport, National Institute of Sport, Expertise and Performance, Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| |
Collapse
|
34
|
Pires RH, Shree N, Manu E, Guzniczak E, Otto O. Cardiomyocyte mechanodynamics under conditions of actin remodelling. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190081. [PMID: 31587648 PMCID: PMC6792454 DOI: 10.1098/rstb.2019.0081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 01/26/2023] Open
Abstract
The mechanical performance of cardiomyocytes (CMs) is an important indicator of their maturation state and of primary importance for the development of therapies based on cardiac stem cells. As the mechanical analysis of adherent cells at high-throughput remains challenging, we explore the applicability of real-time deformability cytometry (RT-DC) to probe cardiomyocytes in suspension. RT-DC is a microfluidic technology allowing for real-time mechanical analysis of thousands of cells with a throughput exceeding 1000 cells per second. For CMs derived from human-induced pluripotent stem cells, we determined a Young's modulus of 1.25 ± 0.08 kPa which is in close range to previous reports. Upon challenging the cytoskeleton with cytochalasin D (CytoD) to induce filamentous actin depolymerization, we distinguish three different regimes in cellular elasticity. Transitions are observed below 10 nM and above 103 nM and are characterized by a decrease in Young's modulus. These regimes can be linked to cytoskeletal and sarcomeric actin contributions by CM contractility measurements at varying CytoD concentrations, where we observe a significant reduction in pulse duration only above 103 nM while no change is found for compound exposure at lower concentrations. Comparing our results to mechanical cell measurements using atomic force microscopy, we demonstrate for the first time to our knowledge, the feasibility of using a microfluidic technique to measure mechanical properties of large samples of adherent cells while linking our results to the composition of the cytoskeletal network. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Ricardo H. Pires
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Nithya Shree
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Emmanuel Manu
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| | - Ewa Guzniczak
- Heriot-Watt University School of Engineering and Physical Science, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh Campus, Edinburgh EH14 4AS, UK
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstrasse 42, 17489 Greifswald, Germany
| |
Collapse
|
35
|
Mechanical Forces Regulate Cardiomyocyte Myofilament Maturation via the VCL-SSH1-CFL Axis. Dev Cell 2019; 51:62-77.e5. [PMID: 31495694 DOI: 10.1016/j.devcel.2019.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Mechanical forces regulate cell behavior and tissue morphogenesis. During cardiac development, mechanical stimuli from the heartbeat are required for cardiomyocyte maturation, but the underlying molecular mechanisms remain unclear. Here, we first show that the forces of the contracting heart regulate the localization and activation of the cytoskeletal protein vinculin (VCL), which we find to be essential for myofilament maturation. To further analyze the role of VCL in this process, we examined its interactome in contracting versus non-contracting cardiomyocytes and, in addition to several known interactors, including actin regulators, identified the slingshot protein phosphatase SSH1. We show how VCL recruits SSH1 and its effector, the actin depolymerizing factor cofilin (CFL), to regulate F-actin rearrangement and promote cardiomyocyte myofilament maturation. Overall, our results reveal that mechanical forces generated by cardiac contractility regulate cardiomyocyte maturation through the VCL-SSH1-CFL axis, providing further insight into how mechanical forces are transmitted intracellularly to regulate myofilament maturation.
