1
|
Wong MMK, Hachmer S, Gardner E, Runfola V, Arezza E, Megeney LA, Emerson CP, Gabellini D, Dilworth FJ. SMCHD1 activates the expression of genes required for the expansion of human myoblasts. Nucleic Acids Res 2024; 52:9450-9462. [PMID: 38994563 PMCID: PMC11381350 DOI: 10.1093/nar/gkae600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
SMCHD1 is an epigenetic regulatory protein known to modulate the targeted repression of large chromatin domains. Diminished SMCHD1 function in muscle fibers causes Facioscapulohumeral Muscular Dystrophy (FSHD2) through derepression of the D4Z4 chromatin domain, an event which permits the aberrant expression of the disease-causing gene DUX4. Given that SMCHD1 plays a broader role in establishing the cellular epigenome, we examined whether loss of SMCHD1 function might affect muscle homeostasis through additional mechanisms. Here we show that acute depletion of SMCHD1 results in a DUX4-independent defect in myoblast proliferation. Genomic and transcriptomic experiments determined that SMCHD1 associates with enhancers of genes controlling cell cycle to activate their expression. Amongst these cell cycle regulatory genes, we identified LAP2 as a key target of SMCHD1 required for the expansion of myoblasts, where the ectopic expression of LAP2 rescues the proliferation defect of SMCHD1-depleted cells. Thus, the epigenetic regulator SMCHD1 can play the role of a transcriptional co-activator for maintaining the expression of genes required for muscle progenitor expansion. This DUX4-independent role for SMCHD1 in myoblasts suggests that the pathology of FSHD2 may be a consequence of defective muscle regeneration in addition to the muscle wasting caused by spurious DUX4 expression.
Collapse
Affiliation(s)
- Matthew Man-Kin Wong
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Sarah Hachmer
- Department of Cell and Regenerative Biology, University of Wisconsin; Madison, WI 53705, USA
| | - Ed Gardner
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Valeria Runfola
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - Eric Arezza
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
| | - Lynn A Megeney
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Davide Gabellini
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute; Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa; Ottawa, ON K1H 8L6, Canada
- Department of Cell and Regenerative Biology, University of Wisconsin; Madison, WI 53705, USA
| |
Collapse
|
2
|
Riem L, DuCharme O, Cousins M, Feng X, Kenney A, Morris J, Tapscott SJ, Tawil R, Statland J, Shaw D, Wang L, Walker M, Lewis L, Jacobs MA, Leung DG, Friedman SD, Blemker SS. AI driven analysis of MRI to measure health and disease progression in FSHD. Sci Rep 2024; 14:15462. [PMID: 38965267 PMCID: PMC11224366 DOI: 10.1038/s41598-024-65802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) affects roughly 1 in 7500 individuals. While at the population level there is a general pattern of affected muscles, there is substantial heterogeneity in muscle expression across- and within-patients. There can also be substantial variation in the pattern of fat and water signal intensity within a single muscle. While quantifying individual muscles across their full length using magnetic resonance imaging (MRI) represents the optimal approach to follow disease progression and evaluate therapeutic response, the ability to automate this process has been limited. The goal of this work was to develop and optimize an artificial intelligence-based image segmentation approach to comprehensively measure muscle volume, fat fraction, fat fraction distribution, and elevated short-tau inversion recovery signal in the musculature of patients with FSHD. Intra-rater, inter-rater, and scan-rescan analyses demonstrated that the developed methods are robust and precise. Representative cases and derived metrics of volume, cross-sectional area, and 3D pixel-maps demonstrate unique intramuscular patterns of disease. Future work focuses on leveraging these AI methods to include upper body output and aggregating individual muscle data across studies to determine best-fit models for characterizing progression and monitoring therapeutic modulation of MRI biomarkers.
Collapse
Affiliation(s)
- Lara Riem
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Olivia DuCharme
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Matthew Cousins
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Xue Feng
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Allison Kenney
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Jacob Morris
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | | | - Rabi Tawil
- University of Rochester Medical Center, Rochester, NY, USA
| | - Jeff Statland
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Dennis Shaw
- Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Leo Wang
- University of Washington, Seattle, WA, USA
| | | | - Leann Lewis
- University of Rochester Medical Center, Rochester, NY, USA
| | - Michael A Jacobs
- University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Rice University, Houston, TX, USA
| | - Doris G Leung
- Kennedy Krieger Institute, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Silvia S Blemker
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA.
- University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Chen L, Kong X, Johnston KG, Mortazavi A, Holmes TC, Tan Z, Yokomori K, Xu X. Single-cell spatial transcriptomics reveals a dystrophic trajectory following a developmental bifurcation of myoblast cell fates in facioscapulohumeral muscular dystrophy. Genome Res 2024; 34:665-679. [PMID: 38777608 PMCID: PMC11216401 DOI: 10.1101/gr.278717.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is linked to abnormal derepression of the transcription activator DUX4. This effect is localized to a low percentage of cells, requiring single-cell analysis. However, single-cell/nucleus RNA-seq cannot fully capture the transcriptome of multinucleated large myotubes. To circumvent these issues, we use multiplexed error-robust fluorescent in situ hybridization (MERFISH) spatial transcriptomics that allows profiling of RNA transcripts at a subcellular resolution. We simultaneously examined spatial distributions of 140 genes, including 24 direct DUX4 targets, in in vitro differentiated myotubes and unfused mononuclear cells (MNCs) of control, isogenic D4Z4 contraction mutant and FSHD patient samples, as well as the individual nuclei within them. We find myocyte nuclei segregate into two clusters defined by the expression of DUX4 target genes, which is exclusively found in patient/mutant nuclei, whereas MNCs cluster based on developmental states. Patient/mutant myotubes are found in "FSHD-hi" and "FSHD-lo" states with the former signified by high DUX4 target expression and decreased muscle gene expression. Pseudotime analyses reveal a clear bifurcation of myoblast differentiation into control and FSHD-hi myotube branches, with variable numbers of DUX4 target-expressing nuclei found in multinucleated FSHD-hi myotubes. Gene coexpression modules related to extracellular matrix and stress gene ontologies are significantly altered in patient/mutant myotubes compared with the control. We also identify distinct subpathways within the DUX4 gene network that may differentially contribute to the disease transcriptomic phenotype. Taken together, our MERFISH-based study provides effective gene network profiling of multinucleated cells and identifies FSHD-induced transcriptomic alterations during myoblast differentiation.
Collapse
Affiliation(s)
- Lujia Chen
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, California 92697, USA
| | - Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697, USA
| | - Kevin G Johnston
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, California 92697, USA
| | - Ali Mortazavi
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697, USA
| | - Todd C Holmes
- Center for Neural Circuit Mapping, University of California, Irvine, California 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, California 92697, USA
| | - Zhiqun Tan
- Center for Neural Circuit Mapping, University of California, Irvine, California 92697, USA;
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697, USA
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, California 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92697, USA;
| | - Xiangmin Xu
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA;
- Center for Neural Circuit Mapping, University of California, Irvine, California 92697, USA
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, California 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA
- Department of Computer Science, University of California, Irvine, California 92697, USA
| |
Collapse
|
4
|
Schätzl T, Todorow V, Kaiser L, Weinschrott H, Schoser B, Deigner HP, Meinke P, Kohl M. Meta-analysis towards FSHD reveals misregulation of neuromuscular junction, nuclear envelope, and spliceosome. Commun Biol 2024; 7:640. [PMID: 38796645 PMCID: PMC11127974 DOI: 10.1038/s42003-024-06325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common autosomal dominant muscle disorders, yet no cure or amelioration exists. The clinical presentation is diverse, making it difficult to identify the actual driving pathomechanism among many downstream events. To unravel this complexity, we performed a meta-analysis of 13 original omics datasets (in total 171 FSHD and 129 control samples). Our approach confirmed previous findings about the disease pathology and specified them further. We confirmed increased expression of former proposed DUX4 biomarkers, and furthermore impairment of the respiratory chain. Notably, the meta-analysis provides insights about so far not reported pathways, including misregulation of neuromuscular junction protein encoding genes, downregulation of the spliceosome, and extensive alterations of nuclear envelope protein expression. Finally, we developed a publicly available shiny app to provide a platform for researchers who want to search our analysis for genes of interest in the future.
Collapse
Affiliation(s)
- Teresa Schätzl
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Vanessa Todorow
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Helga Weinschrott
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
- Faculty of Science, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- EXIM Department, Fraunhofer Institute IZI (Leipzig), Rostock, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Matthias Kohl
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany.
| |
Collapse
|
5
|
Nunes AM, Ramirez MM, Garcia-Collazo E, Jones TI, Jones PL. Muscle eosinophilia is a hallmark of chronic disease in facioscapulohumeral muscular dystrophy. Hum Mol Genet 2024; 33:872-883. [PMID: 38340007 PMCID: PMC11070135 DOI: 10.1093/hmg/ddae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy caused by the aberrant increased expression of the DUX4 retrogene in skeletal muscle cells. The DUX4 gene encodes a transcription factor that functions in zygotic genome activation and then is silenced in most adult somatic tissues. DUX4 expression in FSHD disrupts normal muscle cell function; however, the downstream pathogenic mechanisms are still unclear. Histologically, FSHD affected muscles show a characteristic dystrophic phenotype that is often accompanied by a pronounced immune cell infiltration, but the role of the immune system in FSHD is not understood. Previously, we used ACTA1;FLExDUX4 FSHD-like mouse models varying in severity as discovery tools to identify increased Interleukin 6 and microRNA-206 levels as serum biomarkers for FSHD disease severity. In this study, we use the ACTA1;FLExDUX4 chronic FSHD-like mouse model to provide insight into the immune response to DUX4 expression in skeletal muscles. We demonstrate that these FSHD-like muscles are enriched with the chemoattractant eotaxin and the cytotoxic eosinophil peroxidase, and exhibit muscle eosinophilia. We further identified muscle fibers with positive staining for eosinophil peroxidase in human FSHD muscle. Our data supports that skeletal muscle eosinophilia is a hallmark of FSHD pathology.
