1
|
Yin H, Duo H, Li S, Qin D, Xie L, Xiao Y, Sun J, Tao J, Zhang X, Li Y, Zou Y, Yang Q, Yang X, Hao Y, Li B. Unlocking biological insights from differentially expressed genes: Concepts, methods, and future perspectives. J Adv Res 2024:S2090-1232(24)00560-5. [PMID: 39647635 DOI: 10.1016/j.jare.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/12/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Identifying differentially expressed genes (DEGs) is a core task of transcriptome analysis, as DEGs can reveal the molecular mechanisms underlying biological processes. However, interpreting the biological significance of large DEG lists is challenging. Currently, gene ontology, pathway enrichment and protein-protein interaction analysis are common strategies employed by biologists. Additionally, emerging analytical strategies/approaches (such as network module analysis, knowledge graph, drug repurposing, cell marker discovery, trajectory analysis, and cell communication analysis) have been proposed. Despite these advances, comprehensive guidelines for systematically and thoroughly mining the biological information within DEGs remain lacking. AIM OF REVIEW This review aims to provide an overview of essential concepts and methodologies for the biological interpretation of DEGs, enhancing the contextual understanding. It also addresses the current limitations and future perspectives of these approaches, highlighting their broad applications in deciphering the molecular mechanism of complex diseases and phenotypes. To assist users in extracting insights from extensive datasets, especially various DEG lists, we developed DEGMiner (https://www.ciblab.net/DEGMiner/), which integrates over 300 easily accessible databases and tools. KEY SCIENTIFIC CONCEPTS OF REVIEW This review offers strong support and guidance for exploring DEGs, and also will accelerate the discovery of hidden biological insights within genomes.
Collapse
Affiliation(s)
- Huachun Yin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China; Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, PR China; Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Army Medical University, Chongqing 400038, PR China
| | - Hongrui Duo
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, PR China
| | - Dan Qin
- Department of Biology, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Lingling Xie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yingxue Xiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Jing Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Jingxin Tao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xiaoxi Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yinghong Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Yue Zou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xian Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
2
|
Yin M, Wang J, Zhang X. Immune infiltration related circular RNA, circGLIS2, facilitated progression of endometriosis through miR-4731-5p/IL-1β axis. Int J Biol Macromol 2024; 281:136318. [PMID: 39370077 DOI: 10.1016/j.ijbiomac.2024.136318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Aberrantly expressed circRNAs affects various anti-tumour immune responses and immune cell regulation. However, the exact function of circGLIS2 on the pathogenesis of EMs remains unclear. In this study, we found that circGLIS2 was upregulated in EMs tissues and intimately related to clinicopathologic characteristics of EMs patients. Functionally, IHC and mouse model of EMs proved that circGLIS2 recruited immune cells infiltrated into ectopic endometrial microenvironment. RNA-seq, ELISA, RT-qPCR, and western blot results indicated that circGLIS2 influenced immune infiltration by regulating IL-1β. Besides, expression of circGLIS2 and IL-1β was also closely correlated in 284 human endometrium tissues. Mechanistically, RNA sequencing and intermolecular interaction prediction established "circGLIS2-miR-4731-5p-IL-1β" network. RNA pull down, RIP, dual luciferase reporter assay and expression regulation analysis confirmed the interaction among "circGLIS2-miR-4731-5p-IL-1β" axis. In summary, our findings demonstrated that circGLIS2 facilitated EMs progression by increasing immune cell infiltration via miR-4731-5p/IL-1β axis.
Collapse
Affiliation(s)
- Meichen Yin
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Zhejiang Province Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
3
|
Panir K, Schjenken JE, Breen J, Chan HY, Greaves E, Robertson SA, Hull ML. RNA sequencing reveals molecular mechanisms of endometriosis lesion development in mice. Dis Model Mech 2024; 17:dmm050566. [PMID: 39385609 PMCID: PMC11524442 DOI: 10.1242/dmm.050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Understanding of molecular mechanisms contributing to the pathophysiology of endometriosis, and upstream drivers of lesion formation, remains limited. Using a C57Bl/6 mouse model in which decidualized endometrial tissue is injected subcutaneously in the abdomen of recipient mice, we generated a comprehensive profile of gene expression in decidualized endometrial tissue (n=4), and in endometriosis-like lesions at Day 7 (n=4) and Day 14 (n=4) of formation. High-throughput mRNA sequencing allowed identification of genes and pathways involved in the initiation and progression of endometriosis-like lesions. We observed distinct patterns of gene expression with substantial differences between the lesions and the decidualized endometrium that remained stable across the two lesion timepoints, and showed similarity to transcriptional changes implicated in human endometriosis lesion formation. Pathway enrichment analysis revealed several immune and inflammatory response-associated canonical pathways, multiple potential upstream regulators, and involvement of genes not previously implicated in endometriosis pathogenesis, including IRF2BP2 and ZBTB10, suggesting novel roles in disease progression. Collectively, the provided data will be a useful resource to inform research on the molecular mechanisms contributing to endometriosis-like lesion development in this mouse model.
