1
|
Xi H, Huang L, Qiu L, Li S, Yan Y, Ding Y, Zhu Y, Wu F, Shi X, Zhao J, Chen R, Yao Q, Kou L. Enhancing oocyte in vitro maturation and quality by melatonin/bilirubin cationic nanoparticles: A promising strategy for assisted reproduction techniques. Int J Pharm X 2024; 8:100268. [PMID: 39070171 PMCID: PMC11278021 DOI: 10.1016/j.ijpx.2024.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
In assisted reproduction techniques, oocytes encounter elevated levels of reactive oxygen species (ROS) during in vitro maturation (IVM). Oxidative stress adversely affects oocyte quality, hampering their maturation, growth, and subsequent development. Thus, mitigating excessive ROS to safeguard less viable oocytes during IVM stands as a viable strategy. Numerous antioxidants have been explored for oocyte IVM, yielding considerable effects; however, several aspects, including solubility, stability, and safety, demand attention and resolution. In this study, we developed nanoparticles by self-assembling endogenous bilirubin and melatonin hormone coated with bilirubin-conjugated glycol chitosan (MB@GBn) to alleviate oxidative stress and enhance oocyte maturation. The optimized MB@GBn exhibited a uniform spherical shape, measuring 128 nm in particle size, with a PDI value of 0.1807 and a surface potential of +11.35 mV. The positively charged potential facilitated nanoparticle adherence to the oocyte surface through electrostatic interaction, allowing for functional action. In vitro studies demonstrated that MB@GB significantly enhanced the maturation of compromised oocytes. Further investigation revealed MB@GB's effectiveness in scavenging ROS, reducing intracellular calcium levels, and suppressing mitochondrial polarization. This study not only offers a novel perspective on nano drug delivery systems for biomedical applications but also presents an innovative strategy for enhancing oocyte IVM.
Collapse
Affiliation(s)
- Haitao Xi
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Lihui Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Lin Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shize Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuqi Yan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yang Ding
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuhao Zhu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fugen Wu
- Department of Pediatric, The First People's Hospital of Wenling, Taizhou, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Junzhao Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| |
Collapse
|
2
|
Yamada M, Ezoe K, Ueno S, Yoshino O, Takahashi T. Use of time-lapse technology on fertilization verification, embryo evaluation, and utilization: A national survey in Japan. AJOG GLOBAL REPORTS 2024; 4:100397. [PMID: 39493437 PMCID: PMC11530904 DOI: 10.1016/j.xagr.2024.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Background Time-lapse technology (TLT) has emerged as a significant advancement in the field of assisted reproductive technology (ART), providing continuous observation of embryos. However, limited information exists on the adoption of TLT across ART facilities and the clinical implications of its application in embryo evaluation and fertilization verification. The existing literature has not yet comprehensively examined how TLT data are utilized to optimize ART outcomes, particularly in Japan, where ART practices are highly prevalent. Objectives This study aimed to investigate the adoption rate of TLT and its clinical effects on fertilization verification, embryo evaluation, and utilization of ART in Japan. Study Design An online survey was conducted from December 23, 2022, to January 16, 2023, in 616 ART facilities with both email and mailed notices. The survey investigated the utilization of TLT in each facility's evaluation of oocyte morphology, fertilization, embryo culture, and morphology. Results Overall, 345 responses were analyzed. Of these, only 42.6% confirmed fertilization at 16 to 18 hours after insemination. Most facilities defined normally fertilized eggs as 2 pronuclei (2PN; 53.3%) or a combination of a second polar body extrusion and 2PN (44.9%). Overall, 54.6% of the facilities had adopted TLT, and 76.9% to 96.9% of these facilities used TLT images for fertilization verification. At these centers, the use of 0PN embryos decreased, whereas the use of 2.1PN embryos increased. The rates of culture medium supplemented with antioxidants and hyaluronan were significantly higher in facilities with TLT than in those without TLT. TLT images were used for embryo evaluation in 94.3% of the facilities, while 31.0% used a combination of TLT images and artificial intelligence-based scoring systems. Conclusions While TLT use is widespread in Japan, its application in evaluating fertilization and embryo development stages varies across facilities. Reaching a consensus on the optimal use of the TLT system will enhance the effectiveness, safety, and efficiency of ARTs.
Collapse
Affiliation(s)
- Mitsutoshi Yamada
- JSRM SIG embryology (Special Interest Group of Embryology in Japan Society Reproductive Medicine), Tokyo 100-0014, Japan (Yamada, Ezoe, Ueno, Yoshino, and Takahashi)
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan (Yamada)
| | - Kenji Ezoe
- JSRM SIG embryology (Special Interest Group of Embryology in Japan Society Reproductive Medicine), Tokyo 100-0014, Japan (Yamada, Ezoe, Ueno, Yoshino, and Takahashi)
- Kato Ladies Clinic, Tokyo, Japan (Ezoe, Ueno)
| | - Satoshi Ueno
- JSRM SIG embryology (Special Interest Group of Embryology in Japan Society Reproductive Medicine), Tokyo 100-0014, Japan (Yamada, Ezoe, Ueno, Yoshino, and Takahashi)
- Kato Ladies Clinic, Tokyo, Japan (Ezoe, Ueno)
| | - Osamu Yoshino
- JSRM SIG embryology (Special Interest Group of Embryology in Japan Society Reproductive Medicine), Tokyo 100-0014, Japan (Yamada, Ezoe, Ueno, Yoshino, and Takahashi)
- Department of Obstetrics and Gynecology, University of Yamanashi, Yamanashi, Japan (Yoshino)
| | - Toshifumi Takahashi
- JSRM SIG embryology (Special Interest Group of Embryology in Japan Society Reproductive Medicine), Tokyo 100-0014, Japan (Yamada, Ezoe, Ueno, Yoshino, and Takahashi)
- Fukushima Medical University, Fukushima, Japan (Takahashi)
| |
Collapse
|
3
|
Wouters K, Mateizel I, Segers I, Van de Velde H, Van Landuyt L, De Vos A, Schoemans C, Jankovic D, Blockeel C, Drakopoulos P, Tournaye H, De Munck N. Clinical pregnancy rates after blastocyst culture at a stable temperature of 36.6°C versus 37.1°C: a prospective randomized controlled trial. Hum Reprod 2024; 39:2233-2239. [PMID: 39241807 DOI: 10.1093/humrep/deae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/15/2024] [Indexed: 09/09/2024] Open
Abstract
STUDY QUESTION Is there a difference in clinical pregnancy rates (CPRs) in good prognosis patients after single embryo transfer (SET) on Day 5, in case of stable culture at 36.6°C or 37.1°C? SUMMARY ANSWER CPR (with heartbeat at 7 weeks) after blastocyst transfer do not differ after culturing at 36.6°C or 37.1°C. WHAT IS KNOWN ALREADY Since the beginning of IVF, embryo culture has been performed at 37.0°C; however, the optimal culture temperature remains unknown. Changes in incubator types have led to significant improvements in temperature control. Stable temperature control, i.e. with temperature differences of max. 0.1°C between chambers, is possible in some incubators. A previous prospective pilot study showed that embryo development on Day 5/6 was not affected when embryos were cultured at a stable temperature of 36.6°C or 37.1°C, but culture at 37.1°C resulted in an increased CPR when compared to culture at 36.6°C (74.2% vs 46.4%). STUDY DESIGN, SIZE, DURATION A prospective randomized controlled trial was performed in a tertiary fertility centre between February 2017 and November 26, 2022. A sample size of 89/89 patients with fresh single embryo transfer (SET) was required to achieve 80% power to detect a difference of 0.22 between group proportions (0.43-0.65) at a significance level of 0.05 using a two-sided z-test with continuity correction. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients were recruited on the day of oocyte retrieval based on inclusion criteria with final randomization after denudation once six mature oocytes were present. The primary endpoint was CPR (heartbeat at 7 weeks); secondary endpoints were fertilization rate, blastocyst development, biochemical pregnancy rate, live birth rate (LBR), and cumulative live birth rate (CLBR). MAIN RESULTS AND THE ROLE OF CHANCE A total of 304 patients were eligible for the study; of these 268 signed the consent, 234 (intention-to-treat) were randomized and 181 (per-protocol) received a SET on Day 5: 90 received culture at 36.6°C and 91 at 37.1°C. Patients were on average 32.4 ± 3.5 versus 32.5 ± 4.2 years old, respectively. No differences were observed in embryological outcomes per cycle between culture at 36.6°C versus 37.1°C: 12.0 ± 3.8 vs 12.1 ± 3.8 COCs retrieved (P = 0.88), 10.0 ± 3.1 versus 9.9 ± 2.9 mature oocytes inseminated (P = 0.68), with a maturation rate of 84.2% (901/1083) versus 83.5% (898/1104) (P = 0.87); and 8.0 ± 3.1 versus 7.9 ± 2.7 normally fertilized oocytes with a fertilization rate of 79.7% (720/901) vs 80.5% (718/898) (P = 0.96), respectively. On average 1.5 ± 1.7 versus 1.4 ± 1.9 (P = 0.25) and 1.1 ± 1.1 versus 0.9 ± 1.0 (P = 0.45) supernumerary blastocysts were vitrified on Day 5 and Day 6, respectively. The utilization rate per fertilized oocyte was 46.1% vs 41.5% (P = 0.14). A SET was performed for 181 patients, leading to a biochemical pregnancy rate of 72.2% (65/90) versus 62.7% (57/91) (P = 0.17), respectively. The CPR per fresh transfer cycle was 51.1% (46/90) versus 48.4% (44/91) [OR (95% CI) 1.11 (0.59-2.08), P = 0.710]. To date, a CLBR of 73.3% (66/90) versus 67.0% (61/91) (P = 0.354) has been observed, respectively. In each group, seven patients without live birth have remaining blastocysts frozen. The CPR for the intention-to-treat groups were 38.3% vs 38.6% [OR (95% CI) 0.98 (0.56-1.73), P = 0.967], respectively, for culture at 36.6°C versus 37.1°C. LIMITATIONS, REASONS FOR CAUTION Only selected patients with expected good prognosis were eligible for the study. WIDER IMPLICATIONS OF THE FINDINGS Embryos tend to tolerate small changes in temperature deviations during culture to the blastocyst stage, as demonstrated by their similar implantation potential at two slightly different temperatures. STUDY FUNDING/COMPETING INTEREST(S) There is no funding or conflicts of interest to declare. TRIAL REGISTRATION NUMBER NCT03548532. TRIAL REGISTRATION DATE 23 October 2017. DATE OF FIRST PATIENT’S ENROLMENT 10 November 2017.
Collapse
|
4
|
Liu W, Hsieh HT, He Z, Xiao X, Song C, Lee EX, Dong J, Lei CL, Wang J, Chen G. Medium acidosis drives cardiac differentiation during mesendoderm cell fate specification from human pluripotent stem cells. Stem Cell Reports 2024; 19:1304-1319. [PMID: 39178847 PMCID: PMC11411300 DOI: 10.1016/j.stemcr.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024] Open
Abstract
Effective lineage-specific differentiation is essential to fulfilling the great potentials of human pluripotent stem cells (hPSCs). In this report, we investigate how modulation of medium pH and associated metabolic changes influence mesendoderm differentiation from hPSCs. We show that daily medium pH fluctuations are critical for the heterogeneity of cell fates in the absence of exogenous inducers. Acidic environment alone leads to cardiomyocyte generation without other signaling modulators. In contrast, medium alkalinization is inhibitory to cardiac fate even in the presence of classic cardiac inducers. We then demonstrate that acidic environment suppresses glycolysis to facilitate cardiac differentiation, while alkaline condition promotes glycolysis and diverts the differentiation toward other cell types. We further show that glycolysis inhibition or AMPK activation can rescue cardiac differentiation under alkalinization, and glycolysis inhibition alone can drive cardiac cell fate. This study highlights that pH changes remodel metabolic patterns and modulate signaling pathways to control cell fate.
