1
|
Palomba S, Costanzi F, Caserta D, Vitagliano A. Pharmacological and non-pharmacological interventions for improving endometrial receptivity in infertile patients with polycystic ovary syndrome: a comprehensive review of the available evidence. Reprod Biomed Online 2024; 49:104381. [PMID: 39454320 DOI: 10.1016/j.rbmo.2024.104381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/28/2024]
Abstract
Direct and indirect evidence suggests that endometrial receptivity may play a crucial role in the reduced fertility rate of women with polycystic ovary syndrome (PCOS). Various pharmacological and non-pharmacological strategies with potential effects on endometrial receptivity in patients with PCOS have been proposed. The aim of this study was to summarize the rationale and the clinical and experimental evidence of interventions tested for improving endometrial receptivity in infertile patients with PCOS. A systematic review was conducted by consulting electronic databases. All interventions with a potential influence on endometrial receptivity in infertile patients with PCOS were evaluated, and their main biological mechanisms were analysed. In total, 24 interventions related to endometrial receptivity were identified. Notwithstanding a strong biological rationale, no intervention aimed at improving endometrial receptivity in women with PCOS is supported by an adequate body of evidence, limiting their use in clinical practice. Further high-quality research is needed in this field to limit potentially ineffective and unsafe add-on treatments in infertile patients with PCOS.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Flavia Costanzi
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy; University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Donatella Caserta
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Amerigo Vitagliano
- Unit of Obstetrics and Gynaecology, Department of Interdisciplinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
2
|
Tamessar CT, Anderson AL, Bromfield EG, Trigg NA, Parameswaran S, Stanger SJ, Weidenhofer J, Zhang HM, Robertson SA, Sharkey DJ, Nixon B, Schjenken JE. The efficacy and functional consequences of interactions between human spermatozoa and seminal fluid extracellular vesicles. REPRODUCTION AND FERTILITY 2024; 5:e230088. [PMID: 39230058 PMCID: PMC11466262 DOI: 10.1530/raf-23-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/04/2024] [Indexed: 09/05/2024] Open
Abstract
Abstract Seminal fluid extracellular vesicles (SFEVs) have previously been shown to interact with spermatozoa and influence their fertilisation capacity. Here, we sought to extend these studies by exploring the functional consequences of SFEV interactions with human spermatozoa. SFEVs were isolated from the seminal fluid of normozoospermic donors prior to assessing the kinetics of sperm-SFEV binding in vitro, as well as the effects of these interactions on sperm capacitation, acrosomal exocytosis, and motility profile. Biotin-labelled SFEV proteins were transferred primarily to the flagellum of spermatozoa within minutes of co-incubation, although additional foci of SFEV biotinylated proteins also labelled the mid-piece and head domain. Functional analyses of high-quality spermatozoa collected following liquefaction revealed that SFEVs did not influence sperm motility during incubation at pH 5, yet SFEVs induced subtle increases in total and progressive motility in sperm incubated with SFEVs at pH 7. Additional investigation of sperm motility kinematic parameters revealed that SFEVs significantly decreased beat cross frequency and increased distance straight line, linearity, straightness, straight line velocity, and wobble. SFEVs did not influence sperm capacitation status or the ability of sperm to undergo acrosomal exocytosis. Functional assessment of both high- and low-quality spermatozoa collected prior to liquefaction showed limited SFEV influence, with these vesicles inducing only subtle decreases in beat cross frequency in spermatozoa of both groups. These findings raise the prospect that, aside from subtle effects on sperm motility, the encapsulated SFEV cargo may be destined for physiological targets other than the male germline, notably the female reproductive tract. Lay Summary A male's influence over the biological processes of pregnancy extends beyond the provision of sperm. Molecular signals present in the ejaculate can influence the likelihood of pregnancy and healthy pregnancy progression, but the identity and function of these signals remain unclear. In this study, we wanted to understand if nano-sized particles present in the male ejaculate, called seminal fluid extracellular vesicles, can assist sperm in traversing the female reproductive tract to access the egg. To explore this, we isolated seminal fluid extracellular vesicles from human semen and incubated them with sperm. Our data showed that seminal fluid extracellular vesicles act to transfer molecular information to sperm, but this resulted in only subtle changes to the movement of sperm. Graphical abstract
Collapse
Affiliation(s)
- Cottrell T Tamessar
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Amanda L Anderson
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of BioSciences, Faculty of Science, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Natalie A Trigg
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Shanmathi Parameswaran
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Simone J Stanger
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Hui-Ming Zhang
- Central Analytical Facility, Research and Innovation Division, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Sharkey
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - John E Schjenken
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
3
|
Nikolaeva M, Arefieva A, Babayan A, Aksenov V, Zhukova A, Kalinina E, Krechetova L, Sukhikh G. Stress Biomarkers Transferred Into the Female Reproductive Tract by Seminal Plasma Are Associated with ICSI Outcomes. Reprod Sci 2024; 31:1732-1746. [PMID: 38393625 DOI: 10.1007/s43032-024-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to determine whether male stress is related to seminal stress biomarkers and pregnancy achievement in women exposed to their partner's seminal plasma (SP) in the intracytoplasmic sperm injection (ICSI) cycle. In this pilot prospective study, 20 couples undergoing ICSI, as well as 5 fertile sperm donors and 10 saliva donors, were investigated. Women were exposed to their partner's SP via unprotected sexual intercourse during the ICSI cycle and intravaginal application on the day of ovum pick-up (Day-OPU). Semen samples were collected from male partners by masturbation on the Day-OPU. Saliva and serum samples were collected prior to masturbation. Body fluids were frozen at - 80 °C until assayed. Biomarkers of activity of the sympathetic adrenomedullary axis (salivary alpha-amylase and adrenaline), sympathetic neural axis (noradrenaline and dopamine), hypothalamic-pituitary-adrenal (HPA) system (cortisol), and immune system (C-reactive protein and interleukin (IL)-18) were estimated to examine their association with SP composition and clinical pregnancy achievement. The clinical pregnancy rate was 45.0%. In the unsuccessful ICSI group, blunted levels of salivary and serum cortisol were found compared to the successful ICSI group and the fertile sperm donors. With regard to seminal markers, decreased cortisol level and elevated noradrenaline, noradrenaline/cortisol ratio, and lL-18 levels were strongly associated with ICSI failure (areas under the ROC curves were, 0.813, 0.848, 0.899, and 0.828, respectively). These findings confirm that stress response systems activity affects SP composition, which in turn is associated with ICSI outcomes in women exposed to their partner's SP during an ICSI cycle.
