1
|
Li M, Deng A, He C, Yao Z, Zhuo Z, Wang XY, Wang Z. Genome sequencing, comparative analysis, and gene expression responses of cytochrome P450 genes in Oryzias curvinotus provide insights into environmental adaptation. Ecol Evol 2024; 14:e11565. [PMID: 38895576 PMCID: PMC11184212 DOI: 10.1002/ece3.11565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The mangrove fish (Oryzias curvinotus) serves as a model for researching environmental adaptation and sexual development. To further such research, we sequenced and assembled a high-quality 842 Mb reference genome for O. curvinotus. Comparative genomic analysis revealed 891 expanded gene families, including significantly expanded cytochrome P450 (CYP) detoxification genes known to be involved in xenobiotic defense. We identified 69 O. curvinotus CYPs (OcuCYPs) across 18 families and 10 clans using multiple methods. Extensive RNA-seq and qPCR analysis demonstrated diverse spatiotemporal expression patterns of OcuCYPs by developmental stage, tissue type, sex, and pollutant exposure (17β-estradiol (E2) and testosterone (MT)). Many OcuCYPs exhibited sexual dimorphism in gonads, suggesting reproductive roles in steroidogenesis, while their responsiveness to model toxicants indicates their importance in environmental adaptation through enhanced detoxification. Pathway analysis highlighted expanded CYP genes in arachidonic acid metabolism, drug metabolism, and steroid hormone biosynthesis. This chromosome-level genomic resource provides crucial biological insights to elucidate the functional roles of expanded CYPs in environmental adaptation, sexual development, early life history, and conservation in the anthropogenically impacted mangrove habitats of O. curvinotus. It also enables future ecotoxicology research leveraging O. curvinotus as a pollution sentinel species.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Aiping Deng
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Chuanmeng He
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Zebin Yao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Zixuan Zhuo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Xiu yue Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy CultureFisheries College, Guangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
2
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Paik J, Haenisch M, Kim A, Snyder JM, Amory JK. Return to fertility, toxicology, and transgenerational impact of treatment with WIN 18,446, a potential male contraceptive, in mice. Contraception 2024; 129:110306. [PMID: 37813273 PMCID: PMC10959076 DOI: 10.1016/j.contraception.2023.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVES We examined the return to fertility and transgenerational impact of treatment with WIN 18,446, an experimental male contraceptive, in mice. STUDY DESIGN We paired male mice treated with WIN 18,446 for 4 weeks to suppress spermatogenesis, followed by a 9-week recovery, and mated them with normal females to assess fertility. F1 generation mice were subsequently mated to ascertain any transgenerational impact of treatment on fertility. Testes were examined histologically. RESULTS WIN 18,446-treated mice and their progeny produced normally sized litters (6.5 pups per litter after treatment and 7.3 pups per litter from the progeny). However, testes histology revealed rare residual intratesticular foci of mineralization after treatment. CONCLUSIONS Fertility normalizes after WIN 18,446 treatment, and progeny also have normal fertility.
Collapse
Affiliation(s)
- Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Michael Haenisch
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Andy Kim
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - John K Amory
- Department of Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
4
|
Wang G, Lu R, Gao Y, Zhang H, Shi X, Ma W, Wu L, Tian X, Liu H, Jiang H, Li X, Ma X. Molecular characterization and potential function of Rxrγ in gonadal differentiation of Chinese soft-shelled turtle (Pelodiscus sinensis). J Steroid Biochem Mol Biol 2023; 233:106360. [PMID: 37429547 DOI: 10.1016/j.jsbmb.2023.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Retinoid X receptor (RXR) is a member of the ligand-dependent nuclear receptor family. Previous studies revealed that RXRs are involved in reproduction in vertebrates. However, information on the function of RXRs in turtles is scarce. In this study, the Rxrγ cDNA sequence of Pelodiscus sinensis was cloned and analyzed, and a polyclonal antibody was constructed. RXRγ protein showed a positive signal in both mature and differentiated gonads of the turtle. Subsequently, the function of the Rxrγ gene in gonadal differentiation was confirmed using short interfering RNA (RNAi). The full-length cDNA sequence of the Rxrγ gene in P. sinensis was 2152 bp, encoding 407 amino acids and containing typical nuclear receptor family domains, including the DNA-binding domain (DBD), ligand-binding domain (LBD), and activation function 1 (AF1). Moreover, gonadal Ps-Rxrγ showed sexual dimorphism expression patterns in differentiated gonads. Real-time quantitative PCR results revealed that the Rxrγ gene was highly expressed in the turtle ovary. RNAi treatment increased the number of Sertoli cells in ZZ embryonic gonads. Furthermore, RNA interference upregulated Dmrt1 and Sox9 in ZZ and ZW embryonic gonads. However, Foxl2, Cyp19a1, Stra8, and Cyp26b1 were downregulated in embryonic gonads. The results indicated that Rxrγ participated in gonadal differentiation and development in P. sinensis.
Collapse
Affiliation(s)
- Guiyu Wang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Ruiyi Lu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Yijie Gao
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Haoran Zhang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xi Shi
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Wenge Ma
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Limin Wu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xue Tian
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Huifen Liu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Hongxia Jiang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- College of Fisheries Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- College of Fisheries Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
5
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Somashekar H, Nonomura KI. Genetic Regulation of Mitosis-Meiosis Fate Decision in Plants: Is Callose an Oversighted Polysaccharide in These Processes? PLANTS (BASEL, SWITZERLAND) 2023; 12:1936. [PMID: 37653853 PMCID: PMC10223186 DOI: 10.3390/plants12101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Timely progression of the meiotic cell cycle and synchronized establishment of male meiosis in anthers are key to ascertaining plant fertility. With the discovery of novel regulators of the plant cell cycle, the mechanisms underlying meiosis initiation and progression appear to be more complex than previously thought, requiring the conjunctive action of cyclins, cyclin-dependent kinases, transcription factors, protein-protein interactions, and several signaling components. Broadly, cell cycle regulators can be classified into two categories in plants based on the nature of their mutational effects: (1) those that completely arrest cell cycle progression; and (2) those that affect the timing (delay or accelerate) or synchrony of cell cycle progression but somehow complete the division process. Especially the latter effects reflect evasion or obstruction of major steps in the meiosis but have sometimes been overlooked due to their subtle phenotypes. In addition to meiotic regulators, very few signaling compounds have been discovered in plants to date. In this review, we discuss the current state of knowledge about genetic mechanisms to enter the meiotic processes, referred to as the mitosis-meiosis fate decision, as well as the importance of callose (β-1,3 glucan), which has been unsung for a long time in male meiosis in plants.
Collapse
Affiliation(s)
- Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima 411-8540, Japan;
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima 411-8540, Japan;
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| |
Collapse
|
7
|
Ma Y, Wu W, Zhang Y, Wang X, Wei J, Guo X, Xue M, Zhu G. The Synchronized Progression from Mitosis to Meiosis in Female Primordial Germ Cells between Layers and Broilers. Genes (Basel) 2023; 14:781. [PMID: 37107539 PMCID: PMC10137798 DOI: 10.3390/genes14040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Layer and broiler hens show a dramatic difference in the volume and frequency of egg production. However, it is unclear whether the intrinsic competency of oocyte generation is also different between the two types of chicken. All oocytes were derived from the primordial germ cells (PGC) in the developing embryo, and female PGC proliferation (mitosis) and the subsequent differentiation (meiosis) determine the ultimate ovarian pool of germ cells available for future ovulation. In this study, we systematically compared the cellular phenotype and gene expression patterns during PGC mitosis (embryonic day 10, E10) and meiosis (E14) between female layers and broilers to determine whether the early germ cell development is also subjected to the selective breeding of egg production traits. We found that PGCs from E10 showed much higher activity in cell propagation and were enriched in cell proliferation signaling pathways than PGCs from E14 in both types of chicken. A common set of genes, namely insulin-like growth factor 2 (IGF2) and E2F transcription factor 4 (E2F4), were identified as the major regulators of cell proliferation in E10 PGCs of both strains. In addition, we found that E14 PGCs from both strains showed an equal ability to initiate meiosis, which was associated with the upregulation of key genes for meiotic initiation. The intrinsic cellular dynamics during the transition from proliferation to differentiation of female germ cells were conserved between layers and broilers. Hence, we surmise that other non-cell autonomous mechanisms involved in germ-somatic cell interactions would contribute to the divergence of egg production performance between layers and broilers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guiyu Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271000, China; (Y.M.)
| |
Collapse
|
8
|
Pierson Smela MD, Kramme CC, Fortuna PRJ, Adams JL, Su R, Dong E, Kobayashi M, Brixi G, Kavirayuni VS, Tysinger E, Kohman RE, Shioda T, Chatterjee P, Church GM. Directed differentiation of human iPSCs to functional ovarian granulosa-like cells via transcription factor overexpression. eLife 2023; 12:e83291. [PMID: 36803359 PMCID: PMC9943069 DOI: 10.7554/elife.83291] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/18/2023] [Indexed: 02/22/2023] Open
Abstract
An in vitro model of human ovarian follicles would greatly benefit the study of female reproduction. Ovarian development requires the combination of germ cells and several types of somatic cells. Among these, granulosa cells play a key role in follicle formation and support for oogenesis. Whereas efficient protocols exist for generating human primordial germ cell-like cells (hPGCLCs) from human induced pluripotent stem cells (hiPSCs), a method of generating granulosa cells has been elusive. Here, we report that simultaneous overexpression of two transcription factors (TFs) can direct the differentiation of hiPSCs to granulosa-like cells. We elucidate the regulatory effects of several granulosa-related TFs and establish that overexpression of NR5A1 and either RUNX1 or RUNX2 is sufficient to generate granulosa-like cells. Our granulosa-like cells have transcriptomes similar to human fetal ovarian cells and recapitulate key ovarian phenotypes including follicle formation and steroidogenesis. When aggregated with hPGCLCs, our cells form ovary-like organoids (ovaroids) and support hPGCLC development from the premigratory to the gonadal stage as measured by induction of DAZL expression. This model system will provide unique opportunities for studying human ovarian biology and may enable the development of therapies for female reproductive health.