Collapse
Affiliation(s)
- Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China; Biological Imaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Hsun-Ting Hsieh
- Biological Imaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ziqing He
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xia Xiao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - En Xin Lee
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ji Dong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Chon Lok Lei
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jiaxian Wang
- HELP Stem Cell Innovations Ltd. Co., Nanjing, Jiangsu, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
| |
Collapse
|
5
|
Zhou Y, Ye F, Zhang L, Kang Q, Luo Y, Jiang N, Lou L, Mao Y, Wang L, Jin F. The role of DNA damage response in human embryonic stem cells exposed to atmospheric oxygen tension: Implications for embryo development and differentiation. Reprod Toxicol 2024; 128:108648. [PMID: 38909692 DOI: 10.1016/j.reprotox.2024.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Previous retrospective cohort studies have found that, compared with oxygen tension in the uterus and fallopian tubes (2 %-8 %), exposure of pre-implantation embryos to atmospheric oxygen tension (AtmO2, 20 %) during assisted reproductive technology(ART) can affect embryo quality, pregnancy outcomes and offspring health. However, current research on the effects and mechanisms of AtmO2 on the development of embryos and offspring is mainly limited to animal experiments. Human embryonic stem cells (hESCs) play a special and irreplaceable role in the study of early human embryonic development. In this study, we used hESCs as a model to elucidate the possible effects and mechanisms of AtmO2 exposure on human embryonic development. We found that exposure to AtmO2 can reduce cell viability, produce oxidative stress, increase DNA damage, initiate DNA repair, activate autophagy, and increase cell apoptosis. We also noticed that approximately 50 % of hESCs survived, adapted and proliferated through high expression of self-renewal and pluripotency regulatory factors, and affected embryoid body differentiation. These data indicate that hESCs experience oxidative stress, accumulation of DNA damage, and activate DNA damage response under the selective pressure of AtmO2.Some hESCs undergo cell death, whereas other hESCs adapt and proliferate through increased expression of self-renewal genes. The current findings provide in vitro evidence that exposure to AtmO2 during the early preimplantation stage negatively affects hESCs.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fenglei Ye
- Department of Obstetrics, Maternal and Child Health Hospital, Lishui, China
| | - Linyun Zhang
- Department of Obstetrics and Gynecology, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quanmin Kang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yujia Luo
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Jiang
- Department of Reproductive Endocrinology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Lou
- Department of Reproductive Endocrinology, Affiliated Dongyang Hospital, Wenzhou Medical University, Jinhua, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Vicente JS, Valdés-Hernández J, Marco-Jiménez F. Transcriptomic Signatures of the Foetal Liver and Late Prenatal Development in Vitrified Rabbit Embryos. Vet Sci 2024; 11:347. [PMID: 39195801 PMCID: PMC11360234 DOI: 10.3390/vetsci11080347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Assisted reproduction technologies (ARTs) are generally considered safe; however, emerging evidence highlights the need to evaluate potential risks in adulthood to improve safety further. ART procedures like rederivation of embryos by vitrification differ from natural conditions, causing significant disparities between in vitro and in vivo embryos, affecting foetal physiology and postnatal life. This study aims to investigate whether hepatic transcriptome and metabolome changes observed postnatally are already present in foetal livers at the end of gestation. This study compared fresh and vitrified rabbit embryos, finding differences between foetuses obtained by the transfer of fresh and vitrified embryos at 24 days of gestation. Rederived embryos had reduced foetal and liver weights and crown-rump length. However, the offspring of vitrified embryos tended to be born with higher weight, showing compensatory growth in the final week of gestation (59.2 vs. 49.8 g). RNA-Seq analysis revealed 43 differentially expressed genes (DEGs) in the foetal liver of vitrified embryos compared to the fresh group. Notably, downregulated genes included BRAT1, CYP4A7, CYP2B4, RPL23, RPL22L1, PPILAL1, A1BG, IFGGC1, LRRC57, DIPP2, UGT2B14, IRGM1, NUTF2, MPST, and PPP1R1B, while upregulated genes included ACOT8, ERICH3, UBXN2A, METTL9, ALDH3A2, DERPC-like, NR5A2-like, AP-1, COG8, INHBE, and PLA2G4C. Overall, a functional annotation of these DEGs indicated an involvement in lipid metabolism and the stress and inflammatory process or immune response. Thus, our results suggest that vitrification and embryo transfer manipulation induce an adaptive response that can be observed in the liver during the last week of gestation.
Collapse
Affiliation(s)
| | | | - Francisco Marco-Jiménez
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain; (J.S.V.); (J.V.-H.)
| |
Collapse
|
7
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
8
|
Huo J, Mówińska AM, Eren AN, Schoen J, Chen S. Oxygen levels affect oviduct epithelium functions in air-liquid interface culture. Histochem Cell Biol 2024; 161:521-537. [PMID: 38530407 PMCID: PMC11162385 DOI: 10.1007/s00418-024-02273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/28/2024]
Abstract
Key reproductive events such as fertilization and early embryonic development occur in the lumen of the oviduct. Since investigating these processes in vivo is both technically challenging and ethically sensitive, cell culture models have been established to reproduce the oviductal microenvironment. Compartmentalized culture systems, particularly air-liquid interface cultures (ALI; cells access the culture medium only from the basolateral cell side), result in highly differentiated oviduct epithelial cell cultures. The oxygen (O2) tension within the oviduct is 4-10% across species, and its reduced O2 content is presumed to be important for early reproductive processes. However, cell culture models of the oviduct are typically cultivated without O2 regulation and therefore at about 18% O2. To investigate the impact of O2 levels on oviduct epithelium functions in vitro, we cultured porcine oviduct epithelial cells (POEC) at the ALI using both physiological (5%) and supraphysiological (18%) O2 levels and two different media regimes. Epithelium architecture, barrier function, secretion of oviduct fluid surrogate (OFS), and marker gene expression were comparatively assessed. Under all culture conditions, ALI-POEC formed polarized, ciliated monolayers with appropriate barrier function. Exposure to 18% O2 accelerated epithelial differentiation and significantly increased the apical OFS volume and total protein content. Expression of oviduct genes and the abundance of OVGP1 (oviduct-specific glycoprotein 1) in the OFS were influenced by both O2 tension and medium choice. In conclusion, oviduct epithelial cells can adapt to a supraphysiological O2 environment. This adaptation, however, may alter their capability to replicate in vivo tissue characteristics.
Collapse
Affiliation(s)
- Jianchao Huo
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Aleksandra Maria Mówińska
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Ali Necmi Eren
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Jennifer Schoen
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
- Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany.
| | - Shuai Chen
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| |
Collapse
|
9
|
Leese HJ, Sturmey RG. Determinants of thermal homeostasis in the preimplantation embryo: a role for the embryo's central heating system? J Assist Reprod Genet 2024; 41:1475-1480. [PMID: 38717600 PMCID: PMC11224206 DOI: 10.1007/s10815-024-03130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024] Open
Abstract
A number of factors may impinge on thermal homeostasis in the early embryo. The most obvious is the ambient temperature in which development occurs. Physiologically, the temperature in the lumen of the female tract is typically lower than the core body temperature, yet rises at ovulation in the human, while in an IVF setting, embryos are usually maintained at core body temperature. However, internal cellular developmental processes may modulate thermal control within the embryo itself, especially those occurring in the mitochondria which generate intracellular heat through proton leak and provide the embryo with its own 'central heating system'. Moreover, mitochondrial movements may serve to buffer high local intracellular temperatures. It is also notable that the preimplantation stages of development would generate proportionally little heat within their mitochondria until the blastocyst stage as mitochondrial metabolism is comparatively low during the cleavage stages. Despite these data, the specific notion of thermal control of preimplantation development has received remarkably scant consideration. This opinion paper illustrates the lack of reliable quantitative data on these markers and identifies a major research agenda which needs to be addressed with urgency in view of laboratory conditions in which embryos are maintained as well as climate change-derived heat stress which has a negative effect on numerous clinical markers of early human embryo development.
Collapse
Affiliation(s)
- Henry J Leese
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Roger G Sturmey
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| |
Collapse
|
10
|
Izadifar Z, Cotton J, Chen S, Horvath V, Stejskalova A, Gulati A, LoGrande NT, Budnik B, Shahriar S, Doherty ER, Xie Y, To T, Gilpin SE, Sesay AM, Goyal G, Lebrilla CB, Ingber DE. Mucus production, host-microbiome interactions, hormone sensitivity, and innate immune responses modeled in human cervix chips. Nat Commun 2024; 15:4578. [PMID: 38811586 PMCID: PMC11137093 DOI: 10.1038/s41467-024-48910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/22/2024] [Indexed: 05/31/2024] Open
Abstract
Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Urology Department, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Cotton
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Siyu Chen
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Viktor Horvath
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sanjid Shahriar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Erin R Doherty
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Tania To
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA.
- Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02134, USA.
| |
Collapse
|
11
|
Chávez JC, Carrasquel-Martínez G, Hernández-Garduño S, Matamoros Volante A, Treviño CL, Nishigaki T, Darszon A. Cytosolic and Acrosomal pH Regulation in Mammalian Sperm. Cells 2024; 13:865. [PMID: 38786087 PMCID: PMC11120249 DOI: 10.3390/cells13100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
As in most cells, intracellular pH regulation is fundamental for sperm physiology. Key sperm functions like swimming, maturation, and a unique exocytotic process, the acrosome reaction, necessary for gamete fusion, are deeply influenced by pH. Sperm pH regulation, both intracellularly and within organelles such as the acrosome, requires a coordinated interplay of various transporters and channels, ensuring that this cell is primed for fertilization. Consistent with the pivotal importance of pH regulation in mammalian sperm physiology, several of its unique transporters are dependent on cytosolic pH. Examples include the Ca2+ channel CatSper and the K+ channel Slo3. The absence of these channels leads to male infertility. This review outlines the main transport elements involved in pH regulation, including cytosolic and acrosomal pH, that participate in these complex functions. We present a glimpse of how these transporters are regulated and how distinct sets of them are orchestrated to allow sperm to fertilize the egg. Much research is needed to begin to envision the complete set of players and the choreography of how cytosolic and organellar pH are regulated in each sperm function.
Collapse
Affiliation(s)
- Julio C. Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Gabriela Carrasquel-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
- CITMER, Medicina Reproductiva, México City 11520, Mexico
| | - Sandra Hernández-Garduño
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico;
| | - Arturo Matamoros Volante
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| |
Collapse
|
12
|
Garcia EM, Lenz JD, Schaub RE, Hackett KT, Salgado-Pabón W, Dillard JP. IL-17C is a driver of damaging inflammation during Neisseria gonorrhoeae infection of human Fallopian tube. Nat Commun 2024; 15:3756. [PMID: 38704381 PMCID: PMC11069574 DOI: 10.1038/s41467-024-48141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The human pathogen Neisseria gonorrhoeae ascends into the upper female reproductive tract to cause damaging inflammation within the Fallopian tubes and pelvic inflammatory disease (PID), increasing the risk of infertility and ectopic pregnancy. The loss of ciliated cells from the epithelium is thought to be both a consequence of inflammation and a cause of adverse sequelae. However, the links between infection, inflammation, and ciliated cell extrusion remain unresolved. With the use of ex vivo cultures of human Fallopian tube paired with RNA sequencing we defined the tissue response to gonococcal challenge, identifying cytokine, chemokine, cell adhesion, and apoptosis related transcripts not previously recognized as potentiators of gonococcal PID. Unexpectedly, IL-17C was one of the most highly induced genes. Yet, this cytokine has no previous association with gonococcal infection nor pelvic inflammatory disease and thus it was selected for further characterization. We show that human Fallopian tubes express the IL-17C receptor on the epithelial surface and that treatment with purified IL-17C induces pro-inflammatory cytokine secretion in addition to sloughing of the epithelium and generalized tissue damage. These results demonstrate a previously unrecognized but critical role of IL-17C in the damaging inflammation induced by gonococci in a human explant model of PID.