Collapse
Affiliation(s)
- Andreia M Nunes
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Monique M Ramirez
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Enrique Garcia-Collazo
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Takako Iida Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| |
Collapse
|
6
|
Tawil R, Wagner KR, Hamel JI, Leung DG, Statland JM, Wang LH, Genge A, Sacconi S, Lochmüller H, Reyes-Leiva D, Diaz-Manera J, Alonso-Perez J, Muelas N, Vilchez JJ, Pestronk A, Gibson S, Goyal NA, Hayward LJ, Johnson N, LoRusso S, Freimer M, Shieh PB, Subramony SH, van Engelen B, Kools J, Leinhard OD, Widholm P, Morabito C, Moxham CM, Cadavid D, Mellion ML, Odueyungbo A, Tracewell WG, Accorsi A, Ronco L, Gould RJ, Shoskes J, Rojas LA, Jiang JG. Safety and efficacy of losmapimod in facioscapulohumeral muscular dystrophy (ReDUX4): a randomised, double-blind, placebo-controlled phase 2b trial. Lancet Neurol 2024; 23:477-486. [PMID: 38631764 DOI: 10.1016/s1474-4422(24)00073-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy is a hereditary progressive myopathy caused by aberrant expression of the transcription factor DUX4 in skeletal muscle. No approved disease-modifying treatments are available for this disorder. We aimed to assess the safety and efficacy of losmapimod (a small molecule that inhibits p38α MAPK, a regulator of DUX4 expression, and p38β MAPK) for the treatment of facioscapulohumeral muscular dystrophy. METHODS We did a randomised, double-blind, placebo-controlled phase 2b trial at 17 neurology centres in Canada, France, Spain, and the USA. We included adults aged 18-65 years with type 1 facioscapulohumeral muscular dystrophy (ie, with loss of repression of DUX4 expression, as ascertained by genotyping), a Ricci clinical severity score of 2-4, and at least one skeletal muscle judged using MRI to be suitable for biopsy. Participants were randomly allocated (1:1) to either oral losmapimod (15 mg twice a day) or matching placebo for 48 weeks, via an interactive response technology system. The investigator, study staff, participants, sponsor, primary outcome assessors, and study monitor were masked to the treatment allocation until study closure. The primary endpoint was change from baseline to either week 16 or 36 in DUX4-driven gene expression in skeletal muscle biopsy samples, as measured by quantitative RT-PCR. The primary efficacy analysis was done in all participants who were randomly assigned and who had available data for assessment, according to the modified intention-to-treat principle. Safety and tolerability were assessed as secondary endpoints. This study is registered at ClinicalTrials.gov, number NCT04003974. The phase 2b trial is complete; an open-label extension is ongoing. FINDINGS Between Aug 27, 2019, and Feb 27, 2020, 80 people were enrolled. 40 were randomly allocated to losmapimod and 40 to placebo. 54 (68%) participants were male and 26 (33%) were female, 70 (88%) were White, and mean age was 45·7 (SD 12·5) years. Least squares mean changes from baseline in DUX4-driven gene expression did not differ significantly between the losmapimod (0·83 [SE 0·61]) and placebo (0·40 [0·65]) groups (difference 0·43 [SE 0·56; 95% CI -1·04 to 1·89]; p=0·56). Losmapimod was well tolerated. 29 treatment-emergent adverse events (nine drug-related) were reported in the losmapimod group compared with 23 (two drug-related) in the placebo group. Two participants in the losmapimod group had serious adverse events that were deemed unrelated to losmapimod by the investigators (alcohol poisoning and suicide attempt; postoperative wound infection) compared with none in the placebo group. No treatment discontinuations due to adverse events occurred and no participants died during the study. INTERPRETATION Although losmapimod did not significantly change DUX4-driven gene expression, it was associated with potential improvements in prespecified structural outcomes (muscle fat infiltration), functional outcomes (reachable workspace, a measure of shoulder girdle function), and patient-reported global impression of change compared with placebo. These findings have informed the design and choice of efficacy endpoints for a phase 3 study of losmapimod in adults with facioscapulohumeral muscular dystrophy. FUNDING Fulcrum Therapeutics.
Collapse
Affiliation(s)
- Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Kathryn R Wagner
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Johanna I Hamel
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Doris G Leung
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Leo H Wang
- University of Washington, Seattle, WA, USA
| | - Angela Genge
- Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Sabrina Sacconi
- Peripheral Nervous System and Muscle Department, Nice University Hospital and University of Côte d'Azur, Nice, France
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - David Reyes-Leiva
- Institut de Recerca IIB Sant Pau, Hospital Universitari Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Diaz-Manera
- Institut de Recerca IIB Sant Pau, Hospital Universitari Santa Creu i Sant Pau, Barcelona, Spain; John Walton Muscular Dystrophy Research Center, Newcastle University, Newcastle, UK
| | - Jorge Alonso-Perez
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitario Nuestra Señora de Candelaria, Fundación Canaria Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife, Tenerife, Spain; Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Nuria Muelas
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari i Politecnic La Fe and Neuromuscular Reference Centre, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Department of Medicine, University of Valencia, Valencia, Spain
| | - Juan J Vilchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Alan Pestronk
- Washington University in St Louis, St Louis, MO, USA
| | | | | | | | | | | | - Miriam Freimer
- Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Perry B Shieh
- University of California at Los Angeles, Los Angeles, CA, USA
| | - S H Subramony
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joost Kools
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Olof Dahlqvist Leinhard
- AMRA Medical, Linköping, Sweden; Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Per Widholm
- AMRA Medical, Linköping, Sweden; Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden; Department of Radiology, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Voermans N, Vissing J. A disease-specific therapy in facioscapulohumeral muscular dystrophy. Lancet Neurol 2024; 23:449-451. [PMID: 38631753 DOI: 10.1016/s1474-4422(24)00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Nicol Voermans
- Department of Neurology, Radboudumc Research Institute for Medical Innovation, Nijmegen, Netherlands
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
8
|
Kong X, Nguyen NV, Li Y, Sakr JS, Williams K, Sharifi S, Chau J, Bayrakci A, Mizuno S, Takahashi S, Kiyono T, Tawil R, Mortazavi A, Yokomori K. Engineered FSHD mutations results in D4Z4 heterochromatin disruption and feedforward DUX4 network activation. iScience 2024; 27:109357. [PMID: 38510139 PMCID: PMC10951985 DOI: 10.1016/j.isci.2024.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is linked to contraction of D4Z4 repeats on chromosome 4q with SMCHD1 mutations acting as a disease modifier. D4Z4 heterochromatin disruption and abnormal upregulation of the transcription factor DUX4, encoded in the D4Z4 repeat, are the hallmarks of FSHD. However, defining the precise effect of D4Z4 contraction has been difficult because D4Z4 repeats are primate-specific and DUX4 expression is very rare in highly heterogeneous patient myocytes. We generated isogenic mutant cell lines harboring D4Z4 and/or SMCHD1 mutations in a healthy human skeletal myoblast line. We found that the mutations affect D4Z4 heterochromatin differently, and that SMCHD1 mutation or disruption of DNA methylation stabilizes otherwise variegated DUX4 target activation in D4Z4 contraction mutant cells, demonstrating the critical role of modifiers. Our study revealed amplification of the DUX4 signal through downstream targets, H3.X/Y and LEUTX. Our results provide important insights into how rare DUX4 expression leads to FSHD pathogenesis.
Collapse
Affiliation(s)
- Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Nam Viet Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yumeng Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jasmine Shaaban Sakr
- Department of Development and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kate Williams
- Department of Development and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Sheila Sharifi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jonathan Chau
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Altay Bayrakci
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ali Mortazavi
- Department of Development and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
9
|
Domaniku-Waraich A, Agca S, Toledo B, Sucuoglu M, Özen SD, Bilgic SN, Arabaci DH, Kashgari AE, Kir S. Oncostatin M signaling drives cancer-associated skeletal muscle wasting. Cell Rep Med 2024; 5:101498. [PMID: 38569555 PMCID: PMC11031427 DOI: 10.1016/j.xcrm.2024.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Progressive weakness and muscle loss are associated with multiple chronic conditions, including muscular dystrophy and cancer. Cancer-associated cachexia, characterized by dramatic weight loss and fatigue, leads to reduced quality of life and poor survival. Inflammatory cytokines have been implicated in muscle atrophy; however, available anticytokine therapies failed to prevent muscle wasting in cancer patients. Here, we show that oncostatin M (OSM) is a potent inducer of muscle atrophy. OSM triggers cellular atrophy in primary myotubes using the JAK/STAT3 pathway. Identification of OSM targets by RNA sequencing reveals the induction of various muscle atrophy-related genes, including Atrogin1. OSM overexpression in mice causes muscle wasting, whereas muscle-specific deletion of the OSM receptor (OSMR) and the neutralization of circulating OSM preserves muscle mass and function in tumor-bearing mice. Our results indicate that activated OSM/OSMR signaling drives muscle atrophy, and the therapeutic targeting of this pathway may be useful in preventing muscle wasting.
Collapse
Affiliation(s)
| | - Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Batu Toledo
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Melis Sucuoglu
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Sevgi Döndü Özen
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Dilsad Hilal Arabaci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Aynur Erkin Kashgari
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye.
| |
Collapse
|
10
|
Zhong H, Sian V, Johari M, Katayama S, Oghabian A, Jonson PH, Hackman P, Savarese M, Udd B. Revealing myopathy spectrum: integrating transcriptional and clinical features of human skeletal muscles with varying health conditions. Commun Biol 2024; 7:438. [PMID: 38600180 PMCID: PMC11006663 DOI: 10.1038/s42003-024-06143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Myopathy refers to a large group of heterogeneous, rare muscle diseases. Bulk RNA-sequencing has been utilized for the diagnosis and research of these diseases for many years. However, the existing valuable sequencing data often lack integration and clinical interpretation. In this study, we integrated bulk RNA-sequencing data from 1221 human skeletal muscles (292 with myopathies, 929 controls) from both databases and our local samples. By applying a method similar to single-cell analysis, we revealed a general spectrum of muscle diseases, ranging from healthy to mild disease, moderate muscle wasting, and severe muscle disease. This spectrum was further partly validated in three specific myopathies (97 muscles) through clinical features including trinucleotide repeat expansion, magnetic resonance imaging fat fraction, pathology, and clinical severity scores. This spectrum helped us identify 234 genuinely healthy muscles as unprecedented controls, providing a new perspective for deciphering the hallmark genes and pathways among different myopathies. The newly identified featured genes of general myopathy, inclusion body myositis, and titinopathy were highly expressed in our local muscles, as validated by quantitative polymerase chain reaction.
Collapse
Affiliation(s)
- Huahua Zhong
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Veronica Sian
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, Naples, Italy
| | - Mridul Johari
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Shintaro Katayama
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ali Oghabian
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, University Hospital, Tampere, Finland
| |
Collapse
|
11
|
Wong CJ, Friedman SD, Snider L, Bennett SR, Jones TI, Jones PL, Shaw DWW, Blemker SS, Riem L, DuCharme O, Lemmers RJFL, van der Maarel SM, Wang LH, Tawil R, Statland JM, Tapscott SJ. Regional and bilateral MRI and gene signatures in facioscapulohumeral dystrophy: implications for clinical trial design and mechanisms of disease progression. Hum Mol Genet 2024; 33:698-708. [PMID: 38268317 PMCID: PMC11000661 DOI: 10.1093/hmg/ddae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/11/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA, indicating that regional biopsies can accurately measure progression in the whole muscle and providing a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design. An unanticipated finding was the strong correlations of molecular signatures in the bilateral comparisons, including markers of B-cells and other immune cell populations, suggesting that a systemic immune cell infiltration of skeletal muscle might have a role in disease progression.
