1
|
Liu M, Chen J, Liu S, Zhang C, Chao X, Yang H, Xu Q, Wang T, Bi H, Ding Y, Wang Z, Muhammad A, Muhammad M, Schinckel AP, Zhou B. LH-stimulated periodic lincRNA HEOE regulates follicular dynamics and influences estrous cycle and fertility via miR-16-ZMAT3 and PGF2α in pigs. Int J Biol Macromol 2024; 281:136426. [PMID: 39389516 DOI: 10.1016/j.ijbiomac.2024.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Disruption of the estrous cycle affects fertility and reproductive health. Follicular dynamics are key to the regularity of the estrous cycle. We identified a novel lincRNA, HEOE, showing significant upregulation in the ovaries during the estrus phase across various pig breeds. Functional analysis revealed that HEOE is responsive to luteinizing hormone (LH) stimulation, modulating transcriptional suppression and alternative splicing in ovarian granulosa cells (GCs). This leads to increased GC apoptosis and inhibition of proliferation. Mechanistically, HEOE inhibits miR-16 maturation in the nucleus, and sequesters miR-16 in the cytoplasm, thereby collectively reducing miR-16's inhibition on ZMAT3, enhancing the expression of ZMAT3, a key factor in the p53 pathway and alternative splicing, thereby regulating follicular development. This effect was validated in both mice and pig follicles. Persistent overexpression or suppression of HEOE throughout the estrous cycle impairs cycle regularity and reduces litter size. These outcomes are associated with HEOE reduced follicular PGF2α levels and modulation of the cAMP signaling pathway. Our data, combined with public databases, indicate that the high expression of HEOE during the estrus phase is crucial for maintaining the estrous cycle. HEOE is a potential therapeutic target for regulating fertility and ensuring estrous cycle regularity in pigs.
Collapse
Affiliation(s)
- Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianshuo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hongwei Bi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuan Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ziming Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Asim Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mubashir Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2024:dmae027. [PMID: 39331957 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
3
|
Zhang S, Liu Y, Zhang XL, Sun Y, Lu ZH. ANKRD22 aggravates sepsis-induced ARDS and promotes pulmonary M1 macrophage polarization. J Transl Autoimmun 2024; 8:100228. [PMID: 38225946 PMCID: PMC10788270 DOI: 10.1016/j.jtauto.2023.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is independently associated with a poor prognosis in patients with sepsis. Macrophage M1 polarization plays an instrumental role in this process. Therefore, the exploration of key molecules affecting acute lung injury and macrophage M1 polarization may provide therapeutic targets for the treatment of septic ARDS. Here, we identified that elevated levels of Ankyrin repeat domain-containing protein 22 (ANKRD22) were associated with poor prognosis and more pronounced M1 macrophage polarization in septic patients by analyzing high-throughput data. ANKRD22 expression was also significantly upregulated in the alveolar lavage fluid, peripheral blood, and lung tissue of septic ARDS model mice. Knockdown of ANKRD22 significantly attenuated acute lung injury in mice with sepsis-induced ARDS and reduced the M1 polarization of lung macrophages. Furthermore, deletion of ANKRD22 in macrophages inhibited M1 macrophage polarization and reduced levels of phosphorylated IRF3 and intracellular interferon regulatory factor 3 (IRF3) expression, while re-expression of ANKRD22 reversed these changes. Further experiments revealed that ANKRD22 promotes IRF3 activation by binding to mitochondrial antiviral-signaling protein (MAVS). In conclusion, these findings suggest that ANKRD22 promotes the M1 polarization of lung macrophages and exacerbates sepsis-induced ARDS.
Collapse
Affiliation(s)
- Shi Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, ZhongdaHospital, Southeast University, Nanjing, Jiangsu, China
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Liu
- Emergency Department of Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Gulou District, Nanjing, China
| | - Xiao-Long Zhang
- Department of Ultrasound, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Sun
- The First Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, China
| | - Zhong-Hua Lu
- The First Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, China
| |
Collapse
|
4
|
He S, Li H, Zhang Q, Zhao W, Li W, Dai C, Li B, Cheng J, Wu S, Zhou Z, Yang J, Li S. Berberine alleviates inflammation in polycystic ovary syndrome by inhibiting hyaluronan synthase 2 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155456. [PMID: 38537446 DOI: 10.1016/j.phymed.2024.155456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous metabolic and endocrine disorder that causes anovulatory infertility and abnormal folliculogenesis in women of reproductive age. Several studies have revealed inflammation in PCOS follicles, and recent evidence suggests that Berberine (BBR) effectively reduces inflammatory responses in PCOS, however, the underlying mechanisms remain unclear. PURPOSE To determine the underlying mechanisms by which BBR alleviates inflammation in PCOS. STUDY DESIGN Primary human GCs from healthy women and women with PCOS, and KGN cells were used for in vitro studies. ICR mice were used for in vivo studies. METHODS Gene expression was measured using RT-qPCR. HAS2, inflammatory cytokines, and serum hormones were assayed by ELISA. Protein expression profiles were assayed by Western blot. Chronic low-grade inflammatory mouse models were developed by intraperitoneal injection with LPS, and PCOS mouse models were established by subcutaneous intraperitoneal injection of DHEA. BBR and 4-MU were administered by gavage. Ovarian morphologic changes were evaluated using H&E staining. HAS2 expression in the ovary was assayed using Western blot and immunohistochemistry. RESULTS Our results confirmed that HAS2 expression and hyaluronan (HA) accumulation are closely associated with inflammatory responses in PCOS. Data obtained from in vitro studies showed that HAS2 and inflammatory genes (e.g., MCP-1, IL-1β, and IL-6) are significantly upregulated in PCOS samples and LPS-induced KGN cells compared to their control groups. In addition, these effects were reversed by blocking HAS2 expression or HA synthesis using BBR or 4-MU, respectively. Furthermore, HAS2 overexpression induces the expression of inflammatory genes in PCOS. These results were further confirmed in LPS- and DHEA-induced mouse models, where inflammatory genes were reduced by BBR or 4-MU, and ovarian morphology was restored. CONCLUSIONS Our results define previously unknown links between HAS2 and chronic low-grade inflammation in the follicles of women with PCOS. BBR exerts its anti-inflammatory effects by down-regulating HAS2. This study provides a novel therapeutic target for alleviating ovarian inflammation in women with PCOS.
Collapse
Affiliation(s)
- Shaojing He
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Qianjie Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weimin Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Wei Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Chaohui Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Bixia Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Jinhua Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Shuang Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Zhongming Zhou
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Saijiao Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
5
|
Imran FS, Al-Thuwaini TM. The Novel PTX3 Variant g.22645332G>T Is Strongly Related to Awassi and Hamdani Sheep Litter Size. Bioinform Biol Insights 2024; 18:11779322241248912. [PMID: 38681096 PMCID: PMC11047254 DOI: 10.1177/11779322241248912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
The detection of polymorphisms in genes that control livestock reproduction could be highly beneficial for identifying and enhancing economic traits. One of these genes is pentraxin 3 (PTX3), which affects the reproduction of sheep. Therefore, this study investigated whether the variability of the PTX3 gene was related to the litter size of Awassi and Hamdani ewes. A total of 200 ewes (130 Awassi and 70 Hamdani) were used for genomic DNA extraction. Polymerase chain reaction was used to amplify the sequence fragments of exons 1, 2, 3, and 4 from the PTX3 gene (Oar_v4.0; Chr 1, NC_056054.1), resulting in products of 254, 312, 302, and 253, respectively. Two genotypes, GG and GT, were identified for 302 bp amplicon. A novel mutation was discovered through sequence analysis in the GT genotype at position g.22645332G>T. The statistical analysis revealed a significant association between single nucleotide polymorphism (SNP g.22645332G>T; Oar_v4.0; Chr 1, NC_056054.1) and litter size. The presence of the SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) genotype in ewes resulted in a significant difference compared to ewes with GG genotypes. The discrepancy became apparent in several aspects, including litter sizes, twinning rates, lambing rates, litter weight at birth, and days to lambing. There were fewer lambs born to ewes with the GG genotype than to ewes with the GT genotype. The variant SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) has positive effects on the litter size of Awassi and Hamdani sheep. The SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1 has been associated with an increase in litter size and higher prolificacy in ewes.
Collapse
Affiliation(s)
- Faris S Imran
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
- Department of Public Health, Faculty of Veterinary Medicine, Kerbala University, Karbala, Iraq
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq
| |
Collapse
|
6
|
Johannsen ML, Poulsen LC, Mamsen LS, Grøndahl ML, Englund ALM, Lauritsen NL, Carstensen EC, Styrishave B, Yding Andersen C. The intrafollicular concentrations of biologically active cortisol in women rise abruptly shortly before ovulation and follicular rupture. Hum Reprod 2024; 39:578-585. [PMID: 38268234 DOI: 10.1093/humrep/deae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
STUDY QUESTION What is the temporal activity and the concentration in follicular fluid (FF) of the anti-inflammatory steroid cortisol during the ovulatory process in humans? SUMMARY ANSWER Intrafollicular concentrations of cortisol become massively upregulated close to ovulation concomitant with an exceptionally high biological activity securing a timely and efficient termination of inflammatory processes. WHAT IS KNOWN ALREADY Ovulation has been described as a local, controlled inflammatory process resulting in the degeneration of the follicle wall which facilitate oocyte extrusion. Ovulation also affects the glucocorticoid metabolism of granulosa cells (GCs) and although de novo synthesis of cortisol only occurs in the adrenal cortex, the mid-cycle surge has been shown to induce a change from high expression of HSD11B2, inactivating cortisol to cortisone, to high expression of HSD11B1 which reversibly catalyses cortisol production from cortisone. Furthermore, high concentrations of progesterone and 17OH-progesterone within follicles may cause dislodging of cortisol from cortisol binding protein (CBP) thereby activating the biological activity of cortisol. STUDY DESIGN, SIZE, DURATION This prospective cohort study included 50 women undergoing fertility treatment according to a standard antagonist protocol at a university hospital-affiliated fertility clinic in Denmark. PARTICIPANTS/MATERIALS, SETTING, METHODS Women donated FF and GCs from one follicle for research purpose aspirated at one of four time points during the process of final maturation of follicles: T = 0 h, T = 12 h, T = 17 h, T = 32 h. A second sample was collected at oocyte pick up at T = 36 h. The concentration of cortisol and cortisone together with a range of sex steroids was measured by LC-MS/MS in FF collected at the five time points mentioned above. Whole genome microarray data, validated by q-PCR analysis, was used to evaluate gene expression of CYP11B1, CYP21A2, HSD11B1, HSD11B2, and NR3C1 in GCs at the same time points. MAIN RESULTS AND THE ROLE OF CHANCE The concentration of cortisol was significantly increased from a few nM at 0 h to around 100-140 nM (P ≤ 0.0001) at 32-36 h, whilst cortisone was almost constant from 0 to 17 h at a concentration of between 90 and 100 nM being significantly reduced to 25-40 nM (P ≤ 0.0001) at 32-36 h. This was paralleled by a 690-fold upregulation of HSD11B1 from 0 to 12 h increasing to a more than 20.000-fold change at 36 h. HSD11B2 was quickly downregulated 15- to 20-fold after ovulation induction. Concentrations of progesterone and 17OH-progesterone increased during the ovulatory process to high levels which in essence displaces cortisol from its binding protein CBP due to similar binding affinities. Furthermore, a significant decrease in 11-deoxycortisol expression was seen, but CYP11B1 expression was below detection limit in GCs. LIMITATIONS, REASONS FOR CAUTION The study included women undergoing ovarian stimulation and results may differ from the natural cycle. More observations at each specific time point may have strengthened the conclusions. Furthermore, we have not been able to measure the actual active biological concentration of cortisol. WIDER IMPLICATIONS OF THE FINDINGS For the first time, this study collectively evaluated the temporal pattern of cortisol and cortisone concentrations during human ovulation, rendering a physiological framework for understanding potential dysregulations in the inflammatory reaction of ovulation. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the University Hospital of Copenhagen, Rigshospitalet, and Novo Nordisk Foundation grant number NNF21OC00700556. Interreg V ÔKS through ReproUnion (www.reprounion.eu); Region Zealand Research Foundation. The funders had no role in study design, collection of data, analyses, writing of the article, or the decision to submit it for publication. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- M L Johannsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen Ø, Denmark
- Toxicolgy and Drug Metabolism group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - L C Poulsen
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev, Denmark
| | - L S Mamsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen Ø, Denmark
| | - M L Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev, Denmark
| | - A L M Englund
- Fertility Clinic, Zealand University Hospital, Køge, Denmark
| | - N L Lauritsen
- Toxicolgy and Drug Metabolism group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - E C Carstensen
- Toxicolgy and Drug Metabolism group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - B Styrishave
- Toxicolgy and Drug Metabolism group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - C Yding Andersen
- Faculty of Health and Medical Science, Institute for Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
7
|
Srivastava S, Mishra S, Babu G, Mohanty B. Neurotensin agonist PD149163 modulates lipopolysaccharide induced inflammation and oxidative stress in the female reproductive system of mice. Reprod Biol 2024; 24:100828. [PMID: 38029502 DOI: 10.1016/j.repbio.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Inflammation-mediated reproductive health problems in females have become an emerging concern. The present investigation was aimed to elucidate the efficacy of the PD149163, agonist of the type I neurotensin receptor, in preventing/ameliorating the lipopolysaccharide (LPS) induced inflammation of the female reproductive system of the mice. Female Swiss Albino Mice (8 weeks old) were maintained in three groups (6/group): Group I as Control, Group II and Group III were exposed to intraperitoneal (i.p) LPS (1 mg/kg bw) for 5 days followed by treatment with PD149163 (100 μg/kg BW i.p.) to Group III (LPS + PD) for 28 days. After termination of the experiment on 29th day, plasma levels of inflammatory cytokines, LH, FSH, estradiol, corticosterone, oxidative stress effects in the ovary and histopathological study of the ovary and uterine horn were done. LPS-induced inflammation of the ovary and uterine horn was ameliorated/prevented by PD149163 as reflected in the reduced histopathological scores, significant elevation of the plasma anti-inflammatory cytokine IL-10 and decrease of the pro inflammatory cytokines TNF-α and IL-6. Significant decrease of lipid peroxide, increase of antioxidant defense enzymes, Superoxide dismutase and Catalase in the ovary indicated reduction of oxidative stress. The plasma levels of the reproduction related hormones and corticosterone were restored. PD149163 acts as an anti-inflammatory and anti-oxidative agent in modulation of inflammation in the female reproductive system (ovary & uterine horn). These findings suggest that the therapeutic potential of the analogs of neurotensin including PD149163 should be explored for the treatment of the female reproductive health issues.