Collapse
Affiliation(s)
- Merrick D Pierson Smela
- Wyss Institute, Harvard UniversityBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Christian C Kramme
- Wyss Institute, Harvard UniversityBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Patrick RJ Fortuna
- Wyss Institute, Harvard UniversityBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Jessica L Adams
- Wyss Institute, Harvard UniversityBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Rui Su
- Wyss Institute, Harvard UniversityBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Edward Dong
- Wyss Institute, Harvard UniversityBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Mutsumi Kobayashi
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical SchoolCharlestownUnited States
| | - Garyk Brixi
- Wyss Institute, Harvard UniversityBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Department of Biomedical Engineering, Duke UniversityDurhamUnited States
- Department of Computer Science, Duke UniversityDurhamUnited States
| | - Venkata Srikar Kavirayuni
- Department of Biomedical Engineering, Duke UniversityDurhamUnited States
- Department of Computer Science, Duke UniversityDurhamUnited States
| | - Emma Tysinger
- Department of Biomedical Engineering, Duke UniversityDurhamUnited States
- Department of Computer Science, Duke UniversityDurhamUnited States
| | - Richie E Kohman
- Wyss Institute, Harvard UniversityBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Toshi Shioda
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical SchoolCharlestownUnited States
| | - Pranam Chatterjee
- Wyss Institute, Harvard UniversityBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Department of Biomedical Engineering, Duke UniversityDurhamUnited States
- Department of Computer Science, Duke UniversityDurhamUnited States
| | - George M Church
- Wyss Institute, Harvard UniversityBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
9
|
Laronda MM. Factors within the Developing Embryo and Ovarian Microenvironment That Influence Primordial Germ Cell Fate. Sex Dev 2023; 17:134-144. [PMID: 36646055 PMCID: PMC10349905 DOI: 10.1159/000528209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/18/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Primordial germ cell (PGC) fate is dictated by the designation, taxis, and influence of the surrounding embryonic somatic cells. Whereas gonadal sex determination results from a balance of factors within the tissue microenvironment. SUMMARY Our understanding of mammalian ovary development is formed in large part from developmental time courses established using murine models. Genomic tools where genes implicated in the PGC designation or gonadal sex determination have been modulated through complete or conditional knockouts in vivo, and studies in in situ models with inhibitors or cultures that alter the native gonadal environment have pieced together the interplay of pioneering transcription factors, co-regulators and chromosomes critical for the progression of PGCs to oocytes. Tools such as pluripotent stem cell derivation, genomic modifications, and aggregate differentiation cultures have yielded some insight into the human condition. Additional understanding of sex determination, both gonadal and anatomical, may be inferred from phenotypes that arise from de novo or inherited gene variants in humans who have differences in sex development. KEY MESSAGES This review highlights major factors critical for PGC specification and migration, and in ovarian gonad specification by reviewing seminal murine models. These pathways are compared to what is known about the human condition from expression profiles of fetal gonadal tissue, use of human pluripotent stem cells, or disorders resulting from disease variants. Many of these pathways are challenging to decipher in human tissues. However, the impact of new single-cell technologies and whole-genome sequencing to reveal disease variants of idiopathic reproductive tract phenotypes will help elucidate the mechanisms involved in human ovary development.
Collapse
Affiliation(s)
- Monica M. Laronda
- Department of Endocrinology and Department of Pediatric Surgery, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, (IL,) USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, (IL,) USA
| |
Collapse
|
10
|
Arkoun B, Moison P, Guerquin MJ, Messiaen S, Moison D, Tourpin S, Monville C, Livera G. Sorting and Manipulation of Human PGC-LC Using PDPN and Hanging Drop Cultures. Cells 2022; 11:3832. [PMID: 36497094 PMCID: PMC9736549 DOI: 10.3390/cells11233832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The generation of oocytes from induced pluripotent stem cells (iPSCs) was proven efficient with mouse cells. However, no human iPSCs have yet been reported to generate cells able to complete oogenesis. Additionally, efficient sorting of human Primordial Germ Cell-like Cells (hPGC-LCs) without genomic integration of fluorescent reporter for their downstream manipulation is still lacking. Here, we aimed to develop a model that allows human germ cell differentiation in vitro in order to study the developing human germline. The hPGC-LCs specified from two iPS cell lines were sorted and manipulated using the PDPN surface marker without genetic modification. hPGC-LCs obtained remain arrested at early stages of maturation and no further differentiation nor meiotic onset occurred when these were cultured with human or mouse fetal ovarian somatic cells. However, when cultured independently of somatic ovarian cells, using BMP4 and the hanging drop-transferred EBs system, early hPGC-LCs further differentiate efficiently and express late PGC (DDX4) and meiotic gene markers, although no SYCP3 protein was detected. Altogether, we characterized a tool to sort hPGC-LCs and an efficient in vitro differentiation system to obtain pre-meiotic germ cell-like cells without using a gonadal niche.
Collapse
Affiliation(s)
- Brahim Arkoun
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Pauline Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Marie-Justine Guerquin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Sébastien Messiaen
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Delphine Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Sophie Tourpin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
- Paris-Saclay Evry, U861, 91100 Corbeil-Essonnes, France
| | - Gabriel Livera
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
11
|
Xu Y, Chen Z, Wu P, Qu W, Shi H, Cheng M, Xu Y, Jin T, Liu C, Liu C, Li Y, Luo M. Nuclear localization of human MEIOB requires its NLS in the OB domain and interaction with SPATA22. Acta Biochim Biophys Sin (Shanghai) 2022; 55:154-161. [PMID: 36331299 PMCID: PMC10157540 DOI: 10.3724/abbs.2022156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MEIOB is a vital protein in meiotic homologous recombination and plays an indispensable role in human gametogenesis. In mammals, MEIOB and its partner SPATA22 form a heterodimer, ensuring their effective localization on single-strand DNA (ssDNA) and proper synapsis processes. Mutations in human MEIOB (hMEIOB) cause human infertility attributed to the failure of its interaction with human SPATA22 (hSPATA22) and ssDNA binding. However, the detailed mechanism is still unclear. In our study, truncated or full-length hMEIOB and hSPATA22 are traced by fused expression with fluorescent proteins (i.e., copGFP or mCherry), and the live cell imaging system is used to observe the expression and localization of the proteins. When transfected alone, hMEIOB accumulates in the cytoplasm. Interestingly, a covered NLS in the OB domain of hMEIOB is identified, which can be exposed by hSPATA22 and is necessary for the nuclear localization of hMEIOB. When hSPATA22 loses its hMEIOB interacting domain or NLS, the nuclear localization of hMEIOB is aborted. Collectively, our results prove that the NLS in the OB domain of hMEIOB and interaction with hSPATA22 are required for hMEIOB nuclear localization.
Collapse
|
12
|
Farini D, De Felici M. The Beginning of Meiosis in Mammalian Female Germ Cells: A Never-Ending Story of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms232012571. [PMID: 36293427 PMCID: PMC9604137 DOI: 10.3390/ijms232012571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Meiosis is the unique division of germ cells resulting in the recombination of the maternal and paternal genomes and the production of haploid gametes. In mammals, it begins during the fetal life in females and during puberty in males. In both cases, entering meiosis requires a timely switch from the mitotic to the meiotic cell cycle and the transition from a potential pluripotent status to meiotic differentiation. Revealing the molecular mechanisms underlying these interrelated processes represents the essence in understanding the beginning of meiosis. Meiosis facilitates diversity across individuals and acts as a fundamental driver of evolution. Major differences between sexes and among species complicate the understanding of how meiosis begins. Basic meiotic research is further hindered by a current lack of meiotic cell lines. This has been recently partly overcome with the use of primordial-germ-cell-like cells (PGCLCs) generated from pluripotent stem cells. Much of what we know about this process depends on data from model organisms, namely, the mouse; in mice, the process, however, appears to differ in many aspects from that in humans. Identifying the mechanisms and molecules controlling germ cells to enter meiosis has represented and still represents a major challenge for reproductive medicine. In fact, the proper execution of meiosis is essential for fertility, for maintaining the integrity of the genome, and for ensuring the normal development of the offspring. The main clinical consequences of meiotic defects are infertility and, probably, increased susceptibility to some types of germ-cell tumors. In the present work, we report and discuss data mainly concerning the beginning of meiosis in mammalian female germ cells, referring to such process in males only when pertinent. After a brief account of this process in mice and humans and an historical chronicle of the major hypotheses and progress in this topic, the most recent results are reviewed and discussed.
Collapse
|
13
|
Loup B, Poumerol E, Jouneau L, Fowler PA, Cotinot C, Mandon-Pépin B. BPA disrupts meiosis I in oogonia by acting on pathways including cell cycle regulation, meiosis initiation and spindle assembly. Reprod Toxicol 2022; 111:166-177. [PMID: 35667523 DOI: 10.1016/j.reprotox.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
The negative in utero effects of bisphenol A (BPA) on female reproduction are of concern since the ovarian reserve of primordial follicles is constituted during the fetal period. This time-window is difficult to access, particularly in humans. Animal models and explant culture systems are, therefore, vital tools for investigating EDC impacts on primordial germ cells (PGCs). Here, we investigated the effects of BPA on prophase I meiosis in the fetal sheep ovary. We established an in vitro model of early gametogenesis through retinoic acid (RA)-induced differentiation of sheep PGCs that progressed through meiosis. Using this system, we demonstrated that BPA (3×10-7 M & 3×10-5M) exposure for 20 days disrupted meiotic initiation and completion in sheep oogonia and induced transcriptomic modifications of exposed explants. After exposure to the lowest concentrations of BPA (3×10-7M), only 2 probes were significantly up-regulated corresponding to NR2F1 and TMEM167A transcripts. In contrast, after exposure to 3×10-5M BPA, 446 probes were deregulated, 225 were down- and 221 were up-regulated following microarray analysis. Gene Ontology (GO) annotations of differentially expressed genes revealed that pathways mainly affected were involved in cell-cycle phase transition, meiosis and spindle assembly. Differences in key gene expression within each pathway were validated by qRT-PCR. This study provides a novel model for direct examination of the molecular pathways of environmental toxicants on early female gametogenesis and novel insights into the mechanisms by which BPA affects meiosis I. BPA exposure could thereby disrupt ovarian reserve formation by inhibiting meiotic progression of oocytes I and consequently by increasing atresia of primordial follicles containing defective oocytes.
