1
|
Major GS, Herbold CW, Cheng F, Lee A, Zhuang S, Russell AP, Lindsay A. Cardio-metabolic and cytoskeletal proteomic signatures differentiate stress hypersensitivity in dystrophin-deficient mdx mice. J Proteomics 2025; 312:105371. [PMID: 39732163 DOI: 10.1016/j.jprot.2024.105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors. Quantitative proteomics of striated muscle revealed that stress-resistant females were most dissimilar from all other groups, with over 250 proteins differentially regulated with stress hypersensitivity. Males showed less proteomic variation with stress hypersensitivity; however, these changes were associated with pathway enrichment. In the heart, stress-sensitive males had significant enrichment of pathways related to mitochondrial ATP synthesis, suggesting that increased cardio-metabolic capacity is associated with stress hypersensitivity in male mdx mice. In both sexes, stress hypersensitivity was associated with greater expression of beta-actin-like protein 2, indicative of altered cytoskeletal organisation. Despite identifying proteomic signatures associated with stress hypersensitivity, these did not correlate with differences in the serum metabolome acutely after a stressor. These data suggest that the heterogeneity in stress hypersensitivity in mdx mice is partially driven by cytoskeletal organisation, but that sex-specific cardio-metabolic reprogramming may also underpin this phenotype. SIGNIFICANCE: Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease which is associated with a premature loss of ambulation and neurocognitive dysfunction. The hypersensitive stress response in DMD is a heterogeneous phenotype which is poorly understood. This study provided the first investigation of the peripheral mechanisms regulating the hypersensitive stress response by undertaking multi-omics analysis of phenotypically stratified mdx mice. Variations in behaviour and the striated muscle proteomic profiles suggest that cardio-metabolic remodelling and cytoskeletal organisation may contribute to this phenotype. This research offers significant insights into understanding how peripheral dystrophin deficiency relates to the cognitive abnormalities seen in patients with DMD.
Collapse
Affiliation(s)
- Gretel S Major
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Craig W Herbold
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Shuzhao Zhuang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Angus Lindsay
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand.
| |
Collapse
|
2
|
Russo C, Surdo S, Valle MS, Malaguarnera L. The Gut Microbiota Involvement in the Panorama of Muscular Dystrophy Pathogenesis. Int J Mol Sci 2024; 25:11310. [PMID: 39457092 PMCID: PMC11508360 DOI: 10.3390/ijms252011310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Muscular dystrophies (MDs) are genetically heterogeneous diseases characterized by primary skeletal muscle atrophy. The collapse of muscle structure and irreversible degeneration of tissues promote the occurrence of comorbidities, including cardiomyopathy and respiratory failure. Mitochondrial dysfunction leads to inflammation, fibrosis, and adipogenic cellular infiltrates that exacerbate the symptomatology of MD patients. Gastrointestinal disorders and metabolic anomalies are common in MD patients and may be determined by the interaction between the intestine and its microbiota. Therefore, the gut-muscle axis is one of the actors involved in the spread of inflammatory signals to all muscles. In this review, we aim to examine in depth how intestinal dysbiosis can modulate the metabolic state, the immune response, and mitochondrial biogenesis in the course and progression of the most investigated MDs such as Duchenne Muscular Dystrophy (DMD) and Myotonic Dystrophy (MD1), to better identify gut microbiota metabolites working as therapeutic adjuvants to improve symptoms of MD.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
3
|
Timpani CA, Debrincat D, Kourakis S, Boyer R, Formosa LE, Steele JR, Zhang H, Schittenhelm RB, Russell AP, Rybalka E, Lindsay A. Loss of endogenous estrogen alters mitochondrial metabolism and muscle clock-related protein Rbm20 in female mdx mice. FASEB J 2024; 38:e23718. [PMID: 38847487 DOI: 10.1096/fj.202400329r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 11/01/2024]
Abstract
Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling. Our study confirms that loss of estrogen in female mdx mice reduces exercise capacity, tricarboxylic acid cycle intermediates, and citrate synthase activity but that these deficits are offset through estrogen replacement therapy. Furthermore, ovariectomy downregulated protein expression of RNA-binding motif factor 20 (Rbm20), a critical regulator of sarcomeric and muscle homeostasis gene splicing, which impacted pathways involving ribosomal and mitochondrial translation. Estrogen replacement modulated Rbm20 protein expression and promoted metabolic processes and the upregulation of proteins involved in mitochondrial dynamics and metabolism. Our data suggest that estrogen mitigates dystrophinopathic features in female mdx mice and that estrogen replacement may be a potential therapy for post-menopausal DMD carriers.