Collapse
Affiliation(s)
- Marina Nikolaeva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Alla Arefieva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alina Babayan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Anastasia Zhukova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Kalinina
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Liubov Krechetova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
- First Moscow State Medical University Named After I.M. Sechenov, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
4
|
Samare-Najaf M, Razavinasab SA, Samareh A, Jamali N. Omics-based novel strategies in the diagnosis of endometriosis. Crit Rev Clin Lab Sci 2024; 61:205-225. [PMID: 37878077 DOI: 10.1080/10408363.2023.2270736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Endometriosis, an enigmatic and chronic disorder, is considered a debilitating condition despite being benign. Globally, this gynecologic disorder affects up to 10% of females of reproductive age, impacting almost 190 million individuals. A variety of genetic and environmental factors are involved in endometriosis development, hence the pathophysiology and etiology of endometriosis remain unclear. The uncertainty of the etiology of the disease and its complexity along with nonspecific symptoms have led to misdiagnosis or lack of diagnosis of affected people. Biopsy and laparoscopy are referred to as the gold standard for endometriosis diagnosis. However, the invasiveness of the procedure, the unnecessary operation in disease-free women, and the dependence of the reliability of diagnosis on experience in this area are considered the most significant limitations. Therefore, continuous studies have attempted to offer a noninvasive and reliable approach. The recent advances in modern technologies have led to the generation of large-scale biological data sets, known as -omics data, resulting in the proceeding of the -omics century in biomedical sciences. Thereby, the present study critically reviews novel and noninvasive biomarkers that are based on -omics approaches from 2020 onward. The findings reveal that biomarkers identified based on genomics, epigenomics, transcriptomics, proteomics, and metabolomics are potentially able to diagnose endometriosis, predict prognosis, and stage patients, and potentially, in the near future, a multi-panel of these biomarkers will generate clinical benefits.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
5
|
Catalini L, Burton M, Egeberg DL, Eskildsen TV, Thomassen M, Fedder J. In vivo effect of vaginal seminal plasma application on the human endometrial transcriptome: a randomized controlled trial. Mol Hum Reprod 2024; 30:gaae017. [PMID: 38733619 DOI: 10.1093/molehr/gaae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/04/2024] [Indexed: 05/13/2024] Open
Abstract
Studies in humans and animals suggest that seminal plasma, the acellular seminal fluid component, stimulates the endometrium to promote immune tolerance and facilitate implantation. We designed a randomized, double-blinded, placebo-controlled trial to investigate changes in the endometrial transcriptomic profile after vaginal application of seminal plasma. The study participants were randomized into two groups. Five women received a vaginal application of seminal plasma, and four received a placebo application with saline solution. The application was performed 2 days after HCG-triggered ovulation in an unstimulated cycle. After 5-8 days, an endometrial biopsy was collected to analyze differences in the endometrial transcriptomic profile using microarray analyses. A differential gene expression analysis and a gene set analysis were performed. The gene set enrichment analysis showed a positive enrichment of pathways associated with the immune response, cell viability, proliferation, and cellular movement. Moreover, pathways involved in implantation, embryo development, oocyte maturation, and angiogenesis were positively enriched. The differential gene expression analysis, after adjusting for multiple testing, showed no significantly differentially expressed genes between the two groups. A comparative analysis was also performed with similar studies conducted in other animals or in vitro using human endometrial cells. The comparative analysis showed that the effect of seminal plasma effect on the endometrium is similar in pigs, mice, and in vitro human endometrial cells. The present study provides evidence that seminal plasma might impact the endometrium during the implantation window, with potential to affect endometrial receptivity and embryo development.