Collapse
Affiliation(s)
- Sonia Srivastava
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Swarnima Mishra
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Gyan Babu
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Liu M, Zhang C, Chen J, Xu Q, Liu S, Chao X, Yang H, Wang T, Muhammad A, Schinckel AP, Zhou B. Characterization and analysis of transcriptomes of multiple tissues from estrus and diestrus in pigs. Int J Biol Macromol 2024; 256:128324. [PMID: 38007026 DOI: 10.1016/j.ijbiomac.2023.128324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
A comprehensive understanding of the complex regulatory mechanisms governing estrus and ovulation across multiple tissues in mammals is imperative to improve the reproductive performance of livestock and mitigate ovulation-related disorders in humans. To comprehensively elucidate the regulatory landscape, we analyzed the transcriptome of protein-coding genes and long intergenic non-coding RNAs (lincRNAs) in 58 samples (including the hypothalamus, pituitary, ovary, vagina, and vulva) derived from European Large White gilts and Chinese Mi gilts during estrus and diestrus. We constructed an intricate regulatory network encompassing 358 hub genes across the five examined tissues. Furthermore, our investigation identified 85 differentially expressed lincRNAs that are predicted to target 230 genes associated with critical functions including behavior, receptors, and apoptosis. Importantly, we found that vital components of estrus and ovulation events involve "Apoptosis" pathway in the hypothalamus, "Autophagy" in the ovary, as well as "Hypoxia" and "Angiogenesis" in the vagina and vulva. We have identified several differentially expressed transcription factors (TFs), such as SPI1 and HES2, which regulate these pathways. SPI1 may suppress transcription in the autophagy pathway, promoting apoptosis and inhibiting the proliferation of ovarian granulosa cells. Our study provides the most comprehensive transcriptional profiling information related to estrus and ovulation events.
Collapse
Affiliation(s)
- Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianshuo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Asim Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Höfner M, Eubler K, Herrmann C, Berg U, Berg D, Welter H, Imhof A, Forné I, Mayerhofer A. Reduced oxygen concentrations regulate the phenotype and function of human granulosa cells in vitro and cause a diminished steroidogenic but increased inflammatory cellular reaction. Mol Hum Reprod 2023; 30:gaad049. [PMID: 38128016 DOI: 10.1093/molehr/gaad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Oxygen (O2) concentrations have recently been discussed as important regulators of ovarian cells. Human IVF-derived granulosa cells (human GCs) can be maintained in vitro and are a widely used cellular model for the human ovary. Typically, GCs are cultured at atmospheric O2 levels (approximately around 20%), yet the O2 conditions in vivo, especially in the preovulatory follicle, are estimated to be much lower. Therefore, we comprehensively evaluated the consequences of atmospheric versus hypoxic (1% O2) conditions for 4 days on human GCs. We found lower cellular RNA and protein levels but unchanged cell numbers at 1% O2, indicating reduced transcriptional and/or translational activity. A proteomic analysis showed that 391 proteins were indeed decreased, yet 133 proteins were increased under hypoxic conditions. According to gene ontology (GO) enrichment analysis, pathways associated with metabolic processes, for example amino acid-catabolic-processes, mitochondrial protein biosynthesis, and steroid biosynthesis, were downregulated. Pathways associated with glycolysis, chemical homeostasis, cellular response to hypoxia, and actin filament bundle assembly were upregulated. In accordance with lower CYP11A1 (a cholesterol side-chain cleavage enzyme) levels, progesterone release was decreased. A proteome profiler, as well as IL-6 and IL-8 ELISA assays, revealed that hypoxia led to increased secretion of pro-inflammatory and angiogenic factors. Immunofluorescence studies showed nuclear localization of hypoxia-inducible factor 1α (HIF1α) in human GCs upon acute (2 h) exposure to 1% O2 but not in cells exposed to 1% O2 for 4 days. Hence, the role of HIF1α may be restricted to initiation of the hypoxic response in human GCs. The results provide a detailed picture of hypoxia-induced phenotypic changes in human GCs and reveal that chronically low O2 conditions inhibit the steroidogenic but promote the inflammatory phenotype of these cells.
Collapse
Affiliation(s)
- Maria Höfner
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Katja Eubler
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Carola Herrmann
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Ulrike Berg
- Fertility Centre A.R.T., Bogenhausen, Munich, Germany
| | - Dieter Berg
- Fertility Centre A.R.T., Bogenhausen, Munich, Germany
| | - Harald Welter
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, BMC, Faculty of Medicine, LMU, Planegg-Martinsried, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BMC, Faculty of Medicine, LMU, Planegg-Martinsried, Germany
| | - Artur Mayerhofer
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Mao S, Dong S, Hou B, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. Transcriptome analysis reveals pituitary lncRNA, circRNA and mRNA affecting fertility in high- and low-yielding goats. Front Genet 2023; 14:1303031. [PMID: 38152654 PMCID: PMC10751935 DOI: 10.3389/fgene.2023.1303031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
The pituitary gland serves as the central endocrine regulator of growth, reproduction, and metabolism and plays a crucial role in the reproductive process of female animals. Transcriptome analysis was conducted using pituitary gland samples from Leizhou goats with varying levels of fecundity to investigate the effects of long noncoding RNA (lncRNA), circular RNA (circRNA), and mRNA regulation on pituitary hormone secretion and its association with goat fecundity. The analysis aimed to identify lncRNAs, circRNAs, and mRNAs that influence the fertility of Leizhou goats. GO and KEGG enrichment analyses were performed on differentially expressed lncRNAs, circRNAs, and mRNAs and revealed considerable enrichment in pathways, such as regulation of hormone secretion, germ cell development, and gonadotropin-releasing hormone secretion. The pituitary lncRNAs (ENSCHIT00000010293, ENSCHIT00000010304, ENSCHIT00000010306, ENSCHIT00000010290, ENSCHIT00000010298, ENSCHIT00000006769, ENSCHIT00000006767, ENSCHIT00000006921, and ENSCHIT00000001330) and circRNAs (chicirc_029285, chicirc_026618, chicirc_129655, chicirc_018248, chicirc_122554, chicirc_087101, and chicirc_078945) identified as differentially expressed regulated hormone secretion in the pituitary through their respective host genes. Additionally, differential mRNAs (GABBR2, SYCP1, HNF4A, CBLN1, and CDKN1A) influenced goat fecundity by affecting hormone secretion in the pituitary gland. These findings contribute to the understanding of the molecular mechanisms underlying pituitary regulation of fecundity in Leizhou goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Zheng M, Andersen CY, Rasmussen FR, Cadenas J, Christensen ST, Mamsen LS. Expression of genes and enzymes involved in ovarian steroidogenesis in relation to human follicular development. Front Endocrinol (Lausanne) 2023; 14:1268248. [PMID: 37964966 PMCID: PMC10641382 DOI: 10.3389/fendo.2023.1268248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Granulosa cells (GCs) and theca cells (TCs) play a pivotal role in human ovarian steroidogenesis, facilitating the conversion of cholesterol into sex steroids that regulate normal reproductive function. This study aims to explore the expression patterns of key enzymes that govern human ovarian steroidogenesis throughout follicle development, employing both genomic and immunological methodologies. Methods Follicles and GCs obtained from women undergoing ovarian tissue cryopreservation (OTC) and in vitro fertilisation treatment were utilized. Gene expression data were obtained from a Chinese study using RNA sequencing and from microarray data generated in our laboratory to comprehensively analyse gene expression profiles across distinct stages of follicular development. To corroborate the localisation of key enzymes within GCs and TCs, immunohistochemistry analyses utilizing colourimetric and fluorescent techniques were conducted. Results Steroidogenesis-related enzymes displayed low gene expression levels during early follicle development. However, a notable upregulation of HSD3B2 was observed in GCs as follicles progressed to the antral/preovulatory stage, confirmed consistently using both microarray and RNA sequencing methodologies. Furthermore, immunohistochemical analyses effectively demonstrated that HSD3B2 were not only expressed in GCs, but co-localised with CYP17A1 within a specific subset of TCs surrounding human small antral follicles. Contributing to an enhanced progesterone production during the second half of the follicular phase was a significant upregulation of CYB5A in both microarray and RNA-seq datasets as follicles transition from the antral stage to the pre-ovulatory stage. Moreover, an augmented expression of DHCR24 and LDLR in both types of data, along with HMGCR expression expression in the microarray data, indicates increased substrate availability for ovarian steroidogenesis. Discussion This study confirms and extends that GCs gradually augment expression of HSD3B2 thereby enhancing their capacity for progesterone synthesis as follicles reach the size of selection at around 10 mm in diameter. This is supported by the expression CYB5A and possibly augmented availability of steroid precursors. A subset of TCs exhibit concurrent expression of CYP17A1 and HSD3B2, collectively contributing to the synthesis of 17-hydroxyprogesterone. These data significantly enhance our understanding of the dynamic regulation of progesterone throughout the process of follicular development.
Collapse
Affiliation(s)
- Mengxue Zheng
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Frida Roikjer Rasmussen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
12
|
Shen J, Zhao W, Cheng J, Cheng J, Zhao L, Dai C, Fu Y, Li B, Chen Z, Shi D, Li H, Deng Y. Lipopolysaccharide accelerates tryptophan degradation in the ovary and the derivative kynurenine disturbs hormone biosynthesis and reproductive performance. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131988. [PMID: 37418963 DOI: 10.1016/j.jhazmat.2023.131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Lipopolysaccharide (LPS), also known as endotoxin, is a component of the outer membrane of gram-negative bacteria. LPS is released into the surrounding environment during bacterial death and lysis. Due to its chemical and thermal stability, LPS can be detected anywhere and easily exposed to humans and animals. Previous studies have shown that LPS causes hormonal imbalances, ovarian failure, and infertility in mammals. However, the potential mechanisms remain unclear. In this study, we investigated the effects and mechanisms of LPS on tryptophan degradation, both in vivo and in vitro. The effects of kynurenine, a tryptophan derivative, on granulosa cell function and reproductive performance were explored. Results showed that p38, NF-κB, and JNK signaling pathways were involved in LPS-induced Ido1 expressions and kynurenine accumulation. Furthermore, the kynurenine decreased estradiol production, but increased granulosa cell proliferation. In vivo, experiments showed that kynurenine decreased estradiol and FSH production and inhibited ovulation and corpus luteum formation. Additionally, pregnancy and offspring survival rates decreased considerably after kynurenine treatment. Our findings suggest that kynurenine accumulation disrupts hormone secretion, ovulation, corpus luteal formation, and reproductive performance in mammals.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weimin Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinhua Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chaohui Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfeng Fu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bixia Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
13
|
Kulus J, Kranc W, Kulus M, Dzięgiel P, Bukowska D, Mozdziak P, Kempisty B, Antosik P. Expression of genes regulating cell division in porcine follicular granulosa cells. Cell Div 2023; 18:12. [PMID: 37550786 PMCID: PMC10408085 DOI: 10.1186/s13008-023-00094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Cell cycle regulation influences the proliferation of granulosa cells and affects many processes related to ovarian folliclular growth and ovulation. Abnormal regulation of the cell cycle can lead to many diseases within the ovary. The aim of this study was to describe the expression profile of genes within granulosa cells, which are related to the formation of the cytoskeleton, organization of cell organelles inside the cell, and regulation of cell division. Established in vitro primary cultures from porcine ovarian follicle granulosa cells were maintained for 48, 96, 144 h and evaluated via microarray expression analysis. RESULTS Analyzed genes were assigned to 12 gene ontology groups "actin cytoskeleton organization", "actin filament organization", "actin filament-based process", "cell-matrix adhesion", "cell-substrate adhesion", "chromosome segregation", "chromosome separation", "cytoskeleton organization", "DNA integrity checkpoint", "DNA replication initiation", "organelle fision", "organelle organization". Among the genes with significantly changed expression, those whose role in processes within the ovary are selected for consideration. Genes with increased expression include (ITGA11, CNN1, CCl2, TPM2, ACTN1, VCAM-1, COL3A1, GSN, FRMD6, PLK2). Genes with reduced expression inlcude (KIF14, TACC3, ESPL1, CDC45, TTK, CDC20, CDK1, FBXO5, NEK2-NIMA, CCNE2). For the results obtained by microarray expressions, quantitative validation by RT-qPCR was performed. CONCLUSIONS The results indicated expression profile of genes, which can be considered as new molecular markers of cellular processes involved in signaling, cell structure organization. The expression profile of selected genes brings new insight into regulation of physiological processes in porcine follicular granulosa cells during primary in vitro culture.