Collapse
Affiliation(s)
- Cara A Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
| | - Didier Debrincat
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Stephanie Kourakis
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Rebecca Boyer
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Joel R Steele
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Haijian Zhang
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
- Division of Neuropaediatrics and Developmental Medicine, University Children's Hospital of Basel (UKBB), Basel, Switzerland
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
4
|
Eisen B, Binah O. Modeling Duchenne Muscular Dystrophy Cardiomyopathy with Patients' Induced Pluripotent Stem-Cell-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:ijms24108657. [PMID: 37240001 DOI: 10.3390/ijms24108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease caused by mutations in the dystrophin gene, resulting in death by the end of the third decade of life at the latest. A key aspect of the DMD clinical phenotype is dilated cardiomyopathy, affecting virtually all patients by the end of the second decade of life. Furthermore, despite respiratory complications still being the leading cause of death, with advancements in medical care in recent years, cardiac involvement has become an increasing cause of mortality. Over the years, extensive research has been conducted using different DMD animal models, including the mdx mouse. While these models present certain important similarities to human DMD patients, they also have some differences which pose a challenge to researchers. The development of somatic cell reprograming technology has enabled generation of human induced pluripotent stem cells (hiPSCs) which can be differentiated into different cell types. This technology provides a potentially endless pool of human cells for research. Furthermore, hiPSCs can be generated from patients, thus providing patient-specific cells and enabling research tailored to different mutations. DMD cardiac involvement has been shown in animal models to include changes in gene expression of different proteins, abnormal cellular Ca2+ handling, and other aberrations. To gain a better understanding of the disease mechanisms, it is imperative to validate these findings in human cells. Furthermore, with the recent advancements in gene-editing technology, hiPSCs provide a valuable platform for research and development of new therapies including the possibility of regenerative medicine. In this article, we review the DMD cardiac-related research performed so far using human hiPSCs-derived cardiomyocytes (hiPSC-CMs) carrying DMD mutations.
Collapse
Affiliation(s)
- Binyamin Eisen
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ofer Binah
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Gerhalter T, Müller C, Maron E, Thielen M, Schätzl T, Mähler A, Schütte T, Boschmann M, Herzer R, Spuler S, Gazzerro E. "suMus," a novel digital system for arm movement metrics and muscle energy expenditure. Front Physiol 2023; 14:1057592. [PMID: 36776973 PMCID: PMC9909604 DOI: 10.3389/fphys.2023.1057592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Objective: In the field of non-treatable muscular dystrophies, promising new gene and cell therapies are being developed and are entering clinical trials. Objective assessment of therapeutic effects on motor function is mandatory for economical and ethical reasons. Main shortcomings of existing measurements are discontinuous data collection in artificial settings as well as a major focus on walking, neglecting the importance of hand and arm movements for patients' independence. We aimed to create a digital tool to measure muscle function with an emphasis on upper limb motility. Methods: suMus provides a custom-made App running on smartwatches. Movement data are sent to the backend of a suMus web-based platform, from which they can be extracted as CSV data. Fifty patients with neuromuscular diseases assessed the pool of suMus activities in a first orientation phase. suMus performance was hence validated in four upper extremity exercises based on the feedback of the orientation phase. We monitored the arm metrics in a cohort of healthy volunteers using the suMus application, while completing each exercise at low frequency in a metabolic chamber. Collected movement data encompassed average acceleration, rotation rate as well as activity counts. Spearman rank tests correlated movement data with energy expenditure from the metabolic chamber. Results: Our novel application "suMus," sum of muscle activity, collects muscle movement data plus Patient-Related-Outcome-Measures, sends real-time feedback to patients and caregivers and provides, while ensuring data protection, a long-term follow-up of disease course. The application was well received from the patients during the orientation phase. In our pilot study, energy expenditure did not differ between overnight fasted and non-fasted participants. Acceleration ranged from 1.7 ± 0.7 to 3.2 ± 0.5 m/sec2 with rotation rates between 0.9 ± 0.5 and 2.0 ± 3.4 rad/sec. Acceleration and rotation rate as well as derived activity counts correlated with energy expenditure values measured in the metabolic chamber for one exercise (r = 0.58, p < 0.03). Conclusion: In the analysis of slow frequency movements of upper extremities, the integration of the suMus application with smartwatch sensors characterized motion parameters, thus supporting a use in clinical trial outcome measures. Alternative methodologies need to complement indirect calorimetry in validating accelerometer-derived energy expenditure data.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Muscle Research Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany,Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | - Teresa Schätzl
- Muscle Research Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany,Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja Mähler
- Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Till Schütte
- Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Clinical Study Center (CSC), Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Boschmann
- Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Simone Spuler
- Muscle Research Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany,Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,*Correspondence: Simone Spuler, ; Elisabetta Gazzerro,
| | - Elisabetta Gazzerro
- Muscle Research Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany,Experimental and Clinical Research Center, a joint Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,*Correspondence: Simone Spuler, ; Elisabetta Gazzerro,
| |
Collapse
|
6
|
Gosselin MRF, Mournetas V, Borczyk M, Verma S, Occhipinti A, Róg J, Bozycki L, Korostynski M, Robson SC, Angione C, Pinset C, Gorecki DC. Loss of full-length dystrophin expression results in major cell-autonomous abnormalities in proliferating myoblasts. eLife 2022; 11:e75521. [PMID: 36164827 PMCID: PMC9514850 DOI: 10.7554/elife.75521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts-the effector cells of muscle growth and regeneration-are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmdmdx myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmdmdx-βgeo myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease.