Collapse
Affiliation(s)
- Kavita Panir
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - John E. Schjenken
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - James Breen
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- South Australian Genomics Centre (SAGC), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
- Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Hon Yeung Chan
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Erin Greaves
- Centre for Early Life, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Sarah A. Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - M. Louise Hull
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA 5006, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Obstetrics and Gynaecology, Women's and Children's Hospital, Adelaide, SA 5006, Australia
| |
Collapse
|
4
|
Hon JX, Wahab NA, Karim AKA, Mokhtar NM, Mokhtar MH. Exploring the Role of MicroRNAs in Progesterone and Estrogen Receptor Expression in Endometriosis. Biomedicines 2024; 12:2218. [PMID: 39457531 PMCID: PMC11504708 DOI: 10.3390/biomedicines12102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Patients with endometriosis still respond poorly to progestins due to progesterone resistance associated with microRNAs (miRNAs). The aim of this study was to investigate the expression of selected miRNAs, estrogen receptor (ER)α, ERβ, progesterone receptor (PR)-A and PR-B and to determine the target genes of upregulated miRNAs in endometriosis. Methods: In this study, 18 controls, 18 eutopic and 18 ectopic samples were analysed. Profiling and validation of miRNAs associated with functions of endometriosis were performed using next-generation sequencing (NGS) and qRT-PCR. At the same time, the expression of ERα, ERβ, PR-A and PR-B was also determined using qRT-PCR. Target prediction was also performed for miR-199a-3p, miR-1-3p and miR-125b-5p using StarBase. Results: In this study, NGS identified seven significantly differentially expressed miRNAs, of which six miRNAs related to the role of endometriosis were selected for validation by qRT-PCR. The expression of miR-199a-3p, miR-1-3p, miR-146a-5p and miR-125b-5p was upregulated in the ectopic group compared to the eutopic group. Meanwhile, ERα and ERβ were significantly differentially expressed in endometriosis compared to the control group. However, the expressions of PR-A and PR-B showed no significant differences between the groups. The predicted target genes for miR-199a-3p, miR-1-3p and miR-125b-5p are SCD, TAOK1, DDIT4, LASP1, CDK6, TAGLN2, G6PD and ELOVL6. Conclusions: Our findings demonstrated that the expressions of ERα and ERβ might be regulated by miRNAs contributing to progesterone resistance, whereas the binding of miRNAs to target genes could also contribute to the pathogenesis of endometriosis. Therefore, miRNAs could be used as potential biomarkers and for targeted therapy in patients with endometriosis.
Collapse
Affiliation(s)
- Jing-Xian Hon
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
| | - Norhazlina Abdul Wahab
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Abdul Kadir Abdul Karim
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (J.-X.H.)