Collapse
Affiliation(s)
- Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, United States
| | - Seth D Friedman
- Department of Radiology, Seattle Children’s Hospital, 4540 Sandpoint Way, Seattle, WA 98105, United States
| | - Lauren Snider
- Division of Human Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, United States
| | - Sean R Bennett
- Division of Human Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, United States
| | - Takako I Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, United States
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, United States
| | - Dennis W W Shaw
- Department of Radiology, Seattle Children’s Hospital, 4540 Sandpoint Way, Seattle, WA 98105, United States
| | - Silvia S Blemker
- Springbok Analytics, 100 W South St, Charlottesville, VA 22902, United States
| | - Lara Riem
- Springbok Analytics, 100 W South St, Charlottesville, VA 22902, United States
| | - Olivia DuCharme
- Springbok Analytics, 100 W South St, Charlottesville, VA 22902, United States
| | - Richard J F L Lemmers
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Leo H Wang
- Department of Neurology, University of Washington, 1959 NE Pacific St, Seattle, WA 98105, United States
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, 601 Elm St, Rochester, NY 14642, United States
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KA 66160, United States
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, United States
- Department of Neurology, University of Washington, 1959 NE Pacific St, Seattle, WA 98105, United States
| |
Collapse
|
12
|
Zheng D, Wondergem A, Kloet S, Willemsen I, Balog J, Tapscott SJ, Mahfouz A, van den Heuvel A, van der Maarel SM. snRNA-seq analysis in multinucleated myogenic FSHD cells identifies heterogeneous FSHD transcriptome signatures associated with embryonic-like program activation and oxidative stress-induced apoptosis. Hum Mol Genet 2024; 33:284-298. [PMID: 37934801 PMCID: PMC10800016 DOI: 10.1093/hmg/ddad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
The sporadic nature of DUX4 expression in FSHD muscle challenges comparative transcriptome analyses between FSHD and control samples. A variety of DUX4 and FSHD-associated transcriptional changes have been identified, but bulk RNA-seq strategies prohibit comprehensive analysis of their spatiotemporal relation, interdependence and role in the disease process. In this study, we used single-nucleus RNA-sequencing of nuclei isolated from patient- and control-derived multinucleated primary myotubes to investigate the cellular heterogeneity in FSHD. Taking advantage of the increased resolution in snRNA-sequencing of fully differentiated myotubes, two distinct populations of DUX4-affected nuclei could be defined by their transcriptional profiles. Our data provides insights into the differences between these two populations and suggests heterogeneity in two well-known FSHD-associated transcriptional aberrations: increased oxidative stress and inhibition of myogenic differentiation. Additionally, we provide evidence that DUX4-affected nuclei share transcriptome features with early embryonic cells beyond the well-described cleavage stage, progressing into the 8-cell and blastocyst stages. Altogether, our data suggests that the FSHD transcriptional profile is defined by a mixture of individual and sometimes mutually exclusive DUX4-induced responses and cellular state-dependent downstream effects.
Collapse
Affiliation(s)
- Dongxu Zheng
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Annelot Wondergem
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Susan Kloet
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Iris Willemsen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Ahmed Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 2628 XE, Delft, The Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
13
|
Engquist EN, Greco A, Joosten LAB, van Engelen BGM, Zammit PS, Banerji CRS. FSHD muscle shows perturbation in fibroadipogenic progenitor cells, mitochondrial function and alternative splicing independently of inflammation. Hum Mol Genet 2024; 33:182-197. [PMID: 37856562 PMCID: PMC10772042 DOI: 10.1093/hmg/ddad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy. FSHD is highly heterogeneous, with patients following a variety of clinical trajectories, complicating clinical trials. Skeletal muscle in FSHD undergoes fibrosis and fatty replacement that can be accelerated by inflammation, adding to heterogeneity. Well controlled molecular studies are thus essential to both categorize FSHD patients into distinct subtypes and understand pathomechanisms. Here, we further analyzed RNA-sequencing data from 24 FSHD patients, each of whom donated a biopsy from both a non-inflamed (TIRM-) and inflamed (TIRM+) muscle, and 15 FSHD patients who donated peripheral blood mononucleated cells (PBMCs), alongside non-affected control individuals. Differential gene expression analysis identified suppression of mitochondrial biogenesis and up-regulation of fibroadipogenic progenitor (FAP) gene expression in FSHD muscle, which was particularly marked on inflamed samples. PBMCs demonstrated suppression of antigen presentation in FSHD. Gene expression deconvolution revealed FAP expansion as a consistent feature of FSHD muscle, via meta-analysis of 7 independent transcriptomic datasets. Clustering of muscle biopsies separated patients in an unbiased manner into clinically mild and severe subtypes, independently of known disease modifiers (age, sex, D4Z4 repeat length). Lastly, the first genome-wide analysis of alternative splicing in FSHD muscle revealed perturbation of autophagy, BMP2 and HMGB1 signalling. Overall, our findings reveal molecular subtypes of FSHD with clinical relevance and identify novel pathomechanisms for this highly heterogeneous condition.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, United Kingdom
| |
Collapse
|
14
|
McNiff MM, Hawkins S, Haase B, Bullivant J, McIver T, Mitelman O, Emery N, Tasca G, Voermans N, Diaz-Manera J. Facioscapulohumeral Muscular Dystrophy European Patient Survey: Assessing Patient Reported Disease Burden and Preferences in Clinical Trial Participation. J Neuromuscul Dis 2024; 11:459-472. [PMID: 38277300 DOI: 10.3233/jnd-230171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disorder characterized by progressive muscle weakness leading to permanent disability. There are no curative treatments, however, there are several upcoming clinical trials testing new therapies in FSHD. Objective This study aimed to explore the disease burden and patient preferences of people with FSHD to ensure that clinical trials can be designed to include outcome measures that are relevant and important to patients. Methods A survey was developed with a steering committee clinicians and physiotherapists with relevant experience in the disease, patient representatives, a registry expert and industry consultants. Themes of the survey included; participant demographics, disease progression and impact on function, factors encouraging or discouraging clinical trial participation, and positive outcomes of a clinical trial. Results 1147 participants responded to the online survey, representing 26 countries across Europe and a range of disease severities. The study highlighted the key symptoms causing concern for FSHD patients - muscle weakness and mobility issues - reflecting what participants want targeted for future therapies. The need for clear information and communication throughout clinical trials was emphasised. Factors most encouraging trial participation included access to new investigational therapies, access to trial results and benefits for the FSHD community. Factors most discouraging trial participation included travel related issues and fear of side effects. Conclusions The results from this study identify the patient reported burden of FSHD and should provide researchers and industry with areas of therapeutic research that would be meaningful to patients, as well as supporting the development of patient centric outcome measures in clinical trials.
Collapse
Affiliation(s)
- Megan M McNiff
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Sheila Hawkins
- FSHD Europe, Radboud University Medical Centre, Department of Neurology, HB Nijmegen, TheNetherlands
| | - Bine Haase
- FSHD Europe, Radboud University Medical Centre, Department of Neurology, HB Nijmegen, TheNetherlands
| | - Joanne Bullivant
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Tammy McIver
- F. Hoffmann-La Roche Ltd, PD Data Sciences, Welwyn Garden City, UK
| | | | - Nicholas Emery
- The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nicol Voermans
- FSHD Europe, Radboud University Medical Centre, Department of Neurology, HB Nijmegen, TheNetherlands
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
15
|
Greco A, Mul K, Jaeger MH, Dos Santos JC, Koenen H, de Jong L, Mann R, Fütterer J, Netea MG, Pruijn GJM, van Engelen BGM, Joosten LAB. IL-6 and TNF are Potential Inflammatory Biomarkers in Facioscapulohumeral Muscular Dystrophy. J Neuromuscul Dis 2024; 11:327-347. [PMID: 38250782 DOI: 10.3233/jnd-230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Background FSHD is a highly prevalent inherited myopathy with a still poorly understood pathology. Objective To investigate whether proinflammatory cytokines are associated with FSHD and which specific innate immune cells are involved in its pathology. Methods First, we measured circulating cytokines in serum samples: IL-6 (FSHD, n = 150; HC, n = 98); TNF (FSHD, n = 150; HC, n = 59); IL-1α (FSHD, n = 150; HC, n = 66); IL-1β (FSHD, n = 150; HC, n = 98); MCP-1 (FSHD, n = 14; HC, n = 14); VEGF-A (FSHD, n = 14; HC, n = 14). Second, we tested trained immunity in monocytes (FSHD, n = 15; HC, n = 15) and NK cells (FSHD, n = 11; HC, n = 11). Next, we explored the cytokine production capacity of NK cells in response to different stimuli (FSHD, n = 39; HC, n = 22). Lastly, we evaluated the cytokine production of ex vivo stimulated MRI guided inflamed (TIRM+) and paired MRI guided non inflamed (TIRM-) muscle biopsies of 21 patients and of 8 HC muscle biopsies. Results We included a total of 190 FSHD patients (N = 190, 48±14 years, 49% men) and of 135 HC (N = 135, 44±15 years, 47% men). We found that FSHD patients had higher concentrations of IL-6 and TNF measured (a) in the circulation, (b) after ex-vivo stimulation of NK cells, and (c) in muscle specimens. Besides, IL-6 circulating concentrations, as well as its production by NK cells and IL-6 content of FSHD muscle specimens, showed a mild correlation with disease duration, disease severity, and muscle weakness. Conclusion These results show that IL-6 and TNF may contribute to FSHD pathology and suggest novel therapeutic targets. Additionally, the activation of NK cells in FSHD may be a novel pathway contributing to FSHD pathology.
Collapse
Affiliation(s)
- Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin H Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jéssica C Dos Santos
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leon de Jong
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ritse Mann
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jurgen Fütterer
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Ragozzino E, Bortolani S, Di Pietro L, Papait A, Parolini O, Monforte M, Tasca G, Ricci E. Muscle fibrosis as a prognostic biomarker in facioscapulohumeral muscular dystrophy: a retrospective cohort study. Acta Neuropathol Commun 2023; 11:165. [PMID: 37849014 PMCID: PMC10583430 DOI: 10.1186/s40478-023-01660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant epigenetic disorder with highly variable muscle involvement and disease progression. Ongoing clinical trials, aimed at counteracting muscle degeneration and disease progression in FSHD patients, increase the need for reliable biomarkers. Muscle magnetic resonance imaging (MRI) studies showed that the appearance of STIR-positive (STIR+) lesions in FSHD muscles represents an initial stage of muscle damage, preceding irreversible adipose changes. Our study aimed to investigate fibrosis, a parameter of muscle degeneration undetectable by MRI, in relation to disease activity and progression of FSHD muscles. We histologically evaluated collagen in FSHD1 patients' (STIR+ n = 27, STIR- n = 28) and healthy volunteers' (n = 12) muscles by picrosirius red staining. All patients (n = 55) performed muscle MRI before biopsy, 45 patients also after 1 year and 36 patients also after 2 years. Fat content (T1 signal) and oedema/inflammation (STIR signal) were evaluated at baseline and at 1- and 2-year MRI follow-up. STIR+ muscles showed significantly higher collagen compared to both STIR- (p = 0.001) and healthy muscles (p < 0.0001). STIR- muscles showed a higher collagen content compared to healthy muscles (p = 0.0194). FSHD muscles with a worsening in fatty infiltration during 1- (P = 0.007) and 2-year (P < 0.0001) MRI follow-up showed a collagen content of 3.6- and 3.7-fold higher compared to FSHD muscles with no sign of progression. Moreover, the fibrosis was significantly higher in STIR+ muscles who showed a worsening in fatty infiltration in a timeframe of 2 years compared to both STIR- (P = 0.0006) and STIR+ muscles with no sign of progression (P = 0.02). Fibrosis is a sign of muscle degeneration undetectable at MRI never deeply investigated in FSHD patients. Our data show that 23/27 of STIR+ and 12/28 STIR- muscles have a higher amount of collagen deposition compared to healthy muscles. Fibrosis is higher in FSHD muscles with a worsening in fatty infiltration thus suggesting that its evaluation with innovative non-invasive techniques could be a candidate prognostic biomarker for FSHD, to be used to stratify patients and to evaluate the efficacy of therapeutic treatments.