Collapse
Affiliation(s)
- Benoit Loup
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Elodie Poumerol
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Corinne Cotinot
- Université Paris-Saclay, UVSQ, ENVA, INRAE, BREED, 78350, Jouy-en-Josas, France.
| | | |
Collapse
|
14
|
Lundgaard Riis M, Jørgensen A. Deciphering Sex-Specific Differentiation of Human Fetal Gonads: Insight From Experimental Models. Front Cell Dev Biol 2022; 10:902082. [PMID: 35721511 PMCID: PMC9201387 DOI: 10.3389/fcell.2022.902082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-specific gonadal differentiation is initiated by the expression of SRY in male foetuses. This promotes a signalling pathway directing testicular development, while in female foetuses the absence of SRY and expression of pro-ovarian factors promote ovarian development. Importantly, in addition to the initiation of a sex-specific signalling cascade the opposite pathway is simultaneously inhibited. The somatic cell populations within the gonads dictates this differentiation as well as the development of secondary sex characteristics via secretion of endocrine factors and steroid hormones. Opposing pathways SOX9/FGF9 (testis) and WNT4/RSPO1 (ovary) controls the development and differentiation of the bipotential mouse gonad and even though sex-specific gonadal differentiation is largely considered to be conserved between mice and humans, recent studies have identified several differences. Hence, the signalling pathways promoting early mouse gonad differentiation cannot be directly transferred to human development thus highlighting the importance of also examining this signalling in human fetal gonads. This review focus on the current understanding of regulatory mechanisms governing human gonadal sex differentiation by combining knowledge of these processes from studies in mice, information from patients with differences of sex development and insight from manipulation of selected signalling pathways in ex vivo culture models of human fetal gonads.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
Rengaraj D, Cha DG, Lee HJ, Lee KY, Choi YH, Jung KM, Kim YM, Choi HJ, Choi HJ, Yoo E, Woo SJ, Park JS, Park KJ, Kim JK, Han JY. Dissecting chicken germ cell dynamics by combining a germ cell tracing transgenic chicken model with single-cell RNA sequencing. Comput Struct Biotechnol J 2022; 20:1654-1669. [PMID: 35465157 PMCID: PMC9010679 DOI: 10.1016/j.csbj.2022.03.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/02/2023] Open
Abstract
Avian germ cells can be distinguished by certain characteristics during development. On the basis of these characteristics, germ cells can be used for germline transmission. However, the dynamic transcriptional landscape of avian germ cells during development is unknown. Here, we used a novel germ-cell-tracing method to monitor and isolate chicken germ cells at different stages of development. We targeted the deleted in azoospermia like (DAZL) gene, a germ-cell-specific marker, to integrate a green fluorescent protein (GFP) reporter gene without affecting endogenous DAZL expression. The resulting transgenic chickens (DAZL::GFP) were used to uncover the dynamic transcriptional landscape of avian germ cells. Single-cell RNA sequencing of 4,752 male and 13,028 female DAZL::GFP germ cells isolated from embryonic day E2.5 to 1 week post-hatch identified sex-specific developmental stages (4 stages in male and 5 stages in female) and trajectories (apoptosis and meiosis paths in female) of chicken germ cells. The male and female trajectories were characterized by a gradual acquisition of stage-specific transcription factor activities. We also identified evolutionary conserved and species-specific gene expression programs during both chicken and human germ-cell development. Collectively, these novel analyses provide mechanistic insights into chicken germ-cell development.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Dong Gon Cha
- Department of New Biology, DGIST, Daegu 42988, South Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu 42988, South Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyeon Jeong Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eunhui Yoo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, South Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Corresponding authors at: POSTECH, 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea (J.K. Kim). Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea (J.Y. Han).
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
- Corresponding authors at: POSTECH, 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea (J.K. Kim). Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea (J.Y. Han).
| |
Collapse
|
16
|
Spiller C, Bowles J. Instructing Mouse Germ Cells to Adopt a Female Fate. Sex Dev 2022:1-13. [PMID: 35320803 DOI: 10.1159/000523763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Germ cells are critical for the survival of our species. They are the only cells that undergo meiosis - the reductive form of cell division that is necessary for genetic reassortment of chromosomes and production of the haploid gametes, the sperm and eggs. Remarkably, the initial female/male fate decision in fetal germ cells does not depend on whether they are chromosomally XX or XY; rather, initial sexual fate is imposed by influences from the surrounding tissue. In mammals, the female germline is particularly precious: despite recent suggestions that germline stem cells exist in the ovary, it is still generally accepted that the ovarian reserve is finite, and its size is dependant on germ cells of the fetal ovary initiating meiosis in a timely manner. SUMMARY Prior to 2006, evidence suggested that gonadal germ cells initiate meiotic prophase I by default, but more recent data support a key role for the signalling molecule retinoic acid (RA) in instructing female germ cell fate. Newer findings also support a key meiosis-inducing role for another signalling molecule, bone morphogenic protein (BMP). Nonetheless, many questions remain. KEY MESSAGES Here, we review knowledge thus far regarding extrinsic and intrinsic determinants of a female germ cell fate, focusing on the mouse model.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Function of Retinoic Acid in Development of Male and Female Gametes. Nutrients 2022; 14:nu14061293. [PMID: 35334951 PMCID: PMC8951023 DOI: 10.3390/nu14061293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid, an active metabolite of vitamin A, is necessary for many developmental processes in mammals. Much of the field of reproduction has looked toward retinoic acid as a key transcriptional regulator and catalyst of differentiation events. This review focuses on the effects of retinoic acid on male and female gamete formation and regulation. Within spermatogenesis, it has been well established that retinoic acid is necessary for the proper formation of the blood–testis barrier, spermatogonial differentiation, spermiation, and assisting in meiotic completion. While many of the roles of retinoic acid in male spermatogenesis are known, investigations into female oogenesis have provided differing results.
Collapse
|
18
|
AOP Key Event Relationship report: Linking decreased retinoic acid levels with disrupted meiosis in developing oocytes. Curr Res Toxicol 2022; 3:100069. [PMID: 35345548 PMCID: PMC8957012 DOI: 10.1016/j.crtox.2022.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
The first case study to develop and publish an individual KER as a stand-alone unit of information under the AOP framework overseen by the OECD. Full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. KER described is associated with an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
The Adverse Outcome Pathway (AOP) concept is an emerging tool in regulatory toxicology that uses simplified descriptions to show cause-effect relationships between stressors and toxicity outcomes in intact organisms. The AOP structure is a modular framework, with Key Event Relationships (KERs) representing the unit of causal relationship based on existing knowledge, describing the connection between two Key Events. Because KERs are the only unit to support inference it has been argued recently that KERs should be recognized as the core building blocks of knowledge assembly within the AOP-Knowledge Base. Herein, we present a first case to support this proposal and provide a full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. We outline the evidence to support a role for atRA in inducing meiosis in oogonia across mammals; this is important because elements of the RA synthesis/degradation pathway are recognized targets for numerous environmental chemicals. The KER we describe will be used to support an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
Collapse
|
19
|
Lundgaard Riis M, Nielsen JE, Hagen CP, Rajpert-De Meyts E, Græm N, Jørgensen A, Juul A. Accelerated loss of oogonia and impaired folliculogenesis in females with Turner syndrome start during early fetal development. Hum Reprod 2021; 36:2992-3002. [PMID: 34568940 DOI: 10.1093/humrep/deab210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION How are germ cell numbers and initiation of folliculogenesis affected in fetal Turner syndrome (TS) ovaries? SUMMARY ANSWER Germ cell development was severely affected already in early second trimester pregnancies, including accelerated oogonia loss and impaired initiation of primordial follicle formation in TS ovaries, while the phenotype in TS mosaic ovaries was less severe. WHAT IS KNOWN ALREADY Females with TS are characterized by premature ovarian insufficiency (POI). This phenotype is proposed to be a consequence of germ cell loss during development, but the timing and mechanisms behind this are not characterized in detail. Only few studies have evaluated germ cell development in fetal TS and TS mosaic ovaries, and with a sparse number of specimens included per study. STUDY DESIGN, SIZE, DURATION This study included a total of 102 formalin-fixed and paraffin-embedded fetal ovarian tissue specimens. Specimens included were from fetuses with 45,X (N = 42 aged gestational week (GW) 12-20, except one GW 40 sample), 45,X/46,XX (N = 7, aged GW 12-20), and from controls (N = 53, aged GW 12-42) from a biobank (ethics approval # H-2-2014-103). PARTICIPANTS/MATERIALS, SETTING, METHODS The number of OCT4 positive germ cells/mm2, follicles (primordial and primary)/mm2 and cPARP positive cells/mm2 were quantified in fetal ovarian tissue from TS, TS mosaic and controls following morphological and immunohistochemical analysis. MAIN RESULTS AND THE ROLE OF CHANCE After adjusting for gestational age, the number of OCT4+ oogonia was significantly higher in control ovaries (N = 53) versus 45,X ovaries (N = 40, P < 0.001), as well as in control ovaries versus 45,X/46,XX mosaic ovaries (N = 7, P < 0.043). Accordingly, the numbers of follicles were significantly higher in control ovaries versus 45,X and 45,X/46,XX ovaries from GW 16-20 with a median range of 154 (N = 11) versus 0 (N = 24) versus 3 (N = 5) (P < 0.001 and P < 0.015, respectively). The number of follicles was also significantly higher in 45,X/46,XX mosaic ovaries from GW 16-20 compared with 45,X ovaries (P < 0.005). Additionally, the numbers of apoptotic cells determined as cPARP+ cells/mm2 were significantly higher in ovaries 45,X (n = 39) versus controls (n = 15, P = 0.001) from GW 12-20 after adjusting for GW. LIMITATIONS, REASONS FOR CAUTION The analysis of OCT4+ cells/mm2, cPARP+ cells/mm2 and follicles (primordial and primary)/mm2 should be considered semi-quantitative as it was not possible to use quantification by stereology. The heterogeneous distribution of follicles in the ovarian cortex warrants a cautious interpretation of the exact quantitative numbers reported. Moreover, only one 45,X specimen and no 45,X/46,XX specimens aged above GW 20 were available for this study, which unfortunately made it impossible to assess whether the ovarian folliculogenesis was delayed or absent in the TS and TS mosaic specimens. WIDER IMPLICATIONS OF THE FINDINGS This human study provides insights about the timing of accelerated fetal germ cell loss in TS. Knowledge about the biological mechanism of POI in girls with TS is clinically useful when counseling patients about expected ovarian function and fertility preservation strategies. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC). TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - John E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Casper P Hagen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Niels Græm