Collapse
Affiliation(s)
- Erin M Garcia
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan E Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen T Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Mendola RJ, Biswas L, Schindler K, Walmsley RH, Russell H, Angle M, Garrisi GJ. Influx of zwitterionic buffer after intracytoplasmic sperm injection (ICSI) membrane piercing alters the transcriptome of human oocytes. J Assist Reprod Genet 2024; 41:1341-1356. [PMID: 38436798 PMCID: PMC11143126 DOI: 10.1007/s10815-024-03064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE/STUDY QUESTION Does piercing oocyte membranes during ICSI allow the influx of surrounding zwitterionic buffer into human oocytes and result in altered developmental competence? METHODS Human oocytes directed to IRB-approved research were used to determine the unrestricted influx of surrounding buffer into the oocyte after piercing of membranes via confocal fluorescence microscopy (n = 80 human MII oocytes) and the influence of the select buffer influx of HEPES, MOPS, and bicarbonate buffer on the oocyte transcriptome using ultra-low input RNA sequencing (n = 40 human MII oocytes). RESULTS Piercing membranes of human MII oocytes during sham-ICSI resulted in the unrestricted influx of surrounding culture buffer into the oocyte that was beyond technician control. Transcriptome analysis revealed statistically significant decreased cytoskeletal transcripts in the pierced buffer cohorts, higher levels of embryo competency transcripts (IGF2 and G6PD) in the bicarbonate buffer cohort, higher levels of stress-induced transcriptional repressor transcripts (MAF1) in the HEPES and MOPS cohorts, and decreased levels of numerous chromosomal maintenance transcripts (SMC3) in the HEPES buffer cohort. The HEPES buffer cohort also revealed higher levels of transcripts suggesting increased oxidative (GPX1) and lysosomal stress (LAMP1). CONCLUSION The influence of zwitterionic buffer on intrinsic cellular mechanisms provides numerous concerns for their use in IVF clinical applications. The primary concern is the ICSI procedure, in which the surrounding buffer is allowed influx into the oocytes after membrane piercing. Selecting a physiological bicarbonate buffer may reduce imposed stress on oocytes, resulting in improved embryo development and clinical results because intracellular MOPS, and especially HEPES, may negatively impact intrinsic biological mechanisms, as revealed by transcriptome changes. These findings further support the utilization of bicarbonate buffer as the oocyte-holding medium during ICSI.
Collapse
Affiliation(s)
- Robert J Mendola
- Institute for Reproductive Medicine and Science (IRMS) at Saint Barnabas, Livingston, NJ, USA.
| | - Leelabati Biswas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Renee H Walmsley
- Institute for Reproductive Medicine and Science (IRMS) at Saint Barnabas, Livingston, NJ, USA
| | - Helena Russell
- Eastern Virginia Medical School (EVMS), Norfolk, VA, USA
| | - Marlane Angle
- Eastern Virginia Medical School (EVMS), Norfolk, VA, USA
| | - G John Garrisi
- Institute for Reproductive Medicine and Science (IRMS) at Saint Barnabas, Livingston, NJ, USA
| |
Collapse
|
14
|
Konstantogianni O, Panou T, Zikopoulos A, Skentou C, Stavros S, Asimakopoulos B. Culture of Human Embryos at High and Low Oxygen Levels. J Clin Med 2024; 13:2222. [PMID: 38673495 PMCID: PMC11050882 DOI: 10.3390/jcm13082222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
One of the parameters potentially affecting the in vitro growth of preimplantation embryos is the oxygen concentration in the culture environment. An increased oxygen concentration causes the generation of ROS which in turn can cause damage to the cells and seriously disrupt the embryonic development. Previous studies have assessed oxygen concentrations in the fallopian tubes of several mammals of between 5 and 8%, while the oxygen levels in the uterus were found to be even lower; similar measurements have been confirmed in humans. In addition, studies in mammalian embryos showed that low oxygen concentrations improve embryo development. Multiple studies on the effect of the oxygen concentration on human embryos have been conducted so far with diverse methodologies and objectives. Data from these have been included in three meta-analyses. All meta-analyses indicate the potential benefit in favor of a low oxygen concentration, though data are considered to be of a low methodological quality and further studies are considered necessary. However, based on the existing evidence, it is suggested that a low oxygen concentration should be adopted in the routine of the IVF laboratory, especially in the case of blastocyst culture.
Collapse
Affiliation(s)
- Ourania Konstantogianni
- Laboratory of Reproductive Physiology-IVF, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece (T.P.)
| | - Theodoros Panou
- Laboratory of Reproductive Physiology-IVF, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece (T.P.)
| | | | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Byron Asimakopoulos
- Laboratory of Reproductive Physiology-IVF, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece (T.P.)
| |
Collapse
|
15
|
Liang M, Ji N, Song J, Kang H, Zeng X. Flagellar pH homeostasis mediated by Na+/H+ exchangers regulates human sperm functions through coupling with CatSper and KSper activation. Hum Reprod 2024; 39:674-688. [PMID: 38366201 DOI: 10.1093/humrep/deae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
STUDY QUESTION Whether and how do Na+/H+ exchangers (NHEs) regulate the physiological functions of human sperm? SUMMARY ANSWER NHE-mediated flagellar intracellular pH (pHi) homeostasis facilitates the activation of the pH-sensitive, sperm-specific Ca2+ channel (CatSper) and the sperm-specific K+ channel (KSper), which subsequently modulate sperm motility, hyperactivation, flagellar tyrosine phosphorylation, and the progesterone (P4)-induced acrosome reaction. WHAT IS KNOWN ALREADY Sperm pHi alkalization is an essential prerequisite for the acquisition of sperm-fertilizing capacity. Different sperm functions are strictly controlled by particular pHi regulatory mechanisms. NHEs are suggested to modulate sperm H+ efflux. STUDY DESIGN, SIZE, DURATION This was a laboratory study that used samples from >50 sperm donors over a period of 1 year. To evaluate NHE action on human sperm function, 5-(N,N-dimethyl)-amiloride (DMA), a highly selective inhibitor of NHEs, was utilized. All experiments were repeated at least five times using different individual sperm samples or cells. PARTICIPANTS/MATERIALS, SETTING, METHODS By utilizing the pH fluorescent indicator pHrodo Red-AM, we detected alterations in single-cell pHi value in human sperm. The currents of CatSper and KSper in human sperm were recorded by the whole-cell patch-clamp technique. Changes in population and single-cell Ca2+ concentrations ([Ca2+]i) of human sperm loaded with Fluo 4-AM were measured. Membrane potential (Vm) and population pHi were quantitatively examined by a multimode plate reader after sperm were loaded with 3,3'-dipropylthiadicarbocyanine iodide and 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester, respectively. Sperm motility parameters were assessed by a computer-assisted semen analysis system. Tyrosine phosphorylation was determined by immunofluorescence, and sperm acrosome reaction was evaluated by Pisum sativum agglutinin-FITC staining. MAIN RESULTS AND THE ROLE OF CHANCE DMA-induced NHEs inhibition severely acidified the human sperm flagellar pHi from 7.20 ± 0.04 to 6.38 ± 0.12 (mean ± SEM), while the effect of DMA on acrosomal pHi was less obvious (from 5.90 ± 0.13 to 5.57 ± 0.12, mean ± SEM). The whole-cell patch-clamp recordings revealed that NHE inhibition remarkably suppressed alkalization-induced activation of CatSper and KSper. As a consequence, impairment of [Ca2+]i homeostasis and Vm maintenance were detected in the presence of DMA. During the capacitation process, pre-treatment with DMA for 2 h potently decreased sperm pHi, which in turn decreased sperm motility and kinetic parameters. Sperm capacitation-associated functions, including hyperactivation, tyrosine phosphorylation, and P4-induced acrosome reaction, were also compromised by NHE inhibition. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study. Caution should be taken when extrapolating these results to in vivo applications. WIDER IMPLICATIONS OF THE FINDINGS This study revealed that NHEs are important physiological regulators for human CatSper and KSper, which are indispensable for human sperm fertility, suggesting that malfunction of NHEs could be an underlying mechanism for the pathogenesis of male infertility. FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (32271167 and 81871202 to X.Z.), Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC20211543 to X.Z.), the Social Development Project of Jiangsu Province (No. BE2022765 to X.Z.), the Society and livelihood Project of Nantong City (No. MS22022087 to X.Z.), and the Natural Science Foundation of Jiangsu Province (BK20220608 to H.K.). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Min Liang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Nanxi Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jian Song
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hang Kang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
16
|
Xu H, Wu S, Liu Y, Wang X, Efremov AK, Wang L, McCaskill JS, Medina-Sánchez M, Schmidt OG. 3D nanofabricated soft microrobots with super-compliant picoforce springs as onboard sensors and actuators. NATURE NANOTECHNOLOGY 2024; 19:494-503. [PMID: 38172430 PMCID: PMC11026159 DOI: 10.1038/s41565-023-01567-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Microscale organisms and specialized motile cells use protein-based spring-like responsive structures to sense, grasp and move. Rendering this biomechanical transduction functionality in an artificial micromachine for applications in single-cell manipulations is challenging due to the need for a bio-applicable nanoscale spring system with a large and programmable strain response to piconewton-scale forces. Here we present three-dimensional nanofabrication and monolithic integration, based on an acrylic elastomer photoresist, of a magnetic spring system with quantifiable compliance sensitive to 0.5 pN, constructed with customized elasticity and magnetization distributions at the nanoscale. We demonstrate the effective design programmability of these 'picospring' ensembles as energy transduction mechanisms for the integrated construction of customized soft micromachines, with onboard sensing and actuation functions at the single-cell scale for microrobotic grasping and locomotion. The integration of active soft springs into three-dimensional nanofabrication offers an avenue to create biocompatible soft microrobots for non-disruptive interactions with biological entities.
Collapse
Affiliation(s)
- Haifeng Xu
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China.
- Leibniz Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), Dresden, Germany.
| | - Song Wu
- Leibniz Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), Dresden, Germany
| | - Yuan Liu
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Xiaopu Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | | | - Lei Wang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - John S McCaskill
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany
| | - Mariana Medina-Sánchez
- Leibniz Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), Dresden, Germany.
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, Dresden, Germany.
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany.
| |
Collapse
|
17
|
Boumerdassi Y, Labrosse J, Hammami F, Dahoun M, Bouyer J, O'Neill L, Sarandi S, Peigné M, Cedrin I, Grynberg M, Sifer C. Impact of oxygen tension during in vitro maturation: a sibling-oocyte prospective double-blinded study. Fertil Steril 2024; 121:615-621. [PMID: 38103883 DOI: 10.1016/j.fertnstert.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE To determine whether oxygen (O2) tension (20% vs. 5%) has an impact on oocyte maturation rates and morphology during in vitro maturation (IVM). DESIGN A prospective, observational, monocentric, sibling-oocyte study. SETTING University Hospital. PATIENTS A total of 143 patients who underwent IVM for fertility preservation purposes from November 2016 to April 2021 were analyzed. Patients were included when ≥2 cumulus-oocyte complexes (COCs) were retrieved. The cohort of COCs obtained for each patient was randomly split into two groups: group 20% O2 and group 5% O2. INTERVENTION Cumulus-oocyte complexes were incubated for 48 hours either under 5% O2 or 20% O2. After 24 and 48 hours of culture, every oocyte was assessed for maturity and morphology, to estimate oocyte quality. Morphology was evaluated considering six parameters (shape, size, ooplasm, perivitelline space, zona pellucida, and polar body characteristics), giving a total oocyte score ranging from -6 to +6. MAIN OUTCOME MEASURES Maturation rates and total oocyte scores were compared using paired-sample analysis between group 20% O2 and group 5% O2. RESULTS Patient median age was 31.4 [28.1-35.2] years-old. The mean serum antimüllerian hormone levels and antral follicle count were 3.2 ± 2.3 ng/mL and 27.2 ± 16.0 follicles, respectively. A mean of 10.7 COCs per cycle were retrieved, leading to 6.1 ± 2.4 metaphase II oocytes vitrified (total maturation rate = 57.3%; 991 metaphase II oocytes/1,728 COCs). A total of 864 COCs were included in each group. Oocyte maturation rates were not different between the two groups (group 20% O2: 56.82% vs. group 5% O2: 57.87%, respectively). Regarding oocyte morphology, the mean total oocyte score was significantly higher in group 5% O2 compared with group 20% O2 (3.44 ± 1.26 vs. 3.16 ± 1.32, P=.014). CONCLUSION As culture under low O2 tension (5% O2) improves oocyte morphology IVM, our results suggest that culture under hypoxia should be standardized. Additional studies are warranted to assess the impact of O2 tension on oocyte maturation and the benefit of IVM under low O2 tension for embryo culture after utilization of frozen material.