Collapse
Affiliation(s)
- Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland.
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
14
|
Yerushalmi GM, Shuraki B, Yung Y, Maman E, Baum M, Hennebold JD, Adashi EY, Hourvitz A. ABCC4 is a PGE2 efflux transporter in the ovarian follicle: A mediator of ovulation and a potential non-hormonal contraceptive target. FASEB J 2023; 37:e22858. [PMID: 36943419 DOI: 10.1096/fj.202101931rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
The role of prostaglandins (PGs) in the ovulatory process is known. However, the role of the ATP binding cassette subfamily C member 4 (ABCC4), transmembrane PG carrier protein, in ovulation remains unknown. We report herein that ABCC4 expression is significantly upregulated in preovulatory human granulosa cells (GCs). We found that PGE2 efflux in cultured human GCs is mediated by ABCC4 thus regulating its extracellular concentration. The ABCC4 inhibitor probenecid demonstrated effective blocking of ovulation and affects key ovulatory genes in female mice in vivo. We postulate that the reduction in PGE2 efflux caused by the inhibition of ABCC4 activity in GCs decreases the extracellular concentration of PGE2 and its ovulatory effect. Treatment of female mice with low dose of probenecid as well as with the PTGS inhibitor indomethacin or Meloxicam synergistically blocks ovulation. These results support the hypothesis that ABCC4 has an important role in ovulation and might be a potential target for non-hormonal contraception, especially in combination with PGE2 synthesis inhibitors. These findings may fill the gap in understanding the role of ABCC4 in PGE2 signaling, enhance the understanding of ovulatory disorders, and facilitate the treatment and control of fertility.
Collapse
Affiliation(s)
- Gil M Yerushalmi
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
- IVF Unit, Department of Obstetrics and Gynecology, The Yitzhak Shamir Medical Center (formerly Assaf Harofeh Medical Center) (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Zerifin, Israel
| | - Batel Shuraki
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Yuval Yung
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Ettie Maman
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Micha Baum
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Eli Y Adashi
- Department of Medical Science and Obstetrics and Gynecology, the Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Obstetrics and Gynecology, the Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Ariel Hourvitz
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
- IVF Unit, Department of Obstetrics and Gynecology, The Yitzhak Shamir Medical Center (formerly Assaf Harofeh Medical Center) (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Zerifin, Israel
| |
Collapse
|
15
|
Choi Y, Jeon H, Brännström M, Akin JW, Curry TE, Jo M. A single-cell gene expression atlas of human follicular aspirates: Identification of leukocyte subpopulations and their paracrine factors. FASEB J 2023; 37:e22843. [PMID: 36934419 DOI: 10.1096/fj.202201746rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/20/2023]
Abstract
Leukocytes are in situ regulators critical for ovarian function. However, little is known about leukocyte subpopulations and their interaction with follicular cells in ovulatory follicles, especially in humans. Single-cell RNA sequencing (scRNA-seq) was performed using follicular aspirates obtained from four IVF patients and identified 13 cell groups: one granulosa cell group, one thecal cell group, 10 subsets of leukocytes, and one group of RBC/platelet. RNA velocity analyses on five granulosa cell populations predicted developmental dynamics denoting two projections of differentiation states. The cell type-specific transcriptomic profiling analyses revealed the presence of a diverse array of leukocyte-derived factors that can directly impact granulosa cell function by activating their receptors (e.g., cytokines and secretory ligands) and are involved in tissue remodeling (e.g., MMPs, ADAMs, ADAMTSs, and TIMPs) and angiogenesis (e.g., VEGFs, PGF, FGF, IGF, and THBS1) in ovulatory follicles. Consistent with the findings from the scRNA-seq data, the leukocyte-specific expression of CD68, IL1B, and MMP9 was verified in follicle tissues collected before and at defined hours after hCG administration from regularly cycling women. Collectively, this study demonstrates that this data can be used as an invaluable resource for identifying important leukocyte-derived factors that promote follicular cell function, thereby facilitating ovulation and luteinization in women.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Hayce Jeon
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - James W Akin
- Bluegrass Fertility Center, Lexington, Kentucky, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
16
|
RNA sequencing-based transcriptome analysis of granulosa cells from follicular fluid: Genes involved in embryo quality during in vitro fertilization and embryo transfer. PLoS One 2023; 18:e0280495. [PMID: 36857405 PMCID: PMC9977003 DOI: 10.1371/journal.pone.0280495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/02/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Granulosa cells play an important role in folliculogenesis, however, the role of RNA transcripts of granulosa cells in assessing embryo quality remains unclear. Therefore, we aims to investigate that RNA transcripts of granulosa cells be used to assess the probability of the embryonic developmental capacity. METHODS This prospective cohort study was attempted to figure out the probability of the embryonic developmental capacity using RNA sequencing of granulosa cells. Granulosa cells were collected from 48 samples in good-quality embryo group and 79 in only poor- quality embryo group from women undergoing in vitro fertilization and embryo transfer treatment. Three samples from each group were used for RNA sequencing. RESULTS 226 differentially expressed genes (DEGs) were related to high developmental competence of embryos. Gene Ontology enrichment analysis indicated that these DEGs were primarily involved in biological processes, molecular functions, and cellular components. Additionally, pathway analysis revealed that these DEGs were enriched in 13 Kyoto Encyclopedia of Genes and Genomes pathways. Reverse transcription quantitative polymerase chain reaction verified the differential expression of the 13 selected DEGs. Among them,10 genes were differently expressed in the poor-quality embryo group compared to good-quality embryo group, including CSF1R, CTSH, SERPINA1, CYP27A1, ITGB2, IL1β, TNF, TAB1, BCL2A1, and CCL4. CONCLUSIONS RNA sequencing data provide the support or confute granulosa expressed genes as non-invasive biomarkers for identifying the embryonic developmental capacity.
Collapse
|
17
|
Neurotensin and Its Involvement in Reproductive Functions: An Exhaustive Review of the Literature. Int J Mol Sci 2023; 24:ijms24054594. [PMID: 36902025 PMCID: PMC10002593 DOI: 10.3390/ijms24054594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Neurotensin (NTS) is a peptide discovered in 1973, which has been studied in many fields and mainly in oncology for its action in tumor growth and proliferation. In this review of the literature, we wanted to focus on its involvement in reproductive functions. NTS participates in an autocrine manner in the mechanisms of ovulation via NTS receptor 3 (NTSR3), present in granulosa cells. Spermatozoa express only its receptors, whereas in the female reproductive system (endometrial and tube epithelia and granulosa cells), we find both NTS secretion and the expression of its receptors. It consistently enhances the acrosome reaction of spermatozoa in mammals in a paracrine manner via its interaction with NTSR1 and NTSR2. Furthermore, previous results on embryonic quality and development are discordant. NTS appears to be involved in the key stages of fertilization and could improve the results of in vitro fertilization, especially through its effect on the acrosomal reaction.
Collapse
|
18
|
Jiang Q, Miao R, Wang Y, Wang W, Zhao D, Niu Y, Ding Q, Li Y, Leung PCK, Wei D, Chen ZJ. ANGPTL4 inhibits granulosa cell proliferation in polycystic ovary syndrome by EGFR/JAK1/STAT3-mediated induction of p21. FASEB J 2023; 37:e22693. [PMID: 36607250 DOI: 10.1096/fj.202201246rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common, heterogenous endocrine disorders and is the leading cause of ovulatory obstacle associated with abnormal folliculogenesis. Dysfunction of ovarian granulosa cells (GCs) is recognized as a major factor that underlies abnormal follicle maturation. Angiopoietin-like 4 (ANGPTL4) expression in GCs differs between patients with and without PCOS. However, the role and mechanism of ANGPTL4 in impaired follicular development are still poorly understood. Here, the case-control study was designed to investigate the predictive value of ANGPTL4 in PCOS while cell experiments in vitro were set for mechanism research. Results found that ANGPTL4 levels in serum and in follicular fluid, and its expression in GCs, were upregulated in patients with PCOS. In KGN and SVOG cells, upregulation of ANGPTL4 inhibited the proliferation of GCs by blocking G1/S cell cycle progression, as well as the molecular activation of the EGFR/JAK1/STAT3 cascade. Moreover, the STAT3-dependent CDKN1A(p21) promoter increased CDKN1A transcription, resulting in remarkable suppression effect on GCs. Together, our results demonstrated that overexpression of ANGPTL4 inhibited the proliferation of GCs through EGFR/JAK1/STAT3-mediated induction of p21, thus providing a novel epigenetic mechanism for the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Qi Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Ruolan Miao
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yuhuan Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Wenqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Dingying Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yue Niu
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Qiaoqiao Ding
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China.,Medical Integration and Practice Center, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| |
Collapse
|
19
|
Shrestha K, Al-Alem L, Garcia P, Wynn MAA, Hannon PR, Jo M, Drnevich J, Duffy DM, Curry Jr TE. Neurotensin expression, regulation, and function during the ovulatory period in the mouse ovary†. Biol Reprod 2023; 108:107-120. [PMID: 36345168 PMCID: PMC9843676 DOI: 10.1093/biolre/ioac191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
The luteinizing hormone (LH) surge induces paracrine mediators within the ovarian follicle that promote ovulation. The present study explores neurotensin (NTS), a neuropeptide, as a potential ovulatory mediator in the mouse ovary. Ovaries and granulosa cells (GCs) were collected from immature 23-day-old pregnant mare serum gonadotropin primed mice before (0 h) and after administration of human chorionic gonadotropin (hCG; an LH analog) across the periovulatory period (4, 8, 12, and 24 h). In response to hCG, Nts expression rapidly increased 250-fold at 4 h, remained elevated until 8 h, and decreased until 24 h. Expression of Nts receptors for Ntsr1 remained unchanged across the periovulatory period, Ntsr2 was undetectable, whereas Sort1 expression (also called Ntsr3) gradually decreased in both the ovary and GCs after hCG administration. To better understand Nts regulation, inhibitors of the LH/CG signaling pathways were utilized. Our data revealed that hCG regulated Nts expression through the protein kinase A (PKA) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Additionally, epidermal-like-growth factor (EGF) receptor signaling also mediated Nts induction in GCs. To elucidate the role of NTS in the ovulatory process, we used a Nts silencing approach (si-Nts) followed by RNA-sequencing (RNA-seq). RNA-seq analysis of GCs collected after hCG with or without si-Nts identified and qPCR confirmed Ell2, Rsad2, Vps37a, and Smtnl2 as genes downstream of Nts. In summary, these findings demonstrate that hCG induces Nts and that Nts expression is mediated by PKA, p38MAPK, and EGF receptor signaling pathways. Additionally, NTS regulates several novel genes that could potentially impact the ovulatory process.