| |
Collapse
|
5
|
Parvin A, Erabi G, Mohammadpour D, Maleki-Kakelar H, Sadeghpour S, Pashaei MR, Taheri-Anganeh M, Ghasemnejad-Berenji H. Infertility: Focus on the therapeutic potential of extracellular vesicles. Reprod Biol 2024; 24:100925. [PMID: 39018753 DOI: 10.1016/j.repbio.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Infertility is a well-known problem that arises from a variety of reproductive diseases. Until now, researchers have tried various methods to restore fertility, including medication specific to the cause, hormone treatments, surgical removals, and assisted reproductive technologies. While these methods do produce results, they do not consistently lead to fertility restoration in every instance. The use of exosome therapy has significant potential in treating infertility in patients. This is because exosomes, microvesicles, and apoptotic bodies, which are different types of vesicles, play a crucial role in transferring bioactive molecules that aid in cell-to-cell communication. Reproductive fluids can transport a variety of molecular cargos, such as miRNAs, mRNAs, proteins, lipids, and DNA molecules. The percentage of these cargos in the fluids can be linked to their physiological and pathological status. EVs are involved in several physiological and pathological processes and offer interesting non-cellular therapeutic possibilities to treat infertility. EVs (extracellular vesicles) transplantation has been shown in many studies to be a key part of regenerating different parts of the reproductive system, including the production of oocytes and the start of sperm production. Nevertheless, the existing evidence necessitates testifying to the effectiveness of injecting EVs in resolving reproductive problems among humans. This review focuses on the current literature about infertility issues in both females and males, specifically examining the potential treatments involving extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Donna Mohammadpour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Fan L, Zhang F, Yao C, Nong L, Li J, Huang W. Unraveling the H19/GAS1 axis in recurrent implantation failure: A potential biomarker for diagnosis and insight into immune microenvironment alteration. PLoS One 2024; 19:e0306244. [PMID: 38968269 PMCID: PMC11226067 DOI: 10.1371/journal.pone.0306244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
Recurrent implantation failure (RIF) presents a significant clinical challenge due to the lack of established diagnostic and therapeutic guidelines. Emerging evidence underscores the crucial role of competitive endogenous RNA (ceRNA) regulatory networks in non-cancerous female reproductive disorders, yet the intricacies and operational characteristics of these networks in RIF are not fully understood. This study aims to demystify the ceRNA regulatory network and identify potential biomarkers for its diagnosis. We analyzed expression profiles of three RNA types (long noncoding RNAs [lncRNAs], microRNAs [miRNAs], and mRNAs) sourced from the GEO database, leading to the identification of the H19-hsa-miR-301a-3p-GAS1 ceRNA network. This network demonstrates significant diagnostic relevance for RIF. Notably, the H19/GAS1 axis within this ceRNA network, identified through correlation analysis, emerged as a promising diagnostic marker, as evidenced by operating receiver operator characteristic (ROC) curve analysis. Further investigation into the binding potential of miR-301a-3p with H19 and GAS1 revealed a close association of these genes with endometrial disorders and embryo loss, as per the Comparative Toxicogenomics Database. Additionally, our immune infiltration analysis revealed a lower proportion of T cells gamma delta (γδ) in RIF, along with distinct differences in the expression of immune cell type-specific markers between fertile patients and those with RIF. We also observed a correlation between aberrant expression of H19/GAS1 and these immune markers, suggesting that the H19/GAS1 axis might play a role in modifying the immune microenvironment, contributing to the pathogenesis of RIF. In conclusion, the ceRNA-based H19/GAS1 axis holds promise as a novel diagnostic biomarker for RIF, potentially enhancing our understanding of its underlying mechanisms and improving the success rates of implantation.
Collapse
Affiliation(s)
- Li Fan
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
- Guangxi Maternal and Obstetric Disease Research Center, Liuzhou, China
- Liuzhou Institute of Reproduction and Genetics, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| | - Fan Zhang
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| | - Chunling Yao
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| | - Liuying Nong
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| | - Jingjing Li
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
- Guangxi Maternal and Obstetric Disease Research Center, Liuzhou, China
- Liuzhou Institute of Reproduction and Genetics, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| | - Wenjie Huang
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, China
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, China
| |
Collapse
|
7
|
Miao M, Li M, Sheng Y, Tong P, Zhang Y, Shou D. Epimedium-Curculigo herb pair enhances bone repair with infected bone defects and regulates osteoblasts through LncRNA MALAT1/miR-34a-5p/SMAD2 axis. J Cell Mol Med 2024; 28:e18527. [PMID: 38984969 PMCID: PMC11234645 DOI: 10.1111/jcmm.18527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-β signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-β/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.