- Department of Pathology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
20
|
Rosario R, Stewart HL, Walshe E, Anderson RA. Reduced retinoic acid synthesis accelerates prophase I and follicle activation. Reproduction 2021; 160:331-341. [PMID: 32520724 PMCID: PMC7424351 DOI: 10.1530/rep-20-0221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
In female mammals, reproductive potential is determined during fetal life by the formation of a non-renewable pool of primordial follicles. Initiation of meiosis is one of the defining features of germ cell differentiation and is well established to commence in response to retinoic acid. WIN 18,446 inhibits the conversion of retinol to retinoic acid, and therefore it was used to explore the impact of reduced retinoic acid synthesis on meiotic progression and thus germ cell development and subsequent primordial follicle formation. e13.5 mouse fetal ovaries were cultured in vitro and treated with WIN 18,446 for the first 3 days of a total of up to 12 days. Doses as low as 0.01 µM reduced transcript levels of the retinoic acid response genes Stra8 and Rarβ without affecting germ cell number. Higher doses resulted in germ cell loss, rescued with the addition of retinoic acid. WIN 18,446 significantly accelerated the progression of prophase I; this was seen as early as 48 h post treatment using meiotic chromosome spreads and was still evident after 12 days of culture using Tra98/Msy2 immunostaining. Furthermore, ovaries treated with WIN 18,446 at e13.5 but not at P0 had a higher proportion of growing follicles compared to vehicle controls, thus showing evidence of increased follicle activation. These data therefore indicate that retinoic acid is not necessary for meiotic progression but may have a role in the regulation of its progression and germ cell survival at that time and provide evidence for a link between meiotic arrest and follicle growth initiation.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Hazel L Stewart
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emily Walshe
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Zhang C. The Roles of Different Stem Cells in Premature Ovarian Failure. Curr Stem Cell Res Ther 2021; 15:473-481. [PMID: 30868961 DOI: 10.2174/1574888x14666190314123006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Premature ovarian failure (POF) is characterized by amenorrhea, hypergonadotropism and hypoestrogenism before the age of 40, which affects 1% of women in the general population. POF is complex and heterogeneous due to its pathogenetic mechanisms. It is one of the significant causes of female infertility. Although many treatments are available for POF, these therapies are less efficient and trigger many side effects. Therefore, to find effective therapeutics for POF is urgently required. Due to stem cells having self-renewal and regeneration potential, they may be effective for the treatment of ovarian failure and consequently infertility. Recent studies have found that stem cells therapy may be able to restore the ovarian structure and function in animal models of POF and provide an effective treatment method. The present review summarizes the biological roles and the possible signaling mechanisms of the different stem cells in POF ovary. Further study on the precise mechanisms of stem cells on POF may provide novel insights into the female reproduction, which not only enhances the understanding of the physiological roles but also supports effective therapy for recovering ovarian functions against infertility.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
22
|
Banisch TU, Slaidina M, Gupta S, Ho M, Gilboa L, Lehmann R. A transitory signaling center controls timing of primordial germ cell differentiation. Dev Cell 2021; 56:1742-1755.e4. [PMID: 34081907 PMCID: PMC8330407 DOI: 10.1016/j.devcel.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/07/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Organogenesis requires exquisite spatiotemporal coordination of cell morphogenesis, migration, proliferation, and differentiation of multiple cell types. For gonads, this involves complex interactions between somatic and germline tissues. During Drosophila ovary morphogenesis, primordial germ cells (PGCs) either are sequestered in stem cell niches and are maintained in an undifferentiated germline stem cell state or transition directly toward differentiation. Here, we identify a mechanism that links hormonal triggers of somatic tissue morphogenesis with PGC differentiation. An early ecdysone pulse initiates somatic swarm cell (SwC) migration, positioning these cells close to PGCs. A second hormone peak activates Torso-like signal in SwCs, which stimulates the Torso receptor tyrosine kinase (RTK) signaling pathway in PGCs promoting their differentiation by de-repression of the differentiation gene, bag of marbles. Thus, systemic temporal cues generate a transitory signaling center that coordinates ovarian morphogenesis with stem cell self-renewal and differentiation programs, highlighting a more general role for such centers in reproductive and developmental biology.
Collapse
Affiliation(s)
- Torsten U Banisch
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
| | - Maija Slaidina
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Selena Gupta
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Megan Ho
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Lilach Gilboa
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruth Lehmann
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Lecluze E, Rolland AD, Filis P, Evrard B, Leverrier-Penna S, Maamar MB, Coiffec I, Lavoué V, Fowler PA, Mazaud-Guittot S, Jégou B, Chalmel F. Dynamics of the transcriptional landscape during human fetal testis and ovary development. Hum Reprod 2021; 35:1099-1119. [PMID: 32412604 DOI: 10.1093/humrep/deaa041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Which transcriptional program triggers sex differentiation in bipotential gonads and downstream cellular events governing fetal testis and ovary development in humans? SUMMARY ANSWER The characterization of a dynamically regulated protein-coding and non-coding transcriptional landscape in developing human gonads of both sexes highlights a large number of potential key regulators that show an early sexually dimorphic expression pattern. WHAT IS KNOWN ALREADY Gonadal sex differentiation is orchestrated by a sexually dimorphic gene expression program in XX and XY developing fetal gonads. A comprehensive characterization of its non-coding counterpart offers promising perspectives for deciphering the molecular events underpinning gonad development and for a complete understanding of the etiology of disorders of sex development in humans. STUDY DESIGN, SIZE, DURATION To further investigate the protein-coding and non-coding transcriptional landscape during gonad differentiation, we used RNA-sequencing (RNA-seq) and characterized the RNA content of human fetal testis (N = 24) and ovaries (N = 24) from 6 to 17 postconceptional week (PCW), a key period in sex determination and gonad development. PARTICIPANTS/MATERIALS, SETTING, METHODS First trimester fetuses (6-12 PCW) and second trimester fetuses (13-14 and 17 PCW) were obtained from legally induced normally progressing terminations of pregnancy. Total RNA was extracted from whole human fetal gonads and sequenced as paired-end 2 × 50 base reads. Resulting sequences were mapped to the human genome, allowing for the assembly and quantification of corresponding transcripts. MAIN RESULTS AND THE ROLE OF CHANCE This RNA-seq analysis of human fetal testes and ovaries at seven key developmental stages led to the reconstruction of 22 080 transcripts differentially expressed during testicular and/or ovarian development. In addition to 8935 transcripts displaying sex-independent differential expression during gonad development, the comparison of testes and ovaries enabled the discrimination of 13 145 transcripts that show a sexually dimorphic expression profile. The latter include 1479 transcripts differentially expressed as early as 6 PCW, including 39 transcription factors, 40 long non-coding RNAs and 20 novel genes. Despite the use of stringent filtration criteria (expression cut-off of at least 1 fragment per kilobase of exon model per million reads mapped, fold change of at least 2 and false discovery rate adjusted P values of less than <1%), the possibility of assembly artifacts and of false-positive differentially expressed transcripts cannot be fully ruled out. LARGE-SCALE DATA Raw data files (fastq) and a searchable table (.xlss) containing information on genomic features and expression data for all refined transcripts have been submitted to the NCBI GEO under accession number GSE116278. LIMITATIONS, REASONS FOR CAUTION The intrinsic nature of this bulk analysis, i.e. the sequencing of transcripts from whole gonads, does not allow direct identification of the cellular origin(s) of the transcripts characterized. Potential cellular dilution effects (e.g. as a result of distinct proliferation rates in XX and XY gonads) may account for a few of the expression profiles identified as being sexually dimorphic. Finally, transcriptome alterations that would result from exposure to pre-abortive drugs cannot be completely excluded. Although we demonstrated the high quality of the sorted cell populations used for experimental validations using quantitative RT-PCR, it cannot be totally excluded that some germline expression may correspond to cell contamination by, for example, macrophages. WIDER IMPLICATIONS OF THE FINDINGS For the first time, this study has led to the identification of 1000 protein-coding and non-coding candidate genes showing an early, sexually dimorphic, expression pattern that have not previously been associated with sex differentiation. Collectively, these results increase our understanding of gonad development in humans, and contribute significantly to the identification of new candidate genes involved in fetal gonad differentiation. The results also provide a unique resource that may improve our understanding of the fetal origin of testicular and ovarian dysgenesis syndromes, including cryptorchidism and testicular cancers. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the French National Institute of Health and Medical Research (Inserm), the University of Rennes 1, the French School of Public Health (EHESP), the Swiss National Science Foundation [SNF n° CRS115_171007 to B.J.], the French National Research Agency [ANR n° 16-CE14-0017-02 and n° 18-CE14-0038-02 to F.C.], the Medical Research Council [MR/L010011/1 to P.A.F.] and the European Community's Seventh Framework Programme (FP7/2007-2013) [under grant agreement no 212885 to P.A.F.] and from the European Union's Horizon 2020 Research and Innovation Programme [under grant agreement no 825100 to P.A.F. and S.M.G.]. There are no competing interests related to this study.