Collapse
Affiliation(s)
- Yasmine Boumerdassi
- Department of Reproductive Biology, Hôpital Jean Verdier, Bondy, France; Université Sorbonne Paris Nord, Villetaneuse, France
| | - Julie Labrosse
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Bondy, France
| | - Fatma Hammami
- Department of Reproductive Biology, Hôpital Jean Verdier, Bondy, France
| | - Mehdi Dahoun
- Department of Reproductive Biology, Hôpital Jean Verdier, Bondy, France
| | - Jean Bouyer
- Centre for Research in Epidemiology and Population Health, Université Paris Saclay, France
| | - Louis O'Neill
- Department of Reproductive Biology, Hôpital Jean Verdier, Bondy, France
| | - Solmaz Sarandi
- Department of Reproductive Biology, Hôpital Jean Verdier, Bondy, France
| | - Maeliss Peigné
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Bondy, France
| | - Isabelle Cedrin
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Bondy, France
| | - Michael Grynberg
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Jean Verdier, Bondy, France; Department of Reproductive Medicine and Fertility Preservation, Hôpital Antoine Béclère, Clamart, France; Université Paris Saclay, Le Kremlin Bicêtre, France; Université Paris-Diderot, Paris, France
| | - Christophe Sifer
- Department of Reproductive Biology, Hôpital Jean Verdier, Bondy, France; Équipe RHuMA, UMR-BREED, UFR Simone Veil Santé, Montigny le Bretonneux, France.
| |
Collapse
|
18
|
Silao FGS, Valeriano VD, Uddström E, Falconer E, Ljungdahl PO. Diverse mechanisms control amino acid-dependent environmental alkalization by Candida albicans. Mol Microbiol 2024; 121:696-716. [PMID: 38178569 DOI: 10.1111/mmi.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.
Collapse
Affiliation(s)
- Fitz Gerald S Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Valerie Diane Valeriano
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Erika Uddström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Emilie Falconer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| |
Collapse
|
19
|
Das S, Konwar BK. Inhibiting pathogenicity of vaginal Candida albicans by lactic acid bacteria and MS analysis of their extracellular compounds. APMIS 2024; 132:161-186. [PMID: 38168754 DOI: 10.1111/apm.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Maintaining healthy vaginal microflora post-puberty is critical. In this study we explore the potential of vaginal lactic acid bacteria (LAB) and their extracellular metabolites against the pathogenicity of Candida albicans. The probiotic culture free supernatant (PCFS) from Lactobacillus crispatus, L. gasseri, and L. vaginalis exhibit an inhibitory effect on budding, hyphae, and biofilm formation of C. albicans. LGPCFS manifested the best potential among the LAB PCFS, inhibiting budding for 24 h and restricting hyphae formation post-stimulation. LGPCFS also pre-eminently inhibited biofilm formation. Furthermore, L. gasseri itself grew under RPMI 1640 stimulation suppressing the biofilm formation of C. albicans. The PCFS from the LAB downregulated the hyphal genes of C. albicans, inhibiting the yeast transformation to fungi. Hyphal cell wall proteins HWP1, ALS3, ECE1, and HYR1 and transcription factors BCR1 and CPH1 were downregulated by the metabolites from LAB. Finally, the extracellular metabolome of the LAB was studied by LC-MS/MS analysis. L.gasseri produced the highest antifungal compounds and antibiotics, supporting its best activity against C. albicans. Vaginal LAB and their extracellular metabolites perpetuate C. albicans at an avirulent state. The metabolites produced by these LAB in vitro have been identified, and can be further exploited as a preventive measure against vaginal candidiasis.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, India
| | | |
Collapse
|
20
|
Kent K, Nozawa K, Sutton C, Daniel F, Ikawa M, Garcia TX, Matzuk MM. CUB domains are not required for OVCH2 function in sperm maturation in the mouse epididymis. Andrology 2024; 12:682-697. [PMID: 37551853 PMCID: PMC10850435 DOI: 10.1111/andr.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Ovochymase 2 (Ovch2) is an epididymis-specific gene that is required for male fertility. While a multitude of reproductive tract-specific genes required for male fertility have been identified, OVCH2 is thus far the first protein required for male fertility that contains Complement C1r/C1s, Uegf, Bmp1 (CUB) domains located in tandem in the C-terminus of the protein. Identifying the functional significance of this unique domain has implications in better understanding fertility and infertility and as a potential contraceptive target. OBJECTIVE The goals of these studies were to understand the influence and requirement of OVCH2 CUB domains in the localization and functional requirement of OVCH2 in sperm maturation and function. MATERIALS AND METHODS To this end, we performed in vivo localization analysis of OVCH2 and reproductive phenotype analysis of mice containing C-terminal FLAG tag on OVCH2, with either the entire protein intact, or CUB2 or both CUB1 and CUB2 genetically ablated. All mice were generated through the CRISPR/Cas9 gene editing approach. RESULTS We found that OVCH2 is specifically expressed in the proximal caput epididymidis, and the absence of CUB2 did not affect this localization pattern. Although the absence of both CUB domains significantly reduced sperm motility and progressive motility, this effect was not manifested in a reduction in fertility over a 6-month period mating trial, which showed no significant differences between control and CUB deletant mice. Further, the absence of one or both CUB domains did not affect reproductive organ structure or sperm morphology. CONCLUSIONS Our studies demonstrate that the CUB domains are not required for fertility in male mice, at least under the normal animal housing conditions our mice were tested in, and suggest that the enzymatic activity of the OVCH2 protease, in the absence of its CUB domains, is sufficient for normal sperm processing in the epididymis. Although our findings do not preclude the possibility that OVCH2 CUB domains are required under a yet-identified stress condition, our findings demonstrate that the most likely region for deleterious mutations in men with idiopathic infertility and the most vulnerable site for inhibition of OVCH2 protein function is in its protease domain, and not its CUB domains. Our findings have implications in the genetic screening of infertile men and the development of a novel non-hormonal male contraceptive by honing in on the more critical region of a functionally required protein.
Collapse
Affiliation(s)
- Katarzyna Kent
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaori Nozawa
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Courtney Sutton
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Frey Daniel
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Thomas X. Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Scott Department of Urology, Baylor College of Medicine, TX 77030, USA
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Anthis AHC, Kilchenmann S, Murdeu M, LeValley PJ, Wolf M, Meyer C, Cipolato O, Tibbitt MW, Rosendorf J, Liska V, Rduch T, Herrmann IK. Reversible Mechanical Contraception and Endometriosis Treatment Using Stimuli-Responsive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2310301. [PMID: 38298130 DOI: 10.1002/adma.202310301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Female sterilization via fallopian tube ligation is a common procedure; However, after the operation, over 10% of women seek re-fertilization, which is frequently unsuccessful. In addition, there is evidence that fallopian tubes contribute to the spread of endometriotic tissue as they serve as channels for proinflammatory media entering the abdominal cavity via retrograde menstruation. Here, stimuli-degradable hydrogel implants are presented for the functional, biocompatible, and reversible occlusion of fallopian tubes. The hydrogel implants, designed with customized swelling properties, mechanically occlude fallopian tubes in a high-performance manner with burst pressures reaching 255-558 mmHg, exceeding normal abdominal pressures (95 mmHg). Their damage-free removal can be achieved within 30 min using near-visible UV light or a glutathione solution, employing a method akin to standard fallopian tube perfusion diagnostics. Ultrasound-guided implant placement is demonstrated using a clinical hysteroscope in a human-scale uterus model and biocompatibility in a porcine in vivo model. Importantly, the prevention of live sperm as well as endometrial cell passage through blocked fallopian tubes is demonstrated. Overall, a multifunctional system is presented that constitutes a possible means of on-demand, reversible contraception along with the first-ever mechanical approach to abdominal endometriosis prevention and treatment.
Collapse
Affiliation(s)
- Alexandre H C Anthis
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Ingenuity Laboratory, University Hospital Balgrist, Forchstrasse 340, Zurich, 8008, Switzerland
| | - Samuel Kilchenmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Manon Murdeu
- Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Paige J LeValley
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Morris Wolf
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Charlotte Meyer
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Oscar Cipolato
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Jachym Rosendorf
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 923/80, Pilsen, 32300, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 923/80, Pilsen, 32300, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
| | - Thomas Rduch
- Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Department of Gynecology and Obstetrics (Frauenklinik), Cantonal Hospital St. Gallen (KSSG), Rorschacherstrasse 95, St. Gallen, 9007, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Ingenuity Laboratory, University Hospital Balgrist, Forchstrasse 340, Zurich, 8008, Switzerland
- Faculty of Medicine, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| |
Collapse
|
22
|
Teh HE, Pung CK, Arasoo VJT, Yap PSX. A Landscape View of the Female Genital Tract Microbiome in Healthy Controls and Women With Reproductive Health Conditions Associated With Ectopic Pregnancy. Br J Biomed Sci 2024; 80:12098. [PMID: 38283642 PMCID: PMC10811206 DOI: 10.3389/bjbs.2023.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
Disruption of the female genital microbiome is associated with several pregnancy complications, including miscarriage, preterm onset of labour, and tubal pregnancy. Ectopic pregnancy is a known cause of maternal morbidity and mortality, but early diagnosis and treatment of ectopic pregnancy remain a challenge. Despite growing established associations between genital microbiome and female reproductive health, few studies have specifically focused on its link with ectopic pregnancy. Therefore, the current review aims to provide a comprehensive account of the female genital microbiome in healthy and fertile women compared to those in ectopic pregnancy and its associated risk factors. The microbial diversity from various sites of the female genital tract was explored for a reliable proxy of female reproductive health in sequencing-based ectopic pregnancy research. Our report confirmed the predominance of Lactobacillus in the vagina and the cervix among healthy women. The relative abundance decreased in the vaginal and cervical microbiome in the disease state. In contrast, there were inconsistent findings on the uterine microbiome across studies. Additionally, we explore a spectrum of opportunities to enhance our understanding of the female genital tract microbiome and reproductive conditions. In conclusion, this study identifies gaps within the field and emphasises the need for visionary solutions in metagenomic tools for the early detection of ectopic pregnancy and other gynaecological diseases.