Collapse
Affiliation(s)
- Laura Catalini
- Research Unit of Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre of Andrology and Fertility Clinic, Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Mark Burton
- Research Unit of Clinical Genetics, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, University of Southern Denmark & Region of Southern Denmark, Odense, Denmark
| | | | - Tilde V Eskildsen
- Research Unit of Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre of Andrology and Fertility Clinic, Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Research Unit of Clinical Genetics, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, University of Southern Denmark & Region of Southern Denmark, Odense, Denmark
| | - Jens Fedder
- Research Unit of Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre of Andrology and Fertility Clinic, Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
van den Berg JS, Molina NM, Altmäe S, Arends B, Steba GS. A systematic review identifying seminal plasma biomarkers and their predictive ability on IVF and ICSI outcomes. Reprod Biomed Online 2024; 48:103622. [PMID: 38128376 DOI: 10.1016/j.rbmo.2023.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 12/23/2023]
Abstract
The diverse nature and high molecule concentration of seminal plasma (SP) makes this fluid a good potential source for a potential biomarker that could predict assisted reproductive technology (ART) outcomes. Currently, semen quality parameters cannot accurately predict ART outcomes. A systematic literature search was conducted to identify human SP biomarkers with potential predictive ability for the outcomes of IVF and intracytoplasmic sperm injection. Observational cohort and case-control studies describing the association between biomarkers in human SP and the outcome of infertile men attending for ART were included. Forty-three studies were selected, reporting on 89 potential SP biomarkers (grouped as oxidative stress, proteins glycoproteins, metabolites, immune system components, metals and trace elements and nucleic acids). The present review supports 32 molecules in SP as potentially relevant biomarkers for predicting ART outcomes; 23 molecules were reported once and nine molecules were reported in more than one study; IL-18 and TGF-β1-IL-18 ratio were confirmed in distinct studies. This review presents the most comprehensive overview of relevant SP biomarkers to predict ART outcomes to date, which is of clinical interest for infertility investigations and assisted reproduction; nevertheless, its potential is under-exploited. This review could serve as starting point for designing an all-encompassing study for biomarkers in SP and their predictive ability for ART outcomes, and for developing a non-invasive diagnostic tool.
Collapse
Affiliation(s)
- Jonna S van den Berg
- Department of Reproductive Medicine and Gynaecology, Division Female and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Brigitte Arends
- Department of Reproductive Medicine and Gynaecology, Division Female and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Gaby Sarina Steba
- Department of Reproductive Medicine and Gynaecology, Division Female and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Oală IE, Mitranovici MI, Chiorean DM, Irimia T, Crișan AI, Melinte IM, Cotruș T, Tudorache V, Moraru L, Moraru R, Caravia L, Morariu M, Pușcașiu L. Endometriosis and the Role of Pro-Inflammatory and Anti-Inflammatory Cytokines in Pathophysiology: A Narrative Review of the Literature. Diagnostics (Basel) 2024; 14:312. [PMID: 38337827 PMCID: PMC10855755 DOI: 10.3390/diagnostics14030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Endometriosis is a chronic inflammatory disease, which explains the pain that such patients report. Currently, we are faced with ineffective, non-invasive diagnostic methods and treatments that come with multiple side effects and high recurrence rates for both the disease and pain. These are the reasons why we are exploring the possibility of the involvement of pro-inflammatory and anti-inflammatory molecules in the process of the appearance of endometriosis. Cytokines play an important role in the progression of endometriosis, influencing cell proliferation and differentiation. Pro-inflammatory molecules are found in intrafollicular fluid. They have an impact on the number of mature and optimal-quality oocytes. Endometriosis affects fertility, and the involvement of endometriosis in embryo transfer during in vitro fertilization (IVF) is being investigated in several studies. Furthermore, the reciprocal influence between anti-inflammatory and pro-inflammatory cytokines and their role in the pathogenesis of endometriosis has been assessed. Today, we can affirm that pro-inflammatory and anti-inflammatory cytokines play roles in survival, growth, differentiation, invasion, angiogenesis, and immune escape, which provides a perspective for approaching future clinical implications and can be used as biomarkers or therapy.
Collapse
Affiliation(s)
- Ioan Emilian Oală
- Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 331057 Hunedoara, Romania;
| | - Melinda-Ildiko Mitranovici
- Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 331057 Hunedoara, Romania;
| | - Diana Maria Chiorean
- Department of Pathology, County Clinical Hospital of Targu Mures, 540072 Targu Mures, Romania;
| | - Traian Irimia
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (T.I.); (A.I.C.); (I.M.M.); (T.C.)
| | - Andrada Ioana Crișan
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (T.I.); (A.I.C.); (I.M.M.); (T.C.)
- Department of 1st Gynecology Clinic, Emergency County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Ioana Marta Melinte
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (T.I.); (A.I.C.); (I.M.M.); (T.C.)
| | - Teodora Cotruș
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (T.I.); (A.I.C.); (I.M.M.); (T.C.)
| | - Vlad Tudorache
- Department of 2nd Gynecology Clinic, County Clinical Hospital Targu Mures, 540072 Targu Mures, Romania;
| | - Liviu Moraru
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania; (L.M.); (R.M.)
| | - Raluca Moraru
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania; (L.M.); (R.M.)
| | - Laura Caravia
- Department of Morphological Sciences, Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihai Morariu
- Department of Obstretics and Gynecology, George Emil Palade University of Medicine and Pharmacies, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (M.M.); (L.P.)
| | - Lucian Pușcașiu
- Department of Obstretics and Gynecology, George Emil Palade University of Medicine and Pharmacies, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (M.M.); (L.P.)