Collapse
Affiliation(s)
- Elvira Ragozzino
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Sara Bortolani
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Papait
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
17
|
Kyba M, Bosnakovski D. Facioscapulohumeral muscular dystrophy's game of homeodomains: therapy wants a biomarker as a sword wants a whetstone. Brain Commun 2023; 5:fcad235. [PMID: 37731901 PMCID: PMC10507743 DOI: 10.1093/braincomms/fcad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
This scientific commentary refers to 'The FSHD muscle-blood biomarker: a circulating transcriptomic biomarker for clinical severity in facioscapulohumeral muscular dystrophy', by Banerji et al. (https://doi.org/10.1093/braincomms/fcad221).
Collapse
Affiliation(s)
- Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minnesota 55455, USA
- Department of Pediatrics, University of Minnesota, Minnesota 55455, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minnesota 55455, USA
- Department of Pediatrics, University of Minnesota, Minnesota 55455, USA
| |
Collapse
|
18
|
Kakimoto T, Ogasawara A, Ishikawa K, Kurita T, Yoshida K, Harada S, Nonaka T, Inoue Y, Uchida K, Tateoka T, Ohta T, Kumagai S, Sasaki T, Aihara H. A Systemically Administered Unconjugated Antisense Oligonucleotide Targeting DUX4 Improves Muscular Injury and Motor Function in FSHD Model Mice. Biomedicines 2023; 11:2339. [PMID: 37760780 PMCID: PMC10525656 DOI: 10.3390/biomedicines11092339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), one of the most common muscular dystrophies, is caused by an abnormal expression of the DUX4 gene in skeletal muscles, resulting in muscle weakness. In this study, we investigated MT-DUX4-ASO, a novel gapmer antisense oligonucleotide (ASO). MT-DUX4-ASO decreased the expression of DUX4 and its target genes in FSHD patient-derived myoblasts. For the first time, we demonstrated that a systemically administered ASO, even without a ligand for drug delivery, could significantly improve muscle injury and motor function in the ACTA1-MCM/FLExDUX4 (DUX4-TG) mouse model of FSHD. Tamoxifen (TMX) injection transiently induces skeletal-muscle-specific DUX4 expression in DUX4-TG mice, while the skeletal muscles of TMX-untreated DUX4-TG mice have leaky DUX4 expression in a small subset of myofibers similar to those of FSHD patients. Subcutaneous 10 mg/kg of MT-DUX4-ASO at two-week intervals significantly suppressed muscular DUX4 target gene expression, histological muscle injury, and blood muscle injury marker elevation in TMX-untreated DUX4-TG mice. Notably, MT-DUX4-ASO at 10 mg/kg every other week significantly prevented the TMX-induced declines in treadmill test running speed and muscle force in DUX4-TG mice. Thus, the systemically administered unconjugated MT-DUX4-ASO suppressed disease progression in DUX4-TG mice, extending the potential of unconjugated ASOs as a promising FSHD treatment strategy.
Collapse
Affiliation(s)
- Tetsuhiro Kakimoto
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1 Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Banerji CRS, Greco A, Joosten LAB, van Engelen BGM, Zammit PS. The FSHD muscle-blood biomarker: a circulating transcriptomic biomarker for clinical severity in facioscapulohumeral muscular dystrophy. Brain Commun 2023; 5:fcad221. [PMID: 37731904 PMCID: PMC10507741 DOI: 10.1093/braincomms/fcad221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable skeletal myopathy. Clinical trials for FSHD are hindered by heterogeneous biomarkers poorly associated with clinical severity, requiring invasive muscle biopsy. Macroscopically, FSHD presents with slow fatty replacement of muscle, rapidly accelerated by inflammation. Mis-expression of the transcription factor DUX4 is currently accepted to underlie pathogenesis, and mechanisms including PAX7 target gene repression have been proposed. Here, we performed RNA-sequencing on MRI-guided inflamed and isogenic non-inflamed muscle biopsies from the same clinically characterized FSHD patients (n = 24), alongside isogenic peripheral blood mononucleated cells from a subset of patients (n = 13) and unaffected controls (n = 11). Multivariate models were employed to evaluate the clinical associations of five published FSHD transcriptomic biomarkers. We demonstrated that PAX7 target gene repression can discriminate control, inflamed and non-inflamed FSHD muscle independently of age and sex (P < 0.013), while the discriminatory power of DUX4 target genes was limited to distinguishing FSHD muscle from control. Importantly, the level of PAX7 target gene repression in non-inflamed muscle associated with clinical assessments of FSHD severity (P = 0.04). DUX4 target gene biomarkers in FSHD muscle showed associations with lower limb fat fraction and D4Z4 array length but not clinical assessment. Lastly, PAX7 target gene repression in FSHD muscle correlated with the level in isogenic peripheral blood mononucleated cells (P = 0.002). A refined PAX7 target gene biomarker comprising 143/601 PAX7 target genes computed in peripheral blood (the FSHD muscle-blood biomarker) associated with clinical severity in FSHD patients (P < 0.036). Our new circulating biomarker validates as a classifier of clinical severity in an independent data set of 54 FSHD patient and 29 matched control blood samples, with improved power in older patients (P = 0.03). In summary, we present the minimally invasive FSHD muscle-blood biomarker of FSHD clinical severity valid in patient muscle and blood, of potential use in routine disease monitoring and clinical trials.
Collapse
Affiliation(s)
- Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
- The Alan Turing Institute, The British Library, London NW1 2DB, UK
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen 6525, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen 6525, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| |
Collapse
|
20
|
Šikrová D, Testa AM, Willemsen I, van den Heuvel A, Tapscott SJ, Daxinger L, Balog J, van der Maarel SM. SMCHD1 and LRIF1 converge at the FSHD-associated D4Z4 repeat and LRIF1 promoter yet display different modes of action. Commun Biol 2023; 6:677. [PMID: 37380887 DOI: 10.1038/s42003-023-05053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic derepression of the 4q-linked D4Z4 macrosatellite repeat resulting in inappropriate expression of the D4Z4 repeat-encoded DUX4 gene in skeletal muscle. In 5% of FSHD cases, D4Z4 chromatin relaxation is due to germline mutations in one of the chromatin modifiers SMCHD1, DNMT3B or LRIF1. The mechanism of SMCHD1- and LRIF1-mediated D4Z4 repression is not clear. We show that somatic loss-of-function of either SMCHD1 or LRIF1 does not result in D4Z4 chromatin changes and that SMCHD1 and LRIF1 form an auxiliary layer of D4Z4 repressive mechanisms. We uncover that SMCHD1, together with the long isoform of LRIF1, binds to the LRIF1 promoter and silences LRIF1 expression. The interdependency of SMCHD1 and LRIF1 binding differs between D4Z4 and the LRIF1 promoter, and both loci show different transcriptional responses to either early developmentally or somatically perturbed chromatin function of SMCHD1 and LRIF1.
Collapse
Affiliation(s)
- Darina Šikrová
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Alessandra M Testa
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
- Department of Biomedical Sciences, University of Padua, 35100, Padua, Italy
| | - Iris Willemsen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands.
| |
Collapse
|
21
|
Nip Y, Bennett SR, Smith AA, Jones TI, Jones PL, Tapscott SJ. Human DUX4 and porcine DUXC activate similar early embryonic programs in pig muscle cells: implications for preclinical models of FSHD. Hum Mol Genet 2023; 32:1864-1874. [PMID: 36728804 PMCID: PMC10196675 DOI: 10.1093/hmg/ddad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Human DUX4 and its mouse ortholog Dux are normally expressed in the early embryo-the 4-cell or 2-cell cleavage stage embryo, respectively-and activate a portion of the first wave of zygotic gene expression. DUX4 is epigenetically suppressed in nearly all somatic tissue, whereas facioscapulohumeral dystrophy (FSHD)-causing mutations result in its aberrant expression in skeletal muscle, transcriptional activation of the early embryonic program and subsequent muscle pathology. Although DUX4 and Dux both activate an early totipotent transcriptional program, divergence of their DNA binding domains limits the use of DUX4 expressed in mice as a preclinical model for FSHD. In this study, we identify the porcine DUXC messenger ribonucleic acid expressed in early development and show that both pig DUXC and human DUX4 robustly activate a highly similar early embryonic program in pig muscle cells. These results support further investigation of pig preclinical models for FSHD.
Collapse
Affiliation(s)
- Yee Nip
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sean R Bennett
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew A Smith
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Takako I Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98105, USA
| |
Collapse
|
22
|
Bilgic SN, Domaniku A, Toledo B, Agca S, Weber BZC, Arabaci DH, Ozornek Z, Lause P, Thissen JP, Loumaye A, Kir S. EDA2R-NIK signalling promotes muscle atrophy linked to cancer cachexia. Nature 2023; 617:827-834. [PMID: 37165186 DOI: 10.1038/s41586-023-06047-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Skeletal muscle atrophy is a hallmark of the cachexia syndrome that is associated with poor survival and reduced quality of life in patients with cancer1. Muscle atrophy involves excessive protein catabolism and loss of muscle mass and strength2. An effective therapy against muscle wasting is currently lacking because mechanisms driving the atrophy process remain incompletely understood. Our gene expression analysis in muscle tissues indicated upregulation of ectodysplasin A2 receptor (EDA2R) in tumour-bearing mice and patients with cachectic cancer. Here we show that activation of EDA2R signalling promotes skeletal muscle atrophy. Stimulation of primary myotubes with the EDA2R ligand EDA-A2 triggered pronounced cellular atrophy by induction of the expression of muscle atrophy-related genes Atrogin1 and MuRF1. EDA-A2-driven myotube atrophy involved activation of the non-canonical NFĸB pathway and was dependent on NFκB-inducing kinase (NIK) activity. Whereas EDA-A2 overexpression promoted muscle wasting in mice, deletion of either EDA2R or muscle NIK protected tumour-bearing mice from loss of muscle mass and function. Tumour-induced oncostatin M (OSM) upregulated muscle EDA2R expression, and muscle-specific oncostatin M receptor (OSMR)-knockout mice were resistant to tumour-induced muscle wasting. Our results demonstrate that EDA2R-NIK signalling mediates cancer-associated muscle atrophy in an OSM-OSMR-dependent manner. Thus, therapeutic targeting of these pathways may be beneficial in prevention of muscle loss.
Collapse
Affiliation(s)
- Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Aylin Domaniku
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Batu Toledo
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Bahar Z C Weber
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Dilsad H Arabaci
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Zeynep Ozornek
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Pascale Lause
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Audrey Loumaye
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.
| |
Collapse
|
23
|
Tanboon J, Inoue M, Hirakawa S, Tachimori H, Hayashi S, Noguchi S, Okiyama N, Fujimoto M, Suzuki S, Nishino I. Muscle pathology of antisynthetase syndrome according to antibody subtypes. Brain Pathol 2023:e13155. [PMID: 36882048 DOI: 10.1111/bpa.13155] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Identification of antisynthetase syndrome (ASS) could be challenging due to inaccessibility and technical difficulty of the serology test for the less common non-Jo-1 antibodies. This study aimed to describe ASS antibody-specific myopathology and evaluate the diagnostic utility of myofiber HLA-DR expression. We reviewed 212 ASS muscle biopsies and compared myopathologic features among subtypes. Additionally, we compared their HLA-DR staining pattern with 602 non-ASS myositis and 140 genetically confirmed myopathies known to have an inflammatory component. We used t-test and Fisher's exact for comparisons and used sensitivity, specificity, positive and negative predictive values to assess the utility of HLA-DR expression for ASS diagnosis. RNAseq performed from a subset of myositis cases and histologically normal muscle biopsies was used to evaluate interferon (IFN)-signaling pathway-related genes. Anti-OJ ASS showed prominent myopathology with higher scores in muscle fiber (4.6 ± 2.0 vs. 2.8 ± 1.8, p = 0.001) and inflammatory domains (6.8 ± 3.2 vs. 4.5 ± 2.9, p = 0.006) than non-OJ ASS. HLA-DR expression and IFN-γ-related genes upregulation were prominent in ASS and inclusion body myositis (IBM). When dermatomyositis and IBM were excluded, HLA-DR expression was 95.4% specific and 61.2% sensitive for ASS with a positive predictive value of 85.9% and a negative predictive value of 84.2%; perifascicular HLA-DR pattern is common in anti-Jo-1 ASS than non-Jo-1 ASS (63.1% vs. 5.1%, p < 0.0001). In the appropriate clinicopathological context, myofiber HLA-DR expression help support ASS diagnosis. The presence of HLA-DR expression suggests involvement of IFN-γ in the pathogenesis of ASS, though the detailed mechanisms have yet to be elucidated.