Collapse
Affiliation(s)
- Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Sabrina Leverrier-Penna
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.,Univ Poitiers, STIM, CNRS ERL7003, Poitiers Cedex 9, CNRS ERL7003, France
| | - Millissia Ben Maamar
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Isabelle Coiffec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Vincent Lavoué
- Service Gynécologie et Obstétrique, CHU Rennes, F-35000 Rennes, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
24
|
Dosoky NS, Setzer WN. Maternal Reproductive Toxicity of Some Essential Oils and Their Constituents. Int J Mol Sci 2021; 22:2380. [PMID: 33673548 PMCID: PMC7956842 DOI: 10.3390/ijms22052380] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Even though several plants can improve the female reproductive function, the use of herbs, herbal preparations, or essential oils during pregnancy is questionable. This review is focused on the effects of some essential oils and their constituents on the female reproductive system during pregnancy and on the development of the fetus. The major concerns include causing abortion, reproductive hormone modulation, maternal toxicity, teratogenicity, and embryo-fetotoxicity. This work summarizes the important studies on the reproductive effects of essential oil constituents anethole, apiole, citral, camphor, thymoquinone, trans-sabinyl acetate, methyl salicylate, thujone, pulegone, β-elemene, β-eudesmol, and costus lactone, among others.
Collapse
Affiliation(s)
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| |
Collapse
|
25
|
Zhao ZH, Meng TG, Zhang HY, Hou Y, Schatten H, Wang ZB, Sun QY. Single-cell RNA sequencing reveals species-specific time spans of cell cycle transitions in early oogenesis. Hum Mol Genet 2021; 30:525-535. [PMID: 33575778 DOI: 10.1093/hmg/ddab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 11/14/2022] Open
Abstract
Oogenesis is a highly regulated process and its basic cellular events are evolutionarily conserved. However, the time spans of oogenesis differ substantially among species. To explore these interspecies differences in oogenesis, we performed single-cell RNA-sequencing on mouse and monkey female germ cells and downloaded the single-cell RNA-sequencing data of human female germ cells. The cell cycle analyses indicate that the period and extent of cell cycle transitions are significantly different between the species. Moreover, hierarchical clustering of critical cell cycle genes and the interacting network of cell cycle regulators also exhibit distinguished patterns across species. We propose that differences in the regulation of cell cycle transitions may underlie female germ cell developmental allochrony between species. A better understanding of the cell cycle transition machinery will provide new insights into the interspecies differences in female germ cell developmental time spans.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tie-Gang Meng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Hong-Yong Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
26
|
Khanehzad M, Abbaszadeh R, Holakuyee M, Modarressi MH, Nourashrafeddin SM. FSH regulates RA signaling to commit spermatogonia into differentiation pathway and meiosis. Reprod Biol Endocrinol 2021; 19:4. [PMID: 33407539 PMCID: PMC7789255 DOI: 10.1186/s12958-020-00686-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Spermatogenesis is a complex process that is controlled by interactions between germ cells and somatic cells. The commitment of undifferentiated spermatogonia to differentiating spermatogonia and normal spermatogenesis requires the action of gonadotropins. Additionally, numerous studies revealed the role of retinoic acid signaling in induction of germ cell differentiation and meiosis entry. MAIN TEXT Recent studies have shown that expression of several RA signaling molecules including Rdh10, Aldh1a2, Crabp1/2 are influenced by changes in gonadotropin levels. Components of signaling pathways that are regulated by FSH signaling such as GDNF, Sohlh1/2, c-Kit, DMRT, BMP4 and NRGs along with transcription factors that are important for proliferation and differentiation of spermatogonia are also affected by retinoic acid signaling. CONCLUSION According to all studies that demonstrate the interface between FSH and RA signaling, we suggest that RA may trigger spermatogonia differentiation and initiation of meiosis through regulation by FSH signaling in testis. Therefore, to the best of our knowledge, this is the first time that the correlation between FSH and RA signaling in spermatogenesis is highlighted.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Abbaszadeh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Harpelunde Poulsen K, Nielsen JE, Frederiksen H, Melau C, Juul Hare K, Langhoff Thuesen L, Perlman S, Lundvall L, Mitchell RT, Juul A, Rajpert-De Meyts E, Jørgensen A. Dysregulation of FGFR signalling by a selective inhibitor reduces germ cell survival in human fetal gonads of both sexes and alters the somatic niche in fetal testes. Hum Reprod 2020; 34:2228-2243. [PMID: 31734698 PMCID: PMC6994936 DOI: 10.1093/humrep/dez191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
STUDY QUESTION Does experimental manipulation of fibroblast growth factor 9 (FGF9)-signalling in human fetal gonads alter sex-specific gonadal differentiation? SUMMARY ANSWER Inhibition of FGFR signalling following SU5402 treatment impaired germ cell survival in both sexes and severely altered the developing somatic niche in testes, while stimulation of FGF9 signalling promoted Sertoli cell proliferation in testes and inhibited meiotic entry of germ cells in ovaries. WHAT IS KNOWN ALREADY Sex-specific differentiation of bipotential gonads involves a complex signalling cascade that includes a combination of factors promoting either testicular or ovarian differentiation and inhibition of the opposing pathway. In mice, FGF9/FGFR2 signalling has been shown to promote testicular differentiation and antagonize the female developmental pathway through inhibition of WNT4. STUDY DESIGN, SIZE, DURATION FGF signalling was manipulated in human fetal gonads in an established ex vivo culture model by treatments with recombinant FGF9 (25 ng/ml) and the tyrosine kinase inhibitor SU5402 (10 μM) that was used to inhibit FGFR signalling. Human fetal testis and ovary tissues were cultured for 14 days and effects on gonadal development and expression of cell lineage markers were determined. PARTICIPANTS/MATERIALS, SETTING, METHODS Gonadal tissues from 44 male and 33 female embryos/fetuses from first trimester were used for ex vivo culture experiments. Tissues were analyzed by evaluation of histology and immunohistochemical analysis of markers for germ cells, somatic cells, proliferation and apoptosis. Culture media were collected throughout the experimental period and production of steroid hormone metabolites was analyzed in media from fetal testis cultures by liquid chromatography-tandem mass spectrometry (LC-MS/MS). MAIN RESULTS AND THE ROLE OF CHANCE Treatment with SU5402 resulted in near complete loss of gonocytes (224 vs. 14 OCT4+ cells per mm2, P < 0.05) and oogonia (1456 vs. 28 OCT4+ cells per mm2, P < 0.001) in human fetal testes and ovaries, respectively. This was a result of both increased apoptosis and reduced proliferation in the germ cells. Addition of exogenous FGF9 to the culture media resulted in a reduced number of germ cells entering meiosis in fetal ovaries (102 vs. 60 γH2AX+ germ cells per mm2, P < 0.05), while in fetal testes FGF9 stimulation resulted in an increased number of Sertoli cells (2503 vs. 3872 SOX9+ cells per mm2, P < 0.05). In fetal testes, inhibition of FGFR signalling by SU5402 treatment altered seminiferous cord morphology and reduced the AMH expression as well as the number of SOX9-positive Sertoli cells (2503 vs. 1561 SOX9+ cells per mm2, P < 0.05). In interstitial cells, reduced expression of COUP-TFII and increased expression of CYP11A1 and CYP17A1 in fetal Leydig cells was observed, although there were no subsequent changes in steroidogenesis. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Ex vivo culture may not replicate all aspects of fetal gonadal development and function in vivo. Although the effects of FGF9 were studied in ex vivo culture experiments, there is no direct evidence that FGF9 acts in vivo during human fetal gonadogenesis. The FGFR inhibitor (SU5402) used in this study is not specific to FGFR2 but inhibits all FGF receptors and off-target effects on unrelated tyrosine kinases should be considered. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study suggest that dysregulation of FGFR-mediated signalling may affect both testicular and ovarian development, in particular impacting the fetal germ cell populations in both sexes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported in part by an ESPE Research Fellowship, sponsored by Novo Nordisk A/S to A.JØ. Additional funding was obtained from the Erichsen Family Fund (A.JØ.), the Aase and Ejnar Danielsens Fund (A.JØ.), the Danish Government's support for the EDMaRC programme (A.JU.) and a Wellcome Trust Intermediate Clinical Fellowship (R.T.M., Grant no. 098522). The Medical Research Council (MRC) Centre for Reproductive Health (R.T.M.) is supported by an MRC Centre Grant (MR/N022556/1). The authors have no conflict of interest to disclose.
Collapse
Affiliation(s)
- K Harpelunde Poulsen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - J E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - H Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - C Melau
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - K Juul Hare
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Kettegård Alle 30, 2650 Hvidovre, Denmark
| | - L Langhoff Thuesen
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Kettegård Alle 30, 2650 Hvidovre, Denmark
| | - S Perlman
- Department of Gynaecology, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, Copenhagen 2100, Denmark
| | - L Lundvall
- Department of Gynaecology, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, Copenhagen 2100, Denmark
| | - R T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A Juul
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - E Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - A Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
28
|
Putative adverse outcome pathways for female reproductive disorders to improve testing and regulation of chemicals. Arch Toxicol 2020; 94:3359-3379. [PMID: 32638039 PMCID: PMC7502037 DOI: 10.1007/s00204-020-02834-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Modern living challenges female reproductive health. We are witnessing a rise in reproductive disorders and drop in birth rates across the world. The reasons for these manifestations are multifaceted and most likely include continuous exposure to an ever-increasing number of chemicals. The cause–effect relationships between chemical exposure and female reproductive disorders, however, have proven problematic to determine. This has made it difficult to assess the risks chemical exposures pose to a woman’s reproductive development and function. To address this challenge, this review uses the adverse outcome pathway (AOP) concept to summarize current knowledge about how chemical exposure can affect female reproductive health. We have a special focus on effects on the ovaries, since they are essential for lifelong reproductive health in women, being the source of both oocytes and several reproductive hormones, including sex steroids. The AOP framework is widely accepted as a new tool for toxicological safety assessment that enables better use of mechanistic knowledge for regulatory purposes. AOPs equip assessors and regulators with a pragmatic network of linear cause–effect relationships, enabling the use of a wider range of test method data in chemical risk assessment and regulation. Based on current knowledge, we propose ten putative AOPs relevant for female reproductive disorders that can be further elaborated and potentially be included in the AOPwiki. This effort is an important step towards better safeguarding the reproductive health of all girls and women.