Collapse
Affiliation(s)
| | | | | | - Polly Soo Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
23
|
Sciorio R, Rinaudo P. Culture conditions in the IVF laboratory: state of the ART and possible new directions. J Assist Reprod Genet 2023; 40:2591-2607. [PMID: 37725178 PMCID: PMC10643723 DOI: 10.1007/s10815-023-02934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
In the last four decades, the assisted reproductive technology (ART) field has witnessed advances, resulting in improving pregnancy rates and diminishing complications, in particular reduced incidence of multiple births. These improvements are secondary to advanced knowledge on embryonic physiology and metabolism, resulting in the ability to design new and improved culture conditions. Indeed, the incubator represents only a surrogate of the oviduct and uterus, and the culture conditions are only imitating the physiological environment of the female reproductive tract. In vivo, the embryo travels through a dynamic and changing environment from the oviduct to the uterus, while in vitro, the embryo is cultured in a static fashion. Importantly, while culture media play a critical role in optimising embryo development, a large host of additional factors are equally important. Additional potential variables, including but not limited to pH, temperature, osmolality, gas concentrations and light exposure need to be carefully controlled to prevent stress and permit optimal implantation potential. This manuscript will provide an overview of how different current culture conditions may affect oocyte and embryo viability with particular focus on human literature.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, CHUV-Lausanne University Hospital, 1011, Lausanne, Switzerland.
| | - Paolo Rinaudo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
24
|
Akin N, Ates G, von Mengden L, Herta AC, Meriggioli C, Billooye K, Stocker WA, Ghesquiere B, Harrison CA, Cools W, Klamt F, Massie A, Smitz J, Anckaert E. Effects of lactate, super-GDF9, and low oxygen tension during bi-phasic in vitro maturation on the bioenergetic profiles of mouse cumulus-oocyte complex†. Biol Reprod 2023; 109:432-449. [PMID: 37531262 DOI: 10.1093/biolre/ioad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
In vitro maturation (IVM) is an alternative assisted reproductive technology with reduced hormone-related side effects and treatment burden compared to conventional IVF. Capacitation (CAPA)-IVM is a bi-phasic IVM system with improved clinical outcomes compared to standard monophasic IVM. Yet, CAPA-IVM efficiency compared to conventional IVF is still suboptimal in terms of producing utilizable blastocysts. Previously, we have shown that CAPA-IVM leads to a precocious increase in cumulus cell (CC) glycolytic activity during cytoplasmic maturation. In the current study, considering the fundamental importance of CCs for oocyte maturation and cumulus-oocyte complex (COC) microenvironment, we further analyzed the bioenergetic profiles of maturing CAPA-IVM COCs. Through a multi-step approach, we (i) explored mitochondrial function of the in vivo and CAPA-IVM matured COCs through real-time metabolic analysis with Seahorse analyzer, and to improve COC metabolism (ii) supplemented the culture media with lactate and/or super-GDF9 (an engineered form of growth differentiation factor 9) and (iii) reduced culture oxygen tension. Our results indicated that the pre-IVM step is delicate and prone to culture-related disruptions. Lactate and/or super-GDF9 supplementations failed to eliminate pre-IVM-induced stress on COC glucose metabolism and mitochondrial respiration. However, when performing pre-IVM culture under 5% oxygen tension, CAPA-IVM COCs showed similar bioenergetic profiles compared to in vivo matured counterparts. This is the first study providing real-time metabolic analysis of the COCs from a bi-phasic IVM system. The currently used analytical approach provides the quantitative measures and the rational basis to further improve IVM culture requirements.
Collapse
Affiliation(s)
- Nazli Akin
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Gamze Ates
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Lucia von Mengden
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Cecilia Meriggioli
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katy Billooye
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Brecht Ghesquiere
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Wilfried Cools
- Support for Quantitative and Qualitative Research (SQUARE) Core Facility, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Fabio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ann Massie
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Johan Smitz
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ellen Anckaert
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
25
|
Kaya YA, de Zoete MR, Steba GS. Advanced Technologies for Studying Microbiome-Female Reproductive Tract Interactions: Organoids, Organoids-on-a-Chip, and Beyond. Semin Reprod Med 2023; 41:160-171. [PMID: 38262440 PMCID: PMC11444813 DOI: 10.1055/s-0043-1778067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The female reproductive tract (FRT) is home to diverse microbial communities that play a pivotal role in reproductive health and disorders such as infertility, endometriosis, and cervical cancer. To understand the complex host-microbiota interactions within the FRT, models that authentically replicate the FRT's environment, including the interplay between the microbiota, mucus layer, immune system, and hormonal cycle, are key. Recent strides in organoid and microfluidic technologies are propelling research in this domain, offering insights into FRT-microbiota interactions and potential therapeutic avenues. This review delves into the current state of FRT organoid models and microbe integration techniques, evaluating their merits and challenges for specific research objectives. Emphasis is placed on innovative approaches and applications, including integrating organoids with microfluidics, and using patient-derived biobanks, as this offers potential for deeper mechanistic insights and personalized therapeutic strategies. Modeling various FRT properties in organoids is explored, from encompassing age-related epithelial features, oxygen levels, and hormonal effects to mucus layers, immune responses, and microbial interactions, highlighting their potential to transform reproductive health research and predict possible outcomes.
Collapse
Affiliation(s)
| | - Marcel R de Zoete
- Department of Medical Microbiology, University Medical Centre, Utrecht, The Netherlands
| | - Gaby S Steba
- Division of Female and Baby, Department of Reproductive Medicine and Gynaecology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Canha-Gouveia A, Di Nisio V, Salumets A, Damdimopoulou P, Coy P, Altmäe S, Sola-Leyva A. The Upper Reproductive System Microbiome: Evidence beyond the Uterus. Semin Reprod Med 2023; 41:190-199. [PMID: 38320577 DOI: 10.1055/s-0043-1778056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The microbiome of the female upper reproductive system has garnered increasing recognition and has become an area of interest in the study of women's health. This intricate ecosystem encompasses a diverse consortium of microorganisms (i.e., microbiota) and their genomes (i.e., microbiome) residing in the female upper reproductive system, including the uterus, the fallopian tubes, and ovaries. In recent years, remarkable advancements have been witnessed in sequencing technologies and microbiome research, indicating the potential importance of the microbial composition within these anatomical sites and its impact in women's reproductive health and overall well-being. Understanding the composition, dynamics, and functions of the microbiome of the female upper reproductive system opens up exciting avenues for improving fertility, treating gynecological conditions, and advancing our comprehension of the intricate interplay between the microbiome and the female reproductive system. The aim of this study is to compile currently available information on the microbial composition of the female upper reproductive system in humans, with a focus beyond the uterus, which has received more attention in recent microbiome studies compared with the fallopian tubes and ovaries. In conclusion, this review underscores the potential role of this microbiome in women's physiology, both in health and disease.
Collapse
Affiliation(s)
- Analuce Canha-Gouveia
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca," Murcia, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Pauliina Damdimopoulou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca," Murcia, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Alberto Sola-Leyva
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
27
|
Rajabi A, Mogheiseh A, Nazifi S, Ahrari-Khafi M, Dehghanian A, Vesal N, Bigham-Sadegh A. Effect of direct therapeutic ultrasound exposure of ovaries on histopathology, inflammatory response, and oxidative stress in dogs. BMC Vet Res 2023; 19:88. [PMID: 37474957 PMCID: PMC10360222 DOI: 10.1186/s12917-023-03657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND This research was designed to evaluate the effects of therapeutic ultrasound waves on ovarian germinal tissue and inflammatory cytokines (interleukin-6 (IL-6), IL1β, tumor necrosis factor-α (TNF-α)), acute phase proteins (serum amyloid A (SAA), C reactive protein (CRP)) and oxidative stress (total antioxidant capacity (TAC), and malondialdehyde (MDA)) in dogs. Twenty-six clinically healthy adult mix-breed female dogs were aligned into three groups. Laparotomy was performed in control (n = 6) and treatment (T5, n = 10; T10, n = 10) groups. The ultrasonic exposure of ovaries in treatment groups was performed during laparotomy by round motions of the therapeutic ultrasonic transducer on both ovaries (1 MHz frequency, 1.5 W⁄cm2) for 5 min in the T5 group and for 10 min in the T10 group. Blood samples were collected from the jugular vein into a plain glass tube on days 0 (before laparotomy), 3, 6, and 9 after surgery. All control and treatment groups' dogs were ovariectomized for histological evaluation on day 60 after laparotomy or laparotomy + ultrasound exposure. RESULTS Direct exposure of ovaries with therapeutic ultrasound waves induced inflammation and oxidative stress comparison with the control group. Histopathological evaluation of treated ovaries with ultrasound waves indicated a decreased number of primordial follicles (ovarian reserve) and oocyte preservation scores compared with ovaries in the control group. CONCLUSIONS These changes may cause subfertility in the long term. It seems that inflammatory response and oxidative stress are factors in the permanent damage of ovarian tissue.
Collapse
Affiliation(s)
- Arian Rajabi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | | | - AmirReza Dehghanian
- Department of Pathobiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Nasser Vesal
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Amin Bigham-Sadegh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| |
Collapse
|
28
|
Khan I, Mesalam A, Heo YS, Lee SH, Nabi G, Kong IK. Heat Stress as a Barrier to Successful Reproduction and Potential Alleviation Strategies in Cattle. Animals (Basel) 2023; 13:2359. [PMID: 37508136 PMCID: PMC10376617 DOI: 10.3390/ani13142359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
In recent decades, the adverse effects of global warming on all living beings have been unanimously recognized across the world. A high environmental temperature that increases the respiration and rectal temperature of cattle is called heat stress (HS), and it can affect both male and female reproductive functions. For successful reproduction and fertilization, mature and healthy oocytes are crucial; however, HS reduces the developmental competence of oocytes, which compromises reproduction. HS disturbs the hormonal balance that plays a crucial role in successful reproduction, particularly in reducing the luteinizing hormone and progesterone levels, which leads to severe problems such as poor follicle development with a poor-quality oocyte and problems related to maturity, silent estrus, abnormal or weak embryo development, and pregnancy loss, resulting in a declining reproduction rate and losses for the cattle industry. Lactating cattle are particularly susceptible to HS and, hence, their reproduction rate is substantially reduced. Additionally, bulls are also affected by HS; during summer, semen quality and sperm motility decline, leading to compromised reproduction. In summer, the conception rate is reduced by 20-30% worldwide. Although various techniques, such as the provision of water sprinklers, shade, and air conditioning, are used during summer, these methods are insufficient to recover the normal reproduction rate and, therefore, special attention is needed to improve reproductive efficiency and minimize the detrimental effect of HS on cattle during summer. The application of advanced reproductive technologies such as the production of embryos in vitro, cryopreservation during the hot season, embryo transfer, and timed artificial insemination may minimize the detrimental effects of HS on livestock reproduction and recover the losses in the cattle industry.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biomedical Engineering, College of Engineering, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yun Seok Heo
- Department of Biomedical Engineering, College of Engineering, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
- Department of Premedicine, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Seo-Hyun Lee
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- The King Kong Corp., Ltd., Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
29
|
Anisimova MV, Gon Y, Kontsevaya GV, Romashchenko AV, Khotskin NV, Stanova AK, Gerlinskaya LA, Moshkin MP. Body composition as an indicator of metabolic changes in mice obtained by in vitro fertilization. Vavilovskii Zhurnal Genet Selektsii 2023; 27:357-365. [PMID: 37465196 PMCID: PMC10350860 DOI: 10.18699/vjgb-23-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
To identify body systems subject to epigenetic transformation during in vitro fertilization (IVF), comparative morphological and functional studies were performed on sexually mature offspring of outbred CD1 mice, specific-pathogen-free (SPF), obtained by IVF (experiment) and natural conception (control). The studies included assessment of age-related changes in body weight and composition, energy intake and expenditure, and glucose homeostasis. To level the effects caused by the different number of newborns in the control and in the experiment, the size of the fed litters was halved in the control females. Males obtained using the IVF procedure were superior in body weight compared to control males in all age groups. As was shown by analysis of variance with experiment/control factors, gender, age (7, 10 and 20 weeks), the IVF procedure had a statistically significant and unidirectional effect on body composition. At the same time, IVF offspring outperformed control individuals in relative fat content, but were behind in terms of lean mass. The effect of the interaction of factors was not statistically significant. IVF offspring of both sexes had higher fat to lean mass ratios (FLR). Since adipose tissue contributes significantly less to total energy intake compared to muscle, the main component of lean mass, it is not surprising that at the same level of IVF locomotor activity offspring consumed less food than controls. When converted to one gram of body weight, this difference reached 19 %. One of the consequences of reduced utilization of IVF energy substrates by offspring is a decrease in their tolerance to glucose loading. The integral criterion for the effectiveness of restoring the initial glucose level is the area under the curve (AUC), the value of which was 2.5 (males) and 3.2 (females) times higher in IVF offspring compared to the corresponding control. Thus, the totality of our original and literature data shows an increase in the risk of metabolic disorders in IVF offspring, which is confirmed by epidemiological studies of a relatively young cohort of people born using assisted reproductive technologies.