Collapse
Affiliation(s)
- Ketan Shrestha
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Linah Al-Alem
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Priscilla Garcia
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Michelle A A Wynn
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Patrick R Hannon
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Misung Jo
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jenny Drnevich
- Roy J Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Thomas E Curry Jr
- Department of Obstetrics & Gynecology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
20
|
Clark KL, Davis JS. Perfluorooctanoic acid (PFOA) promotes follicular growth and alters expression of genes that regulate the cell cycle and the Hippo pathway in cultured neonatal mouse ovaries. Toxicol Appl Pharmacol 2022; 454:116253. [PMID: 36152675 PMCID: PMC10416762 DOI: 10.1016/j.taap.2022.116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic chemical resistant to biodegradation and is environmentally persistent. PFOA is found in many consumer products and is a major source of water contamination. While PFOA has been identified as a contaminant of concern for reproductive health, little is known about the effects of PFOA on ovarian follicular development and growth. Recent evidence indicates that the Hippo pathway is an important regulator of ovarian physiology. Here, we investigated the effects of PFOA on ovarian folliculogenesis during the neonatal period of development and potential impacts on the Hippo signaling pathway. Post-natal day 4 (PND4) neonatal ovaries from CD-1 mice were cultured with control medium (DMSO <0.01% final concentration) or PFOA (50 μM or 100 μM). After 96 h, ovaries were collected for histological analysis of folliculogenesis, gene and protein expression, and immunostaining. Results revealed that PFOA (50 μM) increased the number of secondary follicles, which was accompanied by increases in mRNA transcripts and protein of marker of proliferation marker Ki67 with no impacts on apoptosis markers Bax, Bcl2, or cleaved caspase-3. PFOA treatment (50 μM and 100 μM) stimulated an upregulation of transcripts for cell cycle regulators Ccna2, Ccnb2, Ccne1, Ccnd1, Ccnd2, and Ccnd3. PFOA also increased abundance of transcripts of Hippo pathway components Mst1/2, Lats1, Mob1b, Yap1, and Taz, as well as downstream Hippo pathway targets Areg, Amotl2, and Cyr61, although it decreased transcripts for anti-apoptotic Birc5. Inhibition of the Hippo pathway effector YAP1 with Verteporfin resulted in the attenuation of PFOA-induced follicular growth and proliferation. Together, these findings suggest that occupationally relevant levels of PFOA (50 μM) can stimulate follicular activation in neonatal ovaries potentially through activation of the Hippo pathway.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
| |
Collapse
|
21
|
Alhajeri MM, Alkhanjari RR, Hodeify R, Khraibi A, Hamdan H. Neurotransmitters, neuropeptides and calcium in oocyte maturation and early development. Front Cell Dev Biol 2022; 10:980219. [PMID: 36211465 PMCID: PMC9537470 DOI: 10.3389/fcell.2022.980219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
A primary reason behind the high level of complexity we embody as multicellular organisms is a highly complex intracellular and intercellular communication system. As a result, the activities of multiple cell types and tissues can be modulated resulting in a specific physiological function. One of the key players in this communication process is extracellular signaling molecules that can act in autocrine, paracrine, and endocrine fashion to regulate distinct physiological responses. Neurotransmitters and neuropeptides are signaling molecules that renders long-range communication possible. In normal conditions, neurotransmitters are involved in normal responses such as development and normal physiological aspects; however, the dysregulation of neurotransmitters mediated signaling has been associated with several pathologies such as neurodegenerative, neurological, psychiatric disorders, and other pathologies. One of the interesting topics that is not yet fully explored is the connection between neuronal signaling and physiological changes during oocyte maturation and fertilization. Knowing the importance of Ca2+ signaling in these reproductive processes, our objective in this review is to highlight the link between the neuronal signals and the intracellular changes in calcium during oocyte maturation and embryogenesis. Calcium (Ca2+) is a ubiquitous intracellular mediator involved in various cellular functions such as releasing neurotransmitters from neurons, contraction of muscle cells, fertilization, and cell differentiation and morphogenesis. The multiple roles played by this ion in mediating signals can be primarily explained by its spatiotemporal dynamics that are kept tightly checked by mechanisms that control its entry through plasma membrane and its storage on intracellular stores. Given the large electrochemical gradient of the ion across the plasma membrane and intracellular stores, signals that can modulate Ca2+ entry channels or Ca2+ receptors in the stores will cause Ca2+ to be elevated in the cytosol and consequently activating downstream Ca2+-responsive proteins resulting in specific cellular responses. This review aims to provide an overview of the reported neurotransmitters and neuropeptides that participate in early stages of development and their association with Ca2+ signaling.
Collapse
Affiliation(s)
- Maitha M. Alhajeri
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rayyah R. Alkhanjari
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Ali Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Hamdan Hamdan,
| |
Collapse
|
22
|
Grzeczka A, Graczyk S, Skowronska A, Skowronski MT, Kordowitzki P. Relevance of Vitamin D and Its Deficiency for the Ovarian Follicle and the Oocyte: An Update. Nutrients 2022; 14:nu14183712. [PMID: 36145088 PMCID: PMC9502977 DOI: 10.3390/nu14183712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
For many years, vitamin D (VD) has been known to be an essential micronutrient with important relevance not only for the skeletal system, but also for numerous other mammalian organ systems. Low levels of VD result in a VD deficiency, which is a global health problem. Moreover, VD deficiencies are linked to several pathologies, for instance, diseases of the cardiovascular system, diabetes mellitus, or sub- and infertility. In the past two decades, an increasing body of evidence has shown that adequate physiological levels of VD are crucial for the female gamete and its microenvironment, and VD deficiency has been associated with decreased live birth rates among women undergoing in vitro fertilization (IVF). With regard to the female reproductive tract, VD receptors (VDRs) have been detected in the ovary, endometrium, and the placenta. Although it has been reported that VD seems to be relevant for both calcium-dependent and independent pathways, its relevance for the oocyte’s developmental competence and life span remains elusive. Therefore, herein, we aim to provide an update on the importance of VD and VD deficiency for the oocyte and the follicular microenvironment.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
| | - Szymon Graczyk
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum of the University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Mariusz T. Skowronski
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
| | - Paweł Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
- Correspondence:
| |
Collapse
|
23
|
Martínez‐Moro Á, González‐Brusi L, Lamas‐Toranzo I, O'Callaghan E, Esteve‐Codina A, Lonergan P, Bermejo‐Álvarez P. RNA-sequencing reveals genes linked with oocyte developmental potential in bovine cumulus cells. Mol Reprod Dev 2022; 89:399-412. [PMID: 35802551 PMCID: PMC9796886 DOI: 10.1002/mrd.23631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/27/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Cumulus cells provide an interesting biological material to perform analyses to understand the molecular clues determining oocyte competence. The objective of this study was to analyze the transcriptional differences between cumulus cells from oocytes exhibiting different developmental potentials following individual in vitro embryo production by RNA-seq. Cumulus cells were allocated into three groups according to the developmental potential of the oocyte following fertilization: (1) oocytes developing to blastocysts (Bl+), (2) oocytes cleaving but arresting development before the blastocyst stage (Bl-), and (3) oocytes not cleaving (Cl-). RNAseq was performed on 4 (Cl-) or 5 samples (Bl+ and Bl-) of cumulus cells pooled from 10 cumulus-oocyte complexes per group. A total of 49, 50, and 18 differentially expressed genes (DEGs) were detected in the comparisons Bl+ versus Bl-, Bl+ versus Cl- and Bl- versus Cl-, respectively, showing a fold change greater than 1.5 at an adjusted p value <0.05. Focussing on DEGs in cumulus cells from Bl+ group, 10 DEGs were common to both comparisons (10/49 from Bl+ vs. Bl-, 10/50 from Bl+ vs. Cl-). These DEGs correspond to 6 upregulated genes (HBE1, ITGA1, PAPPA, AKAP12, ITGA5, and SLC1A4), and 4 downregulated genes (GSTA1, PSMB8, FMOD, and SFRP4) in Bl+ compared to the other groups, from which 7 were validated by quantitative PCR (HBE1, ITGA1, PAPPA, AKAP12, ITGA5, PSMB8 and SFRP4). These genes are involved in critical biological functions such as integrin-mediated cell adhesion, oxygen availability, IGF and Wnt signaling or PKA pathway, highlighting specific biological processes altered in incompetent in vitro maturation oocytes.
Collapse
Affiliation(s)
- Álvaro Martínez‐Moro
- Department of Animal Reproduction, INIACSICMadridSpain,EmbryologyIVF SpainMadridSpain
| | | | | | - Elena O'Callaghan
- Agriculture and Food Science, School of Agriculture and Food ScienceUniversity College DublinDublinIreland
| | - Anna Esteve‐Codina
- Functional Genomics, CNAG‐CRG, Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Pat Lonergan
- Agriculture and Food Science, School of Agriculture and Food ScienceUniversity College DublinDublinIreland
| | | |
Collapse
|
24
|
Sun P, Wang H, Liu L, Guo K, Li X, Cao Y, Ko C, Lan ZJ, Lei Z. Aberrant activation of KRAS in mouse theca-interstitial cells results in female infertility. Front Physiol 2022; 13:991719. [PMID: 36060690 PMCID: PMC9437434 DOI: 10.3389/fphys.2022.991719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
KRAS plays critical roles in regulating a range of normal cellular events as well as pathological processes in many tissues mediated through a variety of signaling pathways, including ERK1/2 and AKT signaling, in a cell-, context- and development-dependent manner. The in vivo function of KRAS and its downstream targets in gonadal steroidogenic cells for the development and homeostasis of reproductive functions remain to be determined. To understand the functions of KRAS signaling in gonadal theca and interstitial cells, we generated a Kras mutant (tKrasMT) mouse line that selectively expressed a constitutively active KrasG12D in these cells. KrasG12D expression in ovarian theca cells did not block follicle development to the preovulatory stage. However, tKrasMT females failed to ovulate and thus were infertile. The phosphorylated ERK1/2 and forkhead box O1 (FOXO1) and total FOXO1 protein levels were markedly reduced in tKrasMT theca cells. KrasG12D expression in theca cells also curtailed the phosphorylation of ERK1/2 and altered the expression of several ovulation-related genes in gonadotropin-primed granulosa cells. To uncover downstream targets of KRAS/FOXO1 signaling in theca cells, we found that the expression of bone morphogenic protein 7 (Bmp7), a theca-specific factor involved in ovulation, was significantly elevated in tKrasMT theca cells. Chromosome immunoprecipitation assays demonstrated that FOXO1 interacted with the Bmp7 promoter containing forkhead response elements and that the binding activity was attenuated in tKrasMT theca cells. Moreover, Foxo1 knockdown caused an elevation, whereas Foxo1 overexpression resulted in an inhibition of Bmp7 expression, suggesting that KRAS signaling regulates FOXO1 protein levels to control Bmp7 expression in theca cells. Thus, the anovulation phenotype observed in tKrasMT mice may be attributed to aberrant KRAS/FOXO1/BMP7 signaling in theca cells. Our work provides the first in vivo evidence that maintaining normal KRAS activity in ovarian theca cells is crucial for ovulation and female fertility.