Collapse
|
29
|
Lamothe S, Bernard V, Christin-Maitre S. Gonad differentiation toward ovary. ANNALES D'ENDOCRINOLOGIE 2020; 81:83-88. [PMID: 32340851 DOI: 10.1016/j.ando.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gonad differentiation depends on a set of cellular and hormonal signals interacting in a specific order, with very precise windows of action, to contribute to the establishment of the genital tract and a male or female phenotype. Research initially focused on the stages of gonad differentiation toward testis, in particular following the identification in 1990 of the SRY factor on chromosome Y. The mechanisms involved in gonad differentiation toward ovary took longer to identify. Thanks to patients with different sexual development (DSD) and animal knock-out models, description of the cascades involved in the activation and maintenance of ovarian development has progressed considerably in recent years.
Collapse
Affiliation(s)
- Sophie Lamothe
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France
| | - Valérie Bernard
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France
| | - Sophie Christin-Maitre
- Service d'endocrinologie, hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, 75012 Paris, France; Sorbonne université, Paris, France; UMR 933 75012 Paris, France.
| |
Collapse
|
30
|
Liu Y, Fan X, Yue M, Yue W, Zhang X, Zhang J, Ren G, He J. Expression and localization of meiosis-associated protein in gonads of female rats at different stages. Acta Histochem 2020; 122:151509. [PMID: 31964534 DOI: 10.1016/j.acthis.2020.151509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 11/15/2022]
Abstract
It was well known that a critical process of oogenesis in the female mammalian was the entry of mitotic oogonia into meiosis. Early studies from model animal mice suggested that the retinoic acid (RA) response signal protein STRA8 (stimulated by retinoic acid gene 8) and the meiosis-specific chromosomal behavior marker protein SCP3 (Synaptonemal Complex Protein 3) were two crucial molecular markers during meiosis. The expression of STRA8 and SCP3 at different stages in rat ovaries was investigated by immunohistochemistry, qRT-PCR and Western Blot. Immunohistochemistry results showed that STRA8 and SCP3 were mainly expressed in embryonic stage. And STRA8 was expressed in the cytoplasm and nucleus of the ovaries after birth. qRT-PCR and Western Blot results showed that the mRNA and protein levels of STRA8 and SCP3 were expressed in embryonic stage. The expression of STRA8 and SCP3 indicated germ cells enter meiosis in rats embryo, and STRA8 and SCP3 could serve as molecular markers for the meiosis in rats. The localization of STRA8 in the nucleus increased the possibility that STRA8 might act as transcription factor or activate transcription to function after birth.
Collapse
Affiliation(s)
- Yihui Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Xiaorui Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Meishan Yue
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Weidong Yue
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Xinrong Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jingwen Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Gaoya Ren
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Junping He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
31
|
Basal characterization and in vitro differentiation of putative stem cells derived from the adult mouse ovary. In Vitro Cell Dev Biol Anim 2020; 56:59-66. [PMID: 31900800 DOI: 10.1007/s11626-019-00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
Lately, stem cell approaches have provided new information on reproductive organ function and additionally recommended novel treatment possibilities. The type(s) and differentiation potential of stem cells present in the mammalian ovary are largely unknown; while oogonial stem cells have been reported, we explored the possibility that multipotent stem cells may reside in the ovary and have wide differentiation potential. In this experimental study, homogenates of whole mouse ovaries were sorted using the stem cell surface markers stem cell antigen-1 and stage specific embryonic antigen-1/CD15. Viable double-positive cells 3-10 μm in diameter were evaluated immediately after sorting and after culture using differentiation conditions. Ovarian-derived stem cells were differentiated into the three main cell types: adipocytes, chondrocytes, or osteocytes. The subsequent culture was performed in media containing bone morphogenetic protein 4 (BMP-4) and/or retinoic acid (RA). RA, BMP-4 or the two agents in combination, consistently stimulated germ cell gene expression. RA treatment strongly stimulated germline gene expression and also the development of cells that were morphologically reminiscent of oocytes. The germ cell genes Dazl, Ddx4, Figla, Gdf-9, Nobox, Prdm9, and Sycp-1 were all detected at low levels. Remarkably, treatment with BMP-4 alone significantly increased protein expression of the granulosa cell product anti-Müllerian hormone (AMH). We have shown that an inclusive isolation protocol results in the consistent derivation of multipotent stem cells from the adult ovary; these cells can be differentiated towards the germ cell fate (RA alone), somatic ovarian cell fate as indicated by AMH production (BMP-4 alone), or classical mesenchymal cell types. Taken together, these data suggest the presence of multipotent mesenchymal stem cells in the murine ovary.
Collapse
|
32
|
Divergent Roles of CYP26B1 and Endogenous Retinoic Acid in Mouse Fetal Gonads. Biomolecules 2019; 9:biom9100536. [PMID: 31561560 PMCID: PMC6843241 DOI: 10.3390/biom9100536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
In female mammals, germ cells enter meiosis in the fetal ovaries, while in males, meiosis is prevented until postnatal development. Retinoic acid (RA) is considered the main inducer of meiotic entry, as it stimulates Stra8 which is required for the mitotic/meiotic switch. In fetal testes, the RA-degrading enzyme CYP26B1 prevents meiosis initiation. However, the role of endogenous RA in female meiosis entry has never been demonstrated in vivo. In this study, we demonstrate that some effects of RA in mouse fetal gonads are not recapitulated by the invalidation or up-regulation of CYP26B1. In organ culture of fetal testes, RA stimulates testosterone production and inhibits Sertoli cell proliferation. In the ovaries, short-term inhibition of RA-signaling does not decrease Stra8 expression. We develop a gain-of-function model to express CYP26A1 or CYP26B1. Only CYP26B1 fully prevents STRA8 induction in female germ cells, confirming its role as part of the meiotic prevention machinery. CYP26A1, a very potent RA degrading enzyme, does not impair the formation of STRA8-positive cells, but decreases Stra8 transcription. Collectively, our data reveal that CYP26B1 has other activities apart from metabolizing RA in fetal gonads and suggest a role of endogenous RA in amplifying Stra8, rather than being the initial inducer of Stra8. These findings should reactivate the quest to identify meiotic preventing or inducing substances.
Collapse
|
33
|
Díaz-Hernández V, Caldelas I, Merchant-Larios H. Gene Expression in the Supporting Cells at the Onset of Meiosis in Rabbit Gonads. Sex Dev 2019; 13:125-136. [PMID: 31416086 DOI: 10.1159/000502193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 11/19/2022] Open
Abstract
Subsequent to somatic gonadal sexual differentiation, germ cells enter meiosis or mitotic arrest in the ovary or testis, respectively. Among mice, these processes occur almost synchronically in fetal gonads and depend, among other factors, on the levels of retinoic acid (RA). In contrast to those in mice, rabbit germ cells enter meiosis or mitotic arrest after birth and coexist with proliferating germ cells. Here, we studied the somatic cell context in which germ cells enter meiosis or mitotic arrest in the rabbit. Using confocal immunofluorescence and real-time PCR, we studied the expression profiles of ALDH1A1 and ALDH1A2 and, comprising 2 genes required for RA synthesis, 2 meiosis markers STRA8 and SYCP3 as well as 2 genes involved in meiosis inhibition, CYP26B1 and NANOS2. We found that although both meiosis and mitotic arrest initiate after birth, these 2 processes are regulated in a way similar to the human fetal gonad. Current results reinforce the value of the neonatal rabbit gonad as an alternative experimental model for analyzing the direct effect of environmental factors during critical stages of germ cell establishment.