Collapse
|
36
|
Xu S, Jiang J, Zhang Y, Chen T, Zhu M, Fang C, Mi Y. Discovery of potential plasma protein biomarkers for acute myocardial infarction via proteomics. J Thorac Dis 2019; 11:3962-3972. [PMID: 31656670 DOI: 10.21037/jtd.2019.08.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Acute myocardial infarction (AMI) is an acute disease with high mortality and seriously threatens human health. The identification of new effective biological markers for AMI is a prerequisite for treatment. Most proteomic studies have focused on atherosclerotic plaques, vascular cells, monocytes and platelets in the blood; however, the concentration of these factors in plasma is low, making it difficult to measure the complexity of plasma components. Moreover, some studies have examined the plasma protein of patients with acute coronary syndrome with histochemistry; however, the results are not consistent. Therefore, it is necessary to further investigate the differential proteins in the plasma of patients with AMI via proteomics to identify new biomarkers of AMI. Methods In this study, immunodepletion of high-abundance plasma proteins followed by an isobaric tagging for relative and absolute quantitation (iTRAQ)-based quantitative proteomic approach was used to analyze plasma samples from 5 control individuals and 10 AMI patients. Results Four hundred sixty-eight proteins were identified from two samples, and 33 proteins were differentially expressed in AMI patients compared to the controls. Among the 33 proteins, 12 proteins showed a ≥1.5-fold change between AMI and control samples. These proteins included fatty acid binding protein 3 (FABP3, ratio =6.36), creatine kinase-MB (CK-MB ratio =4.89), adenylate kinase1 (AK1 ratio =4.16), pro-platelet basic protein (PPBP ratio =3.29), creatine kinase (CK ratio =2.88), platelet factor 4 (PF4 ratio =2.62), peptidyl prolyl isomerase Cyclophilin A (PPIA ratio =2.05), Cofilin-1 (CFL1 ratio =1.81), coronin1A (CORO1A ratio =1.71), protein kinase M (PKM ratio =1.63), ribonuclease inhibitor (RNH1, ratio =1.67), and triose phosphate isomerase (TPI1 ratio =1.56). By contrast, there was a decrease of 19 proteins, such as adiponectin (ADIPOQ ratio =0.70), insulin-like growth factor binding protein6 (IGFBP6 ratio =0.70), Dickkopf-related protein 3 (DKK3 ratio =0.70) and complement 4B (C4B ratio =0.68). The most over-represented term was regulation of cell proliferation in the cellular component category of Gene Ontology (GO). The top 3 biological process terms were regulation of cell proliferation, response to wounding and wound healing. These proteins included immune proteins, blood coagulation proteins, lipid metabolism proteins, cytoskeleton proteins, energy metabolism proteins, gene regulation proteins, myocutaneous proteins, and myocardial remodeling proteins and were highly connected with each other, which indicates that the functional network of these processes contribute to the pathophysiology of AMI. Conclusions In conclusion, the present quantitative proteomic study identified novel AMI biomarker candidates and might provide fundamental information for the development of an AMI biomarker.
Collapse
Affiliation(s)
- Shasha Xu
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Jianjun Jiang
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Yang Zhang
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Tingting Chen
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Min Zhu
- Enze Medical Research Center, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Chongfeng Fang
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| | - Yafei Mi
- Department of Cardiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Laboratory of Cardiovascular Disease, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China.,Enze Medical Research Center, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou 317000, China
| |
Collapse
|
37
|
Vignier N, Mougenot N, Bonne G, Muchir A. Effect of genetic background on the cardiac phenotype in a mouse model of Emery-Dreifuss muscular dystrophy. Biochem Biophys Rep 2019; 19:100664. [PMID: 31341969 PMCID: PMC6630059 DOI: 10.1016/j.bbrep.2019.100664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 07/02/2019] [Indexed: 01/09/2023] Open
Abstract
A-type lamins gene (LMNA) mutations cause an autosomal dominant inherited form of Emery-Dreifuss muscular dystrophy (EDMD). EDMD is characterized by slowly progressive muscle weakness and wasting and dilated cardiomyopathy, often leading to heart failure-related disability. EDMD is highly penetrant with poor prognosis and there is currently no specific therapy available. Clinical variability ranges from early onset with severe presentation in childhood to late onset with slow progression in adulthood. Genetic background is a well-known factor that significantly affects phenotype in several mouse models of human diseases. This phenotypic variability is attributed, at least in part, to genetic modifiers that regulate the disease process. To characterize the phenotype of A-type lamins mutation on different genetic background, we created and phenotyped C57BL/6JRj-LmnaH222P/H222P mice (C57Lmnap.H222P) and compared them with the 129S2/SvPasCrl-LmnaH222P/H222P mice (129Lmnap.H222P). These mouse strains were compared with their respective control strains at multiple time points between 3 and 10 months of age. Both contractile and electrical cardiac muscle functions, as well as survival were characterized. We found that 129Lmnap.H222P mice showed significantly reduced body weight and reduced cardiac function earlier than in the C57Lmnap.H222P mice. We also revealed that only 129Lmnap.H222P mice developed heart arrhythmias. The 129Lmnap.H222P model with an earlier onset and more pronounced cardiac phenotype may be more useful for evaluating therapies that target cardiac muscle function, and heart arrhythmias. Mouse model of Emery-Dreifuss muscular dystrophy generated on 129S2/svPasCrl genetic background have a greater life expectancy. Mouse model of Emery-Dreifuss muscular dystrophy generated on 129S2/svPasCrl genetic background showed exacerbated arrhythmia susceptibility. Mouse model of Emery-Dreifuss muscular dystrophy generated on 129S2/svPasCrl genetic background showed more pronounced dilated cardiomyopathy.