| |
Collapse
|
8
|
Lu C, Xu J, Li K, Wang J, Dai Y, Chen Y, Chai R, Xu C, Kang Y. Chronic Stress Blocks the Endometriosis Immune Response by Metabolic Reprogramming. Int J Mol Sci 2023; 25:29. [PMID: 38203209 PMCID: PMC10778859 DOI: 10.3390/ijms25010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Studies have shown that the occurrence and development of endometriosis are closely linked to long-term psychological stress. The specific contribution of chronic stress to the metabolic adaptations in patients with endometriosis is still unknown. Lesions were removed from ten endometriosis patients during an operation, and the participants were divided into two groups using a psychological questionnaire. An mRNA Human Gene Expression Microarray analysis was applied to compare the mRNA expression profiles between the chronic stress group and the control group. In addition, the reliability of the mRNA Human Gene Expression Microarray analysis was verified by using research on metabolites based on both the liquid chromatography (LC-MS/MS) technique and quantitative reverse transcription polymerase chain reaction (RT-PCR). A microarray analysis of significantly up-regulated, differentially expressed genes between the chronic stress and the control groups showed genes that were principally related to metabolism-related processes and immune-related processes, such as the immune response process, negative regulation of T cell proliferation, the leucine metabolic process, and the L-cysteine metabolic process (p < 0.05). LC-MS showed that the differential metabolites were primarily concerned with arginine and proline metabolism, D-glutamine and D-glutamate metabolism, aspartate metabolism, glycine, serine metabolism, and tyrosine metabolism (p < 0.05). The possibility of chronic stress blocks the endometriosis immune response through metabolic reprogramming. Chronic stress reduces the supply of energy substrates such as arginine and serine, down-regulates T immune cell activation, and affects the anti-tumor immune response, thereby promoting the migration and invasion of endometriosis lesions in patients with chronic stress.
Collapse
Affiliation(s)
- Chong Lu
- Gynecology Department, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - Jing Xu
- Gynecology Department, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - Ke Li
- Gynecology Department, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - Jing Wang
- Gynecology Department, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - Yilin Dai
- Gynecology Department, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - Yiqing Chen
- Gynecology Department, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - Ranran Chai
- Gynecology Department, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
| | - Congjian Xu
- Gynecology Department, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Yu Kang
- Gynecology Department, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| |
Collapse
|
9
|
Shen Q, Wu X, Chen J, He C, Wang Z, Zhou B, Zhang H. Immune Regulation of Seminal Plasma on the Endometrial Microenvironment: Physiological and Pathological Conditions. Int J Mol Sci 2023; 24:14639. [PMID: 37834087 PMCID: PMC10572377 DOI: 10.3390/ijms241914639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Seminal plasma (SP) accounts for more than 90% of semen volume. It induces inflammation, regulates immune tolerance, and facilitates embryonic development and implantation in the female reproductive tract. In the physiological state, SP promotes endometrial decidualization and causes changes in immune cells such as macrophages, natural killer cells, regulatory T cells, and dendritic cells. This leads to the secretion of cytokines and chemokines and also results in the alteration of miRNA profiles and the expression of genes related to endometrial tolerance and angiogenesis. Together, these changes modulate the endometrial immune microenvironment and contribute to implantation and pregnancy. However, in pathological situations, abnormal alterations in SP due to advanced age or poor diet in men can interfere with a woman's immune adaptation to pregnancy, negatively affecting embryo implantation and even the health of the offspring. Uterine pathologies such as endometriosis and endometritis can cause the endometrium to respond negatively to SP, which can further contribute to pathological progress and interfere with conception. The research on the mechanism of SP in the endometrium is conducive to the development of new targets for intervention to improve reproductive outcomes and may also provide new ideas for semen-assisted treatment of clinical infertility.
Collapse
Affiliation(s)
- Qiuzi Shen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Xiaoyu Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Chao He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Zehao Wang
- School of Management, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Boyan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| |
Collapse
|
10
|
Matsuzaki S, Chauffour C, Pouly JL. Impaired secretion of C-X-C motif chemokine ligand 10 by stimulation with a Toll-like receptor 4 ligand in endometrial epithelium of infertile patients with minimal-to-mild endometriosis. J Reprod Immunol 2023; 159:103989. [PMID: 37473583 DOI: 10.1016/j.jri.2023.103989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Successful embryo implantation requires transient, well-controlled inflammation in decidualizing cells. In mice, Toll-like receptor (TLR) 4 signaling in endometrial epithelial cells (EECs) by stimulation with factors present in seminal fluids has been shown to be a key upstream driver of a controlled inflammatory response. Clinical evidence supports that exposure of the female reproductive tract to seminal plasma promotes implantation success. We investigated the response of EECs to TLR2 (Pam3Csk4), TLR 3 (Poly I:C), and TLR4 (lipopolysaccharides [LPS]) ligands with respect to secretion of C-X-C motif chemokine ligand (CXCL) 10 (CXCL10) and interleukin-6 (IL-6) in infertile patients with minimal-to-mild endometriosis (EECs-endo) (n = 38) and those of healthy, fertile women (EECs-healthy) (n = 30). Stimulation with either Pam3Csk4, Poly I:C or LPS, significantly induced CXCL10 and IL-6 in EECs-healthy (p < 0.05). In EECs-endo, either Pam3Csk4 or Poly I:C significantly induced CXCL10 (p < 0.05), whereas no significant response was observed after stimulation with LPS. Neither LPS, Poly I:C, nor Pam3Csk4 significantly induced IL-6 secretion in EECs-endo. Secretion of CXCL10 in EECs-healthy after stimulation with LPS was significantly higher (p < 0.05) than that in EECs-endo. CXCL10 decreased cell proliferation of EECs from both groups. Activation of nuclear factor kappa light chain enhancer of activated B cells and signal transducer and activator of transcription 3 signalings was not impaired, but activation of p38 mitogen-activated protein kinases signaling by LPS stimulation was impaired in EECs-endo. The present findings suggested that an insufficient response of EECs to a TLR4 ligand may be involved in molecular mechanisms of endometriosis-associated infertility.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France; Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMA, Clermont-Ferrand, France.