Collapse
Affiliation(s)
- Maxime RF Gosselin
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| | | | - Malgorzata Borczyk
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Justyna Róg
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Lukasz Bozycki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Michal Korostynski
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Centre for Enzyme Innovation, University of PortsmouthPortsmouthUnited Kingdom
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | | | - Dariusz C Gorecki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| |
Collapse
|
7
|
Dubinin MV, Starinets VS, Belosludtseva NV, Mikheeva IB, Chelyadnikova YA, Penkina DK, Vedernikov AA, Belosludtsev KN. The Effect of Uridine on the State of Skeletal Muscles and the Functioning of Mitochondria in Duchenne Dystrophy. Int J Mol Sci 2022; 23:ijms231810660. [PMID: 36142572 PMCID: PMC9500747 DOI: 10.3390/ijms231810660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the loss of functional dystrophin that secondarily causes systemic metabolic impairment in skeletal muscles and cardiomyocytes. The nutraceutical approach is considered as a possible complementary therapy for this pathology. In this work, we have studied the effect of pyrimidine nucleoside uridine (30 mg/kg/day for 28 days, i.p.), which plays an important role in cellular metabolism, on the development of DMD in the skeletal muscles of dystrophin deficient mdx mice, as well as its effect on the mitochondrial dysfunction that accompanies this pathology. We found that chronic uridine administration reduced fibrosis in the skeletal muscles of mdx mice, but it had no effect on the intensity of degeneration/regeneration cycles and inflammation, pseudohypetrophy, and muscle strength of the animals. Analysis of TEM micrographs showed that uridine also had no effect on the impaired mitochondrial ultrastructure of mdx mouse skeletal muscle. The administration of uridine was found to lead to an increase in the expression of the Drp1 and Parkin genes, which may indicate an increase in the intensity of organelle fission and the normalization of mitophagy. Uridine had little effect on OXPHOS dysfunction in mdx mouse mitochondria, and moreover, it was suppressed in the mitochondria of wild type animals. At the same time, uridine restored the transport of potassium ions and reduced the production of reactive oxygen species; however, this had no effect on the impaired calcium retention capacity of mdx mouse mitochondria. The obtained results demonstrate that the used dose of uridine only partially prevents mitochondrial dysfunction in skeletal muscles during Duchenne dystrophy, though it mitigates the development of destructive processes in skeletal muscles.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Correspondence: ; Tel.: +7-987-701-0437
| | - Vlada S. Starinets
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Yuliya A. Chelyadnikova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Daria K. Penkina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Alexander A. Vedernikov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| |
Collapse
|
8
|
Willi L, Abramovich I, Fernandez-Garcia J, Agranovich B, Shulman M, Milman H, Baskin P, Eisen B, Michele DE, Arad M, Binah O, Gottlieb E. Bioenergetic and Metabolic Impairments in Induced Pluripotent Stem Cell-Derived Cardiomyocytes Generated from Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2022; 23:ijms23179808. [PMID: 36077200 PMCID: PMC9456153 DOI: 10.3390/ijms23179808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene and dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality in DMD patients. We tested the hypothesis that DCM is caused by metabolic impairments by employing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from four DMD patients; an adult male, an adult female, a 7-year-old (7y) male and a 13-year-old (13y) male, all compared to two healthy volunteers. To test the hypothesis, we measured the bioenergetics, metabolomics, electrophysiology, mitochondrial morphology and mitochondrial activity of CMs, using respirometry, LC–MS, patch clamp, electron microscopy (EM) and confocal microscopy methods. We found that: (1) adult DMD CMs exhibited impaired energy metabolism and abnormal mitochondrial structure and function. (2) The 7y CMs demonstrated arrhythmia-free spontaneous firing along with “healthy-like” metabolic status, normal mitochondrial morphology and activity. In contrast, the 13y CMs were mildly arrhythmogenic and showed adult DMD-like bioenergetics deficiencies. (3) In DMD adult CMs, mitochondrial activities were attenuated by 45–48%, whereas the 7y CM activity was similar to that of healthy CMs. (4) In DMD CMs, but not in 7y CMs, there was a 75% decrease in the mitochondrial ATP production rate compared to healthy iPSC-CMs. In summary, DMD iPSC-CMs exhibit bioenergetic and metabolic impairments that are associated with rhythm disturbances corresponding to the patient’s phenotype, thereby constituting novel targets for alleviating cardiomyopathy in DMD patients.
Collapse
Affiliation(s)
- Lubna Willi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Jonatan Fernandez-Garcia
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Bella Agranovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Margarita Shulman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Daniel E. Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Correspondence: (O.B.); (E.G.)
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Correspondence: (O.B.); (E.G.)
| |
Collapse
|
9
|
Yonekawa T, Rauckhorst AJ, El-Hattab S, Cuellar MA, Venzke D, Anderson ME, Okuma H, Pewa AD, Taylor EB, Campbell KP. Large1 gene transfer in older myd mice with severe muscular dystrophy restores muscle function and greatly improves survival. SCIENCE ADVANCES 2022; 8:eabn0379. [PMID: 35613260 PMCID: PMC9132445 DOI: 10.1126/sciadv.abn0379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Muscular dystrophy is a progressive and ultimately lethal neuromuscular disease. Although gene editing and gene transfer hold great promise as therapies when administered before the onset of severe clinical symptoms, it is unclear whether these strategies can restore muscle function and improve survival in the late stages of muscular dystrophy. Largemyd/Largemyd (myd) mice lack expression of like-acetylglucosaminyltransferase-1 (Large1) and exhibit severe muscle pathophysiology, impaired mobility, and a markedly reduced life span. Here, we show that systemic delivery of AAV2/9 CMV Large1 (AAVLarge1) in >34-week-old myd mice with advanced disease restores matriglycan expression on dystroglycan, attenuates skeletal muscle pathophysiology, improves motor and respiratory function, and normalizes systemic metabolism, which collectively and markedly extends survival. Our results in a mouse model of muscular dystrophy demonstrate that skeletal muscle function can be restored, illustrating its remarkable plasticity, and that survival can be greatly improved even after the onset of severe muscle pathophysiology.