Collapse
Affiliation(s)
- Nicolas Vignier
- Sorbonne Université, INSERM UMRS974 Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651, Paris Cedex 13, France
| | - Nathalie Mougenot
- Sorbonne Université, INSERM UMS28 Phénotypage du petit animal, Faculté de Médecine Pierre et Marie Curie, F-75013, Paris, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM UMRS974 Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651, Paris Cedex 13, France
| | - Antoine Muchir
- Sorbonne Université, INSERM UMRS974 Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651, Paris Cedex 13, France
| |
Collapse
|
38
|
Modeling of LMNA-Related Dilated Cardiomyopathy Using Human Induced Pluripotent Stem Cells. Cells 2019; 8:cells8060594. [PMID: 31208058 PMCID: PMC6627421 DOI: 10.3390/cells8060594] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/31/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the leading causes of heart failure and heart transplantation. A portion of familial DCM is due to mutations in the LMNA gene encoding the nuclear lamina proteins lamin A and C and without adequate treatment these patients have a poor prognosis. To get better insights into pathobiology behind this disease, we focused on modeling LMNA-related DCM using human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM). Primary skin fibroblasts from DCM patients carrying the most prevalent Finnish founder mutation (p.S143P) in LMNA were reprogrammed into hiPSCs and further differentiated into cardiomyocytes (CMs). The cellular structure, functionality as well as gene and protein expression were assessed in detail. While mutant hiPSC-CMs presented virtually normal sarcomere structure under normoxia, dramatic sarcomere damage and an increased sensitivity to cellular stress was observed after hypoxia. A detailed electrophysiological evaluation revealed bradyarrhythmia and increased occurrence of arrhythmias in mutant hiPSC-CMs on β-adrenergic stimulation. Mutant hiPSC-CMs also showed increased sensitivity to hypoxia on microelectrode array and altered Ca2+ dynamics. Taken together, p.S143P hiPSC-CM model mimics hallmarks of LMNA-related DCM and provides a useful tool to study the underlying cellular mechanisms of accelerated cardiac degeneration in this disease.
Collapse
|
39
|
Salvarani N, Crasto S, Miragoli M, Bertero A, Paulis M, Kunderfranco P, Serio S, Forni A, Lucarelli C, Dal Ferro M, Larcher V, Sinagra G, Vezzoni P, Murry CE, Faggian G, Condorelli G, Di Pasquale E. The K219T-Lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy. Nat Commun 2019; 10:2267. [PMID: 31118417 PMCID: PMC6531493 DOI: 10.1038/s41467-019-09929-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/06/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in LMNA, which encodes the nuclear proteins Lamin A/C, can cause cardiomyopathy and conduction disorders. Here, we employ induced pluripotent stem cells (iPSCs) generated from human cells carrying heterozygous K219T mutation on LMNA to develop a disease model. Cardiomyocytes differentiated from these iPSCs, and which thus carry K219T-LMNA, have altered action potential, reduced peak sodium current and diminished conduction velocity. Moreover, they have significantly downregulated Nav1.5 channel expression and increased binding of Lamin A/C to the promoter of SCN5A, the channel's gene. Coherently, binding of the Polycomb Repressive Complex 2 (PRC2) protein SUZ12 and deposition of the repressive histone mark H3K27me3 are increased at SCN5A. CRISPR/Cas9-mediated correction of the mutation re-establishes sodium current density and SCN5A expression. Thus, K219T-LMNA cooperates with PRC2 in downregulating SCN5A, leading to decreased sodium current density and slower conduction velocity. This mechanism may underlie the conduction abnormalities associated with LMNA-cardiomyopathy.