Collapse
Affiliation(s)
- Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhenmin Lei, ; Hongliang Wang,
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Chemyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zi-Jian Lan
- Birth Defects Center, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, United States
- *Correspondence: Zhenmin Lei, ; Hongliang Wang,
| |
Collapse
|
25
|
Huang J, Sun C, Teng Liu D, Zhao NN, Shavit JA, Zhu Y, Chen SX. Nuclear Progestin Receptor-mediated Linkage of Blood Coagulation and Ovulation. Endocrinology 2022; 163:bqac057. [PMID: 35511048 PMCID: PMC9653010 DOI: 10.1210/endocr/bqac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 01/22/2023]
Abstract
Ovulation is a dramatic remodeling process that includes rupture of blood capillaries and clotting, but coagulation is not thought to directly regulate this process. Herein, we report remarkable increases of coagulation factors V (f5, ~3145-fold) and tissue factor (f3a, ~120-fold) in zebrafish ovarian follicle cells during ovulation. This increase was mediated through the nuclear progestin receptor (Pgr), which is essential for ovulation in zebrafish, and was totally abolished in ovarian follicular cells from pgr-/- mutants. In addition, promoter activities of f5 and f3a were significantly enhanced by progestin (DHP) via Pgr. Similar regulation of human F5 promoter activity was induced via human PGRB, suggesting a conserved mechanism. Site-directed mutagenesis of the zebrafish f5 promoter further demonstrated a direct regulation of coagulation factors via progestin response elements. Moreover, a stark increase of erythrocytes occurred in capillaries meshed in wild-type preovulatory follicles but was absent in pgr-/- mutants. Interestingly, anticoagulants significantly inhibited ovulation both in vitro and in vivo, respectively. Furthermore, reduced fecundity was observed in f5+/- female zebrafish. Taken together, our study provides plausible evidence for steroid regulation of coagulation factors, and a new hypothesis for blood clotting-triggered ovulation in vertebrates.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Chao Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Nan Nan Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Jordan A Shavit
- Departments of Pediatrics and Human Genetics, University of
Michigan, Ann Arbor, Michigan 48109, USA
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
- Department of Biology, East Carolina University,
Greenville, North Carolina 27858, USA
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and
Technology, Xiamen University, Xiamen, Fujian
361102, China
| |
Collapse
|
26
|
Chang HM, Bai L, Zhu YM, Leung PCK. Connective tissue growth factor mediates bone morphogenetic protein 2-induced increase in hyaluronan production in luteinized human granulosa cells. Reprod Biol Endocrinol 2022; 20:65. [PMID: 35395768 PMCID: PMC8991488 DOI: 10.1186/s12958-022-00937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hyaluronan is the main component of the cumulus-oocyte complex (COC) matrix, and it maintains the basic structure of the COC during ovulation. As a member of the transforming growth factor β (TGF-β) superfamily, bone morphogenetic protein 2 (BMP2) has been identified as a critical regulator of mammalian folliculogenesis and ovulation. However, whether BMP2 can regulate the production of hyaluronan in human granulosa cells has never been elucidated. METHODS In the present study, we investigated the effect of BMP2 on the production of hyaluronan and the underlying molecular mechanism using both immortalized (SVOG) and primary human granulosa-lutein (hGL) cells. The expression of three hyaluronan synthases (including HAS1, HAS2 and HAS3) were examined following cell incubation with BMP2 at different concentrations. The concentrations of the hyaluronan cell culture medium were determined by enzyme-linked immunosorbent assay (ELISA). The TGF-β type I receptor inhibitors (dorsomorphin and DMH-1) and small interfering RNAs targeting ALK2, ALK3, ALK6 and SMAD4 were used to investigate the involvement of TGF-β type I receptor and SMAD-dependent pathway. RESULTS Our results showed that BMP2 treatment significantly increased the production of hyaluronan by upregulating the expression of hyaluronan synthase 2 (HAS2). In addition, BMP2 upregulates the expression of connective tissue growth factor (CTGF), which subsequently mediates the BMP2-induced increases in HAS2 expression and hyaluronan production because overexpression of CTGF enhances, whereas knockdown of CTGF reverses, these effects. Notably, using kinase inhibitor- and siRNA-mediated knockdown approaches, we demonstrated that the inductive effect of BMP2 on the upregulation of CTGF is mediated by the ALK2/ALK3-mediated SMAD-dependent signaling pathway. CONCLUSIONS Our findings provide new insight into the molecular mechanism by which BMP2 promotes the production of hyaluronan in human granulosa cells.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China.
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Peter C K Leung
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China.
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Room 317, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
27
|
Man L, Lustgarten Guahmich N, Kallinos E, Caiazza B, Khan M, Liu ZY, Patel R, Torres C, Pepin D, Yang HS, Bodine R, Zaninovic N, Schattman G, Rosenwaks Z, James D. Chronic superphysiologic AMH promotes premature luteinization of antral follicles in human ovarian xenografts. SCIENCE ADVANCES 2022; 8:eabi7315. [PMID: 35263130 PMCID: PMC8906729 DOI: 10.1126/sciadv.abi7315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
Anti-Müllerian hormone (AMH) is produced by growing ovarian follicles and provides a diagnostic measure of reproductive reserve in women; however, the impact of AMH on folliculogenesis is poorly understood. We cotransplanted human ovarian cortex with control or AMH-expressing endothelial cells in immunocompromised mice and recovered antral follicles for purification and downstream single-cell RNA sequencing of granulosa and theca/stroma cell fractions. A total of 38 antral follicles were observed (19 control and 19 AMH) at long-term intervals (>10 weeks). In the context of exogenous AMH, follicles exhibited a decreased ratio of primordial to growing follicles and antral follicles of increased diameter. Transcriptomic analysis and immunolabeling revealed a marked increase in factors typically noted at more advanced stages of follicle maturation, with granulosa and theca/stroma cells also displaying molecular hallmarks of luteinization. These results suggest that superphysiologic AMH alone may contribute to ovulatory dysfunction by accelerating maturation and/or luteinization of antral-stage follicles.
Collapse
Affiliation(s)
- Limor Man
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicole Lustgarten Guahmich
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eleni Kallinos
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Barbara Caiazza
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Monica Khan
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zong-Ying Liu
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ritaben Patel
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carmen Torres
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Pepin
- Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02214, USA
| | - He S. Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard Bodine
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nikica Zaninovic
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
| | - Glenn Schattman
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daylon James
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
28
|
Zhu Y. Metalloproteases in gonad formation and ovulation. Gen Comp Endocrinol 2021; 314:113924. [PMID: 34606745 PMCID: PMC8576836 DOI: 10.1016/j.ygcen.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
Changes in expression or activation of various metalloproteases including matrix metalloproteases (Mmp), a disintegrin and metalloprotease (Adam) and a disintegrin and metalloprotease with thrombospondin motif (Adamts), and their endogenous inhibitors (tissue inhibitors of metalloproteases, Timp), have been shown to be critical for ovulation in various species from studies in past decades. Some of these metalloproteases such as Adamts1, Adamts9, Mmp2, and Mmp9 have also been shown to be regulated by luteinizing hormone (LH) and/or progestin, which are essential triggers for ovulation in all vertebrate species. Most of these metalloproteases also express broadly in various tissues and cells including germ cells and somatic gonad cells. Thus, metalloproteases likely play roles in gonad formation processes comprising primordial germ cell (PGC) migration, development of germ and somatic cells, and sex determination. However, our knowledge on the functions and mechanisms of metalloproteases in these processes in vertebrates is still lacking. This review will summarize our current knowledge on the metalloproteases in ovulation and gonad formation with emphasis on PGC migration and germ cell development.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
29
|
Kang T, Ye J, Qin P, Li H, Yao Z, Liu Y, Ling Y, Zhang Y, Yu T, Cao H, Li Y, Wang J, Fang F. Knockdown of Ptprn-2 delays the onset of puberty in female rats. Theriogenology 2021; 176:137-148. [PMID: 34607132 DOI: 10.1016/j.theriogenology.2021.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
In the present study, we evaluated how Ptprn-2 (encoding tyrosine phosphatase, receptor type, N2 polypeptide protein) affects the onset of puberty in female rats. We evaluated the expression of Ptprn-2 mRNA and protein in the hypothalamus-pituitary-ovary axis of female rats using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunofluorescence at infancy, prepuberty, puberty, peripuberty, and adulthood. We evaluated the effects of Ptprn-2 gene knockdown on different aspects of reproduction-related biology in female rats, including the expression levels of puberty-related genes in vivo and in vitro, the time to onset of puberty, the concentration of serum reproductive hormones, the morphology of ovaries, and the ultrastructure of pituitary gonadotropin cells. Our results demonstrated that PTPRN-2 was primarily distributed in the arcuate nucleus (ARC), periventricular nucleus (PeN), adenohypophysis, and the ovarian follicular theca, stroma, and granulosa cells of female rats at various stages. Ptprn-2 mRNA levels significantly varied between peripuberty and puberty (P < 0.05) in the hypothalamus and pituitary gland. In hypothalamic cells, Ptprn-2 knockdown decreased the expression of Ptprn-2 and Rfrp-3 mRNA (P < 0.05) and increased the levels of Gnrh and Kiss-1 mRNA (P < 0.05). Ptprn-2 knockdown in the hypothalamus resulted in delayed vaginal opening compared to the control group (n = 12, P < 0.01), and Ptprn-2, Gnrh, and Kiss-1 mRNA levels (P < 0.05) all decreased, while the expression of Igf-1 (P < 0.05) and Rfrp-3 mRNA (P < 0.01) increased. The concentrations of FSH and P4 in the serum of Ptprn-2 knockdown rats were lower than in control animals (P < 0.05). Large transverse perimeters and longitudinal perimeters (P < 0.05) were found in the ovaries of Ptprn-2 knockdown rats. There were fewer large secretory particles from gonadotropin cells in adenohypophysis tissue of the Ptprn-2 knockdown group compared to the control group. This indicates that Ptprn-2 knockdown can regulate levels of Gnrh, Kiss-1, and Rfrp-3 mRNA in the hypothalamus, regulate the concentration of serum FSH and P4, and alter the morphology of ovarian and gonadotropin cells, delaying the onset of puberty in female rats.
Collapse
Affiliation(s)
- Tiezhu Kang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Jing Ye
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ping Qin
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hailing Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Zhiqiu Yao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Tong Yu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hongguo Cao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Juhua Wang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
30
|
Zhang X, You L, Zhang X, Wang F, Wang Y, Zhou J, Liu C, Qu F. Neurobehavioral alternations of the female offspring born to polycystic ovary syndrome model rats administered by Chinese herbal medicine. Chin Med 2021; 16:97. [PMID: 34600579 PMCID: PMC8487466 DOI: 10.1186/s13020-021-00512-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022] Open
Abstract
Background Chinese herbal medicine (CHM) has significant effects that improve the reproductive functions of patients with polycystic ovary syndrome (PCOS). However, the intergenerational effects of CHM on offspring and the underlying mechanism of CHM remain unclear. This study aimed to explore the effects and the underlying mechanism of CHM, specifically the Bu-Shen-Tian-Jing formula (BSTJF), on model rats with polycystic ovary syndrome (PCOS) and the neurobehavioral alterations of female offspring born to PCOS rats administered BSTJF. Methods High-performance liquid chromatography-mass spectrometry (HPLC–MS) and network pharmacology analysis were performed to identify the active ingredients and potential targets of BSTJF. Moreover, PCOS model rats were used to validate the role of BSTJF in reproduction and progeny neural development and to confirm the network pharmacological targets. Results A total of 91 constituents were characterized from BSTJF. The 20 most significant KEGG pathways and the high-frequency genes of these pathways were predicted to be putative targets of these molecules. The rat experiment showed that the downregulation of FOS protein expression in the ovarian granulosa cells of the PCOS group was reversed by BSTJF. The target residence time of the 5-week-old female offspring of the BSTJF group was higher than that of the PCOS group in the water maze experiment. Compared to the PCOS group, the changes in dendritic spine density, ultrastructure of neurons and synapses, and Gabrb1 and Grin2b protein expression levels in the hippocampus of female offspring were partially reversed in the BSTJF group. Conclusions BSTJF can effectively improve ovarian follicle development in PCOS rats and has positive effects on pubertal neurobehavioral alterations in the female offspring of these rats by reversing dendritic spine density, the ultrastructure of neurons and synapses, and the Gabrb1 and Grin2b protein expression levels in the hippocampus. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00512-4.
Collapse
Affiliation(s)
- Xian Zhang
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China
| | - Lifang You
- First People's Hospital of Yuhang District, Hangzhou, 311103, Zhejiang, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chang Liu
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, China.
| |
Collapse
|
31
|
Baker SJC, Van Der Kraak G. ADAMTS1 is regulated by the EP4 receptor in the zebrafish ovary. Gen Comp Endocrinol 2021; 311:113835. [PMID: 34181931 DOI: 10.1016/j.ygcen.2021.113835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Prostaglandins (PGs) are a class of fatty-acid derived hormones that are essential in ovulation of teleosts, but their exact role remains unknown. One putative target of PGs in ovulation is regulation of the expression of members of the A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) family, which are implicated in follicular rupture. This study investigated the regulation of ADAMTS, other proteases, and their inhibitors in response to treatment with PGE2 or PGF2α. Four members of the ADAMTS family, ADAMTS1, ADAMTS5, ADAMTS9, and ADAMTS16 were shown to be expressed in the ovary of zebrafish, but only adamts1 was upregulated in full-grown follicles following treatment with PGE2. Inhibitors of the PG receptors EP1 and EP2 had no effect on PGE2-stimulated adamts1 expression, while treatment of full-grown follicles with both PGE2 and GW627368x, an inhibitor of EP4 function, prevented the PGE2-induced increase in adamts1 expression. Treatment of full-grown follicles with the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P) in vitro had no effect on the expression of adamts1 mRNA. These findings suggest that expression of ADAMTS1 in zebrafish ovarian follicles is regulated by the prostaglandin PGE2 via the EP4 series prostaglandin receptor.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
32
|
Przygrodzka E, Plewes MR, Davis JS. Luteinizing Hormone Regulation of Inter-Organelle Communication and Fate of the Corpus Luteum. Int J Mol Sci 2021; 22:9972. [PMID: 34576135 PMCID: PMC8470545 DOI: 10.3390/ijms22189972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
The corpus luteum is an endocrine gland that synthesizes the steroid hormone progesterone. luteinizing hormone (LH) is a key luteotropic hormone that stimulates ovulation, luteal development, progesterone biosynthesis, and maintenance of the corpus luteum. Luteotropic and luteolytic factors precisely regulate luteal structure and function; yet, despite recent scientific progress within the past few years, the exact mechanisms remain largely unknown. In the present review, we summarize the recent progress towards understanding cellular changes induced by LH in steroidogenic luteal cells. Herein, we will focus on the effects of LH on inter-organelle communication and steroid biosynthesis, and how LH regulates key protein kinases (i.e., AMPK and MTOR) responsible for controlling steroidogenesis and autophagy in luteal cells.