Collapse
Affiliation(s)
- Takahiro Yonekawa
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Adam J. Rauckhorst
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center (FOEDRC), and FOEDRC Metabolomics Core Facility, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Sara El-Hattab
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Marco A. Cuellar
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - David Venzke
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Mary E. Anderson
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Hidehiko Okuma
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Alvin D. Pewa
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center (FOEDRC), and FOEDRC Metabolomics Core Facility, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center (FOEDRC), and FOEDRC Metabolomics Core Facility, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Kevin P. Campbell
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, Howard Hughes Medical Institute, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review highlights the key studies investigating various types of biomarkers in Duchenne muscular dystrophy (DMD). RECENT FINDINGS Several proteomic and metabolomic studies have been undertaken in both human DMD patients and animal models of DMD that have identified potential biomarkers in DMD. Although there have been a number of proteomic and metabolomic studies that have identified various potential biomarkers in DMD, more definitive studies still need to be undertaken in DMD patients to firmly correlate these biomarkers with diagnosis, disease progression, and monitoring the effects of novel treatment strategies being developed.
Collapse
Affiliation(s)
- Theo Lee-Gannon
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Xuan Jiang
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tara C Tassin
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pradeep P A Mammen
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Heart Failure, Ventricular Assist Device & Heart Transplant Program, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
11
|
Lindsay A, Trewin AJ, Sadler KJ, Laird C, Della Gatta PA, Russell AP. Sensitivity to behavioral stress impacts disease pathogenesis in dystrophin-deficient mice. FASEB J 2021; 35:e22034. [PMID: 34780665 DOI: 10.1096/fj.202101163rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.
Collapse
Affiliation(s)
- Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kate J Sadler
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Claire Laird
- Researcher Development, Deakin Research, Deakin University, Geelong, Victoria, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
12
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
13
|
Tsonaka R, Signorelli M, Sabir E, Seyer A, Hettne K, Aartsma-Rus A, Spitali P. Longitudinal metabolomic analysis of plasma enables modeling disease progression in Duchenne muscular dystrophy mouse models. Hum Mol Genet 2021; 29:745-755. [PMID: 32025735 PMCID: PMC7104681 DOI: 10.1093/hmg/ddz309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy is a severe pediatric neuromuscular disorder caused by the lack of dystrophin. Identification of biomarkers is needed to support and accelerate drug development. Alterations of metabolites levels in muscle and plasma have been reported in pre-clinical and clinical cross-sectional comparisons. We present here a 7-month longitudinal study comparing plasma metabolomic data in wild-type and mdx mice. A mass spectrometry approach was used to study metabolites in up to five time points per mouse at 6, 12, 18, 24 and 30 weeks of age, providing an unprecedented in depth view of disease trajectories. A total of 106 metabolites were studied. We report a signature of 31 metabolites able to discriminate between healthy and disease at various stages of the disease, covering the acute phase of muscle degeneration and regeneration up to the deteriorating phase. We show how metabolites related to energy production and chachexia (e.g. glutamine) are affected in mdx mice plasma over time. We further show how the signature is connected to molecular targets of nutraceuticals and pharmaceutical compounds currently in development as well as to the nitric oxide synthase pathway (e.g. arginine and citrulline). Finally, we evaluate the signature in a second longitudinal study in three independent mouse models carrying 0, 1 or 2 functional copies of the dystrophin paralog utrophin. In conclusion, we report an in-depth metabolomic signature covering previously identified associations and new associations, which enables drug developers to peripherally assess the effect of drugs on the metabolic status of dystrophic mice.
Collapse
Affiliation(s)
- Roula Tsonaka
- Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Mirko Signorelli
- Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Ekrem Sabir
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | | | - Kristina Hettne
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
14
|
Sadler KJ, Gatta PAD, Naim T, Wallace MA, Lee A, Zaw T, Lindsay A, Chung RS, Bello L, Pegoraro E, Lamon S, Lynch GS, Russell AP. Striated muscle activator of Rho signalling (STARS) overexpression in the mdx mouse enhances muscle functional capacity and regulates the actin cytoskeleton and oxidative phosphorylation pathways. Exp Physiol 2021; 106:1597-1611. [PMID: 33963617 DOI: 10.1113/ep089253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/04/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Striated muscle activator of rho signalling (STARS) is an actin-binding protein that regulates transcriptional pathways controlling muscle function, growth and myogenesis, processes that are impaired in dystrophic muscle: what is the regulation of the STARS pathway in Duchenne muscular dystrophy (DMD)? What is the main finding and its importance? Members of the STARS signalling pathway are reduced in the quadriceps of patients with DMD and in mouse models of muscular dystrophy. Overexpression of STARS in the dystrophic deficient mdx mouse model increased maximal isometric specific force and upregulated members of the actin cytoskeleton and oxidative phosphorylation pathways. Regulating STARS may be a therapeutic approach to enhance muscle health. ABSTRACT Duchenne muscular dystrophy (DMD) is characterised by impaired cytoskeleton organisation, cytosolic calcium handling, oxidative stress and mitochondrial dysfunction. This results in progressive muscle damage, wasting and weakness and premature death. The striated muscle activator of rho signalling (STARS) is an actin-binding protein that activates the myocardin-related transcription factor-A (MRTFA)/serum response factor (SRF) transcriptional pathway, a pathway regulating cytoskeletal structure and muscle function, growth and repair. We investigated the regulation of the STARS pathway in the quadriceps muscle from patients with DMD and in the tibialis anterior (TA) muscle from the dystrophin-deficient mdx and dko (utrophin and dystrophin null) mice. Protein levels of STARS, SRF and RHOA were reduced in patients with DMD. STARS, SRF and MRTFA mRNA levels were also decreased in DMD muscle, while Stars mRNA levels were decreased in the mdx mice and Srf and Mrtfa mRNAs decreased in the dko mice. Overexpressing human STARS (hSTARS) in the TA muscles of mdx mice increased maximal isometric specific force by 13% (P < 0.05). This was not associated with changes in muscle mass, fibre cross-sectional area, fibre type, centralised nuclei or collagen deposition. Proteomics screening followed by pathway enrichment analysis identified that hSTARS overexpression resulted in 31 upregulated and 22 downregulated proteins belonging to the actin cytoskeleton and oxidative phosphorylation pathways. These pathways are impaired in dystrophic muscle and regulate processes that are vital for muscle function. Increasing the STARS protein in dystrophic muscle improves muscle force production, potentially via synergistic regulation of cytoskeletal structure and energy production.