Collapse
|
34
|
Ge W, Li L, Dyce PW, De Felici M, Shen W. Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cell Mol Life Sci 2019; 76:1729-1746. [PMID: 30810760 PMCID: PMC11105173 DOI: 10.1007/s00018-019-03028-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
Abstract
The reproductive life span in women starts at puberty and ends at menopause, following the exhaustion of the follicle stockpile termed the ovarian reserve. Increasing data from experimental animal models and epidemiological studies indicate that exposure to a number of ubiquitously distributed reproductively toxic environmental chemicals (RTECs) can contribute to earlier menopause and even premature ovarian failure. However, the causative relationship between environmental chemical exposure and earlier menopause in women remains poorly understood. The present work, is an attempt to review the current evidence regarding the effects of RTECs on the main ovarian activities in mammals, focusing on how such compounds can affect the ovarian reserve at any stages of ovarian development. We found that in rodents, strong evidence exists that in utero, neonatal, prepubescent and even adult exposure to RTECs leads to impaired functioning of the ovary and a shortening of the reproductive lifespan. Regarding human, data from cross-sectional surveys suggest that human exposure to certain environmental chemicals can compromise a woman's reproductive health and in some cases, correlate with earlier menopause. In conclusion, evidences exist that exposure to RTECs can compromise a woman's reproductive health. However, human exposures may date back to the developmental stage, while the adverse effects are usually diagnosed decades later, thus making it difficult to determine the association between RTECs exposure and human reproductive health. Therefore, epidemiological surveys and more experimental investigation on humans, or alternatively primates, are needed to determine the direct and indirect effects caused by RTECs exposure on the ovary function, and to characterize their action mechanisms.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
35
|
Abstract
Germ cells are the stem cells of the species. Thus, it is critical that we have a good understanding of how they are specified, how the somatic cells instruct and support them, how they commit to one or other sex, and how they ultimately develop into functional gametes. Here, we focus on specifics of how sexual fate is determined during fetal life. Because the majority of relevant experimental work has been done using the mouse model, we focus on that species. We review evidence regarding the identity of instructive signals from the somatic cells, and the molecular responses that occur in germ cells in response to those extrinsic signals. In this way we aim to clarify progress to date regarding the mechanisms underlying the mitotic to meiosis switch in germ cells of the fetal ovary, and those involved in adopting and securing male fate in germ cells of the fetal testis.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
36
|
Bothun AM, Gao Y, Takai Y, Ishihara O, Seki H, Karger B, Tilly JL, Woods DC. Quantitative Proteomic Profiling of the Human Ovary from Early to Mid-Gestation Reveals Protein Expression Dynamics of Oogenesis and Folliculogenesis. Stem Cells Dev 2018; 27:723-735. [PMID: 29631484 DOI: 10.1089/scd.2018.0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The in vivo gene networks involved in coordinating human fetal ovarian development remain obscure. In this study, quantitative mass spectrometry was conducted on ovarian tissue collected at key stages during the first two trimesters of human gestational development, confirming the expression profiling data using immunofluorescence, as well as in vitro modeling with human oogonial stem cells (OSCs) and human embryonic stem cells (ESCs). A total of 3,837 proteins were identified in samples spanning developmental days 47-137. Bioinformatics clustering and Ingenuity Pathway Analysis identified DNA mismatch repair and base excision repair as major pathways upregulated during this time. In addition, MAEL and TEX11, two key meiosis-related proteins, were identified as highly expressed during the developmental window associated with fetal oogenesis. These findings were confirmed and extended using in vitro differentiation of OSCs into in vitro derived oocytes and of ESCs into primordial germ cell-like cells and oocyte-like cells, as models. In conclusion, the global protein expression profiling data generated by this study have provided novel insights into human fetal ovarian development in vivo and will serve as a valuable new resource for future studies of the signaling pathways used to orchestrate human oogenesis and folliculogenesis.
Collapse
Affiliation(s)
- Alisha M Bothun
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| | - Yuanwei Gao
- 2 Department of Chemistry & Chemical Biology, The Barnett Institute for Chemical and Biological Analysis, Northeastern University , Boston, Massachusetts
| | - Yasushi Takai
- 3 Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University , Saitama, Japan
| | - Osamu Ishihara
- 4 Department of Obstetrics and Gynecology, Saitama Medical University , Saitama, Japan
| | - Hiroyuki Seki
- 3 Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University , Saitama, Japan
| | - Barry Karger
- 2 Department of Chemistry & Chemical Biology, The Barnett Institute for Chemical and Biological Analysis, Northeastern University , Boston, Massachusetts
| | - Jonathan L Tilly
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| | - Dori C Woods
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| |
Collapse
|
37
|
Paik J, Treuting PM, Haenisch M, Amory JK. Can inhibition of retinoic acid biosynthesis function as a non-hormonal female contraceptive? Contraception 2018; 98:S0010-7824(18)30136-7. [PMID: 29630869 PMCID: PMC6174106 DOI: 10.1016/j.contraception.2018.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Vitamin A deficient females have reduced fertility due to decreased retinoic acid production. WIN 18,446 inhibits retinoic acid biosynthesis and functions as a contraceptive in males. We tested whether WIN 18,446 treatment would suppress fertility in female mice. STUDY DESIGN Female mice were treated with WIN 18,446 and mated. Pregnancy rates were compared using Fisher's exact test. RESULTS WIN 18,446 reduced pregnancy compared with control (p=.03). However, one animal became pregnant with malformed embryos. CONCLUSIONS WIN 18,446 treatment significantly reduces fecundity, but teratogenicity in the setting of contraceptive failure limits the appeal of this approach to female contraception.
Collapse
Affiliation(s)
- Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA.
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Michael Haenisch
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - John K Amory
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Frydman N, Poulain M, Arkoun B, Duquenne C, Tourpin S, Messiaen S, Habert R, Rouiller-Fabre V, Benachi A, Livera G. Human foetal ovary shares meiotic preventing factors with the developing testis. Hum Reprod 2018; 32:631-642. [PMID: 28073973 DOI: 10.1093/humrep/dew343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/14/2016] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION How can pre-meiotic germ cells persist in the human foetal ovary? SUMMARY ANSWER Numerous oogonia escaping meiotic entry were retrieved throughout human ovarian development simultaneously with the expression of signalling pathways preventing meiosis, typically described in the rodent embryonic testis. WHAT IS KNOWN ALREADY The transition from mitosis to meiosis is a key event in female germ cells that remains poorly documented in research on the human ovary. Previous reports described a strikingly asynchronous differentiation in the human female germ line during development, with the persistence of oogonia among oocytes and follicles during the second and third trimesters. The possible mechanisms allowing some cells to escape meiosis remain elusive. STUDY DESIGN SIZE, DURATION In order to document the extent of this phenomenon, we detailed the expression profile of germ cell differentiation markers using 73 ovaries ranging from 6.4 to 35 weeks post-fertilization. PARTICIPANTS/MATERIALS SETTING, METHODS Pre-meiotic markers were detected by immunohistochemistry or qRT-PCR. The expression of the main meiosis-preventing factors identified in mice was analysed, and their functionality assessed using organ cultures. MAIN RESULTS AND THE ROLE OF CHANCE Oogonia stained for AP2γ could be traced from the first trimester until the end of the third trimester. Female germ cell differentiation is organized both in time and space in a centripetal manner in the foetal human ovary. Unexpectedly, some features usually ascribed to rodent pre-spermatogonia could be observed in human foetal ovaries, such as NANOS2 expression and quiescence in some germ cells. The two main somatic signals known to inhibit meiosis in the mouse embryonic testis, CYP26B1 and FGF9, were detected in the human ovary and act simultaneously to repress STRA8 and meiosis in human foetal female germ cells. LARGE SCALE DATA N/A. LIMITATIONS REASON FOR CAUTION Our conclusions relied partly on in vitro experiments. Germ cells were not systematically identified with immunostaining and some may have thus escaped analysis. WIDER IMPLICATIONS OF THE FINDINGS We found evidence that a robust repression of meiotic entry is taking place in the human foetal ovary, possibly explaining the exceptional long-lasting presence of pre-meiotic germ cells until late gestational age. This result calls for a redefinition of the markers known as classical male markers, which may in fact characterize mammalian developing gonads irrespectively of their sex. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the Université Paris Diderot-Paris 7 and Université Paris-Sud, CEA, INSERM, and Agence de la Biomédecine. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Nelly Frydman
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux Roses F-92265, France.,AP-HP, Reproductive Biology Unit, Univ. Paris-Sud, Université Paris-Saclay, Hôpital Antoine Béclère, Clamart F-92140, France
| | - Marine Poulain
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Brahim Arkoun
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Clotilde Duquenne
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Sophie Tourpin
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Sébastien Messiaen
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - René Habert
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Virginie Rouiller-Fabre
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| | - Alexandra Benachi
- AP-HP, Department of Obstetrics and Gynaecology, Univ. Paris-Sud, Université Paris-Saclay, Hôpital Antoine Béclère, ClamartF-92140, France
| | - Gabriel Livera
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux RosesF-92265, France
| |
Collapse
|
39
|
Ibuprofen is deleterious for the development of first trimester human fetal ovary ex vivo. Hum Reprod 2018; 33:482-493. [DOI: 10.1093/humrep/dex383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022] Open
|
40
|
Nagaoka SI, Saitou M. Reconstitution of Female Germ Cell Fate Determination and Meiotic Initiation in Mammals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:213-222. [PMID: 29208639 DOI: 10.1101/sqb.2017.82.033803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Meiosis is a fundamental process that underpins sexual reproduction. In mammals, the execution of meiosis is tightly integrated within the complex processes of oogenesis and spermatogenesis, and elucidation of the molecular mechanisms regulating meiotic initiation remains challenging. We have recently developed in vitro culture strategies to induce mouse pluripotent stem cells into germ cells, which successfully contribute to both oogenesis and spermatogenesis and to fertile offspring. The culture strategies faithfully recapitulate transcriptional and epigenetic dynamics as well as signaling principles for germ cell specification, proliferation, and female sex determination/meiotic induction, providing a valuable platform for studies to illuminate the molecular mechanisms underlying such critical processes. Here, we review mammalian gametogenesis with a focus on the implementation of meiosis and, based on our recent studies, discuss new insights into the mechanisms for meiotic initiation and germ cell sex determination in mice.