Collapse
Affiliation(s)
- Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
| | - Michele R. Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| |
Collapse
|
33
|
Nosratpour S, Ndiaye K. Ankyrin-repeat and SOCS box-containing protein 9 (ASB9) regulates ovarian granulosa cells function and MAPK signaling. Mol Reprod Dev 2021; 88:830-843. [PMID: 34476862 DOI: 10.1002/mrd.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 11/05/2022]
Abstract
Ankyrin-repeat and SOCS box-containing proteins (ASB) interact with the elongin B-C adapter via their SOCS box domain and with the cullin and ring box proteins to form E3 ubiquitin ligase complexes within the protein ubiquitination pathway. ASB9 in particular is a differentially expressed gene in ovulatory follicles (OFs) induced by the luteinizing hormone (LH) surge or hCG injection in ovarian granulosa cells (GC) while downregulated in growing dominant follicles. Although ASB9 has been involved in biological processes such as protein modification, the signaling network associated with ASB9 in GC is yet to be fully defined. We previously identified and reported ASB9 interactions and binding partners in GC including PAR1, TAOK1, and TNFAIP6/TSG6. Here, we further investigate ASB9 effects on target binding partners regulation and signaling in GC. CRISPR/Cas9-induced inhibition of ASB9 revealed that ASB9 regulates PAR1, TAOK1, TNFAIP6 as well as genes associated with proliferation and cell cycle progression such as PCNA, CCND2, and CCNE2 while CCNA2 was not affected. Inhibition of ASB9 was also associated with increased GC number and decreased caspase3/7 activity, CASP3 expression, and BAX/BCL2 ratio. Furthermore, ASB9 induction in OF in vivo 24 h post-hCG is concomitant with a significant decrease in phosphorylation levels of MAPK3/1 while pMAPK3/1 levels increased following ASB9 inhibition in GC in vitro. Together, these results provide strong evidence for ASB9 as a regulator of GC activity and function by modulating MAPK signaling likely through specific binding partners such as PAR1, therefore controlling GC proliferation and contributing to GC differentiation into luteal cells.
Collapse
Affiliation(s)
- Soma Nosratpour
- Centre de Recherche en Reproduction et Fertilité (CRRF), Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Kalidou Ndiaye
- Centre de Recherche en Reproduction et Fertilité (CRRF), Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
34
|
Choi Y, Jeon H, Akin JW, Curry TE, Jo M. The FOS/AP-1 Regulates Metabolic Changes and Cholesterol Synthesis in Human Periovulatory Granulosa Cells. Endocrinology 2021; 162:6309635. [PMID: 34171102 PMCID: PMC8315293 DOI: 10.1210/endocr/bqab127] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 11/19/2022]
Abstract
FOS, a subunit of the activator protein-1 (AP-1) transcription factor, has been implicated in various cellular changes. In the human ovary, the expression of FOS and its heterodimeric binding partners JUN, JUNB, and JUND increases in periovulatory follicles. However, the specific role of the FOS/AP-1 remains elusive. The present study determined the regulatory mechanisms driving the expression of FOS and its partners and functions of FOS using primary human granulosa/lutein cells (hGLCs). Human chorionic gonadotropin (hCG) induced a biphasic increase in the expression of FOS, peaking at 1 to 3 hours and 12 hours. The levels of JUN proteins were also increased by hCG, with varying expression patterns. Coimmunoprecipitation analyses revealed that FOS is present as heterodimers with all JUN proteins. hCG immediately activated protein kinase A and p42/44MAPK signaling pathways, and inhibitors for these pathways abolished hCG-induced increases in the levels of FOS, JUN, and JUNB. To identify the genes regulated by FOS, high-throughput RNA sequencing was performed using hGLC treated with hCG ± T-5224 (FOS inhibitor). Sequencing data analysis revealed that FOS inhibition affects the expression of numerous genes, including a cluster of genes involved in the periovulatory process such as matrix remodeling, prostaglandin synthesis, glycolysis, and cholesterol biosynthesis. Quantitative PCR analysis verified hCG-induced, T-5224-regulated expression of a selection of genes involved in these processes. Consistently, hCG-induced increases in metabolic activities and cholesterol levels were suppressed by T-5224. This study unveiled potential downstream target genes of and a role for the FOS/AP-1 complex in metabolic changes and cholesterol biosynthesis in granulosa/lutein cells of human periovulatory follicles.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hayce Jeon
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Correspondence: Misung Jo, PhD, Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY 40536-0298, USA.
| |
Collapse
|
35
|
Shirafuta Y, Tamura I, Ohkawa Y, Maekawa R, Doi-Tanaka Y, Takagi H, Mihara Y, Shinagawa M, Taketani T, Sato S, Tamura H, Sugino N. Integrated Analysis of Transcriptome and Histone Modifications in Granulosa Cells During Ovulation in Female Mice. Endocrinology 2021; 162:6309636. [PMID: 34171084 DOI: 10.1210/endocr/bqab128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/14/2022]
Abstract
The ovulatory luteinizing hormone (LH) surge induces rapid changes of gene expression and cellular functions in granulosa cells (GCs) undergoing luteinization. However, it remains unclear how the changes in genome-wide gene expression are regulated. H3K4me3 histone modifications are involved in the rapid alteration of gene expression. In this study, we investigated genome-wide changes of transcriptome and H3K4me3 status in mouse GCs undergoing luteinization. GCs were obtained from mice treated with equine chorionic gonadotropin (hCG) before, 4 hours, and 12 hours after human chorionic gonadotropin injection. RNA-sequencing identified a number of upregulated and downregulated genes, which could be classified into 8 patterns according to the time-course changes of gene expression. Many genes were transiently upregulated or downregulated at 4 hours after hCG stimulation. Gene Ontology terms associated with these genes included steroidogenesis, ovulation, cumulus-oocyte complex (COC) expansion, angiogenesis, immune system, reactive oxygen species (ROS) metabolism, inflammatory response, metabolism, and autophagy. The cellular functions of DNA repair and cell growth were newly identified as being activated during ovulation. Chromatin immunoprecipitation-sequencing revealed a genome-wide and rapid change in H3K4me3 during ovulation. Integration of transcriptome and H3K4me3 data identified many H3K4me3-associated genes that are involved in steroidogenesis, ovulation, COC expansion, angiogenesis, inflammatory response, immune system, ROS metabolism, lipid and glucose metabolism, autophagy, and regulation of cell size. The present results suggest that genome-wide changes in H3K4me3 after the LH surge are associated with rapid changes in gene expression in GCs, which enables GCs to acquire a lot of cellular functions within a short time that are required for ovulation and luteinization.
Collapse
Affiliation(s)
- Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| |
Collapse
|
36
|
Fan B, Han Y, Yang Y, Zhao X, Tang Y, Li X, Diao Y, Xu B. Transcriptomic analysis of ovarian signaling at the emergence of the embryo from obligate diapause in the American mink (Neovison vison). Anim Reprod Sci 2021; 232:106823. [PMID: 34390943 DOI: 10.1016/j.anireprosci.2021.106823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022]
Abstract
Mink embryonic diapause occurs when embryos, at the blastocyst stage, enter a state of a reversible arrest in development and metabolism. Some ovarian factors are required because ovariectomy leads to prevention of implantation in mink. Mechanisms regulating this process, however, remain largely unknown. To explore ovarian modifications associated with emergence of embryonic diapause in mink, there was comparison of transcriptomes after embryonic activation to when there was embryonic diapause using RNA-sequencing. A library of 655 differentially expressed genes (DEGs) of all assembled 33,656 genes was generated. Among these, 558 genes were annotated with 106 genes being expressed to a greater extent in ovaries during embryonic diapause, whereas 452 genes were more abundantly expressed in ovaries after embryonic activation. The major categories of genes with differential transcript abundances include metabolic pathways, metabolism of tryptophan, tyrosine and vitamin B6, oxidoreductase activity, calcium signaling pathway, steroid biosynthesis and lysosome. The APOE and APOA1 hub genes identified through the protein-protein interaction (PPI) analysis have important functions in cholesterol transport and steroidogenesis. Transcript abundances associated with 39 genes were investigated using RT-qPCR procedures to confirm RNA-sequencing data. Of 29 mRNA transcripts, 26 were validated using RNA-sequencing, whereas three of ten indistinguishable genes determined using RNA-sequencing were confirmed. Most of these verified DEGs are involved in the prolactin signaling pathway, formation of functional corpora lutea, and steroid synthesis, suggesting these biological processes are implicated in embryonic reactivation. Overall, results provide new insights into ovarian signaling at the time of emergence of the blastocyst from diapause in mink.
Collapse
Affiliation(s)
- Bingfeng Fan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yuping Han
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yifeng Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Xiangyuan Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yu Tang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Xiaoxia Li
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China
| | - Yunfei Diao
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China
| | - Baozeng Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
37
|
Han Y, Gao G, Li S, Xiao N, Zhang Y, Luo H. Development of an optimal protocol for isolation and purification of human granulosa cells in patients with different ovarian reserves. Exp Ther Med 2021; 22:938. [PMID: 34335887 DOI: 10.3892/etm.2021.10370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
The aim of the current study was to develop an accurate and reproducible method for isolation of granulosa cells (GCs) in patients with different ovarian reserves. The cells of healthy individuals and patients with polycystic ovary syndrome (PCOS) were isolated using a modified two-step Percoll density gradient centrifugation. The cells of patients with poor ovarian response (POR) were isolated using a one-step method suitable for samples containing few cells. Cells extracted using these purification techniques were compared regarding cell yield, viability and purity using immunocytochemistry, flow cytometry, Cell Counting Kit-8, western blotting and RNA integrity analysis. The purity and activity of the cells in the POR group were comparable with those in the healthy and PCOS groups and no statistically significant differences were identified. Furthermore, isolated cells analyzed for RNA integrity indicated good quality RNA and presented an RNA integrity number of 8-10, demonstrating that the technique enabled the isolation of GCs from different types of patients. Thus, a reliable and reproducible technique for the isolation of pure GCs with high yield is described in the present study. This protocol provides an efficient method targeted to patients with different ovarian reserve functions that enables the preparation of GCs for evaluating their molecular functions.
Collapse
Affiliation(s)
- Ying Han
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Ge Gao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Shuang Li
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Yinfeng Zhang
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| |
Collapse
|
38
|
Poulsen LC, Englund ALM, Andersen AS, Bøtkjær JA, Mamsen LS, Damdimopoulou P, Østrup O, Grøndahl ML, Yding Andersen C. Follicular hormone dynamics during the midcycle surge of gonadotropins in women undergoing fertility treatment. Mol Hum Reprod 2021; 26:256-268. [PMID: 32023345 DOI: 10.1093/molehr/gaaa013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Changes in concentrations of intra-follicular hormones during ovulation are important for final oocyte maturation and endometrial priming to ensure reproductive success. As no human studies have investigated these changes in detail, our objective was to describe the dynamics of major follicular fluid (FF) hormones and transcription of steroidogenic enzymes and steroid receptors in human granulosa cells (GCs) during ovulation. We conducted a prospective cohort study at a public fertility clinic in 2016-2018. Fifty women undergoing ovarian stimulation for fertility treatment were included. From each woman, FF and GCs were collected by transvaginal ultrasound-guided follicle puncture of one follicle at two specific time points during ovulation, and the study covered a total of five time points: before ovulation induction (OI), 12, 17, 32 and 36 h after OI. Follicular fluid concentrations of oestradiol, progesterone, androstenedione, testosterone, 17-hydroxyprogesterone, anti-Mullerian hormone, inhibin A and inhibin B were measured using ELISA assays, and a statistical mixed model was used to analyse differences in hormone levels between time points. Gene expression of 33 steroidogenic enzymes and six hormone receptors in GCs across ovulation were assessed by microarray analysis, and selected genes were validated by quantitative reverse transcription PCR. We found that concentrations of oestradiol, testosterone, progesterone, AMH, inhibin A and inhibin B (P < 0.001) and gene expression of 12 steroidogenic enzymes and five receptors (false discovery rate < 0.0001) changed significantly during ovulation. Furthermore, we found parallel changes in plasma hormones. The substantial changes in follicular hormone production during ovulation highlight their importance for reproductive success.