Collapse
Affiliation(s)
- Kate J Sadler
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Timur Naim
- Department of Physiology, Centre for Muscle Research, University of Melbourne, Parkville, Victoria, Australia
| | - Marita A Wallace
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, New South Wales, Australia
| | - Thiri Zaw
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, Australia
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, New South Wales, Australia
| | - Luca Bello
- Department of Neurosciences, ERN Neuromuscular Center, University of Padua, Padua, Italy
| | - Elena Pegoraro
- Department of Neurosciences, ERN Neuromuscular Center, University of Padua, Padua, Italy
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gordon S Lynch
- Department of Physiology, Centre for Muscle Research, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
15
|
Lindsay A, Kemp B, Larson AA, Baumann CW, McCourt PM, Holm J, Karachunski P, Lowe DA, Ervasti JM. Tetrahydrobiopterin synthesis and metabolism is impaired in dystrophin-deficient mdx mice and humans. Acta Physiol (Oxf) 2021; 231:e13627. [PMID: 33580591 DOI: 10.1111/apha.13627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
AIM Loss of dystrophin causes oxidative stress and affects nitric oxide synthase-mediated vascular function in striated muscle. Because tetrahydrobiopterin is an antioxidant and co-factor for nitric oxide synthase, we tested the hypothesis that tetrahydrobiopterin would be low in mdx mice and humans deficient for dystrophin. METHODS Tetrahydrobiopterin and its metabolites were measured at rest and in response to exercise in Duchenne and Becker muscular dystrophy patients, age-matched male controls as well as wild-type, mdx and mdx mice transgenically overexpressing skeletal muscle-specific dystrophins. Mdx mice were also supplemented with tetrahydrobiopterin and pathophysiology was assessed. RESULTS Duchenne muscular dystrophy patients had lower urinary dihydrobiopterin + tetrahydrobiopterin/specific gravity1.020 compared to unaffected age-matched males and Becker muscular dystrophy patients. Mdx mice had low urinary and skeletal muscle dihydrobiopterin + tetrahydrobiopterin compared to wild-type mice. Overexpression of dystrophins that localize neuronal nitric oxide synthase restored dihydrobiopterin + tetrahydrobiopterin in mdx mice to wild-type levels while utrophin overexpression did not. Mdx mice and Duchenne muscular dystrophy patients did not increase tetrahydrobiopterin during exercise and in mdx mice tetrahydrobiopterin deficiency was likely because of lower levels of sepiapterin reductase in skeletal muscle. Tetrahydrobiopterin supplementation improved skeletal muscle strength, resistance to fatiguing and injurious contractions in vivo, increased utrophin and capillary density of skeletal muscle and lowered cardiac muscle fibrosis and left ventricular wall thickness in mdx mice. CONCLUSION These data demonstrate that impaired tetrahydrobiopterin synthesis is associated with dystrophin loss and treatment with tetrahydrobiopterin improves striated muscle histopathology and skeletal muscle function in mdx mice.
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Bailey Kemp
- Lillehei Heart Institute, Cancer and Cardiovascular Research Center, University of Minnesota, Minneapolis, MN, USA
| | - Alexie A Larson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Cory W Baumann
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Preston M McCourt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - John Holm
- Lillehei Heart Institute, Cancer and Cardiovascular Research Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter Karachunski
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Dawn A Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Dabaj I, Ferey J, Marguet F, Gilard V, Basset C, Bahri Y, Brehin AC, Vanhulle C, Leturcq F, Marret S, Laquerrière A, Schmitz-Afonso I, Afonso C, Bekri S, Tebani A. Muscle metabolic remodelling patterns in Duchenne muscular dystrophy revealed by ultra-high-resolution mass spectrometry imaging. Sci Rep 2021; 11:1906. [PMID: 33479270 PMCID: PMC7819988 DOI: 10.1038/s41598-021-81090-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common and severe X-linked myopathy, characterized by muscle degeneration due to altered or absent dystrophin. DMD has no effective cure, and the underlying molecular mechanisms remain incompletely understood. The aim of this study is to investigate the metabolic changes in DMD using mass spectrometry-based imaging. Nine human muscle biopsies from DMD patients and nine muscle biopsies from control individuals were subjected to untargeted MSI using matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry. Both univariate and pattern recognition techniques have been used for data analysis. This study revealed significant changes in 34 keys metabolites. Seven metabolites were decreased in the Duchenne biopsies compared to control biopsies including adenosine triphosphate, and glycerophosphocholine. The other 27 metabolites were increased in the Duchenne biopsies, including sphingomyelin, phosphatidylcholines, phosphatidic acids and phosphatidylserines. Most of these dysregulated metabolites are tightly related to energy and phospholipid metabolism. This study revealed a deep metabolic remodelling in phospholipids and energy metabolism in DMD. This systems-based approach enabled exploring the metabolism in DMD in an unprecedented holistic and unbiased manner with hypothesis-free strategies.