| | - Candice Chauffour
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France
| | - Jean-Luc Pouly
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France
| |
Collapse
|
11
|
Li B, Yan YP, He YY, Liang C, Li MY, Wang Y, Yang ZM. IHH, SHH, and primary cilia mediate epithelial-stromal cross-talk during decidualization in mice. Sci Signal 2023; 16:eadd0645. [PMID: 36853961 DOI: 10.1126/scisignal.add0645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The establishment of pregnancy depends on interactions between the epithelial and stromal cells of the endometrium that drive the decidual reaction that remodels the stroma and enables embryo implantation. Decidualization in mice also depends on ovarian hormones and the presence of a blastocyst. Hedgehog signaling is transduced by primary cilia in many tissues and is involved in epithelial-stromal cross-talk during decidualization. We found that primary cilia on mouse uterine stromal cells increased in number and length during early pregnancy and were required for decidualization. In vitro and in vivo, progesterone promoted stromal ciliogenesis and the production of Indian hedgehog (IHH) in the epithelium and Sonic hedgehog (SHH) in the stroma. Blastocyst-derived TNF-α also induced epithelial IHH, which stimulated the production of SHH in the stroma through a mechanism that may involve the release of arachidonic acid from epithelial cells. In the stroma, SHH activated canonical Hedgehog signaling through primary cilia and promoted decidualization through a mechanism that depended on interleukin-11 (IL-11) and primary cilia. Our findings identify a primary cilia-dependent network that controls endometrial decidualization and suggest primary cilia as a candidate therapeutic target for endometrial diseases.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Ping Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
Fan W, Qi Y, Wang Y, Yan H, Li X, Zhang Y. Messenger roles of extracellular vesicles during fertilization of gametes, development and implantation: Recent advances. Front Cell Dev Biol 2023; 10:1079387. [PMID: 36684431 PMCID: PMC9849778 DOI: 10.3389/fcell.2022.1079387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) have become a research hotspot in recent years because they act as messengers between cells in the physiological and pathological processes of the human body. It can be produced by the follicle, prostate, embryo, uterus, and oviduct in the reproductive field and exists in the extracellular environment as follicular fluid, semen, uterine cavity fluid, and oviduct fluid. Because extracellular vesicles are more stable at transmitting information, it allows all cells involved in the physiological processes of embryo formation, development, and implantation to communicate with one another. Extracellular vesicles carried miRNAs and proteins as mail, and when the messenger delivers the mail to the recipient cell, the recipient cell undergoes a series of changes. Current research begins with intercepting and decoding the information carried by extracellular vesicles. This information may help us gain a better understanding of the secrets of reproduction, as well as assist reproductive technology as an emerging marker and treatment.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yinghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaqian Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huiting Yan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuan Li
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingjie Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Yingjie Zhang,
| |
Collapse
|
13
|
Guo F, Huang Y, Fernando T, Shi Y. Altered Molecular Pathways and Biomarkers of Endometrial Receptivity in Infertile Women with Polycystic Ovary Syndrome. Reprod Sci 2022; 29:3335-3345. [PMID: 35006579 DOI: 10.1007/s43032-022-00845-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022]
Abstract
Anovulation is the most prominent cause of infertility in polycystic ovary syndrome (PCOS) patients. Although ovulation can be corrected pharmacologically, the number of pregnancies remains low. Even if excellent embryos are transferred by IVF, it does not change the high miscarriage rate of PCOS patients. These facts collectively indicate that there is a disorder of endometrial development and receptivity to the embryo in PCOS patients, including the decrease of receptive ability, inhibition of embryo adhesion, undersupply of energy, poor blood perfusion, and pro-inflammatory status in the endometrium. However, it has never received the same attention as ovulatory dysfunction. Here we list some alternations of endometrial receptivity in women with PCOS, discuss the underlying intricate mechanisms, and try to find out the possible therapeutic targets, which may bring new perspectives to those who are able to provide high-quality embryos.
Collapse
Affiliation(s)
- Fei Guo
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
| | - Yufan Huang
- Department of Pharmacy, Mindong Hospital, Fujian Medical University, Ningde, 355000, Fujian, China
| | - Taniya Fernando
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
| | - Yingli Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
14
|
Therapeutic effects of aqueous extract of bioactive active component of Ageratum conyzoides on the ovarian-uterine and hypophysis-gonadal axis in rat with polycystic ovary syndrome: Histomorphometric evaluation and biochemical assessment. Metabol Open 2022; 15:100201. [PMID: 35958118 PMCID: PMC9361322 DOI: 10.1016/j.metop.2022.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is an endocrine disorder, affecting women of reproductive age. Ageratum conyzoïdes (AGC) is used traditionally in the treatment of fever, rheumatism, and ulcer. This study investigates the effects of AGC on ovarian-uterine in PCOS rats. Methods Female rats were randomized into four groups (n = 6). Group A control received 2 ml distilled water. Group B received a single dose of 4 mg/kg body weight (bwt) i.p estradiol valerate (EV). Group C received 500 mg/kg bwt AGC and group D received a single dose of 4 mg/kg bwt i.p EV followed by 500 mg/kg bwt AGC orally for 30 days. Parameters tested include follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), estradiol (E2), progesterone (P), C-reactive protein (CRP), interleukin (IL)-6, IL-18 and tumor necrosis factor (TNF)- α, malondialdehyde (MDA), superoxide dismutase (SOD), Catalase (CAT), total protein (TP), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and ovary and uterus histomorphometric. Results Ageratum conyzoides decrease insulin resistance, obesity indices, TC, TG, LDL, MDA, T, LH, FSH, CRP, IL-6, IL-18, and TNF- α in PCOS rats. And increase HDL, E2, P, TP, CAT, and SOD in PCOS rats. AGC improved ovary and uterus histo-architecture, tertiary, and Graafian follicles, corpus luteum and endometrial thickness increased,and cystic and atretic follicles decreased. Conclusion Ageratum conyzoides improved insulin sensitivity, antioxidant activities, hormonal imbalance, inflammatory makers, and histological changes in PCOS rats. Therefore AGC can be used as a potential adjuvant agent in the treatment of PCOS.