Collapse
Affiliation(s)
- So I Nagaoka
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for iPS Cell Research and Application, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
41
|
Abstract
Sexual reproduction crucially depends on the production of sperm in males and oocytes in females. Both types of gamete arise from the same precursor, the germ cells. We review the events that characterize the development of germ cells during fetal life as they commit to, and prepare for, oogenesis or spermatogenesis. In females, fetal germ cells enter meiosis, whereas in males they delay meiosis and instead lose pluripotency, activate an irreversible program of prospermatogonial differentiation, and temporarily cease dividing. Both pathways involve sex-specific molecular signals from the somatic cells of the developing gonads and a suite of intrinsic receptors, signal transducers, transcription factors, RNA stability factors, and epigenetic modulators that act in complex, interconnected positive and negative regulatory networks. Understanding these networks is important in the contexts of the etiology, diagnosis, and treatment of infertility and gonadal cancers, and in efforts to augment human and animal fertility using stem cell approaches.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia;
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
42
|
Hickford DE, Wong SFL, Frankenberg SR, Shaw G, Yu H, Chew KY, Renfree MB. Expression of STRA8 is conserved in therian mammals but expression of CYP26B1 differs between marsupials and mice. Biol Reprod 2017; 97:217-229. [DOI: 10.1093/biolre/iox083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/28/2017] [Indexed: 11/13/2022] Open
|
43
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
44
|
Hu Q, Xiao H, Tian H, Meng Y. Identification and expression of cytochrome P450 genes in the Chinese giant salamander Andrias davidianus. Theriogenology 2017; 95:62-68. [PMID: 28460681 DOI: 10.1016/j.theriogenology.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 03/01/2017] [Accepted: 03/04/2017] [Indexed: 10/20/2022]
Abstract
Cytochrome P450 (cyp) genes play vital roles in biological processes, including in metabolism of endogenous and exogenous compounds. Exogenous hormone influences on gene expression that leads to disruption of gonad development have been studied in several species, but whether exogenous hormones affect cyp genes that show sexually dimorphic expression remains to be determined. Here, we identified and characterized cyp genes from the widely-cultured Chinese giant salamander Andrias davidianus. We obtained 20 cyp genes including 11 genes with complete sequences. Phylogenetic analyses supported the classification of cyp genes similar to other vertebrates. Expression profile of female and male salamanders showed multiple cyp genes to exhibit higher expression in ovary than in testis, including cyp26a, cyp19a, cyp1a1, cyp4v2, cyp3a24, cyp2c20, cyp2d14, cyp2d15, and cyp4b; while cyp11a, cyp2b11, cyp11b1, cyp4f22, cyp2j6, cyp2k1, cyp2k4, cyp1a5 was higher in testis than in ovary. Seven sex-biased genes were detected after aromatase inhibitor injection and with exposure to high water temperatures. Cyp2k1, cyp11b1, and cyp2j6 expression were increased, while cyp26a, cyp2c20, cyp4b genes were decreased with aromatase inhibition. In ovary, cyp26a and cyp2c20 expression were significantly reduced; whereas cyp2k1, cyp2j6, and cyp2k4 expression were significantly elevated with no changes in cyp11a and cyp11b1 expression after temperature treatment. These findings provide valuable information for further study of sex differentiation mechanisms and cyp gene evolution.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Hanbing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| |
Collapse
|
45
|
Rosario R, Childs AJ, Anderson RA. RNA-binding proteins in human oogenesis: Balancing differentiation and self-renewal in the female fetal germline. Stem Cell Res 2017; 21:193-201. [PMID: 28434825 PMCID: PMC5446320 DOI: 10.1016/j.scr.2017.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
Primordial germ cells undergo three significant processes on their path to becoming primary oocytes: the initiation of meiosis, the formation and breakdown of germ cell nests, and the assembly of single oocytes into primordial follicles. However at the onset of meiosis, the germ cell becomes transcriptionally silenced. Consequently translational control of pre-stored mRNAs plays a central role in coordinating gene expression throughout the remainder of oogenesis; RNA binding proteins are key to this regulation. In this review we examine the role of exemplars of such proteins, namely LIN28, DAZL, BOLL and FMRP, and highlight how their roles during germ cell development are critical to oogenesis and the establishment of the primordial follicle pool. RNA-binding proteins (RBPs) are key regulators of gene expression during oogenesis. RBPs LIN28, DAZL, BOLL and FMRP display stage-specific expression in fetal oocytes. LIN28 and DAZL may regulate self-renewal and progression into meiosis respectively. BOLL and FMRP may be involved in the later stages of prophase I and oocyte growth. RBPs may have critical roles in establishing the ovarian reserve during fetal life.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew J Childs
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
46
|
Wen Y, He W, Jiang M, Zeng M, Cai L. Deriving cells expressing markers of female germ cells from premature ovarian failure patient-specific induced pluripotent stem cells. Regen Med 2017; 12:143-152. [PMID: 28244827 DOI: 10.2217/rme-2016-0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: We proposed a two-step protocol for deriving cells expressing markers of female germ cells (FGCs) from premature ovarian failure patient-specific induced pluripotent stem cells (POF-iPSCs). Material & methods: We cultured POF-iPSCs in suspension and pretreated them with TGFβ-1 (1 ng/ml) for 2 days and continued with both TGFβ-1 and BMP4 (50 ng/ml) for 5 more days. Then changed to media containing retinoic acid (1 μM) and 5% follicular fluid for another 7 days. Expression of markers of different stages of FGCs were detected. Results: c-KIT, STELLA/DPPA3, VASA/DDX4, SCP3, GDF9 and ZP3 were positively detected and statistically significant different when compared with control groups. Conclusion: Our in vitro system was beneficial for POF-iPSCs differentiated cells to express STELLA, VASA and SCP3, which were the markers of meiosis initiation of FGCs.
Collapse
Affiliation(s)
- Yanfei Wen
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 6 East Longkou Road, Guangzhou, China
- Center for Reproductive Medicine, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Wen He
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 6 East Longkou Road, Guangzhou, China
| | - Manbo Jiang
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 6 East Longkou Road, Guangzhou, China
- Department of Reproductive Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Minhui Zeng
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 6 East Longkou Road, Guangzhou, China
- Memorial hospital of Sun Yat-sen University, Guangzhou, China
| | - Liuhong Cai
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 6 East Longkou Road, Guangzhou, China
| |
Collapse
|
47
|
Teletin M, Vernet N, Ghyselinck NB, Mark M. Roles of Retinoic Acid in Germ Cell Differentiation. Curr Top Dev Biol 2017; 125:191-225. [PMID: 28527572 DOI: 10.1016/bs.ctdb.2016.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The modalities of gametogenesis differ markedly between sexes. Female are born with a definitive reserve of oocytes whose size is crucial to ensure fertility. Male fertility, in contrast, relies on a tightly regulated balance between germ cell self-renewal and differentiation, which operates throughout life, according to recurring spatial and temporal patterns. Genetic and pharmacological studies conducted in the mouse and discussed in this review have revealed that all-trans retinoic acid and its nuclear receptors are major players of gametogenesis and are instrumental to fertility in both sexes.
Collapse
Affiliation(s)
- Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France; Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France; Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.
| |
Collapse
|
48
|
Tang X, Xu S, Li R, Zhang H, Chen Q, Wu W, Liu H. Polycomb repressive complex 1 (PRC1) regulates meiotic initiation of ovarian germ cells in chick embryos. Mol Cell Endocrinol 2016; 437:171-182. [PMID: 27546728 DOI: 10.1016/j.mce.2016.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/26/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Meiosis is essential for gametogenesis and exhibits sex-specific property during embryonic development. Retinoic acid (RA) signalling initiates germ cell meiosis by activating Stra8 (stimulated by RA gene 8). Although additional factors are involved in regulating the meiotic initiation of germ cells, their regulatory mechanisms are unclear. In this study, we found that Polycomb repressive complex 1 (PRC1) is largely expressed in chicken ovarian germ and somatic cells during early stages of meiosis. We demonstrated that PRC1 regulates Stra8, pluripotent factors and paracrine factors (Notch ligands) leading to a synergistic effect on the suppression of germ cell meiotic initiation. Finally, we observed that repression of PRC1 resulted in precocious meiotic initiation and apoptosis of ovarian cells in vivo. These results aid in understanding the regulation of meiotic initiation in germ cells by PRC1 and provide evidence to support the hypothesis that regulation of meiotic initiation is conserved in higher vertebrates.
Collapse
Affiliation(s)
- Xiaochuan Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shiyong Xu
- College of Animal Science and Technology, Jingling Institute of Technology, Nanjing 210095, People's Republic of China
| | - Rongyang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hongpeng Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qing Chen
- College of Animal Science and Technology, Jingling Institute of Technology, Nanjing 210095, People's Republic of China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
49
|
Elzaiat M, Todeschini AL, Caburet S, Veitia R. The genetic make-up of ovarian development and function: the focus on the transcription factor FOXL2. Clin Genet 2016; 91:173-182. [DOI: 10.1111/cge.12862] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022]
Affiliation(s)
- M. Elzaiat
- Molecular and Cellular Pathologies; Institut Jacques Monod; Paris France
- UFR Sciences du Vivant; Université Paris Diderot-Paris VII; Paris France
| | - A.-L. Todeschini
- Molecular and Cellular Pathologies; Institut Jacques Monod; Paris France
- UFR Sciences du Vivant; Université Paris Diderot-Paris VII; Paris France
| | - S. Caburet
- Molecular and Cellular Pathologies; Institut Jacques Monod; Paris France
- UFR Sciences du Vivant; Université Paris Diderot-Paris VII; Paris France
| | - R.A. Veitia
- Molecular and Cellular Pathologies; Institut Jacques Monod; Paris France
- UFR Sciences du Vivant; Université Paris Diderot-Paris VII; Paris France
| |
Collapse
|
50
|
Pannetier M, Chassot AA, Chaboissier MC, Pailhoux E. Involvement of FOXL2 and RSPO1 in Ovarian Determination, Development, and Maintenance in Mammals. Sex Dev 2016; 10:167-184. [PMID: 27649556 DOI: 10.1159/000448667] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
In mammals, sex determination is a process through which the gonad is committed to differentiate into a testis or an ovary. This process relies on a delicate balance between genetic pathways that promote one fate and inhibit the other. Once the gonad is committed to the female pathway, ovarian differentiation begins and, depending on the species, is completed during gestation or shortly after birth. During this step, granulosa cell precursors, steroidogenic cells, and primordial germ cells start to express female-specific markers in a sex-dimorphic manner. The germ cells then arrest at prophase I of meiosis and, together with somatic cells, assemble into functional structures. This organization gives the ovary its definitive morphology and functionality during folliculogenesis. Until now, 2 main genetic cascades have been shown to be involved in female sex differentiation. The first is driven by FOXL2, a transcription factor that also plays a crucial role in folliculogenesis and ovarian fate maintenance in adults. The other operates through the WNT/CTNNB1 canonical pathway and is regulated primarily by R-spondin1. Here, we discuss the roles of FOXL2 and RSPO1/WNT/ CTNNB1 during ovarian development and homeostasis in different models, such as humans, goats, and rodents.
Collapse
Affiliation(s)
- Maëlle Pannetier
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | | | |
Collapse
|