Collapse
Affiliation(s)
- Jantima Tanboon
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Michio Inoue
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Shinya Hirakawa
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Hisateru Tachimori
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Shinichiro Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Naoko Okiyama
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| |
Collapse
|
24
|
Wong CJ, Friedman SD, Snider L, Bennett SR, Jones TI, Jones PL, Shaw DWW, Blemker SS, Riem L, DuCharme O, Lemmers RJFL, van der Maarel SRM, Wang LH, Tawil R, Statland JM, Tapscott SJ. Validation of the association between MRI and gene signatures in facioscapulohumeral dystrophy muscle: implications for clinical trial design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529303. [PMID: 36865168 PMCID: PMC9980042 DOI: 10.1101/2023.02.20.529303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression, but reproducibility across studies needs further validation. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA. Together with moderate-to-strong correlations of gene signatures and MRI characteristics between the TA muscles bilaterally, these results suggest a whole muscle model of disease progression and provide a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design.
Collapse
|
25
|
Tihaya MS, Mul K, Balog J, de Greef JC, Tapscott SJ, Tawil R, Statland JM, van der Maarel SM. Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol 2023; 19:91-108. [PMID: 36627512 DOI: 10.1038/s41582-022-00762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Advances in the molecular understanding of facioscapulohumeral muscular dystrophy (FSHD) have revealed that FSHD results from epigenetic de-repression of the DUX4 gene in skeletal muscle, which encodes a transcription factor that is active in early embryonic development but is normally silenced in almost all somatic tissues. These advances also led to the identification of targets for disease-altering therapies for FSHD, as well as an improved understanding of the molecular mechanism of the disease and factors that influence its progression. Together, these developments led the FSHD research community to shift its focus towards the development of disease-modifying treatments for FSHD. This Review presents advances in the molecular and clinical understanding of FSHD, discusses the potential targeted therapies that are currently being explored, some of which are already in clinical trials, and describes progress in the development of FSHD-specific outcome measures and assessment tools for use in future clinical trials.
Collapse
Affiliation(s)
- Mara S Tihaya
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
26
|
Ross L, McKelvie P, Reardon K, Wong H, Wicks I, Day J. Muscle biopsy practices in the evaluation of neuromuscular disease: A systematic literature review. Neuropathol Appl Neurobiol 2023; 49:e12888. [PMID: 36734037 PMCID: PMC10946625 DOI: 10.1111/nan.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
AIMS Muscle biopsy techniques range from needle muscle biopsy (NMB) and conchotome biopsy to open surgical biopsy. It is unknown whether specific biopsy techniques offer superior diagnostic yield or differ in procedural complication rates. Therefore, we aimed to compare the diagnostic utility of NMB, conchotome and open muscle biopsies in the assessment of neuromuscular disorders. METHODS A systematic literature review of the EMBASE and Medline (Ovid) databases was performed to identify original, full-length research articles that described the muscle biopsy technique used to diagnose neuromuscular disease in both adult and paediatric patient populations. Studies of any design, excluding case reports, were eligible for inclusion. Data pertaining to biopsy technique, biopsy yield and procedural complications were extracted. RESULTS Sixty-four studies reporting the yield of a specific muscle biopsy technique and, or procedural complications were identified. Open surgical biopsies provided a larger tissue sample than any type of percutaneous muscle biopsy. Where anaesthetic details were reported, general anaesthesia was required in 60% of studies that reported open surgical biopsies. Percutaneous biopsies were most commonly performed under local anaesthesia and despite the smaller tissue yield, moderate- to large-gauge needle and conchotome muscle biopsies had an equivalent diagnostic utility to that of open surgical muscle biopsy. All types of muscle biopsy procedures were well tolerated with few adverse events and no scarring complications were reported with percutaneous sampling. CONCLUSIONS When a histological diagnosis of myopathy is required, moderate- to large-gauge NMB and the conchotome technique appear to have an equivalent diagnostic yield to that of an open surgical biopsy.
Collapse
Affiliation(s)
- Laura Ross
- Department of RheumatologySt Vincent's Hospital MelbourneFitzroyVictoriaAustralia
- Department of MedicineThe University of Melbourne at St Vincent's HospitalFitzroyVictoriaAustralia
| | - Penny McKelvie
- Department of Anatomical PathologySt Vincent's Hospital MelbourneFitzroyVictoriaAustralia
| | - Katrina Reardon
- Department of NeurologySt Vincent's Hospital MelbourneFitzroyVictoriaAustralia
| | - Huon Wong
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Ian Wicks
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of RheumatologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jessica Day
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of RheumatologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
27
|
Monforte M, Attarian S, Vissing J, Diaz-Manera J, Tasca G. 265th ENMC International Workshop: Muscle imaging in Facioscapulohumeral Muscular Dystrophy (FSHD): relevance for clinical trials. 22-24 April 2022, Hoofddorp, The Netherlands. Neuromuscul Disord 2023; 33:65-75. [PMID: 36369218 DOI: 10.1016/j.nmd.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, CHU La Timone Aix-Marseille Hospital University Marseille, France
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome 00168, Italy.
| |
Collapse
|
28
|
Campbell AE, Arjomand J, King OD, Tawil R, Jagannathan S. A Targeted Approach for Evaluating DUX4-Regulated Proteins as Potential Serum Biomarkers for Facioscapulohumeral Muscular Dystrophy Using Immunoassay Proteomics. J Neuromuscul Dis 2023; 10:1031-1040. [PMID: 37899061 PMCID: PMC10657687 DOI: 10.3233/jnd-221636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy caused by misexpression of the double homeobox 4 (DUX4) embryonic transcription factor in skeletal muscle. Identifying quantitative and minimally invasive FSHD biomarkers to report on DUX4 activity will significantly accelerate therapeutic development. OBJECTIVE The goal of this study was to analyze secreted proteins known to be induced by DUX4 using the commercially available Olink Proteomics platform in order to identify potential blood-based molecular FSHD biomarkers. METHODS We used high-throughput, multiplex immunoassays from Olink Proteomics to measure the levels of several known DUX4-induced genes in a cellular myoblast model of FSHD, in FSHD patient-derived myotube cell cultures, and in serum from individuals with FSHD. Levels of other proteins on the Olink Proteomics panels containing these DUX4 targets were also examined in secondary exploratory analysis. RESULTS Placental alkaline phosphatase (ALPP) levels correlated with DUX4 expression in both cell-based FSHD systems but did not distinguish FSHD patient serum from unaffected controls. CONCLUSIONS ALPP, as measured with the Olink Proteomics platform, is not a promising FSHD serum biomarker candidate but could be utilized to evaluate DUX4 activity in discovery research efforts.
Collapse
Affiliation(s)
- Amy E. Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Oliver D. King
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
29
|
Götz M, Heiss R, von Stengel S, Roemer F, Berger J, Nagel A, Uder M, Kemmler W. Spatial Distribution of Muscular Effects of Acute Whole-Body Electromyostimulation at the Mid-Thigh and Lower Leg-A Pilot Study Applying Magnetic Resonance Imaging. SENSORS (BASEL, SWITZERLAND) 2022; 22:10017. [PMID: 36560386 PMCID: PMC9786230 DOI: 10.3390/s222410017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Whole-body electromyostimulation (WB-EMS) is an innovative training method that stimulates large areas simultaneously. In order to determine the spatial distribution of WB-EMS with respect to volume involvement and stimulation depth, we determined the extent of intramuscular edema using magnetic resonance imaging (MRI) as a marker of structural effects. Intense WB-EMS first application (20 min, bipolar, 85 Hz, 350 µs) was conducted with eight physically less trained students without previous WB-EMS experience. Transversal T2-weighted MRI was performed at baseline and 72 h post WB-EMS to identify edema at the mid-thigh and lower leg. The depth of the edema ranged from superficial to maximum depth with superficial and deeper muscle groups of the mid-thigh or lower leg area approximately affected in a similar fashion. However, the grade of edema differed between the muscle groups, which suggests that the intensity of EMS-induced muscular contraction was not identical for all muscles. WB-EMS of the muscles via surface cuff electrodes has an effect on deeper parts of the stimulated anatomy. Reviewing the spatial and volume distribution, we observed a heterogeneous pattern of edema. We attribute this finding predominately to different stimulus thresholds of the muscles and differences in the stress resistance of the muscles.
Collapse
Affiliation(s)
- Marina Götz
- Institute of Medical Physics, Friedrich-Alexander-University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Rafael Heiss
- Institute of Radiology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Simon von Stengel
- Institute of Radiology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Frank Roemer
- Institute of Radiology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Joshua Berger
- German University for Prevention and Health Management, 66123 Saarbrücken, Germany
| | - Armin Nagel
- Institute of Radiology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Wolfgang Kemmler
- Institute of Medical Physics, Friedrich-Alexander-University of Erlangen-Nürnberg, 91052 Erlangen, Germany
- Institute of Radiology, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
30
|
Ganassi M, Figeac N, Reynaud M, Ortuste Quiroga HP, Zammit PS. Antagonism Between DUX4 and DUX4c Highlights a Pathomechanism Operating Through β-Catenin in Facioscapulohumeral Muscular Dystrophy. Front Cell Dev Biol 2022; 10:802573. [PMID: 36158201 PMCID: PMC9490378 DOI: 10.3389/fcell.2022.802573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant expression of the transcription factor DUX4 from D4Z4 macrosatellite repeats on chromosome 4q35, and its transcriptome, associate with pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Forced DUX4 expression halts skeletal muscle cell proliferation and induces cell death. DUX4 binds DNA via two homeodomains that are identical in sequence to those of DUX4c (DUX4L9): a closely related transcriptional regulator encoded by a single, inverted, mutated D4Z4 unit located centromeric to the D4Z4 macrosatellite array on chromosome 4. However, the function and contribution of DUX4c to FSHD pathogenesis are unclear. To explore interplay between DUX4, DUX4c, and the DUX4-induced phenotype, we investigated whether DUX4c interferes with DUX4 function in human myogenesis. Constitutive expression of DUX4c rescued the DUX4-induced inhibition of proliferation and reduced cell death in human myoblasts. Functionally, DUX4 promotes nuclear translocation of β-CATENIN and increases canonical WNT signalling. Concomitant constitutive expression of DUX4c prevents β-CATENIN nuclear accumulation and the downstream transcriptional program. DUX4 reduces endogenous DUX4c levels, whereas constitutive expression of DUX4c robustly suppresses expression of DUX4 target genes, suggesting molecular antagonism. In line, DUX4 expression in FSHD myoblasts correlates with reduced DUX4c levels. Addressing the mechanism, we identified a subset of genes involved in the WNT/β-CATENIN pathway that are differentially regulated between DUX4 and DUX4c, whose expression pattern can separate muscle biopsies from severely affected FSHD patients from healthy. Finally, blockade of WNT/β-CATENIN signalling rescues viability of FSHD myoblasts. Together, our study highlights an antagonistic interplay whereby DUX4 alters cell viability via β-CATENIN signalling and DUX4c counteracts aspects of DUX4-mediated toxicity in human muscle cells, potentially acting as a gene modifier for FSHD severity. Importantly, direct DUX4 regulation of the WNT/β-CATENIN pathway informs future therapeutic interventions to ameliorate FSHD pathology.