Collapse
|
15
|
Sieg W, Kiewisz J, Podolak A, Jakiel G, Woclawek-Potocka I, Lukaszuk J, Lukaszuk K. Inflammation-Related Molecules at the Maternal-Fetal Interface during Pregnancy and in Pathologically Altered Endometrium. Curr Issues Mol Biol 2022; 44:3792-3808. [PMID: 36135172 PMCID: PMC9497515 DOI: 10.3390/cimb44090260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
The blastocyst expresses paternally derived alloantigens and induces inflammation during implantation. However, it is necessary for the onset of pregnancy. An abnormal response might result in a pathological course of pregnancy or pregnancy failure. On the other hand, a state of maternal immune tolerance is necessary to ensure the normal development of pregnancy by suppressing inflammatory processes. This article discusses recognized mechanisms and the significance of inflammatory processes for embryo implantation and pregnancy establishment. We would also like to present disorders involving excessive inflammatory response and their influence on events occurring during embryo implantation. The chain of correlation between the processes responsible for embryo implantation and the subsequent physiological course of pregnancy is complicated. Many of those interrelationships are still yet to be discovered. Undoubtedly, their recognition will give hope to infertile couples for the emergence of new treatments that will increase the chance of giving birth to a healthy child.
Collapse
Affiliation(s)
| | - Jolanta Kiewisz
- Department of Human Histology and Embryology, Medical Faculty, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland
| | - Amira Podolak
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Grzegorz Jakiel
- Invicta Research and Development Center, 81-740 Sopot, Poland
- The Center of Postgraduate Medical Education, 1st Department of Obstetrics and Gynecology, University of Gdansk, 01-004 Warsaw, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Jakub Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
16
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
17
|
Robertson SA, Moldenhauer LM, Green ES, Care AS, Hull ML. Immune determinants of endometrial receptivity: a biological perspective. Fertil Steril 2022; 117:1107-1120. [PMID: 35618356 DOI: 10.1016/j.fertnstert.2022.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
Immune cells are essential for endometrial receptivity to embryo implantation and early placental development. They exert tissue-remodeling and immune regulatory roles-acting to promote epithelial attachment competence, regulate the differentiation of decidual cells, remodel the uterine vasculature, control and resolve inflammatory activation, and suppress destructive immunity to paternally inherited alloantigens. From a biological perspective, the endometrial immune response exerts a form of "quality control"-it promotes implantation success when conditions are favorable but constrains receptivity when physiological circumstances are not ideal. Women with recurrent implantation failure and recurrent miscarriage may exhibit altered numbers or disturbed function of certain uterine immune cell populations-most notably uterine natural killer cells and regulatory T cells. Preclinical and animal studies indicate that deficiencies or aberrant activation states in these cells can be causal in the pathophysiological mechanisms of infertility. Immune cells are, therefore, targets for diagnostic evaluation and therapeutic intervention. However, current diagnostic tests are overly simplistic and have limited clinical utility. To be more informative, they need to account for the full complexity and reflect the range of perturbations that can occur in uterine immune cell phenotypes and networks. Moreover, safe and effective interventions to modulate these cells are in their infancy, and personalized approaches matched to specific diagnostic criteria will be needed. Here we summarize current biological understanding and identify knowledge gaps to be resolved before the promise of therapies to target the uterine immune response can be fully realized.
Collapse
Affiliation(s)
- Sarah A Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Lachlan M Moldenhauer
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ella S Green
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alison S Care
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - M Louise Hull
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Xue Z, Li J, Feng J, Han H, Zhao J, Zhang J, Han Y, Wu X, Zhang Y. Research Progress on the Mechanism Between Polycystic Ovary Syndrome and Abnormal Endometrium. Front Physiol 2022; 12:788772. [PMID: 34975540 PMCID: PMC8718643 DOI: 10.3389/fphys.2021.788772] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
As a highly dynamic tissue, the endometrium is periodically shed in response to the secretion of estrogen and progesterone. After menarche, the endometrium of healthy women proliferates and differentiates under the action of steroid hormones (e.g., 17β-estradiol and progesterone) that are secreted by the ovaries to provide appropriate conditions for embryo implantation. Polycystic ovary syndrome (PCOS), a prevalent endocrine and metabolic disorder in reproductive-aged women, is usually associated with multiple cysts within the ovaries and excess levels of androgen and is characterized by hirsutism, acne, menstrual irregularity, infertility, and increased risk of insulin resistance. Multiple factors, such as anovulation, endocrine-metabolic abnormalities, and inflammation, can disrupt the endometrium in PCOS patients and can lead to endometrial hyperplasia, pregnancy complications, or even cancer. Despite many recent studies, the relationship between PCOS and abnormal endometrial function is still not fully understood. In this review, we investigate the correlation of PCOS patient endometrium with anovulation, hyperandrogenemia, insulin resistance, progesterone resistance, and inflammatory cytokines, aiming to provide a theoretical basis for the treatment of disorders caused by endometrial dysfunction in PCOS patients.