Collapse
Affiliation(s)
- Nicolò Salvarani
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Silvia Crasto
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Michele Miragoli
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43121, Italy
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, 98109, WA, USA
| | - Marianna Paulis
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Paolo Kunderfranco
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Simone Serio
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Alberto Forni
- Division of Cardiac Surgery, University of Verona, Verona, 37129, Italy
| | - Carla Lucarelli
- Division of Cardiac Surgery, University of Verona, Verona, 37129, Italy
| | - Matteo Dal Ferro
- Cardiovascular Department, "Ospedali Riuniti" and University of Trieste, Trieste, 34129, Italy
| | - Veronica Larcher
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, "Ospedali Riuniti" and University of Trieste, Trieste, 34129, Italy
| | - Paolo Vezzoni
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, 98109, WA, USA
| | - Giuseppe Faggian
- Division of Cardiac Surgery, University of Verona, Verona, 37129, Italy
| | - Gianluigi Condorelli
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy.
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy.
- Humanitas University, Rozzano (MI), 20089, Italy.
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy.
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy.
| |
Collapse
|
40
|
The Cutting Edge: The Role of mTOR Signaling in Laminopathies. Int J Mol Sci 2019; 20:ijms20040847. [PMID: 30781376 PMCID: PMC6412338 DOI: 10.3390/ijms20040847] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/29/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase that regulates anabolic and catabolic processes, in response to environmental inputs. The existence of mTOR in numerous cell compartments explains its specific ability to sense stress, execute growth signals, and regulate autophagy. mTOR signaling deregulation is closely related to aging and age-related disorders, among which progeroid laminopathies represent genetically characterized clinical entities with well-defined phenotypes. These diseases are caused by LMNA mutations and feature altered bone turnover, metabolic dysregulation, and mild to severe segmental progeria. Different LMNA mutations cause muscular, adipose tissue and nerve pathologies in the absence of major systemic involvement. This review explores recent advances on mTOR involvement in progeroid and tissue-specific laminopathies. Indeed, hyper-activation of protein kinase B (AKT)/mTOR signaling has been demonstrated in muscular laminopathies, and rescue of mTOR-regulated pathways increases lifespan in animal models of Emery-Dreifuss muscular dystrophy. Further, rapamycin, the best known mTOR inhibitor, has been used to elicit autophagy and degradation of mutated lamin A or progerin in progeroid cells. This review focuses on mTOR-dependent pathogenetic events identified in Emery-Dreifuss muscular dystrophy, LMNA-related cardiomyopathies, Hutchinson-Gilford Progeria, mandibuloacral dysplasia, and type 2 familial partial lipodystrophy. Pharmacological application of mTOR inhibitors in view of therapeutic strategies is also discussed.