Collapse
Affiliation(s)
- M V Anisimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yanli Gon
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - G V Kontsevaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Romashchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Khotskin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A K Stanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Gerlinskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M P Moshkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Tomsk State University, Department of Vertebrate Zoology and Ecology, Tomsk, Russia
| |
Collapse
|
30
|
Canha-Gouveia A, Pérez-Prieto I, Rodríguez CM, Escamez T, Leonés-Baños I, Salas-Espejo E, Prieto-Sánchez MT, Sánchez-Ferrer ML, Coy P, Altmäe S. The female upper reproductive tract harbors endogenous microbial profiles. Front Endocrinol (Lausanne) 2023; 14:1096050. [PMID: 37415669 PMCID: PMC10321600 DOI: 10.3389/fendo.2023.1096050] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction The female reproductive tract harbours unique microbial communities (known as microbiota) which have been associated with reproductive functions in health and disease. While endometrial microbiome studies have shown that the uterus possesses higher bacterial diversity and richness compared to the vagina, the knowledge regarding the composition of the Fallopian tubes (FT) is lacking, especially in fertile women without any underlying conditions. Methods To address this gap, our study included 19 patients who underwent abdominal hysterectomy for benign uterine pathology, and 5 women who underwent tubal ligation as a permanent contraceptive method at Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA). We analyzed the microbiome of samples collected from the FT and endometrium using 16S rRNA gene sequencing. Results Our findings revealed distinct microbiome profiles in the endometrial and FT samples, indicating that the upper reproductive tract harbors an endogenous microbiome. However, these two sites also shared some similarities, with 69% of the detected taxa Being common to both. Interestingly, we identified seventeen bacterial taxa exclusively present in the FT samples, including the genera Enhydrobacter, Granulicatella, Haemophilus, Rhizobium, Alistipes, and Paracoccus, among others. On the other hand, 10 bacterial taxa were only found in the endometrium, including the genera Klebsiella, Olsenella, Oscillibacter and Veillonella (FDR <0.05). Furthermore, our study highlighted the influence of the endometrial collection method on the findings. Samples obtained transcervically showed a dominance of the genus Lactobacillus, which may indicate potential vaginal contamination. In contrast, uterine samples obtained through hysterescopy revealed higher abundance of the genera Acinetobacter, Arthrobacter, Coprococcus, Methylobacterium, Prevotella, Roseburia, Staphylococcus, and Streptococcus. Discussion Although the upper reproductive tract appears to have a low microbial biomass, our results suggest that the endometrial and FT microbiome is unique to each individual. In fact, samples obtained from the same individual showed more microbial similarity between the endometrium and FT compared to samples from different women. Understanding the composition of the female upper reproductive microbiome provides valuable insights into the natural microenvironment where processes such as oocyte fertilization, embryo development and implantation occur. This knowledge can improve in vitro fertilization and embryo culture conditions for the treatment of infertility.
Collapse
Affiliation(s)
- Analuce Canha-Gouveia
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", Murcia, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Carmen Martínez Rodríguez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", Murcia, Spain
- Genomics Unit, Biomedical Research Institute of Murcia (IMIB)-Arrixaca, Murcia, Spain
| | - Teresa Escamez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", Murcia, Spain
- BiobancMur-Nodo 1, Biomedical Research Institute of Murcia (IMIB)-Arrixaca, Murcia, Spain
- Spanish Biobank Platform, Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Irene Leonés-Baños
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Maria Teresa Prieto-Sánchez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", Murcia, Spain
- Department of Obstetrics & Gynecology, “Virgen de la Arrixaca” University Clinical Hospital, Murcia, Spain
| | - Maria Luisa Sánchez-Ferrer
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", Murcia, Spain
- Department of Obstetrics & Gynecology, “Virgen de la Arrixaca” University Clinical Hospital, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", Murcia, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Peng Q, Ma Z, Han Q, Xiang F, Wang L, Zhang Y, Zhao Y, Li J, Xian Y, Yuan Y. Characterization of bacteriophage vB_KleM_KB2 possessing high control ability to pathogenic Klebsiella pneumoniae. Sci Rep 2023; 13:9815. [PMID: 37330608 PMCID: PMC10276810 DOI: 10.1038/s41598-023-37065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023] Open
Abstract
Klebsiella pneumoniae is a widespread pathogen of several human diseases. The emergence of multidrug-resistant K. pneumoniae makes the treatment of these diseases a significant challenge. The application of bacteriophages is a potential approach for dealing with the emergence of multidrug-resistant pathogenic bacteria. This study isolates a novel bacteriophage vB_KleM_KB2 that infects the multidrug-resistant clinical isolates of K. pneumoniae. The bacteriophage exhibits a short latent period of 10 min, and can effectively lyse the bacterium within 60 min. Notably, the bacteriophage can completely inhibit the growth of the host bacterium at the initial concentration of 107 CFU/mL with a low multiplicity of infection of 0.001, which proves its high lytic activity. Furthermore, the bacteriophage shows high environmental tolerances, which can facilitate the practical application of the bacteriophage. Analysis of the bacteriophage genome shows that the bacteriophage possesses a novel genome sequence and can represent a new bacteriophage genus. Considering the high lytic activity, short latent period, high stability, and novel genetic background, bacteriophage vB_KleM_KB2 enriches the bacteriophage library and provides a new alternative for controlling the diseases caused by multidrug-resistant pathogenic K. pneumoniae.
Collapse
Affiliation(s)
- Qin Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Zimeng Ma
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Qing Han
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Fangfang Xiang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Lushuang Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Yibin Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Yuting Zhao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Jianing Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Yaxin Xian
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
32
|
Pereira R, Barbosa T, Cardoso AL, Sá R, Sousa M. Cystic fibrosis and primary ciliary dyskinesia: Similarities and differences. Respir Med 2023; 209:107169. [PMID: 36828173 DOI: 10.1016/j.rmed.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Cystic fibrosis (CF) and Primary ciliary dyskinesia (PCD) are both rare chronic diseases, inherited disorders associated with multiple complications, namely respiratory complications, due to impaired mucociliary clearance that affect severely patients' lives. Although both are classified as rare diseases, PCD has a much lower prevalence than CF, particularly among Caucasians. As a result, CF is well studied, better recognized by clinicians, and with some therapeutic approaches already available. Whereas PCD is still largely unknown, and thus the approach is based on consensus guidelines, expert opinion, and extrapolation from the larger evidence base available for patients with CF. Both diseases have some clinical similarities but are very different, necessitating different treatment by specialists who are familiar with the complexities of each disease.This review aims to provide an overview of the knowledge about the two diseases with a focus on the similarities and differences between both in terms of disease mechanisms, common clinical manifestations, genetics and the most relevant therapeutic options. We hoped to raise clinical awareness about PCD, what it is, how it differs from CF, and how much information is still lacking. Furthermore, this review emphasises the fact that both diseases require ongoing research to find better treatments and, in particular for PCD, to fill the medical and scientific gaps.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| | - Telma Barbosa
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal; Department of Pediatrics, Maternal Child Centre of the North (CMIN), University Hospital Centre of Porto (CHUP), Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Ana Lúcia Cardoso
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal; Department of Pediatrics, Maternal Child Centre of the North (CMIN), University Hospital Centre of Porto (CHUP), Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| |
Collapse
|
33
|
Sensui N, Itoh Y, Okura N, Shiba K, Baba SA, Inaba K, Yoshida M. Spawning-Induced pH Increase Activates Sperm Attraction and Fertilization Abilities in Eggs of the Ascidian, Phallusia philippinensis and Ciona intestinalis. Int J Mol Sci 2023; 24:2666. [PMID: 36768985 PMCID: PMC9917126 DOI: 10.3390/ijms24032666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In Phlebobranchiata ascidians, oocytes and spermatozoa are stored in the oviduct and spermiduct, respectively, until spawning occurs. Gametes in the gonoducts are mature and fertilizable; however, it was found that the gametes of the ascidians Phallusia philippinensis and Ciona intestinalis could not undergo fertilization in the gonoductal fluids. The body fluids of the ascidians, especially in the gonoducts, were much more acidic (pH 5.5-6.8) than seawater (pH 8.2), and the fertilization rate was low under such acidic conditions. Hence, we examined the effect of pH on gametes. Pre-incubation of gonoductal eggs at pH 8.2 prior to insemination increased fertilization rates, even when insemination was performed under low pH conditions. Furthermore, an increase in ambient pH induced an increase in the intracellular pH of the eggs. It was also found that an increase in ambient pH triggered the release of sperm attractants from the egg and is therefore necessary for sperm chemotaxis. Hence, acidic conditions in the gonoductal fluids keep the gametes, especially eggs, infertile, and the release of eggs into seawater upon spawning induces an increase in ambient pH, which enables egg fertilization.
Collapse
Affiliation(s)
- Noburu Sensui
- Department of Human Biology and Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Yosinori Itoh
- Department of Human Biology and Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Shoji A. Baba
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura 238-0225, Japan
| |
Collapse
|
34
|
Drug susceptibility testing for oxygen-dependent and oxygen-independent resistance phenotypes in trichomonads. Int J Parasitol 2023; 53:247-252. [PMID: 36708914 DOI: 10.1016/j.ijpara.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 01/26/2023]
Abstract
Trichomonas vaginalis is the most prevalent, non-viral sexually transmitted human infection, causing 170 million cases of trichomoniasis annually. Since the 1950s, treatment has relied on 5-nitroimidazoles (5NIs), leading to increasing drug resistance. A similar drug resistance problem is present in the veterinary pathogen, Tritrichomonas foetus. There are currently no agreed standards for defining 5NI resistance, due in part to two distinct oxygen-dependent ("aerobic") and oxygen-independent ("anaerobic") resistance phenotypes. Diagnostic tools to detect 5NI resistance are lacking, and current assays used to phenotypically assess 5NI resistance in vitro are complicated by these two resistance phenotypes. We demonstrate that microaerophilic conditions support sufficient parasite growth to interrogate oxygen-dependent resistance of 5NIs against known resistant and susceptible isolates of T. vaginalis and T. foetus. We further demonstrate that microaerophilic conditions allow sufficient growth for compatibility with existing growth assays, including our TriTOX assay. Adopting microaerophilic conditions eliminates traditional 'by-eye' estimates of minimum inhibitory concentrations and opens up options for increased throughput and automation, scalable to higher-throughput analyses of 5NI resistance. This would further allow the development of quantitative phenotypic standards to benchmark oxygen-dependent or oxygen-independent trichomonad 5NI resistance towards standardised surveillance programs to combat drug resistance.
Collapse
|
35
|
Xia X, Zhang Y, Cao M, Yu X, Gao L, Qin L, Wu W, Cui Y, Liu J. Adverse effect of assisted reproductive technology-related hyperoestrogensim on the secretion and absorption of uterine fluid in superovulating mice during the peri-implantation period. Front Endocrinol (Lausanne) 2023; 14:859204. [PMID: 36950692 PMCID: PMC10027003 DOI: 10.3389/fendo.2023.859204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the potential mechanism of hyperoestrogensim elicited by ovulation induction affects endometrial receptivity and leads to embryo implantation abnormality or failure. STUDY DESIGN Establishment of ovulation induction mouse model. Changes in mouse body weight, ovarian weight, serum E2 level and oestrous cycle were observed. During the peri-implantation period, morphological changes in the mouse uterus and implantation sites and the localization and protein levels of oestrogen receptors ERα and ERβ, the tight junction factors CLDN3 and OCLN, the aquaporins AQP3, AQP4 and AQP8, and the sodium channel proteins SCNN1α, SCNN1β and SCNN1γ were observed. The expression and cellular localization of ERα, CLDN3, AQP8 and SCNN1 β in RL95-2 cell line were also detected by western blotting and immunofluorescence. RESULTS Ovarian and body weights were significantly higher in the 5 IU and 10 IU groups than in the CON group. The E2 level was significantly higher in the 10 IU group than in the CON group. The mice in the 10 IU group had a disordered oestrous cycle and were in oestrus for a long time. At 5.5 dpc, significantly fewer implantation sites were observed in the 10 IU group than in the CON (p<0.001) and 5 IU (p<0.05) groups. The probability of abnormal implantation and abortion was higher in the 10 IU group than in the CON and 5 IU groups. CLDN3, OCLN, AQP8 and SCNN1β in the mouse endometrium were localized on the luminal epithelium and glandular epithelium and expression levels were lower in the 10 IU group than in the CON group. The protein expression level of ERα was increased by 50% in the 10 IU group compared to the CON group. The expressions of CLDN3, AQP8, SCNN1β in RL95-2 cell line were significantly depressed by the superphysiological E2, ERα agonist or ERβ agonist, which could be reversed by the oestrogen receptor antagonist. CONCLUSION ART-induced hyperoestrogenism reduces CLDN3, AQP8 and SCNN1β expression through ERα, thereby destroying tight junctions and water and sodium channels in the endometrial cavity epithelium, which may cause abnormal implantation due to abnormal uterine fluid secretion and absorption.