Collapse
Affiliation(s)
- Zhu Xue
- The graduate school, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Juanli Li
- The graduate school, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiaxing Feng
- The graduate school, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Han Han
- The First Clinical Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Jing Zhao
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Jiao Zhang
- Department of Acupuncture and Moxibustion, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanhua Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuehui Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Chen K, Liang J, Qin T, Zhang Y, Chen X, Wang Z. The Role of Extracellular Vesicles in Embryo Implantation. Front Endocrinol (Lausanne) 2022; 13:809596. [PMID: 35154016 PMCID: PMC8831238 DOI: 10.3389/fendo.2022.809596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-coating nanoparticles derived from cells. The effect of cell-to-cell communication mediated by EVs has been investigated in different fields of physio-logical as well as pathological process in recent years. Reproduction, regarded as a definitive characteristic of organisms, has been a focus in both animal and medical sciences. It is well agreed that implantation is a critical event during early pregnancy in viviparous animals, and a proper implantation is essential for the establishment and maintenance of normal pregnancy. However, successful implantation requires the synchronized development of both the uterus and the embryo, therefore, in which well communication and opportune regulation are necessary. This review focuses on the progression of studies that reveal the role of EVs in early pregnancy, especially during implantation. Based on current evidence, EVs are produced and exist in the environment for implantation. It has been proved that EVs of different origins such as endometrium and embryo, have positive influences on embryo implantation. With their cargos of proteins and nucleic acids (especially microRNAs), EVs exert their effects including information transportation, immune stimulation and regulation of gene expression.
Collapse
|
20
|
Wang D, Jueraitetibaike K, Tang T, Wang Y, Jing J, Xue T, Ma J, Cao S, Lin Y, Li X, Ma R, Chen X, Yao B. Seminal Plasma and Seminal Plasma Exosomes of Aged Male Mice Affect Early Embryo Implantation via Immunomodulation. Front Immunol 2021; 12:723409. [PMID: 34712227 PMCID: PMC8546305 DOI: 10.3389/fimmu.2021.723409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Seminal plasma (SP), particularly SP exosomes (sExos), alters with age and can affect female mouse uterine immune microenvironment. However, the relationship between fertility decline in reproductively older males, and SP and sExos age-related changes, which may compromise the uterine immune microenvironment, remains unclear. The present study demonstrated that the implantation rate of female mice treated with SP from reproductively older male mice (aged-SP group) was lower than that of those treated with SP from younger male mice (young-SP group). RNA-sequencing analysis revealed altered levels of dendritic cell (DC)-related cytokines and chemokines in the uteri of the former group compared with those of the latter group. In vivo and in vitro experiments demonstrated a weaker inhibitory effect of aged SP on DC maturation than of young SP upon stimulation. After isolating and characterizing sExos from young and advanced-age male mice, we discovered that insemination of a subset of the aged-SP group with sExos from young male mice partially recovered the implantation rate decline. Additional in vivo and in vitro experiments revealed that sExos extracted from age male mice exerted a similar effect on DC maturation as SP of aged mice, indicating an age-related sExos inhibitory effect. In conclusion, our study demonstrated that age-related alterations of sExos may be partially responsible for lower implantation rates in the aged-SP group compared with those in the young-SP group, which were mediated by uterine immunomodulation. These findings provide new insights for clinical seminal adjuvant therapy.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Kadiliya Jueraitetibaike
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Ting Tang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yanbo Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun Jing
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Tongmin Xue
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jinzhao Ma
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Siyuan Cao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Ying Lin
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Xiaoyan Li
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Rujun Ma
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Xi Chen
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Bing Yao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Rodriguez-Garcia M, Connors K, Ghosh M. HIV Pathogenesis in the Human Female Reproductive Tract. Curr HIV/AIDS Rep 2021; 18:139-156. [PMID: 33721260 PMCID: PMC9273024 DOI: 10.1007/s11904-021-00546-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Women remain disproportionately affected by the HIV/AIDS pandemic. The primary mechanism for HIV acquisition in women is sexual transmission, yet the immunobiological factors that contribute to HIV susceptibility remain poorly characterized. Here, we review current knowledge on HIV pathogenesis in women, focusing on infection and immune responses in the female reproductive tract (FRT). RECENT FINDINGS We describe recent findings on innate immune protection and HIV target cell distribution in the FRT. We also review multiple factors that modify susceptibility to infection, including sex hormones, microbiome, trauma, and how HIV risk changes during women's life cycle. Finally, we review current strategies for HIV prevention and identify barriers for research in HIV infection and pathogenesis in women. A complex network of interrelated biological and sociocultural factors contributes to HIV risk in women and impairs prevention and cure strategies. Understanding how HIV establishes infection in the FRT can provide clues to develop novel interventions to prevent HIV acquisition in women.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, 150 Harrison Ave, Boston, MA, 02111, USA
| | - Kaleigh Connors
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Mimi Ghosh
- Department of Epidemiology, Milken Institute School of Public Health and Health Services, The George Washington University, 800 22nd St NW, Washington, DC, 20052, USA.