Collapse
|
41
|
Crasto S, Di Pasquale E. Induced Pluripotent Stem Cells to Study Mechanisms of Laminopathies: Focus on Epigenetics. Front Cell Dev Biol 2018; 6:172. [PMID: 30619852 PMCID: PMC6306496 DOI: 10.3389/fcell.2018.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Laminopathies are a group of rare degenerative disorders that manifest with a wide spectrum of clinical phenotypes, including both systemic multi-organ disorders, such as the Hutchinson-Gilford Progeria Syndrome (HGPS), and tissue-restricted diseases, such as Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy and lipodystrophies, often overlapping. Despite their clinical heterogeneity, which remains an open question, laminopathies are commonly caused by mutations in the LMNA gene, encoding the nuclear proteins Lamin A and C. These two proteins are main components of the nuclear lamina and are involved in several biological processes. Besides the well-known structural function in the nucleus, their role in regulating chromatin organization and transcription has emerged in the last decade, supporting the hypothesis that the disruption of this layer of regulation may be mechanism underlying the disease. Indeed, recent studies that show various epigenetic defects in cells carrying LMNA mutations, such as loss of heterochromatin, changes in gene expression and chromatin remodeling, strongly support this view. However, those findings are restricted to few cell types in humans, mainly because of the limited accessibility of primary cells and the difficulties to culture them ex-vivo. On the other hand, animal models might fail to recapitulate phenotypic hallmarks of the disease as of humans. To fill this gap, models based on induced pluripotent stem cell (iPSCs) technology have been recently generated that allowed investigations on diverse cells types, such as mesenchymal stem cells (MSCs), vascular and smooth muscle cells and cardiomyocytes, and provided a platform for investigating mechanisms underlying the pathogenesis of laminopathies in a cell-type specific human context. Nevertheless, studies on iPSC-based models of laminopathy have expanded only in the last few years and, with the advancement of reprogramming and differentiation protocols, their number is expecting to further increase over time. This review will give an overview of models developed thus far, with a focus on the novel insights on epigenetic mechanisms underlying the disease in different human cellular contexts. Perspectives and future directions of the field will be also given, highlighting the potential of those models for preclinical studies for identifying molecular targets and their translational impact on patients' cure.
Collapse
Affiliation(s)
- Silvia Crasto
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
42
|
Brull A, Morales Rodriguez B, Bonne G, Muchir A, Bertrand AT. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front Physiol 2018; 9:1533. [PMID: 30425656 PMCID: PMC6218675 DOI: 10.3389/fphys.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.
Collapse
Affiliation(s)
- Astrid Brull
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France.,Sanofi R&D, Chilly Mazarin, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Anne T Bertrand
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
43
|
Galata Z, Kloukina I, Kostavasili I, Varela A, Davos CH, Makridakis M, Bonne G, Capetanaki Y. Amelioration of desmin network defects by αB-crystallin overexpression confers cardioprotection in a mouse model of dilated cardiomyopathy caused by LMNA gene mutation. J Mol Cell Cardiol 2018; 125:73-86. [PMID: 30342008 DOI: 10.1016/j.yjmcc.2018.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
The link between the cytoplasmic desmin intermediate filaments and those of nuclear lamins serves as a major integrator point for the intracellular communication between the nucleus and the cytoplasm in cardiac muscle. We investigated the involvement of desmin in the cardiomyopathy caused by the lamin A/C gene mutation using the LmnaH222P/H222P mouse model of the disease. We demonstrate that in these mouse hearts desmin loses its normal Z disk and intercalated disc localization and presents aggregate formation along with mislocalization of basic intercalated disc protein components, as well as severe structural abnormalities of the intercalated discs and mitochondria. To address the extent by which the observed desmin network defects contribute to the progression of LmnaH222P/H222P cardiomyopathy, we investigated the consequences of desmin-targeted approaches for the disease treatment. We showed that cardiac-specific overexpression of the small heat shock protein αΒ-Crystallin confers cardioprotection in LmnaH222P/H222P mice by ameliorating desmin network defects and by attenuating the desmin-dependent mislocalization of basic intercalated disc protein components. In addition, αΒ-Crystallin overexpression rescues the intercalated disc, mitochondrial and nuclear defects of LmnaH222P/H222P hearts, as well as the abnormal activation of ERK1/2. Consistent with that, by generating the LmnaH222P/H222PDes+/- mice, we showed that the genetically decreased endogenous desmin levels have cardioprotective effects in LmnaH222P/H222P hearts since less desmin is available to form dysfunctional aggregates. In conclusion, our results demonstrate that desmin network disruption, disorganization of intercalated discs and mitochondrial defects are a major mechanism contributing to the progression of this LMNA cardiomyopathy and can be ameliorated by αΒ-Crystallin overexpression.