Collapse
Affiliation(s)
- L C Poulsen
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - A L M Englund
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - A S Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - J A Bøtkjær
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - L S Mamsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - P Damdimopoulou
- Swedish Toxicology Sciences Research Centre (Swetox), Karolinska Institute, Unit of Toxicology Sciences, 15136 Södertälje, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institute, SE-141 83 Stockholm, Sweden
| | - O Østrup
- Center for Genomic Medicine, Microarray Core Facility, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - M L Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - C Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
39
|
The mRNA-destabilizing protein Tristetraprolin targets "meiosis arrester" Nppc mRNA in mammalian preovulatory follicles. Proc Natl Acad Sci U S A 2021; 118:2018345118. [PMID: 34031239 DOI: 10.1073/pnas.2018345118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
C-natriuretic peptide (CNP) and its receptor guanylyl cyclase, natriuretic peptide receptor 2 (NPR2), are key regulators of cyclic guanosine monophosphate (cGMP) homeostasis. The CNP-NPR2-cGMP signaling cascade plays an important role in the progression of oocyte meiosis, which is essential for fertility in female mammals. In preovulatory ovarian follicles, the luteinizing hormone (LH)-induced decrease in CNP and its encoding messenger RNA (mRNA) natriuretic peptide precursor C (Nppc) are a prerequisite for oocyte meiotic resumption. However, it has never been determined how LH decreases CNP/Nppc In the present study, we identified that tristetraprolin (TTP), also known as zinc finger protein 36 (ZFP36), a ubiquitously expressed mRNA-destabilizing protein, is the critical mechanism that underlies the LH-induced decrease in Nppc mRNA. Zfp36 mRNA was transiently up-regulated in mural granulosa cells (MGCs) in response to the LH surge. Loss- and gain-of-function analyses indicated that TTP is required for Nppc mRNA degradation in preovulatory MGCs by targeting the rare noncanonical AU-rich element harbored in the Nppc 3' UTR. Moreover, MGC-specific knockout of Zfp36, as well as lentivirus-mediated knockdown in vivo, impaired the LH/hCG-induced Nppc mRNA decline and oocyte meiotic resumption. Furthermore, we found that LH/hCG activates Zfp36/TTP expression through the EGFR-ERK1/2-dependent pathway. Our findings reveal a functional role of TTP-induced mRNA degradation, a global posttranscriptional regulation mechanism, in orchestrating the progression of oocyte meiosis. We also provided a mechanism for understanding CNP-dependent cGMP homeostasis in diverse cellular processes.
Collapse
|
40
|
Expression of steroidogenic enzymes and TGFβ superfamily members in follicular cells of prepubertal gilts with distinct endocrine profiles. ZYGOTE 2021; 30:65-71. [PMID: 33966679 DOI: 10.1017/s0967199421000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Regulation of the transforming growth factor beta (TGFβ) superfamily by gonadotrophins in swine follicular cells is not fully understood. This study evaluated the expression of steroidogenic enzymes and members of the TGFβ superfamily in prepubertal gilts allocated to three treatments: 1200 IU eCG at D -3 (eCG); 1200 IU eCG at D -6 plus 500 IU hCG at D -3 (eCG + hCG); and the control, composed of untreated gilts. Blood samples and ovaries were collected at slaughter (D0) and follicular cells were recovered thereafter. Relative gene expression was determined by real-time PCR. Serum progesterone levels were greater in the eCG + hCG group compared with the other groups (P < 0.01). No differences were observed in the expression of BMP15, BMPR1A, BMPR2, FSHR, GDF9, LHCGR and TGFBR1 (P > 0.05). Gilts from the eCG group presented numerically greater mean expression of CYP11A1 mRNA than in the control group that approached statistical significance (P = 0.08) and greater expression of CYP19A1 than in both the eCG and the control groups (P < 0.05). Expression of BMPR1B was lower in the eCG + hCG treatment group compared with the control (P < 0.05). In conclusion, eCG treatment increased the relative expression of steroidogenic enzymes, whereas treatment with eCG + hCG increased serum progesterone levels. Although most of the evaluated TGFβ members were not regulated after gonadotrophin treatment, the downregulation of BMPR1B observed after treatment with eCG + hCG and suggests a role in luteinization regulation.
Collapse
|
41
|
Poulsen LC, Bøtkjær JA, Østrup O, Petersen KB, Andersen CY, Grøndahl ML, Englund ALM. Two waves of transcriptomic changes in periovulatory human granulosa cells. Hum Reprod 2021; 35:1230-1245. [PMID: 32378719 DOI: 10.1093/humrep/deaa043] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/05/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION How does the human granulosa cell (GC) transcriptome change during ovulation? SUMMARY ANSWER Two transcriptional peaks were observed at 12 h and at 36 h after induction of ovulation, both dominated by genes and pathways known from the inflammatory system. WHAT IS KNOWN ALREADY The crosstalk between GCs and the oocyte, which is essential for ovulation and oocyte maturation, can be assessed through transcriptomic profiling of GCs. Detailed transcriptional changes during ovulation have not previously been assessed in humans. STUDY DESIGN, SIZE, DURATION This prospective cohort study comprised 50 women undergoing fertility treatment in a standard antagonist protocol at a university hospital-affiliated fertility clinic in 2016-2018. PARTICIPANTS/MATERIALS, SETTING, METHODS From each woman, one sample of GCs was collected by transvaginal ultrasound-guided follicle aspiration either before or 12 h, 17 h or 32 h after ovulation induction (OI). A second sample was collected at oocyte retrieval, 36 h after OI. Total RNA was isolated from GCs and analyzed by microarray. Gene expression differences between the five time points were assessed by ANOVA with a random factor accounting for the pairing of samples, and seven clusters of protein-coding genes representing distinct expression profiles were identified. These were used as input for subsequent bioinformatic analyses to identify enriched pathways and suggest upstream regulators. Subsets of genes were assessed to explore specific ovulatory functions. MAIN RESULTS AND THE ROLE OF CHANCE We identified 13 345 differentially expressed transcripts across the five time points (false discovery rate, <0.01) of which 58% were protein-coding genes. Two clusters of mainly downregulated genes represented cell cycle pathways and DNA repair. Upregulated genes showed one peak at 12 h that resembled the initiation of an inflammatory response, and one peak at 36 h that resembled the effector functions of inflammation such as vasodilation, angiogenesis, coagulation, chemotaxis and tissue remodelling. Genes involved in cell-matrix interactions as a part of cytoskeletal rearrangement and cell motility were also upregulated at 36 h. Predicted activated upstream regulators of ovulation included FSH, LH, transforming growth factor B1, tumour necrosis factor, nuclear factor kappa-light-chain-enhancer of activated B cells, coagulation factor 2, fibroblast growth factor 2, interleukin 1 and cortisol, among others. The results confirmed early regulation of several previously described factors in a cascade inducing meiotic resumption and suggested new factors involved in cumulus expansion and follicle rupture through co-regulation with previously described factors. LARGE SCALE DATA The microarray data were deposited to the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/gds/, accession number: GSE133868). LIMITATIONS, REASONS FOR CAUTION The study included women undergoing ovarian stimulation and the findings may therefore differ from a natural cycle. However, the results confirm significant regulation of many well-established ovulatory genes from a series of previous studies such as amphiregulin, epiregulin, tumour necrosis factor alfa induced protein 6, tissue inhibitor of metallopeptidases 1 and plasminogen activator inhibitor 1, which support the relevance of the results. WIDER IMPLICATIONS OF THE FINDINGS The study increases our understanding of human ovarian function during ovulation, and the publicly available dataset is a valuable resource for future investigations. Suggested upstream regulators and highly differentially expressed genes may be potential pharmaceutical targets in fertility treatment and gynaecology. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by EU Interreg ÔKS V through ReproUnion (www.reprounion.eu) and by a grant from the Region Zealand Research Foundation. None of the authors have any conflicts of interest to declare.
Collapse
Affiliation(s)
- L C Poulsen
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - J A Bøtkjær
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - O Østrup
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - K B Petersen
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - C Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - M L Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - A L M Englund
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| |
Collapse
|
42
|
Campbell GE, Bender HR, Parker GA, Curry TE, Duffy DM. Neurotensin: A novel mediator of ovulation? FASEB J 2021; 35:e21481. [PMID: 33710668 PMCID: PMC8314182 DOI: 10.1096/fj.202002547rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
The midcycle luteinizing hormone (LH) surge initiates a cascade of events within the ovarian follicle which culminates in ovulation. Only mural granulosa cells and theca cells express large numbers of LH receptors, and LH-stimulated paracrine mediators communicate the ovulatory signal within the follicle. Recent reports identified the neuropeptide neurotensin (NTS) as a product of granulosa cells. Here, we demonstrate that granulosa cells were the primary site of NTS expression in macaque ovulatory follicles. Granulosa cell NTS mRNA and protein increased after human chorionic gonadotropin (hCG) administration, which substitutes for the LH surge. To identify ovulatory actions of NTS, a NTS-neutralizing antibody was injected into preovulatory macaque follicles. hCG administration immediately followed, and ovaries were removed 48 hours later to evaluate ovulatory events. Follicles injected with control IgG ovulated normally. In contrast, 75% of NTS antibody-injected follicles failed to ovulate, containing oocytes trapped within unruptured, hemorrhagic follicles. Serum progesterone was unchanged. Of the three NTS receptors, SORT1 was highly expressed in follicular granulosa, theca, and endothelial cells; NTSR1 and NTSR2 were expressed at lower levels. Excessive blood cells in NTS antibody-injected follicles indicated vascular anomalies, so the response of monkey ovarian endothelial cells to NTS was evaluated in vitro. NTS stimulated endothelial cell migration and capillary sprout formation, consistent with a role for NTS in vascular remodeling associated with ovulation. In summary, we identified NTS as a possible paracrine mediator of ovulation. Further investigation of the NTS synthesis/response pathway may lead to improved treatments for infertility and novel targets for contraception.
Collapse
Affiliation(s)
- Genevieve E. Campbell
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Hannah R. Bender
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Grace A. Parker
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
43
|
Li Z, Wang J, Zhao Y, Ma D, Zhao M, Li N, Men Y, Zhang Y, Chu H, Lei C, Shen W, El-Mahdy Othman O, Min L. scRNA-seq of ovarian follicle granulosa cells from different fertility goats reveals distinct expression patterns. Reprod Domest Anim 2021; 56:801-811. [PMID: 33624340 DOI: 10.1111/rda.13920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
The new technology of high-throughput single-cell RNA sequencing (10 × scRNA-seq) was developed recently with many advantages. However, it was not commonly used in farm animal research. There are few reports for the gene expression of goat ovarian follicle granulosa cells (GCs) during different developmental stages. In the current investigation, the gene expression of follicle GCs at different stages from two populations of Ji'ning grey goats: high litter size (HL; ≥3/L; 2 L) and low litter size (LL; ≤2 /L; 2 L) were analysed by scRNA-seq. Many GC marker genes were identified, and the pseudo-time showed that GCs developed during the time course which reflected the follicular development and differentiation trajectory. Moreover, the gene expression difference between the two populations HL versus LL was very clear at different developmental stages. Many marker genes differentially expressed at different developmental stages. ASIP and ASPN were found to be highly expressed in the early stage of GCs, INHA, INHBA, MFGE8 and HSD17B1 were identified to be highly expressed in the growing stage of GCs, while IGFBP2, IGFBP5 and CYP11A1 were found to be highly expressed in late stage. These marker genes could be used as reference genes of goat follicle GC development. This investigation for the first time discovered the gene expression patterns in goat follicle GCs in high- or low-fertility populations (based on litter size) by scRNA-seq which may be useful for uncovering the oocyte development potential.
Collapse
Affiliation(s)
- Zengkuan Li
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Junjie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Dongxue Ma
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Minghui Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Na Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yuhao Men
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuan Zhang
- Jining Animal Husbandry Development Center, Jining, China
| | - Huimin Chu
- Jining Agricultural Science Institute, Jining, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | | | - Lingjiang Min
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
44
|
Al-Alem L, Puttabyatappa M, Shrestha K, Choi Y, Rosewell K, Brännström M, Akin J, Jo M, Duffy DM, Curry TE. Neurotensin: a neuropeptide induced by hCG in the human and rat ovary during the periovulatory period†. Biol Reprod 2021; 104:1337-1346. [PMID: 33682882 PMCID: PMC8485077 DOI: 10.1093/biolre/ioab036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023] Open
Abstract
Neurotensin (NTS) is a tridecapeptide that was first characterized as a neurotransmitter in neuronal cells. The present study examined ovarian NTS expression across the periovulatory period in the human and the rat. Women were recruited into this study and monitored by transvaginal ultrasound. The dominant follicle was surgically excised prior to the luteinizing hormone (LH) surge (preovulatory phase) or women were given 250 μg human chorionic gonadotropin (hCG) and dominant follicles collected 12-18 h after hCG (early ovulatory), 18-34 h (late ovulatory), and 44-70 h (postovulatory). NTS mRNA was massively induced during the early and late ovulatory stage in granulosa cells (GCs) (15 000 fold) and theca cells (700 fold). In the rat, hCG also induced Nts mRNA expression in intact ovaries and isolated GCs. In cultured granulosa-luteal cells (GLCs) from IVF patients, NTS expression was induced 6 h after hCG treatment, whereas in cultured rat GCs, NTS increased 4 h after hCG treatment. Cells treated with hCG signaling pathway inhibitors revealed that NTS expression is partially regulated in the human and rat GC by the epidermal-like growth factor pathway. Human GLC, and rat GCs also showed that Nts was regulated by the protein kinase A (PKA) pathway along with input from the phosphotidylinositol 3- kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. The predominat NTS receptor present in human and rat GCs was SORT1, whereas NTSR1 and NTSR2 expression was very low. Based on NTS actions in other systems, we speculate that NTS may regulate crucial aspects of ovulation such as vascular permeability, inflammation, and cell migration.