Collapse
Affiliation(s)
- Xinru Xia
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Meng Cao
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Yu
- Department of Pediatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Jiayin Liu,
| |
Collapse
|
36
|
Fanse S, Bao Q, Burgess DJ. Long-acting intrauterine systems: Recent advances, current challenges, and future opportunities. Adv Drug Deliv Rev 2022; 191:114581. [PMID: 36270490 PMCID: PMC10302114 DOI: 10.1016/j.addr.2022.114581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
Levonorgestrel intrauterine systems (LNG-IUSs) are complex drug-device combination products designed to release a hormonal contraceptive drug for up to 7 years. These drug delivery systems offers a great promise as a modern method of long-acting reversible contraceptives (LARCs) to improve women's health. Unfortunately, there are some scientific challenges associated with the development of these products which are among the major reasons contributing to the availability of relatively few IUS products on the market. This review summarizes the formulation considerations (drug and excipient attributes), manufacturing methods, advances in characterization and in vitro drug release testing of IUSs, as well as factors influencing drug release from IUSs. A critical discussion on the major challenges to IUS product development is presented. Specifically, insights on bioequivalence evaluation, in vitro-in vivo correlation (IVIVC) establishment, and regulatory challenges are detailed. Lastly, methodological tools to overcome some of these hurdles to product development are proposed. The knowledge furnished through this review will be helpful towards obtaining better product understanding. Such understanding will facilitate the development of these complex drug products, as well as their regulatory approval process.
Collapse
Affiliation(s)
- Suraj Fanse
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA
| | - Quanying Bao
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA
| | - Diane J Burgess
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA.
| |
Collapse
|
37
|
Rajabasadi F, Moreno S, Fichna K, Aziz A, Appelhans D, Schmidt OG, Medina-Sánchez M. Multifunctional 4D-Printed Sperm-Hybrid Microcarriers for Assisted Reproduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204257. [PMID: 36189842 DOI: 10.1002/adma.202204257] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Remotely controllable microrobots are appealing for various biomedical in vivo applications. In particular, in recent years, our group has focused on developing sperm-microcarriers to assist sperm cells with motion deficiencies or low sperm count (two of the most prominent male infertility problems) to reach the oocyte toward in-vivo-assisted fertilization. Different sperm carriers, considering their motion in realistic media and confined environments, have been optimized. However, the already-reported sperm carriers have been mainly designed to transport single sperm cell, with limited functionality. Thus, to take a step forward, here, the development of a 4D-printed multifunctional microcarrier containing soft and smart materials is reported. These microcarriers can not only transport and deliver multiple motile sperm cells, but also release heparin and mediate local enzymatic reactions by hyaluronidase-loaded polymersomes (HYAL-Psomes). These multifunctional facets enable in situ sperm capacitation/hyperactivation, and the local degradation of the cumulus complex that surrounds the oocyte, both to facilitate the sperm-oocyte interaction for the ultimate goal of in vivo assisted fertilization.
Collapse
Affiliation(s)
- Fatemeh Rajabasadi
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Silvia Moreno
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Kristin Fichna
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Azaam Aziz
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Dietmar Appelhans
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Oliver G Schmidt
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Nanophysics, Faculty of Physics, School of Science, Dresden University of Technology, 01062, Dresden, Germany
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| |
Collapse
|
38
|
Vanstokstraeten R, Mackens S, Callewaert E, Blotwijk S, Emmerechts K, Crombé F, Soetens O, Wybo I, Vandoorslaer K, Mostert L, De Geyter D, Muyldermans A, Blockeel C, Piérard D, Demuyser T. Culturomics to Investigate the Endometrial Microbiome: Proof-of-Concept. Int J Mol Sci 2022; 23:12212. [PMID: 36293066 PMCID: PMC9602868 DOI: 10.3390/ijms232012212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 08/29/2023] Open
Abstract
The microbiome of the reproductive tract has been associated with (sub)fertility and it has been suggested that dysbiosis reduces success rates and pregnancy outcomes. The endometrial microbiome is of particular interest given the potential impact on the embryo implantation. To date, all endometrial microbiome studies have applied a metagenomics approach. A sequencing-based technique, however, has its limitations, more specifically in adequately exploring low-biomass settings, such as intra-uterine/endometrial samples. In this proof-of-concept study, we demonstrate the applicability of culturomics, a high-throughput culturing approach, to investigate the endometrial microbiome. Ten subfertile women undergoing diagnostic hysteroscopy and endometrial biopsy, as part of their routine work-up at Brussels IVF, were included after their informed consent. Biopsies were used to culture microbiota for up to 30 days in multiple aerobic and anaerobic conditions. Subsequent WASPLab®-assisted culturomics enabled a standardized methodology. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) or 16S rRNA sequencing was applied to identify all of bacterial and fungal isolates. Eighty-three bacterial and two fungal species were identified. The detected species were in concordance with previously published metagenomics-based endometrial microbiota analyses as 77 (91%) of them belonged to previously described genera. Nevertheless, highlighting the added value of culturomics to identify most isolates at the species level, 53 (62.4%) of the identified species were described in the endometrial microbiota for the first time. This study shows the applicability and added value of WASPLab®-assisted culturomics to investigate the low biomass endometrial microbiome at a species level.
Collapse
Affiliation(s)
- Robin Vanstokstraeten
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Shari Mackens
- Brussels IVF, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Ellen Callewaert
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Susanne Blotwijk
- Biostatistics and Medical Informatics Research Group (BISI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Kristof Emmerechts
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Florence Crombé
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Oriane Soetens
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Ingrid Wybo
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Kristof Vandoorslaer
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Laurence Mostert
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Deborah De Geyter
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Astrid Muyldermans
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Christophe Blockeel
- Brussels IVF, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Thomas Demuyser
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
- Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
39
|
Prajapati P, Kane S, McBrinn RC, Dean MS, Martins da Silva SJ, Brown SG. Elevated and Sustained Intracellular Calcium Signalling Is Necessary for Efficacious Induction of the Human Sperm Acrosome Reaction. Int J Mol Sci 2022; 23:ijms231911253. [PMID: 36232560 PMCID: PMC9570455 DOI: 10.3390/ijms231911253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Progesterone and prostaglandin E1 are postulated to trigger the human sperm acrosome reaction (AR). However, their reported efficacy is very variable which likely, in part, reflects the plethora of experimental conditions and methodologies used to detect this physiologically relevant event. The purpose of this study was to develop an assay for the robust induction and objective measurement of the complete AR. Sperm from healthy volunteers or patients undertaking IVF were treated with a variety of ligands (progesterone, prostaglandin E1 or NH4Cl, alone or in combinations). AR, motility and intracellular calcium measurements were measured using flow cytometry, computer-assisted sperm analysis (CASA) and fluorimetry, respectively. The AR was significantly increased by the simultaneous application of progesterone, prostaglandin E1 and NH4Cl, following an elevated and sustained intracellular calcium concentration. However, we observed notable inter- and intra-donor sample heterogeneity of the AR induction. When studying the patient samples, we found no relationship between the IVF fertilization rate and the AR. We conclude that progesterone and prostaglandin E1 alone do not significantly increase the percentage of live acrosome-reacted sperm. This assay has utility for drug discovery and sperm toxicology studies but is not predictive for IVF success.
Collapse
Affiliation(s)
- Priyanka Prajapati
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Shruti Kane
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | | | - Morven S. Dean
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Assisted Conception Unit, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Sarah J. Martins da Silva
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Assisted Conception Unit, Ninewells Hospital, Dundee DD1 9SY, UK
- Correspondence:
| | - Sean G. Brown
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
40
|
Nan K, Feig VR, Ying B, Howarth JG, Kang Z, Yang Y, Traverso G. Mucosa-interfacing electronics. NATURE REVIEWS. MATERIALS 2022; 7:908-925. [PMID: 36124042 PMCID: PMC9472746 DOI: 10.1038/s41578-022-00477-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The surface mucosa that lines many of our organs houses myriad biometric signals and, therefore, has great potential as a sensor-tissue interface for high-fidelity and long-term biosensing. However, progress is still nascent for mucosa-interfacing electronics owing to challenges with establishing robust sensor-tissue interfaces; device localization, retention and removal; and power and data transfer. This is in sharp contrast to the rapidly advancing field of skin-interfacing electronics, which are replacing traditional hospital visits with minimally invasive, real-time, continuous and untethered biosensing. This Review aims to bridge the gap between skin-interfacing electronics and mucosa-interfacing electronics systems through a comparison of the properties and functions of the skin and internal mucosal surfaces. The major physiological signals accessible through mucosa-lined organs are surveyed and design considerations for the next generation of mucosa-interfacing electronics are outlined based on state-of-the-art developments in bio-integrated electronics. With this Review, we aim to inspire hardware solutions that can serve as a foundation for developing personalized biosensing from the mucosa, a relatively uncharted field with great scientific and clinical potential.
Collapse
Affiliation(s)
- Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Vivian R. Feig
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Binbin Ying
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Julia G. Howarth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ziliang Kang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
41
|
Schallmoser A, Einenkel R, Färber C, Sänger N. In vitro growth (IVG) of human ovarian follicles in frozen thawed ovarian cortex tissue culture supplemented with follicular fluid under hypoxic conditions. Arch Gynecol Obstet 2022; 306:1299-1311. [PMID: 35871693 PMCID: PMC9470640 DOI: 10.1007/s00404-022-06672-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022]
Abstract
Background Despite its clinical success rates, transplantation after ovarian tissue cryopreservation (OTC) remains a matter of concern. Certain cancer subtypes may lead to the transfer of malignant cells when transplantation of affected ovarian tissue is conducted. IVG and subsequent isolation of vital follicles obtained from frozen thawed ovarian tissue for further in vitro maturation (IVM) would expand current fertility protection techniques while reducing the risk of retransplanting malignant cells. Methods A total of 216 cortical biopsies from 3 patients were included in this study in 4 treatment groups. After freezing, thawing and 8 days of hypoxic tissue culture supplemented with different concentrations of human follicular fluid (HuFF) and follicle-stimulating hormone (FSH), follicles were isolated enzymatically and stained with calcein to determine follicular viability. Numbers and size of vital follicles were assessed by fluorescence microscopy (Ti2, Nikon) and specified by computer assisted, semi-automated measurement (NIS software, Nikon). To estimate the effect of in vitro culture on apoptosis, tissue sections were stained for nicked DNA (TUNEL) prior and after tissue culture. Results Analysing 3025 vital follicles, we observed significant differences [P < 0.01] regarding follicle size when hypoxic tissue culture was supplemented with HuFF compared with the control group on day 1, individual follicles reached sizes > 100 µm. Conclusions The results implicate that HuFF contains valuable factors contributing to significant IVG of follicles in human ovarian tissue and could be regarded as an additional tool in personalized fertility restoration prior to retransplantation of ovarian tissue.