Collapse
Affiliation(s)
| | | | | | | | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
31
|
Caputo V, Megalizzi D, Fabrizio C, Termine A, Colantoni L, Caltagirone C, Giardina E, Cascella R, Strafella C. Update on the Molecular Aspects and Methods Underlying the Complex Architecture of FSHD. Cells 2022; 11:cells11172687. [PMID: 36078093 PMCID: PMC9454908 DOI: 10.3390/cells11172687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the knowledge of the main mechanisms involved in facioscapulohumeral muscular dystrophy (FSHD), the high heterogeneity and variable penetrance of the disease complicate the diagnosis, characterization and genotype–phenotype correlation of patients and families, raising the need for further research and data. Thus, the present review provides an update of the main molecular aspects underlying the complex architecture of FSHD, including the genetic factors (related to D4Z4 repeated units and FSHD-associated genes), epigenetic elements (D4Z4 methylation status, non-coding RNAs and high-order chromatin interactions) and gene expression profiles (FSHD transcriptome signatures both at bulk tissue and single-cell level). In addition, the review will also describe the methods currently available for investigating the above-mentioned features and how the resulting data may be combined with artificial-intelligence-based pipelines, with the purpose of developing a multifunctional tool tailored to enhancing the knowledge of disease pathophysiology and progression and fostering the research for novel treatment strategies, as well as clinically useful biomarkers. In conclusion, the present review highlights how FSHD should be regarded as a disease characterized by a molecular spectrum of genetic and epigenetic factors, whose alteration plays a differential role in DUX4 repression and, subsequently, contributes to determining the FSHD phenotype.
Collapse
Affiliation(s)
- Valerio Caputo
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Carlo Fabrizio
- Data Science Unit, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Andrea Termine
- Data Science Unit, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavorial Neurology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-0651501550
| | - Raffaella Cascella
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
32
|
Merve A, Schneider U, Kara E, Papadopoulou C, Stenzel W. Muscle biopsy in myositis: What the rheumatologist needs to know. Best Pract Res Clin Rheumatol 2022; 36:101763. [PMID: 35773136 DOI: 10.1016/j.berh.2022.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The appropriate analysis of skeletal muscle tissues is a key element in many diagnostic procedures and can deliver valuable information about the organ that is affected. Although arguably the frequency of muscle biopsy may be declining in certain domains where genetic analysis is now the first line of diagnostic evaluation, it still has an important role in assessment of patients with neuromuscular disorders such as congenital myopathies, muscular dystrophies, metabolic and inflammatory diseases. Here, we have comprehensively discussed the aspects of a modern and fruitful approach to muscle biopsy histopathological studies in rheumatological disorders. We have focussed on the neuromuscular involvement in myositis and its differential diagnoses in both adult and paediatric settings. We have also covered the clinical indications for the biopsy, technical aspects and practical points relevant for the rheumatologists. Finally, we have critically discussed the current and future opportunities that a muscle biopsy may offer and its limitations.
Collapse
Affiliation(s)
- Ashirwad Merve
- Department of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK; Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Udo Schneider
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology, Charitéplatz 1, 10117 Berlin, Germany
| | - Eleanna Kara
- Department of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | | | - Werner Stenzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
33
|
Wong CJ, Wang L, Holers VM, Frazer-Abel A, van der Maarel SM, Tawil R, Statland JM, Tapscott SJ. Elevated plasma complement components in facioscapulohumeral dystrophy. Hum Mol Genet 2022; 31:1821-1829. [PMID: 34919696 PMCID: PMC9169453 DOI: 10.1093/hmg/ddab364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022] Open
Abstract
Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to several therapeutic approaches entering clinical trials and an increased need to develop biomarkers of disease activity and progression. Multiple prior studies have shown early elevation of RNAs encoding components of the complement pathways and relatively widespread activated complement complexes by immunodetection in FSHD muscle. The current study tested plasma from two independent cohorts of FSHD and control subjects and found elevated complement components in both FSHD cohorts. Combining subjects from both cohorts identified complement factors that best distinguished FSHD and controls. Within the FSHD group, a subset of subjects showed elevation in multiple complement components. Together these findings suggest the need for future studies to determine whether measurements of complement activation can be used as a non-invasive measurement of FSHD disease activity, progression and/or response to therapies. In addition, with the ongoing expansion of complement therapeutic approaches, consideration for precision-based targeting of this pathway is appropriate.
Collapse
Affiliation(s)
- Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Leo Wang
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ashley Frazer-Abel
- Exsera BioLabs, Division of Rheumatalogy, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KA 66160, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
34
|
Quintero J, Saad NY, Pagnoni SM, Jacquelin DK, Gatica L, Harper SQ, Rosa AL. The DUX4 protein is a co-repressor of the progesterone and glucocorticoid nuclear receptors. FEBS Lett 2022; 596:2644-2658. [PMID: 35662006 DOI: 10.1002/1873-3468.14416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 11/09/2022]
Abstract
DUX4 is a transcription factor required during early embryonic development in placental mammals. In this work we provide evidence that DUX4 is a co-repressor of nuclear receptors (NRs) of progesterone (PR) and glucocorticoids (GR). The DUX4 C-ter and N-ter regions, including the nuclear localization signals and homeodomain motifs, contribute to the corepressor activity of DUX4 on PR and GR. Immunoprecipitation studies, using total protein extracts of cells expressing tagged versions of DUX4 and GR, support that these proteins are physically associated. Our studies suggest that DUX4 could modulate gene expression by coregulating the activity of hormone NRs. This is the first report highlighting a potential endocrine role for DUX4.
Collapse
Affiliation(s)
- Julieta Quintero
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
| | - Nizar Y Saad
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sabrina M Pagnoni
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
| | - Daniela K Jacquelin
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina.,INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Gatica
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina.,CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Alberto L Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina.,Fundación Allende-CONICET, Córdoba, Argentina
| |
Collapse
|
35
|
Williams K, Yokomori K, Mortazavi A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front Genet 2022; 13:835099. [PMID: 35646075 PMCID: PMC9136090 DOI: 10.3389/fgene.2022.835099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) has revolutionized modern genomics, but the large size of myotubes and myofibers has restricted use of scRNA-seq in skeletal muscle. For the study of muscle, single-nucleus RNA-seq (snRNA-seq) has emerged not only as an alternative to scRNA-seq, but as a novel method providing valuable insights into multinucleated cells such as myofibers. Nuclei within myofibers specialize at junctions with other cell types such as motor neurons. Nuclear heterogeneity plays important roles in certain diseases such as muscular dystrophies. We survey current methods of high-throughput single cell and subcellular resolution transcriptomics, including single-cell and single-nucleus RNA-seq and spatial transcriptomics, applied to satellite cells, myoblasts, myotubes and myofibers. We summarize the major myonuclei subtypes identified in homeostatic and regenerating tissue including those specific to fiber type or at junctions with other cell types. Disease-specific nucleus populations were found in two muscular dystrophies, FSHD and Duchenne muscular dystrophy, demonstrating the importance of performing transcriptome studies at the single nucleus level in muscle.
Collapse
Affiliation(s)
- Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
36
|
Ghasemi M, Emerson CP, Hayward LJ. Outcome Measures in Facioscapulohumeral Muscular Dystrophy Clinical Trials. Cells 2022; 11:687. [PMID: 35203336 PMCID: PMC8870318 DOI: 10.3390/cells11040687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a debilitating muscular dystrophy with a variable age of onset, severity, and progression. While there is still no cure for this disease, progress towards FSHD therapies has accelerated since the underlying mechanism of epigenetic derepression of the double homeobox 4 (DUX4) gene leading to skeletal muscle toxicity was identified. This has facilitated the rapid development of novel therapies to target DUX4 expression and downstream dysregulation that cause muscle degeneration. These discoveries and pre-clinical translational studies have opened new avenues for therapies that await evaluation in clinical trials. As the field anticipates more FSHD trials, the need has grown for more reliable and quantifiable outcome measures of muscle function, both for early phase and phase II and III trials. Advanced tools that facilitate longitudinal clinical assessment will greatly improve the potential of trials to identify therapeutics that successfully ameliorate disease progression or permit muscle functional recovery. Here, we discuss current and emerging FSHD outcome measures and the challenges that investigators may experience in applying such measures to FSHD clinical trial design and implementation.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Charles P. Emerson
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lawrence J. Hayward
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
37
|
Persistent Fibroadipogenic Progenitor Expansion Following Transient DUX4 Expression Provokes a Profibrotic State in a Mouse Model for FSHD. Int J Mol Sci 2022; 23:ijms23041983. [PMID: 35216102 PMCID: PMC8880758 DOI: 10.3390/ijms23041983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
FSHD is caused by loss of silencing of the DUX4 gene, but the DUX4 protein has not yet been directly detected immunohistologically in affected muscle, raising the possibility that DUX4 expression may occur at time points prior to obtaining adult biopsies for analysis, with consequent perturbations of muscle being responsible for disease progression. To test the extent to which muscle can regenerate following DUX4-mediated degeneration, we employed an animal model with reversible DUX4 expression, the iDUX4pA;HSA mouse. We find that muscle histology does recover substantially after DUX4 expression is switched off, with the extent of recovery correlating inversely with the duration of prior DUX4 expression. However, despite fairly normal muscle histology, and recovery of most cytological parameters, the fibroadipogenic progenitor compartment, which is significantly elevated during bouts of fiber-specific DUX4 expression, does not return to basal levels, even many weeks after a single burst of DUX4 expression. We find that muscle that has recovered from a DUX4 burst acquires a propensity for severe fibrosis, which can be revealed by subsequent cardiotoxin injuries. These results suggest that a past history of DUX4 expression leads to maintained pro-fibrotic alterations in the cellular physiology of muscle, with potential implications for therapeutic approaches.