Collapse
Affiliation(s)
- Linah Al-Alem
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ketan Shrestha
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Yohan Choi
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kathy Rosewell
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden,Stockholm IVF, Stockholm, Sweden
| | - James Akin
- Bluegrass Fertility Center, Lexington, KY, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA,Correspondence: Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, 800 Rose Street,Room MS 331, Lexington, KY 40536-0298, USA. E-mail:
| |
Collapse
|
45
|
Luo Y, Cui C, Han X, Wang Q, Zhang C. The role of miRNAs in polycystic ovary syndrome with insulin resistance. J Assist Reprod Genet 2021; 38:289-304. [PMID: 33405004 PMCID: PMC7884539 DOI: 10.1007/s10815-020-02019-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This review aims to summarize the key findings of several miRNAs and their roles in polycystic ovary syndrome with insulin resistance, characterize the disease pathogenesis, and establish a new theoretical basis for diagnosing, treating, and preventing polycystic ovary syndrome. METHODS Relevant scientific literature was covered from 1992 to 2020 by searching the PubMed database with search terms: insulin/insulin resistance, polycystic ovary syndrome, microRNAs, and metabolic diseases. References of relevant studies were cross-checked. RESULTS The related miRNAs (including differentially expressed miRNAs) and their roles in pathogenesis, and possible therapeutic targets and pathways, are discussed, highlighting controversies and offering thoughts for future directions. CONCLUSION We found abundant evidence on the role of differentially expressed miRNAs with its related phenotypes in PCOS. Considering the essential role of insulin resistance in the pathogenesis of PCOS, the alterations of associated miRNAs need more research attention. We speculate that race/ethnicity or PCOS phenotype and differences in methodological differences might lead to inconsistencies in research findings; thus, several miRNA profiles need to be investigated further to qualify for the potential therapeutic targets for PCOS-IR.
Collapse
Affiliation(s)
- Yingliu Luo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Chenchen Cui
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Xiao Han
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Qian Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Cuilian Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China.
| |
Collapse
|
46
|
Shu Y, Zhang H, Li J, Shan Y. LINC00494 Promotes Ovarian Cancer Development and Progression by Modulating NFκB1 and FBXO32. Front Oncol 2021; 10:541410. [PMID: 33585183 PMCID: PMC7877250 DOI: 10.3389/fonc.2020.541410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ovarian cancer represents one of the most frequent gynecological cancers and is significant cause of death for women around the world. Long non-coding RNAs (lncRNAs) are recognized as critical governors of gene expression during carcinogenesis, but their effects on the occurrence and development of ovarian cancer require further investigation. In this report, we characterized LINC00494 as a novel oncogenic lncRNA in ovarian cancer. METHODS Bioinformatics analysis predicted potential interactions among LINC00494, NFκB1, and FBXO32 in ovarian cancer, which were tested by dual-luciferase reporter assay, RNA pull-down, RIP, and ChIP assay. Cancer cells were transfected with relevant treated plasmids, followed by scratch and Transwell assays. The treated cells were injected into nude mice to establish a xenograft model for testing effects of LINC00494 and its target gene in vivo. RESULTS LINC00494 and NFκB1 were highly expressed whereas FBXO32 had low expression in ovarian cancer cells and tissues. LINC00494 was found to bind NFκB1 and increase its activity, while NFκB1 was enriched at the FBXO32 promoter region, where it acted to reduce FBXO32 transcription. Overexpression of LINC00494 elevated NFκB1 expression and enhanced cell migration, invasion and tumorigenesis, but additional overexpression of FBXO32 interfered with the tumorgenicity of ovarian cancer cells in vitro and in vivo. CONCLUSION Our work demonstrated that LINC00494 promoted ovarian cancer progression by modulating FBXO32 via binding with the transcription factor NFκB1. These results provided new insight into the mechanism of ovarian cancer pathogenesis and suggested new therapeutic targets.
Collapse
Affiliation(s)
- Yang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - He Zhang
- Department of Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Jinqiu Li
- Department of Otolaryngology—Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Geng X, Zhao J, Huang J, Li S, Chu W, Wang WS, Chen ZJ, Du Y. lnc-MAP3K13-7:1 Inhibits Ovarian GC Proliferation in PCOS via DNMT1 Downregulation-Mediated CDKN1A Promoter Hypomethylation. Mol Ther 2020; 29:1279-1293. [PMID: 33212300 PMCID: PMC7934583 DOI: 10.1016/j.ymthe.2020.11.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine-related disease and global cause of infertility that is associated with abnormal folliculogenesis. Inhibited granulosa cell (GC) proliferation is recognized as a key factor that underlies aberrant follicle maturation. Many epigenetic landscape modifications have been characterized in PCOS patients. However, the epigenetic regulation pathways in follicular dysplasia are not completely understood. In this study, we reported a novel mechanism of DNA hypomethylation induced by long non-coding RNAs (lncRNAs) and its function in cell cycle progression. We observed that lnc-MAP3K13-7:1 was highly expressed in GCs from patients with PCOS, with concomitant global DNA hypomethylation, decreased DNA methyltransferase 1 (DNMT1) expression, and increased cyclin-dependent kinase inhibitor 1A (CDKN1A, p21) expression. In KGN cells, lnc-MAP3K13-7:1 overexpression resulted in cell cycle arrest in the G0/G1 phase, as well as the molecular inhibition and genetic silencing of DNMT1. Mechanistically, lnc-MAP3K13-7:1 inhibited DNMT1 expression by acting as a protein-binding scaffold and inducing ubiquitin-mediated DNMT1 protein degradation. Moreover, DNMT1-dependent CDKN1A promoter hypomethylation increased CDKN1A transcription, resulting in attenuated GC growth. Our work uncovered a novel and essential mechanism through which lnc-MAP3K13-7:1-dependent DNMT1 inhibition regulates CDKN1A/p21 expression and inhibits GC proliferation.
Collapse
Affiliation(s)
- Xueying Geng
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jun Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jiayu Huang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Weiwei Chu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
48
|
Szymanska M, Manthe S, Shrestha K, Girsh E, Harlev A, Kisliouk T, Meidan R. Sirtuin-1 inhibits endothelin-2 expression in human granulosa-lutein cells via hypoxia inducible factor 1 alpha and epigenetic modifications†. Biol Reprod 2020; 104:387-398. [PMID: 33112382 DOI: 10.1093/biolre/ioaa199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/26/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023] Open
Abstract
Endothelin-2 (EDN2) expression in granulosa cells was previously shown to be highly dependent on the hypoxic mediator, hypoxia inducible factor 1 alpha (HIF1A). Here, we investigated whether sirtuin-1 (SIRT1), by deacetylating HIF1A and class III histones, modulates EDN2 in human granulosa-lutein cells (hGLCs). We found that HIF1A was markedly suppressed in the presence of resveratrol or a specific SIRT1 activator, SRT2104. In turn, hypoxia reduced SIRT1 levels, implying a mutually inhibitory interaction between hypoxia (HIF1A) and SIRT1. Consistent with reduced HIF1A transcriptional activity, SIRT1 activators, resveratrol, SRT2104, and metformin, each acting via different mechanisms, significantly inhibited EDN2. In support, knockdown of SIRT1 with siRNA markedly elevated EDN2, whereas adding SRT2104 to SIRT1-silenced cells abolished the stimulatory effect of siSIRT1 on EDN2 levels further demonstrating that EDN2 is negatively correlated with SIRT1. Next, we investigated whether SIRT1 can also mediate the repression of the EDN2 promoter via histone modification. Chromatin immunoprecipitation (ChIP) analysis revealed that SIRT1 is indeed bound to the EDN2 promoter and that elevated SIRT1 induced a 40% decrease in the acetylation of histone H3, suggesting that SIRT1 inhibits EDN2 promoter activity by inducing a repressive histone configuration. Importantly, SIRT1 activation, using SRT2104 or resveratrol, decreased the viable numbers of hGLC, and silencing SIRT1 enhanced hGLC viability. This effect may be mediated by reducing HIF1A and EDN2 levels, shown to promote cell survival. Taken together, these findings propose novel, physiologically relevant roles for SIRT1 in downregulating EDN2 and survival of hGLCs.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sarah Manthe
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ketan Shrestha
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eliezer Girsh
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Barzilai University Medical Center, Ashkelon, Israel
| | - Avi Harlev
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Barzilai University Medical Center, Ashkelon, Israel.,Faculty of Health Sciences, Department of Obstetrics and Gynecology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tatiana Kisliouk
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeZiyyon, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
49
|
Chen Y, Wang X, Yang C, Liu Q, Ran Z, Li X, He C. A mouse model reveals the events and underlying regulatory signals during the gonadotrophin-dependent phase of follicle development. Mol Hum Reprod 2020; 26:920-937. [PMID: 33063120 DOI: 10.1093/molehr/gaaa069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
During folliculogenesis, the gonadotrophin (GTH)-dependent phase begins at the small antral follicle stage and ends with Graafian follicles. In this study, pregnant mare's serum GTH was used to induce GTH-dependent folliculogenesis in mice, following which the developmental events that follicles undergo, as well as the underlying regulatory signals, were investigated at both the morphological and transcriptomic level. GTH-dependent folliculogenesis consisted of three phases: preparation, rapid growth and decelerated growth. In the preparation phase, comprising the first 12 h, granulosa cells completed the preparations for proliferation and differentiation, shifted energy metabolism to glycolysis, and reduced protein synthesis and processing. The rapid growth phase lasted from 12 to 24 h; in this phase, granulosa cells completed their proliferation, and follicles acquired the capacity for estradiol secretion and ovulation. Meanwhile, the decelerating growth phase occurred between 24 and 48 h of GTH-dependent folliculogenesis. In this phase, the proliferation and expansion of the follicular antrum were reduced, energy metabolism was shifted to oxidative phosphorylation, and cell migration and lipid metabolism were enhanced in preparation for luteinization. We also revealed the key signaling pathways that regulate GTH-dependent folliculogenesis and elucidated the activation sequence of these pathways. A comparison of our RNA-sequencing data with that reported for humans suggested that the mechanisms involved in mouse and human folliculogenesis are evolutionarily conserved. In this study, we draw a detailed atlas of GTH-dependent folliculogenesis, thereby laying the foundation for further investigation of the regulatory mechanisms underlying this process.
Collapse
Affiliation(s)
- Yingjun Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaodong Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chan Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qinghua Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zaohong Ran
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Changjiu He
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,National Center for International Research on Animal Genetics, Breeding and reproduction, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
50
|
Tremblay PG, Sirard MA. Gene analysis of major signaling pathways regulated by gonadotropins in human ovarian granulosa tumor cells (KGN)†. Biol Reprod 2020; 103:583-598. [PMID: 32427331 DOI: 10.1093/biolre/ioaa079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
The female reproductive function largely depends on timing and coordination between follicle-stimulating hormone (FSH) and luteinizing hormone. Even though it was suggested that these hormones act on granulosa cells via shared signaling pathways, mainly protein kinases A, B, and C (PKA, PKB, and PKC), there is still very little information available on how these signaling pathways are regulated by each hormone to provide such differences in gene expression throughout folliculogenesis. To obtain a global picture of the principal upstream factors involved in PKA, PKB, and PKC signaling in granulosa cells, human granulosa-like tumor cells (KGN) were treated with FSH or specific activators (forskolin, SC79, and phorbol 12-myristate 13-acetate) for each pathway to analyze gene expression with RNA-seq technology. Normalization and cutoffs (FC 1.5, P ≤ 0.05) revealed 3864 differentially expressed genes between treatments. Analysis of major upstream regulators showed that PKA is a master kinase of early cell differentiation as its activation resulted in the gene expression profile that accompanies granulosa cell differentiation. Our data also revealed that the activation of PKC in granulosa cells is also a strong differentiation signal that could control "advanced" differentiation in granulosa cells and the inflammatory cascade that occurs in the dominant follicle. According to our results, PKB activation provides support for PKA-stimulated gene expression and is also involved in granulosa cell survival throughout follicular development. Taken together, our results provide new information on PKA, PKB, and PKC signaling pathways and their roles in stimulating a follicle at the crossroad between maturation/ovulation and atresia.
Collapse
Affiliation(s)
- Patricia G Tremblay
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des Sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des Sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|