Collapse
Affiliation(s)
- Andreas Schallmoser
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Cara Färber
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
42
|
Mohammed Y, Holmes A, Kwok PCL, Kumeria T, Namjoshi S, Imran M, Matteucci L, Ali M, Tai W, Benson HA, Roberts MS. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 2022; 186:114293. [PMID: 35483435 DOI: 10.1016/j.addr.2022.114293] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Epithelial surfaces protect exposed tissues in the body against intrusion of foreign materials, including xenobiotics, pollen and microbiota. The relative permeability of the various epithelia reflects their extent of exposure to the external environment and is in the ranking: intestinal≈ nasal ≥ bronchial ≥ tracheal > vaginal ≥ rectal > blood-perilymph barrier (otic), corneal > buccal > skin. Each epithelium also varies in their morphology, biochemistry, physiology, immunology and external fluid in line with their function. Each epithelium is also used as drug delivery sites to treat local conditions and, in some cases, for systemic delivery. The associated delivery systems have had to evolve to enable the delivery of larger drugs and biologicals, such as peptides, proteins, antibodies and biologicals and now include a range of physical, chemical, electrical, light, sound and other enhancement technologies. In addition, the quality-by-design approach to product regulation and the growth of generic products have also fostered advancement in epithelial drug delivery systems.
Collapse
|
43
|
VanBenschoten H, Yao S, Jensen JT, Woodrow KA. Drug Eluting Embolization Particles for Permanent Contraception. ACS Biomater Sci Eng 2022; 8:2995-3009. [PMID: 35749682 PMCID: PMC9277594 DOI: 10.1021/acsbiomaterials.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Medical technology
that blocks the fallopian tubes nonsurgically
could increase access to permanent contraception and address current
unmet needs in family planning. To achieve total occlusion of the
fallopian tube via scar tissue formation, acute trauma to the tubal
epithelium must first occur followed by a sustained and ultimately
fibrotic inflammatory response. Here, we developed drug-eluting fiber-based
microparticles that provide tunable dose and release of potent sclerosing
agents. This fabrication strategy demonstrates high encapsulation
of physicochemically diverse agents and the potential for scalable
manufacturing by utilizing free-surface electrospinning to generate
material for fiber micronization. Manipulation of nanofiber formulation
such as drug loading, drug hydrophobicity, polymer hydrophobicity,
and crystallinity allowed for modulation of the sustained release
properties of our fiber microparticles. We assessed various fibrous
microparticle formulations in vivo using a newly
developed and validated guinea pig model for contraception. We found
that fiber microparticles with bolus release doxycycline effectively
elicited acute trauma and those formulated with highly loaded phenyl
benzoate caused sustained inflammation in the target organs. The demonstrated
potency of these electrospun microparticles, as well as their embolic
size and shape, suggests potential for proximal agglomeration and
inflammatory activity in the fallopian tubes following transcervical
delivery.
Collapse
Affiliation(s)
- Hannah VanBenschoten
- Department of Bioengineering, University of Washington, 3720 15th Avenue Northeast, Seattle, Washington 98105, United States
| | - Shan Yao
- Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, United States
| | - Jeffrey T Jensen
- Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Avenue Northeast, Seattle, Washington 98105, United States
| |
Collapse
|
44
|
Malkowska A, Penfold C, Bergmann S, Boroviak TE. A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes. Nat Commun 2022; 13:3407. [PMID: 35710749 PMCID: PMC9203550 DOI: 10.1038/s41467-022-30194-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mammalian embryogenesis relies on glycolysis and oxidative phosphorylation to balance the generation of biomass with energy production. However, the dynamics of metabolic regulation in the postimplantation embryo in vivo have remained elusive due to the inaccessibility of the implanted conceptus for biochemical studies. To address this issue, we compiled single-cell embryo profiling data in six mammalian species and determined their metabolic dynamics through glycolysis and oxidative phosphorylation associated gene expression. Strikingly, we identify a conserved switch from bivalent respiration in the late blastocyst towards a glycolytic metabolism in early gastrulation stages across species, which is independent of embryo implantation. Extraembryonic lineages followed the dynamics of the embryonic lineage, except visceral endoderm. Finally, we demonstrate that in vitro primate embryo culture substantially impacts metabolic gene regulation by comparison to in vivo samples. Our work reveals a conserved metabolic programme despite different implantation modes and highlights the need to optimise postimplantation embryo culture protocols.
Collapse
Affiliation(s)
- Anna Malkowska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
45
|
Risk of Infertility in Males with Obstructive Sleep Apnea: A Nationwide, Population-Based, Nested Case‒Control Study. J Pers Med 2022; 12:jpm12060933. [PMID: 35743718 PMCID: PMC9224853 DOI: 10.3390/jpm12060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Obstructive sleep apnea (OSA) yields intermittent hypoxia, hypercapnia, and sleep fragmentation. OSA is associated with chronic medical conditions such as cardiovascular diseases, metabolic syndrome, and neurocognitive dysfunction. However, the risk of infertility in OSA remains unclear due to limited data and lack of long-term population-based studies. The study aims to assess the risk of infertility in obstructive sleep apnea (OSA) by means of a population-based cohort study. The data was utilized from the Taiwan National Health Insurance Research Database (NHIRD) to conduct a population-based cohort study (1997–2013). Compared with the Non-OSA group, the male with OSA and surgery group has the OR (odds ratio) of infertility of 2.70 (95% CI, 1.46–4.98, p = 0.0015), but no significance exists in females with OSA. When the data was stratified according to age and gender, some associations in the specific subgroups were significant. Respectively, males aged 20–35 years old and aged 35–50 years old with a history of OSA and surgery both had a positive association with infertility. (aOR: 3.19; 95% CI, 1.18–8.66, p = 0.0227; aOR: 2.57; 95% CI, 1.18–5.62 p = 0.0176). Male patients with OSA suffer from reduced fertility, but no significant difference was noted in females with OSA. The identification of OSA as a risk factor for male infertility will aid clinicians to optimize long-term medical care. Furthermore, more studies will be encouraged to clarify the effect of OSA on female fertility.
Collapse
|
46
|
Time of ovulation in sows is not related to intravaginal dissolved oxygen levels or temperature. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Sussman EM, Shi H, Turner PA, Saylor DM, Weaver JD, Simon DD, Takmakov P, Sivan S, Shin HY, Di Prima MA, Godar DE. Nitinol Release of Nickel under Physiological Conditions: Effects of Surface Oxide, pH, Hydrogen Peroxide, and Sodium Hypochlorite. SHAPE MEMORY AND SUPERELASTICITY : ADVANCES IN SCIENCE AND TECHNOLOGY 2022; 8:98-106. [PMID: 37720627 PMCID: PMC10502700 DOI: 10.1007/s40830-022-00364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 09/19/2023]
Abstract
Nitinol is a nickel-titanium alloy widely used in medical devices for its unique pseudoelastic and shape-memory properties. However, nitinol can release potentially hazardous amounts of nickel, depending on surface manufacturing yielding different oxide thicknesses and compositions. Furthermore, nitinol medical devices can be implanted throughout the body and exposed to extremes in pH and reactive oxygen species (ROS), but few tools exist for evaluating nickel release under such physiological conditions. Even in cardiovascular applications, where nitinol medical devices are relatively common and the blood environment is well understood, there is a lack of information on how local inflammatory conditions after implantation might affect nickel ion release. For this study, nickel release from nitinol wires of different finishes was measured in pH conditions and at ROS concentrations selected to encompass and exceed literature reports of extracellular pH and ROS. Results showed increased nickel release at levels of pH and ROS reported to be physiological, with decreasing pH and increasing concentrations of hydrogen peroxide and NaOCl/HOCl having the greatest effects. The results support the importance of considering the implantation site when designing studies to predict nickel release from nitinol and underscore the value of understanding the chemical milieu at the device-tissue interface.
Collapse
Affiliation(s)
- Eric M. Sussman
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | - Huiyu Shi
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | - Paul A. Turner
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | - David M. Saylor
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | - Jason D. Weaver
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | - David D. Simon
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | - Pavel Takmakov
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | - Shiril Sivan
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | - Hainsworth Y. Shin
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | - Matthew A. Di Prima
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | - Dianne E. Godar
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| |
Collapse
|
48
|
Anderegg MA, Gyimesi G, Ho TM, Hediger MA, Fuster DG. The Less Well-Known Little Brothers: The SLC9B/NHA Sodium Proton Exchanger Subfamily—Structure, Function, Regulation and Potential Drug-Target Approaches. Front Physiol 2022; 13:898508. [PMID: 35694410 PMCID: PMC9174904 DOI: 10.3389/fphys.2022.898508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The SLC9 gene family encodes Na+/H+ exchangers (NHEs), a group of membrane transport proteins critically involved in the regulation of cytoplasmic and organellar pH, cell volume, as well as systemic acid-base and volume homeostasis. NHEs of the SLC9A subfamily (NHE 1–9) are well-known for their roles in human physiology and disease. Much less is known about the two members of the SLC9B subfamily, NHA1 and NHA2, which share higher similarity to prokaryotic NHEs than the SLC9A paralogs. NHA2 (also known as SLC9B2) is ubiquitously expressed and has recently been shown to participate in renal blood pressure and electrolyte regulation, insulin secretion and systemic glucose homeostasis. In addition, NHA2 has been proposed to contribute to the pathogenesis of polycystic kidney disease, the most common inherited kidney disease in humans. NHA1 (also known as SLC9B1) is mainly expressed in testis and is important for sperm motility and thus male fertility, but has not been associated with human disease thus far. In this review, we present a summary of the structure, function and regulation of expression of the SLC9B subfamily members, focusing primarily on the better-studied SLC9B paralog, NHA2. Furthermore, we will review the potential of the SLC9B subfamily as drug targets.
Collapse
Affiliation(s)
- Manuel A. Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Manuel A. Anderegg,
| | - Gergely Gyimesi
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tin Manh Ho
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
49
|
Sciorio R, El Hajj N. Epigenetic Risks of Medically Assisted Reproduction. J Clin Med 2022; 11:jcm11082151. [PMID: 35456243 PMCID: PMC9027760 DOI: 10.3390/jcm11082151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Since the birth of Louise Joy Brown, the first baby conceived via in vitro fertilization, more than 9 million children have been born worldwide using assisted reproductive technologies (ART). In vivo fertilization takes place in the maternal oviduct, where the unique physiological conditions guarantee the healthy development of the embryo. During early embryogenesis, a major wave of epigenetic reprogramming takes place that is crucial for the correct development of the embryo. Epigenetic reprogramming is susceptible to environmental changes and non-physiological conditions such as those applied during in vitro culture, including shift in pH and temperature, oxygen tension, controlled ovarian stimulation, intracytoplasmic sperm injection, as well as preimplantation embryo manipulations for genetic testing. In the last decade, concerns were raised of a possible link between ART and increased incidence of imprinting disorders, as well as epigenetic alterations in the germ cells of infertile parents that are transmitted to the offspring following ART. The aim of this review was to present evidence from the literature regarding epigenetic errors linked to assisted reproduction treatments and their consequences on the conceived children. Furthermore, we provide an overview of disease risk associated with epigenetic or imprinting alterations in children born via ART.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Correspondence:
| | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
50
|
The ischemic time window of ectopic endometrial tissue crucially determines its ability to develop into endometriotic lesions. Sci Rep 2022; 12:5625. [PMID: 35379836 PMCID: PMC8980079 DOI: 10.1038/s41598-022-09577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Endometriosis develop from shed endometrial fragments via retrograde menstruation. This affects the survival, proliferation and vascularization of the tissue and its final ability to form endometriotic lesions. Within this study, uterine tissue samples from donor mice were precultivated for 24 h or 72 h to simulate avascular periods. Their morphology, microvessel density, apoptotic activity and expression of angiogenesis-related proteins were analyzed in vitro. The formation of endometriotic lesions in vivo was assessed after transplantation of precultivated uterine tissue samples to the abdominal wall and dorsal skinfold chambers by means of high-resolution ultrasound, intravital fluorescence microscopy, histology and immunohistochemistry. In vitro, 72-h-precultivated uterine tissue samples exhibit extensive areas of tissue necrosis and high numbers of apoptotic cells as well as a significantly reduced cell and microvessel density. These samples failed to develop into endometriotic lesions. In contrast, the 24-h-precultivated samples showed, that their early vascularization and growth in vivo was improved when compared to controls. This indicates that avascular periods have a strong impact on the survival of ectopic endometrial tissue and the chance for the development of endometriosis.
Collapse
|