Collapse
|
38
|
van den Heuvel A, Lassche S, Mul K, Greco A, San León Granado D, Heerschap A, Küsters B, Tapscott SJ, Voermans NC, van Engelen BGM, van der Maarel SM. Facioscapulohumeral dystrophy transcriptome signatures correlate with different stages of disease and are marked by different MRI biomarkers. Sci Rep 2022; 12:1426. [PMID: 35082321 PMCID: PMC8791933 DOI: 10.1038/s41598-022-04817-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
With several therapeutic strategies for facioscapulohumeral muscular dystrophy (FSHD) entering clinical testing, outcome measures are becoming increasingly important. Considering the spatiotemporal nature of FSHD disease activity, clinical trials would benefit from non-invasive imaging-based biomarkers that can predict FSHD-associated transcriptome changes. This study investigated two FSHD-associated transcriptome signatures (DUX4 and PAX7 signatures) in FSHD skeletal muscle biopsies, and tested their correlation with a variety of disease-associated factors, including Ricci clinical severity score, disease duration, D4Z4 repeat size, muscle pathology scorings and functional outcome measures. It establishes that DUX4 and PAX7 signatures both show a sporadic expression pattern in FSHD-affected biopsies, possibly marking different stages of disease. This study analyzed two imaging-based biomarkers-Turbo Inversion Recovery Magnitude (TIRM) hyperintensity and fat fraction-and provides insights into their predictive power as non-invasive biomarkers for FSHD signature detection in clinical trials. Further insights in the heterogeneity of-and correlation between-imaging biomarkers and molecular biomarkers, as provided in this study, will provide important guidance to clinical trial design in FSHD. Finally, this study investigated the role of infiltrating non-muscle cell types in FSHD signature expression and detected potential distinct roles for two fibro-adipogenic progenitor subtypes in FSHD.
Collapse
Affiliation(s)
- Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, Postal zone S-04-P, 2333 ZA, Leiden, The Netherlands
| | - Saskia Lassche
- Department of Neurology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David San León Granado
- Department of Systems Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Arend Heerschap
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, Postal zone S-04-P, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
39
|
Heher P, Ganassi M, Weidinger A, Engquist EN, Pruller J, Nguyen TH, Tassin A, Declèves AE, Mamchaoui K, Grillari J, Kozlov AV, Zammit PS. Interplay between mitochondrial reactive oxygen species, oxidative stress and hypoxic adaptation in facioscapulohumeral muscular dystrophy: Metabolic stress as potential therapeutic target. Redox Biol 2022; 51:102251. [PMID: 35248827 PMCID: PMC8899416 DOI: 10.1016/j.redox.2022.102251] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by descending skeletal muscle weakness and wasting. FSHD is caused by mis-expression of the transcription factor DUX4, which is linked to oxidative stress, a condition especially detrimental to skeletal muscle with its high metabolic activity and energy demands. Oxidative damage characterises FSHD and recent work suggests metabolic dysfunction and perturbed hypoxia signalling as novel pathomechanisms. However, redox biology of FSHD remains poorly understood, and integrating the complex dynamics of DUX4-induced metabolic changes is lacking. Here we pinpoint the kinetic involvement of altered mitochondrial ROS metabolism and impaired mitochondrial function in aetiology of oxidative stress in FSHD. Transcriptomic analysis in FSHD muscle biopsies reveals strong enrichment for pathways involved in mitochondrial complex I assembly, nitrogen metabolism, oxidative stress response and hypoxia signalling. We found elevated mitochondrial ROS (mitoROS) levels correlate with increases in steady-state mitochondrial membrane potential in FSHD myogenic cells. DUX4 triggers mitochondrial membrane polarisation prior to oxidative stress generation and apoptosis through mitoROS, and affects mitochondrial health through lipid peroxidation. We identify complex I as the primary target for DUX4-induced mitochondrial dysfunction, with strong correlation between complex I-linked respiration and cellular oxygenation/hypoxia signalling activity in environmental hypoxia. Thus, FSHD myogenesis is uniquely susceptible to hypoxia-induced oxidative stress as a consequence of metabolic mis-adaptation. Importantly, mitochondria-targeted antioxidants rescue FSHD pathology more effectively than conventional antioxidants, highlighting the central involvement of disturbed mitochondrial ROS metabolism. This work provides a pathomechanistic model by which DUX4-induced changes in oxidative metabolism impair muscle function in FSHD, amplified when metabolic adaptation to varying O2 tension is required. Transcriptomics data from FSHD muscle indicates enrichment for disturbed mitochondrial pathways. Disturbed mitochondrial ROS metabolism correlates with mitochondrial membrane polarisation and myotube hypotrophy. DUX4-induced changes in mitochondrial function precede mitoROS generation and affect hypoxia signalling via complex I. FSHD is sensitive to environmental hypoxia, which increases ROS levels in FSHD myotubes. Hypotrophy in hypoxic FSHD myotubes is efficiently rescued with mitochondria-targeted antioxidants.
Collapse
|
40
|
Mocciaro E, Runfola V, Ghezzi P, Pannese M, Gabellini D. DUX4 Role in Normal Physiology and in FSHD Muscular Dystrophy. Cells 2021; 10:3322. [PMID: 34943834 PMCID: PMC8699294 DOI: 10.3390/cells10123322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the sequence-specific transcription factor double homeobox 4 (DUX4) has gone from being an obscure entity to being a key factor in important physiological and pathological processes. We now know that expression of DUX4 is highly regulated and restricted to the early steps of embryonic development, where DUX4 is involved in transcriptional activation of the zygotic genome. While DUX4 is epigenetically silenced in most somatic tissues of healthy humans, its aberrant reactivation is associated with several diseases, including cancer, viral infection and facioscapulohumeral muscular dystrophy (FSHD). DUX4 is also translocated, giving rise to chimeric oncogenic proteins at the basis of sarcoma and leukemia forms. Hence, understanding how DUX4 is regulated and performs its activity could provide relevant information, not only to further our knowledge of human embryonic development regulation, but also to develop therapeutic approaches for the diseases associated with DUX4. Here, we summarize current knowledge on the cellular and molecular processes regulated by DUX4 with a special emphasis on FSHD muscular dystrophy.
Collapse
Affiliation(s)
| | | | | | | | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (E.M.); (V.R.); (P.G.); (M.P.)
| |
Collapse
|
41
|
Abstract
Acute neuromuscular disorders represent an important subset of neurologic consultation requests in the inpatient setting. Although most neuromuscular disorders are subacute to chronic, hospital-based neurologists encounter neuromuscular disorders presenting with rapidly progressive or severe weakness affecting limb movement, respiratory, and bulbar function. Recalling fundamentals of neurologic localization assists in prompt recognition and diagnosis. Despite the differing localizations and the causal diagnoses, the initial management principles of acute myopathies, neuropathies, and neuromuscular junction disorders are similar.
Collapse
Affiliation(s)
- Arun S Varadhachary
- Department of Neurology, Washington University in St. Louis, Campus Box 8111, 660 South Euclid Ave, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Alfano LN, Mozaffar T. Random forest: random results or meaningful insights for patients with facioscapulohumeral muscular dystrophy? Brain 2021; 144:3288-3290. [PMID: 34636841 DOI: 10.1093/brain/awab389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lindsay N Alfano
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Tahseen Mozaffar
- Departments of Neurology, University of California, Irvine, CA, USA.,Departments of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
43
|
Lemmers RJLF, Vliet PJ, Granado DSL, Stoep N, Buermans H, Schendel R, Schimmel J, Visser M, Coster R, Jeanpierre M, Laforet P, Upadhyaya M, Engelen B, Sacconi S, Tawil R, Voermans NC, Rogers M, van der Maarel SM. High resolution breakpoint junction mapping of proximally extended D4Z4 deletions in FSHD1 reveals evidence for a founder effect. Hum Mol Genet 2021; 31:748-760. [PMID: 34559225 DOI: 10.1093/hmg/ddab250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 01/09/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy clinically characterized by weakness in the facial, shoulder girdle and upper arm muscles. FSHD is caused by chromatin relaxation of the D4Z4 macrosatellite repeat, mostly by a repeat contraction, facilitating ectopic expression of DUX4 in skeletal muscle. Genetic diagnosis for FSHD is generally based on the sizing and haplotyping of the D4Z4 repeat on chromosome 4 by Southern blotting, molecular combing or single-molecule optical mapping, which is usually straight forward but can be complicated by atypical rearrangements of the D4Z4 repeat. One of these rearrangements is a D4Z4 proximally-extended deletion (DPED) allele, where not only the D4Z4 repeat is partially deleted, but also sequences immediately proximal to the repeat are lost, which can impede accurate diagnosis in all genetic methods. Previously, we identified several DPED alleles in FSHD and estimated the size of the proximal deletions by a complex pulsed-field gel electrophoresis and Southern blot strategy. Here, using next generation sequencing, we have defined the breakpoint junctions of these DPED alleles at the base pair resolution in 12 FSHD families and 4 control individuals facilitating a PCR-based diagnosis of these DPED alleles. Our results show that half of the DPED alleles are derivates of an ancient founder allele. For some DPED alleles we found that genetic elements are deleted such as DUX4c, FRG2, DBE-T and myogenic enhancers necessitating re-evaluation of their role in FSHD pathogenesis.
Collapse
Affiliation(s)
- Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick J Vliet
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nienke Stoep
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk Buermans
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marianne Visser
- Academic Medical Center, Department of Neurology, Amsterdam, The Netherlands
| | - Rudy Coster
- Department of Pediatrics, Division of Pediatric Neurology, Ghent University Hospital, Ghent, Belgium
| | | | - Pascal Laforet
- Nord-Est/Ile-de-France Neuromuscular Reference Center, FHU PHENIX, Neurology Department, Raymond-Poincaré Hospital, Versailles Saint-Quentin-en-Yvelines - Paris Saclay University, Garches, France
| | - Meena Upadhyaya
- Department of Medical Genetics, Cardiff University, Cardif, UK
| | - Baziel Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, The Netherlands
| | - Sabrina Sacconi
- Centre de référence des Maladies neuromusculaires, Nice University Hospital, Nice, France
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, The Netherlands
| | - Mark Rogers
- Department of Medical Genetics, Cardiff University, Cardif, UK
| | | |
Collapse
|
44
|
Greco A, Straasheijm KR, Mul K, van den Heuvel A, van der Maarel SM, Joosten LA, van Engelen BG, Pruijn GJ. Profiling Serum Antibodies Against Muscle Antigens in Facioscapulohumeral Muscular Dystrophy Finds No Disease-Specific Autoantibodies. J Neuromuscul Dis 2021; 8:801-814. [PMID: 34024774 PMCID: PMC9789485 DOI: 10.3233/jnd-210653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND FSHD is caused by specific genetic mutations resulting in activation of the Double Homeobox 4 gene (DUX4). DUX4 targets hundreds of downstream genes eventually leading to muscle atrophy, oxidative stress, abnormal myogenesis, and muscle inflammation. We hypothesized that DUX4-induced aberrant expression of genes triggers a sustained autoimmune response against skeletal muscle cells. OBJECTIVE This study aimed at the identification of autoantibodies directed against muscle antigens in FSHD. Moreover, a possible relationship between serum antibody reactivity and DUX4 expression was also investigated. METHODS FSHD sera (N = 138, 48±16 years, 48% male) and healthy control sera (N = 20, 47±14 years, 50% male) were analyzed by immunoblotting for antibodies against several skeletal muscle protein extracts: healthy muscle, FSHD muscle, healthy and FSHD myotubes, and inducible DUX4 expressing myoblasts. In addition, DUX4 expressing myoblasts were analyzed by immunofluorescence with FSHD and healthy control sera. RESULTS The results showed that the reactivity of FSHD sera did not significantly differ from that of healthy controls, with all the tested muscle antigen extracts. Besides, the immunofluorescent staining of DUX4-expressing myoblasts was not different when incubated with either FSHD or healthy control sera. CONCLUSION Since the methodology used did not lead to the identification of disease-specific autoantibodies in the FSHD cohort, we suggest that autoantibody-mediated pathology may not be an important disease mechanism in FSHD. Nevertheless, it is crucial to further unravel if and which role the immune system plays in FSHD pathogenesis. Other innate as well as adaptive immune players could be involved in the complex DUX4 cascade of events and could become appealing druggable targets.