Collapse
Affiliation(s)
- Ivana Dabaj
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76031, Rouen, France
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000, Rouen, France
| | - Justine Ferey
- Department of Metabolic Biochemistry, Rouen University Hospital, 76031, Rouen, Cedex, France
| | - Florent Marguet
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000, Rouen, France
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Vianney Gilard
- Department of Metabolic Biochemistry, Rouen University Hospital, 76031, Rouen, Cedex, France
- Department of Neurosurgery, Rouen University Hospital, Rouen, France
| | - Carole Basset
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Youssef Bahri
- Normandie Univ, COBRA UMR 6014 Et FR 3038 Univ Rouen; INSA Rouen; CNRS IRCOF, 1 Rue TesnieÌre, 76821, Mont-Saint-Aignan Cedex, France
| | - Anne-Claire Brehin
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, 76000, Rouen, France
| | - Catherine Vanhulle
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76031, Rouen, France
| | - France Leturcq
- APHP, Laboratoire de Génétique Et Biologie Moléculaire, HUPC Cochin, Paris, France
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76031, Rouen, France
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000, Rouen, France
| | - Annie Laquerrière
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000, Rouen, France
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Isabelle Schmitz-Afonso
- Normandie Univ, COBRA UMR 6014 Et FR 3038 Univ Rouen; INSA Rouen; CNRS IRCOF, 1 Rue TesnieÌre, 76821, Mont-Saint-Aignan Cedex, France
| | - Carlos Afonso
- Normandie Univ, COBRA UMR 6014 Et FR 3038 Univ Rouen; INSA Rouen; CNRS IRCOF, 1 Rue TesnieÌre, 76821, Mont-Saint-Aignan Cedex, France
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000, Rouen, France.
- Department of Metabolic Biochemistry, Rouen University Hospital, 76031, Rouen, Cedex, France.
| | - Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, 76031, Rouen, Cedex, France
| |
Collapse
|
17
|
Van Pelt DW, Kharaz YA, Sarver DC, Eckhardt LR, Dzierzawski JT, Disser NP, Piacentini AN, Comerford E, McDonagh B, Mendias CL. Multiomics analysis of the mdx/mTR mouse model of Duchenne muscular dystrophy. Connect Tissue Res 2021; 62:24-39. [PMID: 32664808 DOI: 10.1080/03008207.2020.1791103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease characterized by extensive muscle weakness. Patients with DMD lack a functional dystrophin protein, which transmits force and organizes the cytoskeleton of skeletal muscle. Multiomic studies have been proposed as a way to obtain novel insight about disease processes from preclinical models, and we used this approach to study pathological changes in dystrophic muscles. MATERIALS AND METHODS We evaluated hindlimb muscles of male mdx/mTR mice, which lack a functional dystrophin protein and have deficits in satellite cell abundance and proliferative capacity. Wild type (WT) C57BL/6 J mice served as controls. Muscle fiber contractility was measured, along with changes in the transcriptome using RNA sequencing, and in the proteome, metabolome, and lipidome using mass spectrometry. RESULTS While mdx/mTR mice displayed gross pathological changes and continued cycles of degeneration and regeneration, we found no differences in permeabilized fiber contractility between strains. However, there were numerous changes in the transcriptome and proteome related to protein balance, contractile elements, extracellular matrix, and metabolism. There was only a 53% agreement in fold-change data between the proteome and transcriptome. Numerous changes in markers of skeletal muscle metabolism were observed, with dystrophic muscles exhibiting elevated glycolytic metabolites such as 6-phosphoglycerate, fructose-6-phosphate and glucose-6-phosphate, fructose bisphosphate, phosphorylated hexoses, and phosphoenolpyruvate. CONCLUSIONS These findings highlight the utility of multiomics in studying muscle disease, and provide additional insight into the pathological changes in dystrophic muscles that might help to indirectly guide evidence-based nutritional or exercise prescription in DMD patients.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky , Lexington, KY, USA
| | - Yalda A Kharaz
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, UK
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Logan R Eckhardt
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, MI, USA
| | - Justin T Dzierzawski
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, MI, USA
| | | | - Alex N Piacentini
- Research Institute, Hospital for Special Surgery , New York, NY, USA
| | - Eithne Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, UK
| | - Brian McDonagh
- Department of Physiology, School of Medicine, National University of Ireland , Galway, Ireland
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, MI, USA.,Research Institute, Hospital for Special Surgery , New York, NY, USA.,Department of Physiology & Biophysics, Weill Cornell Medical College , New York, NY, USA
| |
Collapse
|
18
|