| |
Collapse
|
22
|
Palomba S, Piltonen TT, Giudice LC. Endometrial function in women with polycystic ovary syndrome: a comprehensive review. Hum Reprod Update 2020; 27:584-618. [PMID: 33302299 DOI: 10.1093/humupd/dmaa051] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility. An endometrial component has been suggested to contribute to subfertility and poor reproductive outcomes in affected women. OBJECTIVE AND RATIONALE The aim of this review was to determine whether there is sufficient evidence to support that endometrial function is altered in women with PCOS, whether clinical features of PCOS affect the endometrium, and whether there are evidence-based interventions to improve endometrial dysfunction in PCOS women. SEARCH METHODS An extensive literature search was performed from 1970 up to July 2020 using PubMed and Web of Science without language restriction. The search included all titles and abstracts assessing a relationship between PCOS and endometrial function, the role played by clinical and biochemical/hormonal factors related to PCOS and endometrial function, and the potential interventions aimed to improve endometrial function in women with PCOS. All published papers were included if considered relevant. Studies having a specific topic/hypothesis regarding endometrial cancer/hyperplasia in women with PCOS were excluded from the analysis. OUTCOMES Experimental and clinical data suggest that the endometrium differs in women with PCOS when compared to healthy controls. Clinical characteristics related to the syndrome, alone and/or in combination, may contribute to dysregulation of endometrial expression of sex hormone receptors and co-receptors, increase endometrial insulin-resistance with impaired glucose transport and utilization, and result in chronic low-grade inflammation, immune dysfunction, altered uterine vascularity, abnormal endometrial gene expression and cellular abnormalities in women with PCOS. Among several interventions to improve endometrial function in women with PCOS, to date, only lifestyle modification, metformin and bariatric surgery have the highest scientific evidence for clinical benefit. WIDER IMPLICATIONS Endometrial dysfunction and abnormal trophoblast invasion and placentation in PCOS women can predispose to miscarriage and pregnancy complications. Thus, patients and their health care providers should advise about these risks. Although currently no intervention can be universally recommended to reverse endometrial dysfunction in PCOS women, lifestyle modifications and metformin may improve underlying endometrial dysfunction and pregnancy outcomes in obese and/or insulin resistant patients. Bariatric surgery has shown its efficacy in severely obese PCOS patients, but a careful evaluation of the benefit/risk ratio is warranted. Large scale randomized controlled clinical trials should address these possibilities.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Obstetrics and Gynecology, Grande Ospedale Metropolitano of Reggio Calabria, Reggio Calabria, Italy
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Tamessar CT, Trigg NA, Nixon B, Skerrett-Byrne DA, Sharkey DJ, Robertson SA, Bromfield EG, Schjenken JE. Roles of male reproductive tract extracellular vesicles in reproduction. Am J Reprod Immunol 2020; 85:e13338. [PMID: 32885533 DOI: 10.1111/aji.13338] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted cell-derived membrane structures present in all organisms across animal, bacterial, and plant phyla. These vesicles play important roles in cell-cell communication in many processes integral to health and disease. Recent studies demonstrate that EVs and their cargo have influential and conserved roles in male reproduction. While EVs have been isolated from virtually all specialized tissues comprising the male reproductive tract, they are best characterized in the epididymis (epididymosomes) and seminal fluid (seminal fluid extracellular vesicles or prostasomes). Broadly speaking, EVs promote reproductive success through supporting sperm development and function, as well as influencing the physiology of female reproductive tract cells after mating. In this review, we present current knowledge on the composition and function of male reproductive tract EV populations in both normal physiology and pathology, and argue that their functions identify them as critical regulators of fertility and fecundity.
Collapse
Affiliation(s)
- Cottrell T Tamessar
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David J Sharkey
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.,The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
24
|
Nikolaeva M, Arefieva A, Babayan A, Chagovets V, Kitsilovskaya N, Starodubtseva N, Frankevich V, Kalinina E, Krechetova L, Sukhikh G. Immunoendocrine Markers of Stress in Seminal Plasma at IVF/ICSI Failure: a Preliminary Study. Reprod Sci 2020; 28:144-158. [PMID: 32638280 DOI: 10.1007/s43032-020-00253-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
We have previously shown that high level of seminal interleukin (IL)-18 is positively associated with a greater risk of pregnancy failure in women exposed to their partners' seminal plasma (SP) during the in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycle. Since IL-18 and IL-1β considered to be the key immune markers of stress, here we ask whether their increase in SP may be due to the stress experienced by men engaged in the IVF programs. Therefore, we correlated seminal IL-18 with IL-1β and both cytokines with the seminal steroids, whose increase indicates the activation of neuroendocrine stress response systems. Retrospective analysis of stored seminal samples was performed. Based on previously identified cutoff level for content of IL-18 per ejaculate, samples with high IL-18 content from IVF failure group (n = 9), as well as samples with low IL-18 content from IVF success group (n = 7), were included in the study. Seminal cytokines were evaluated using FlowCytomix™ technology. A set of 16 biologically active steroids in SP was quantified by liquid chromatography coupled with mass spectrometry. Concentrations and total amounts per ejaculate of cytokines and steroids were determined. A positive significant correlation was found between the levels of IL-18 and IL-1β. There was also a positive correlation between IL-18 or IL-1β and 17-α-hydroxypregnenolone, 17-α-hydroxyprogesterone, dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), androstenedione, testosterone, dihydrotestosterone, progesterone, corticosterone, 11-deoxycorticosterone, and the ratio of DHEAS/cortisol. We suggested that stress-related overexpression of immune and hormonal factors in SP may be the key link between male stress and embryo implantation failure.
Collapse
Affiliation(s)
- Marina Nikolaeva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.
| | - Alla Arefieva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Alina Babayan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Vitaliy Chagovets
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Natalia Kitsilovskaya
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Natalia Starodubtseva
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.,Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, Russia, 141701
| | - Vladimir Frankevich
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Elena Kalinina
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Lubov Krechetova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Gennady Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.,First Moscow State Medical University named after I.M. Sechenov, Trubetskaya str. 8-2, Moscow, Russia, 119991
| |
Collapse
|