Collapse
Affiliation(s)
- Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands,Correspondence to: Anna Greco, MD, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4, 6525 GC, Nijmegen, The Netherlands. P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. Tel.: +31 68 71 17 452; Fax: +31 24 354 1122; E-mail:
| | - Kirsten R. Straasheijm
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ger J.M. Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Monforte M, Bortolani S, Torchia E, Cristiano L, Laschena F, Tartaglione T, Ricci E, Tasca G. Diagnostic magnetic resonance imaging biomarkers for facioscapulohumeral muscular dystrophy identified by machine learning. J Neurol 2021; 269:2055-2063. [PMID: 34486074 DOI: 10.1007/s00415-021-10786-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The diagnosis of facioscapulohumeral muscular dystrophy (FSHD) can be challenging in patients not displaying the classical phenotype or with atypical clinical features. Despite the identification by magnetic resonance imaging (MRI) of selective patterns of muscle involvement, their specificity and added diagnostic value are unknown. METHODS We aimed to identify the radiological features more useful to distinguish FSHD from other myopathies and test the diagnostic accuracy of MRI. A retrospective cohort of 295 patients (187 FSHD, 108 non-FSHD) studied by upper and lower-limb muscle MRI was analyzed. Scans were evaluated for the presence of 15 radiological features. A random forest machine learning algorithm was used to identify the most relevant for FSHD diagnosis. Different patterns were created by their combination and diagnostic accuracy of each of them was tested. RESULTS The combination of trapezius involvement and bilateral subscapularis muscle sparing achieved the best diagnostic accuracy (0.89, 95% Confidence Interval [0.85-0.92]) with 0.90 [0.85-0.94] sensitivity and 0.88 [0.80-0.93] specificity. This pattern correctly identified 91% atypical FSHD patients of our cohort. The combination of trapezius involvement, bilateral subscapularis and iliopsoas sparing and asymmetric involvement of upper and lower-limb muscles was pathognomonic for FSHD, yielding a specificity of 0.99 [0.95-1.00]. CONCLUSIONS We identified MRI patterns that showed a high diagnostic power in promptly discriminating FSHD from other muscle disorders, with comparable performance irrespective of typical or atypical clinical features. Upper girdle in addition to lower-limb muscle imaging should be extensively implemented in the diagnostic workup to support or exclude a diagnosis of FSHD.
Collapse
Affiliation(s)
- Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - Sara Bortolani
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Eleonora Torchia
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | | | | | - Tommaso Tartaglione
- Dipartimento di Radiologia, IDI IRCCS, Rome, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy. .,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| |
Collapse
|
46
|
Gros M, Nunes AM, Daoudlarian D, Pini J, Martinuzzi E, Barbosa S, Ramirez M, Puma A, Villa L, Cavalli M, Grecu N, Garcia J, Siciliano G, Solé G, Juntas-Morales R, Jones PL, Jones T, Glaichenhaus N, Sacconi S. Identification of Serum Interleukin 6 Levels as a Disease Severity Biomarker in Facioscapulohumeral Muscular Dystrophy. J Neuromuscul Dis 2021; 9:83-93. [PMID: 34459413 PMCID: PMC8842759 DOI: 10.3233/jnd-210711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common myopathies in adults, displaying a progressive, frequently asymmetric involvement of a typical muscles' pattern. FSHD is associated with epigenetic derepression of the polymorphic D4Z4 repeat on chromosome 4q, leading to DUX4 retrogene toxic expression in skeletal muscles. Identifying biomarkers that correlate with disease severity would facilitate clinical management and assess potential FSHD therapeutics' efficacy. OBJECTIVES This study purpose was to analyze serum cytokines to identify potential biomarkers in a large cohort of adult patients with FSHD. METHODS We retrospectively measured the levels of 20 pro-inflammatory and regulatory cytokines in sera from 100 genetically confirmed adult FSHD1 patients. Associations between cytokine concentrations and various clinical scores were investigated. We then measured serum and muscle interleukin 6 (IL-6) levels in a validated FSHD-like mouse model, ranging in severity and DUX4 expression. RESULTS IL-6 was identified as the only cytokine with a concentration correlating with several clinical severity and functional scores, including Clinical Severity Score, Manual Muscle Testing sum score, Brooke and Vignos scores. Further, FSHD patients displayed overall IL-6 levels more than twice high as control, and patients with milder phenotypes exhibited lower IL-6 serum concentration than those with severe muscular weakness. Lastly, an FSHD-like mouse model analysis confirmed that IL-6 levels positively correlate with disease severity and DUX4 expression. CONCLUSIONS Serum IL-6, therefore, shows promise as a serum biomarker of FSHD severity in a large cohort of FSHD1 adult patients.
Collapse
Affiliation(s)
- Marilyn Gros
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Andreia M Nunes
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Douglas Daoudlarian
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Jonathan Pini
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Emanuela Martinuzzi
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Susana Barbosa
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Monique Ramirez
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Angela Puma
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Luisa Villa
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Michele Cavalli
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Nicolae Grecu
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Jérémy Garcia
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Département de rééducation, Pôle Neurosciences Rhumatologie, 30 Voie Romaine, Nice, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guilhem Solé
- Centre Hospitalier Universitaire de Bordeaux, Service de Neurologie, Place Amélie Raba-Léon, Bordeaux, France
| | - Raul Juntas-Morales
- Centre Hospitalier Universitaire de Montpellier, Hôpital Gui de Chauliac, 80 Avenue Augustin Fliche, Montpellier, France
| | - Peter L Jones
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Takako Jones
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Nicolas Glaichenhaus
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Sabrina Sacconi
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France.,Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institute for Research on Cancer and Aging of Nice, 28 Avenue de Valombrose, Nice, France.,Fédération Hospitalo-Universitaire Oncoage, CHU Nice, Université Côte d'Azur (UCA), Nice, France
| |
Collapse
|
47
|
Banerji CRS. PAX7 target gene repression associates with FSHD progression and pathology over 1 year. Hum Mol Genet 2021; 29:2124-2133. [PMID: 32347924 DOI: 10.1093/hmg/ddaa079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, inherited skeletal myopathy linked to hypomethylation of the D4Z4 macrosatellite at chromosome 4q35. This epigenetic de-repression permits expression of the transcription factor DUX4, which may drive pathology by direct activation of target genes or through inhibition of the homologous transcription factor PAX7. We demonstrated that PAX7 target gene repression is a superior biomarker of FSHD status compared with DUX4 target gene expression. However, despite importance for clinical trials, there remains no transcriptomic biomarker for FSHD progression. A recent study by Wong et al. [Longitudinal measures of RNA expression and disease activity in FSHD muscle biopsies. Hum. Mol. Genet., 29, 1030-1043] performed MRI, muscle biopsy transcriptomics and histopathology on a cohort of FSHD patients with 1-year follow-up. No significant changes in any biomarkers were reported over this time period. However, the authors did not consider PAX7 target gene repression as a marker of FSHD progression. Here we demonstrate that PAX7 target gene repression increases in these paired FSHD samples from year 1 to year 2 and is thus a marker of FSHD progression over 1 year. Moreover, we show that three validated DUX4 target gene expression biomarkers are not associated with FSHD progression over 1 year. We further confirm that PAX7 target gene repression associates with clinical correlates of FSHD disease activity, measured by MRI and histopathology. Thus, PAX7 target gene repression is a uniquely sensitive biomarker of FSHD progression and pathology, valid over a 1 year time frame, implicating its use in clinical trials.
Collapse
Affiliation(s)
- Christopher R S Banerji
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
48
|
Voermans NC, Vriens-Munoz Bravo M, Padberg GW, Laforêt P. 1st FSHD European Trial Network workshop:Working towards trial readiness across Europe. Neuromuscul Disord 2021; 31:907-918. [PMID: 34404575 DOI: 10.1016/j.nmd.2021.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 01/29/2023]
Affiliation(s)
- N C Voermans
- FSHD Europe, Radboud University Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, the Netherlands.
| | - M Vriens-Munoz Bravo
- FSHD Europe, Radboud University Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, the Netherlands
| | - G W Padberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P Laforêt
- Nord-Est-Ile de France Neuromuscular Reference Center, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris Myology Institute, Neuromuscular Pathology Reference Center, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, Paris, France
| | | |
Collapse
|
49
|
Banerji CRS, Panamarova M, Zammit PS. DUX4 expressing immortalized FSHD lymphoblastoid cells express genes elevated in FSHD muscle biopsies, correlating with the early stages of inflammation. Hum Mol Genet 2021; 29:2285-2299. [PMID: 32242220 PMCID: PMC7424723 DOI: 10.1093/hmg/ddaa053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/04/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disorder linked to ectopic expression of DUX4. However, DUX4 is notoriously difficult to detect in FSHD muscle cells, while DUX4 target gene expression is an inconsistent biomarker for FSHD skeletal muscle biopsies, displaying efficacy only on pathologically inflamed samples. Immune gene misregulation occurs in FSHD muscle, with DUX4 target genes enriched for those associated with inflammatory processes. However, there lacks an assessment of the FSHD immune cell transcriptome, and its contribution to gene expression in FSHD muscle biopsies. Here, we show that EBV-immortalized FSHD lymphoblastoid cell lines express DUX4 and both early and late DUX4 target genes. Moreover, a biomarker of 237 up-regulated genes derived from FSHD lymphoblastoid cell lines is elevated in FSHD muscle biopsies compared to controls. The FSHD Lymphoblast score is unaltered between FSHD myoblasts/myotubes and their controls however, implying a non-myogenic cell source in muscle biopsies. Indeed, the FSHD Lymphoblast score correlates with the early stages of muscle inflammation identified by histological analysis on muscle biopsies, while our two late DUX4 target gene expression biomarkers associate with macroscopic inflammation detectable via MRI. Thus, FSHD lymphoblastoid cell lines express DUX4 and early and late DUX4 target genes, therefore, muscle-infiltrated immune cells may contribute the molecular landscape of FSHD muscle biopsies.
Collapse
Affiliation(s)
- Christopher R S Banerji
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Maryna Panamarova
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
50
|
Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Mol Med 2021; 13:e13695. [PMID: 34151531 PMCID: PMC8350899 DOI: 10.15252/emmm.202013695] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by progressive skeletal muscle weakness and wasting. FSHD is linked to epigenetic derepression of the subtelomeric D4Z4 macrosatellite at chromosome 4q35. Epigenetic derepression permits the distal-most D4Z4 unit to transcribe DUX4, with transcripts stabilised by splicing to a poly(A) signal on permissive 4qA haplotypes. The pioneer transcription factor DUX4 activates target genes that are proposed to drive FSHD pathology. While this toxic gain-of-function model is a satisfying "bottom-up" genotype-to-phenotype link, DUX4 is rarely detectable in muscle and DUX4 target gene expression is inconsistent in patients. A reliable biomarker for FSHD is suppression of a target gene score of PAX7, a master regulator of myogenesis. However, it is unclear how this "top-down" finding links to genomic changes that characterise FSHD and to DUX4. Here, we explore the roles and interactions of DUX4 and PAX7 in FSHD pathology and how the relationship between these two transcription factors deepens understanding via the immune system and muscle regeneration. Considering how FSHD pathomechanisms are represented by "DUX4opathy" models has implications for developing therapies and current clinical trials.
Collapse
Affiliation(s)
| | - Peter S Zammit
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|