Frederick DW, McDougal AV, Semenas M, Vappiani J, Nuzzo A, Ulrich JC, Becherer JD, Preugschat F, Stewart EL, Sévin DC, Kramer HF. Complementary NAD + replacement strategies fail to functionally protect dystrophin-deficient muscle. Skelet Muscle 2020; 10:30. [PMID: 33092650 PMCID: PMC7579925 DOI: 10.1186/s13395-020-00249-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder stemming from a loss of functional dystrophin. Current therapeutic options for DMD are limited, as small molecule modalities remain largely unable to decrease the incidence or mitigate the consequences of repetitive mechanical insults to the muscle during eccentric contractions (ECCs). METHODS Using a metabolomics-based approach, we observed distinct and transient molecular phenotypes in muscles of dystrophin-deficient MDX mice subjected to ECCs. Among the most chronically depleted metabolites was nicotinamide adenine dinucleotide (NAD), an essential metabolic cofactor suggested to protect muscle from structural and metabolic degeneration over time. We tested whether the MDX muscle NAD pool can be expanded for therapeutic benefit using two complementary small molecule strategies: provision of a biosynthetic precursor, nicotinamide riboside, or specific inhibition of the NAD-degrading ADP-ribosyl cyclase, CD38. RESULTS Administering a novel, potent, and orally available CD38 antagonist to MDX mice successfully reverted a majority of the muscle metabolome toward the wildtype state, with a pronounced impact on intermediates of the pentose phosphate pathway, while supplementing nicotinamide riboside did not significantly affect the molecular phenotype of the muscle. However, neither strategy sustainably increased the bulk tissue NAD pool, lessened muscle damage markers, nor improved maximal hindlimb strength following repeated rounds of eccentric challenge and recovery. CONCLUSIONS In the absence of dystrophin, eccentric injury contributes to chronic intramuscular NAD depletion with broad pleiotropic effects on the molecular phenotype of the tissue. These molecular consequences can be more effectively overcome by inhibiting the enzymatic activity of CD38 than by supplementing nicotinamide riboside. However, we found no evidence that either small molecule strategy is sufficient to restore muscle contractile function or confer protection from eccentric injury, undermining the modulation of NAD metabolism as a therapeutic approach for DMD.
Collapse
Affiliation(s)
- David W Frederick
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Alan V McDougal
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Melisa Semenas
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | | | - Andrea Nuzzo
- Target Sciences, Computational Biology, GlaxoSmithKline R&D, Collegeville, PA, USA
| | - John C Ulrich
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - J David Becherer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Frank Preugschat
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Eugene L Stewart
- Computational Sciences, Molecular Design, GlaxoSmithKline R&D, Collegeville, PA, USA.
| | | | - H Fritz Kramer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| |
Collapse
|
19
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of fatty acid binding proteins in muscular dystrophy. Expert Rev Proteomics 2020; 17:137-148. [PMID: 32067530 DOI: 10.1080/14789450.2020.1732214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Duchenne muscular dystrophy is a neuromuscular disorder, which is caused by abnormalities in the DMD gene that encodes the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting, dystrophinopathy also affects non-skeletal muscle tissues, including cells in the cardio-respiratory system, the central nervous system, the liver and the kidney.Areas covered: This review summarizes the proteomic characterization of a key class of lipid chaperones, the large family of fatty acid binding proteins, and their potential role in muscular dystrophy. Recent proteomic surveys using animal models and patient specimens are reviewed. Pathobiochemical changes in specific proteoforms of fatty acid binding protein in the multi-system pathology of dystrophinopathy are discussed.Expert opinion: The mass spectrometric identification of distinct changes in fatty acid binding proteins in muscle, heart, liver, kidney and serum demonstrates that considerable alterations occur in key steps of metabolite transport and fat metabolism in muscular dystrophy. These new findings might be helpful to further develop a comprehensive biomarker signature of metabolic changes in X-linked muscular dystrophy, which should improve (i) our understanding of complex pathobiochemical changes due to dystrophin deficiency, (ii) the identification of novel therapeutic targets, and (iii) the design of differential diagnostic, prognostic and therapy-monitoring approaches.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
20
|
Reggio A, Rosina M, Krahmer N, Palma A, Petrilli LL, Maiolatesi G, Massacci G, Salvatori I, Valle C, Testa S, Gargioli C, Fuoco C, Castagnoli L, Cesareni G, Sacco F. Metabolic reprogramming of fibro/adipogenic progenitors facilitates muscle regeneration. Life Sci Alliance 2020; 3:3/3/e202000646. [PMID: 32019766 PMCID: PMC7003708 DOI: 10.26508/lsa.202000660] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022] Open
Abstract
High-fat diet ameliorates muscle dystrophic phenotype by promoting the FAP-dependent myogenesis of satellite cells. In Duchenne muscular dystrophy (DMD), the absence of the dystrophin protein causes a variety of poorly understood secondary effects. Notably, muscle fibers of dystrophic individuals are characterized by mitochondrial dysfunctions, as revealed by a reduced ATP production rate and by defective oxidative phosphorylation. Here, we show that in a mouse model of DMD (mdx), fibro/adipogenic progenitors (FAPs) are characterized by a dysfunctional mitochondrial metabolism which correlates with increased adipogenic potential. Using high-sensitivity mass spectrometry–based proteomics, we report that a short-term high-fat diet (HFD) reprograms dystrophic FAP metabolism in vivo. By combining our proteomic dataset with a literature-derived signaling network, we revealed that HFD modulates the β-catenin–follistatin axis. These changes are accompanied by significant amelioration of the histological phenotype in dystrophic mice. Transplantation of purified FAPs from HFD-fed mice into the muscles of dystrophic recipients demonstrates that modulation of FAP metabolism can be functional to ameliorate the dystrophic phenotype. Our study supports metabolic reprogramming of muscle interstitial progenitor cells as a novel approach to alleviate some of the adverse outcomes of DMD.