Collapse
Affiliation(s)
- Zoi Galata
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Aimilia Varela
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Constantinos H Davos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Gisѐle Bonne
- Sorbonne Université, INSERM UMRS-974, Center for Research in Myology, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651 Paris Cedex 13, France
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece.
| |
Collapse
|
44
|
Gerbino A, Procino G, Svelto M, Carmosino M. Role of Lamin A/C Gene Mutations in the Signaling Defects Leading to Cardiomyopathies. Front Physiol 2018; 9:1356. [PMID: 30319452 PMCID: PMC6167438 DOI: 10.3389/fphys.2018.01356] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023] Open
Abstract
Nuclear lamin A/C are crucial components of the intricate protein mesh that underlies the inner nuclear membrane and confers mainly nuclear and cytosolic rigidity. However, throughout the years a number of other key physiological processes have been associated with lamins such as modulation of both genes expression and the activity of signaling mediators. To further solidify its importance in cell physiology, mutations in the lamin A/C gene (LMNA) have been associated to diverse pathological phenotypes with skeletal muscles and the heart being the most affected systems. When affected, the heart develops a wide array of phenotypes spanning from dilated cardiomyopathy with conduction defects to arrhythmogenic right ventricular cardiomyopathy. The surprising large number of cardiac phenotypes reflects the equally large number of specific mutations identified in the LMNA gene. In this review, we underlie how mutations in LMNA can impact the activity and the spatial/temporal organization of signaling mediators and transcription factors. We analyzed the ever-increasing amount of findings collected in LmnaH222P/H222P mice whose cardiomyopathy resemble the most important features of the disease in humans and a number of key evidences from other experimental models. With this mini review, we attempt to combine the newest insights regarding both the pathogenic effects of LMNA mutations in terms of signaling abnormalities and cardiac laminopathies.
Collapse
Affiliation(s)
- Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
45
|
Janin A, Gache V. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Front Physiol 2018; 9:1277. [PMID: 30245638 PMCID: PMC6137955 DOI: 10.3389/fphys.2018.01277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the inner nuclear transmembrane protein emerin in the early 1990s, nuclear envelope (NE) components and related involvement in nuclei integrity and functionality have been highly investigated. The NE is composed of two distinct lipid bilayers described as the inner (INM) and outer (ONM) nuclear membrane. NE proteins can be specifically “integrated” in the INM (such as emerin and SUN proteins) or in the ONM such as nesprins. Additionally, flanked to the INM, the nuclear lamina, a proteinaceous meshwork mainly composed of lamins A and C completes NE composition. This network of proteins physically interplays to guarantee NE integrity and most importantly, shape the bridge between cytoplasmic cytoskeletons networks (such as microtubules and actin) and the genome, through the anchorage to the heterochromatin. The essential network driving the connection of nucleoskeleton with cytoskeleton takes place in the perinuclear space (the space between ONM and INM) with the contribution of the LINC complex (for Linker of Nucleoskeleton to Cytoskeleton), hosting KASH and SUN proteins interactions. This close interplay between compartments has been related to diverse functions from nuclear integrity, activity and positioning through mechanotransduction pathways. At the same time, mutations in NE components genes coding for proteins such as lamins or nesprins, had been associated with a wide range of congenital diseases including cardiac and muscular diseases. Although most of these NE associated proteins are ubiquitously expressed, a large number of tissue-specific disorders have been associated with diverse pathogenic mutations. Thus, diagnosis and molecular explanation of this group of diseases, commonly called “nuclear envelopathies,” is currently challenging. This review aims, first, to give a better understanding of diverse functions of the LINC complex components, from the point of view of lamins and nesprins. Second, to summarize human congenital diseases with a special focus on muscle and heart abnormalities, caused by mutations in genes coding for these two types of NE associated proteins.
Collapse
Affiliation(s)
- Alexandre Janin
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Vincent Gache
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|