Collapse
Affiliation(s)
- Alessio Reggio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marco Rosina
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Natalie Krahmer
- Department Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Alessandro Palma
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Giorgia Massacci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Illari Salvatori
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Stefano Testa
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy .,Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Dowling P, Zweyer M, Raucamp M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic and cell biological profiling of the renal phenotype of the mdx-4cv mouse model of Duchenne muscular dystrophy. Eur J Cell Biol 2019; 99:151059. [PMID: 31776009 DOI: 10.1016/j.ejcb.2019.151059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
The X-linked inherited muscle wasting disease Duchenne muscular dystrophy, which is caused by primary abnormalities in the membrane cytoskeletal protein dystrophin, is a multi-system disorder. Highly progressive forms of dystrophinopathy are associated with a complex secondary pathophysiology, including renal dysfunction. It was therefore of interest to carry out a systematic survey of potential proteome-wide changes in the kidney of the established mdx-4cv mouse model of dystrophinopathy. Of 5878 mass spectrometrically identified kidney proteins, 82 versus 142 proteins were shown to be decreased or increased, respectively, in association with muscular dystrophy. The most decreased versus increased protein species are the ACSM3 isoform of mitochondrial acyl-coenzyme A synthetase and the FABP1 isoform of fatty acid binding protein, respectively. Both proteomic findings were verified by immunofluorescence microscopy and immunoblot analysis. Interestingly, haematoxylin/eosin staining indicated diffuse whitish deposits in the mdx-4cv kidney, and an increased intensity of Sudan Black labelling of kidney cells revealed ectopic fat deposition. Although the proteomic results and cell biological findings do not demonstrate a direct functional link between increased FABP1 and fat accumulation, the results suggest that the up-regulation of FABP1 may be related to abnormal fat metabolism. This makes FABP1 potentially a novel pathobiochemical indicator for studying kidney abnormalities in the mdx-4cv model of dystrophinopathy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth W23F2H6, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth W23F2H6, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth W23F2H6, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth W23F2H6, Co. Kildare, Ireland.
| |
Collapse
|
22
|
Thangarajh M, Zhang A, Gill K, Ressom HW, Li Z, Varghese RS, Hoffman EP, Nagaraju K, Hathout Y, Boca SM. Discovery of potential urine-accessible metabolite biomarkers associated with muscle disease and corticosteroid response in the mdx mouse model for Duchenne. PLoS One 2019; 14:e0219507. [PMID: 31310630 PMCID: PMC6634414 DOI: 10.1371/journal.pone.0219507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Urine is increasingly being considered as a source of biomarker development in Duchenne Muscular Dystrophy (DMD), a severe, life-limiting disorder that affects approximately 1 in 4500 boys. In this study, we considered the mdx mice-a murine model of DMD-to discover biomarkers of disease, as well as pharmacodynamic biomarkers responsive to prednisolone, a corticosteroid commonly used to treat DMD. Longitudinal urine samples were analyzed from male age-matched mdx and wild-type mice randomized to prednisolone or vehicle control via liquid chromatography tandem mass spectrometry. A large number of metabolites (869 out of 6,334) were found to be significantly different between mdx and wild-type mice at baseline (Bonferroni-adjusted p-value < 0.05), thus being associated with disease status. These included a metabolite with m/z = 357 and creatine, which were also reported in a previous human study looking at serum. Novel observations in this study included peaks identified as biliverdin and hypusine. These four metabolites were significantly higher at baseline in the urine of mdx mice compared to wild-type, and significantly changed their levels over time after baseline. Creatine and biliverdin levels were also different between treated and control groups, but for creatine this may have been driven by an imbalance at baseline. In conclusion, our study reports a number of biomarkers, both known and novel, which may be related to either the mechanisms of muscle injury in DMD or prednisolone treatment.
Collapse
Affiliation(s)
- Mathula Thangarajh
- Department of Neurology, George Washington University School of Medicine and Children’s National Health Systems, Washington, D.C., United States of America
| | - Aiping Zhang
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Children’s National Health Systems, Washington, D.C., United States of America
| | - Kirandeep Gill
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Habtom W. Ressom
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Zhenzhi Li
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Rency S. Varghese
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Eric P. Hoffman
- School of Pharmacy & Pharmaceutical Sciences, Binghamton University, Binghamton, N.Y., United States of America
| | - Kanneboyina Nagaraju
- School of Pharmacy & Pharmaceutical Sciences, Binghamton University, Binghamton, N.Y., United States of America
| | - Yetrib Hathout
- School of Pharmacy & Pharmaceutical Sciences, Binghamton University, Binghamton, N.Y., United States of America
| | - Simina M. Boca
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, D.C., United States of America
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|