Collapse
Affiliation(s)
- Maomao Miao
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Li
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yunjie Sheng
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Peijian Tong
- Institute of Orthopeadics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Yang Zhang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Institute of Orthopeadics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Dan Shou
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
8
|
Thapa R, Marmo K, Ma L, Torry DS, Bany BM. The Long Non-Coding RNA Gene AC027288.3 Plays a Role in Human Endometrial Stromal Fibroblast Decidualization. Cells 2024; 13:778. [PMID: 38727314 PMCID: PMC11083667 DOI: 10.3390/cells13090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
During the secretory phase of the menstrual cycle, endometrial fibroblast cells begin to change into large epithelial-like cells called decidual cells in a process called decidualization. This differentiation continues more broadly in the endometrium and forms the decidual tissue during early pregnancy. The cells undergoing decidualization as well as the resulting decidual cells, support successful implantation and placentation during early pregnancy. This study was carried out to identify new potentially important long non-coding RNA (lncRNA) genes that may play a role in human endometrial stromal fibroblast cells (hESF) undergoing decidualization in vitro, and several were found. The expression of nine was further characterized. One of these, AC027288.3, showed a dramatic increase in the expression of hESF cells undergoing decidualization. When AC027288.3 expression was targeted, the ability of the cells to undergo decidualization as determined by the expression of decidualization marker protein-coding genes was significantly altered. The most affected markers of decidualization whose expression was significantly reduced were FOXO1, FZD4, and INHBA. Therefore, AC027288.3 may be a major upstream regulator of the WNT-FOXO1 pathway and activin-SMAD3 pathways previously shown as critical for hESF decidualization. Finally, we explored possible regulators of AC027288.3 expression during human ESF decidualization. Expression was regulated by cAMP and progesterone. Our results suggest that AC027288.3 plays a role in hESF decidualization and identifies several other lncRNA genes that may also play a role.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Kevin Marmo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donald S. Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M. Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| |
Collapse
|
9
|
Brady P, Yousif A, Sasamoto N, Vitonis AF, Fendler W, Stawiski K, Hornstein MD, Terry KL, Elias KM, Missmer SA, Shafrir AL. Plasma microRNA expression in adolescents and young adults with endometriosis: the importance of hormone use. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1360417. [PMID: 38665804 PMCID: PMC11043576 DOI: 10.3389/frph.2024.1360417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Prior studies have investigated the diagnostic potential of microRNA (miRNA) expression profiles for endometriosis. However, the vast majority of previous studies have only included adult women. Therefore, we sought to investigate differential expression of miRNAs among adolescents and young adults with endometriosis. Methods The Women's Health Study: from Adolescence to Adulthood (A2A) is an ongoing WERF EPHect compliant longitudinal cohort. Our analysis included 64 patients with surgically-confirmed endometriosis (96% rASRM stage I/II) and 118 females never diagnosed with endometriosis frequency matched on age (median = 21 years) and hormone use at blood draw. MicroRNA measurement was separated into discovery (10 cases and 10 controls) and internal replication (54 cases and 108 controls) phases. The levels of 754 plasma miRNAs were assayed in the discovery phase using PCR with rigorous internal control measures, with the relative expression of miRNA among cases vs. controls calculated using the 2-ΔΔCt method. miRNAs that were significant in univariate analyses stratified by hormone use were included in the internal replication phase. The internal replication phase was split 2:1 into a training and testing set and utilized FirePlex miRNA assay to assess 63 miRNAs in neural network analyses. The testing set of the validation phase was utilized to calculate the area under the curve (AUC) of the best fit models from the training set including hormone use as a covariate. Results In the discovery phase, 49 miRNAs were differentially expressed between endometriosis cases and controls. The associations of the 49 miRNAs differed by hormone use at the time of blood draw. Neural network analysis in the testing set of the internal replication phase determined a final model comprising 5 miRNAs (miR-542-3p, let-7b-3p, miR-548i, miR-769-5p, miR-30c-1-3p), yielding AUC = 0.77 (95% CI: 0.67-0.87, p < 0.001). Sensitivity in the testing dataset improved (83.3% vs. 72.2%) while the specificity decreased (58.3% vs. 72.2%) compared to the training set. Conclusion The results suggest that miR-542-3p, let-7b-3p, miR-548i, miR-769-5p, miR-30c-1-3p may be dysregulated among adolescent and young adults with endometriosis. Hormone use was a significant modifier of miRNA dysregulation and should be considered rigorously in miRNA diagnostic studies.
Collapse
Affiliation(s)
- Paula Brady
- Columbia University Fertility Center, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, United States
| | - Abdelrahman Yousif
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences, El Paso, TX, United States
| | - Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA, United States
| | - Allison F. Vitonis
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA, United States
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Mark D. Hornstein
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA, United States
| | - Kathryn L. Terry
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kevin M. Elias
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Stacey A. Missmer
- Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Amy L. Shafrir
- Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA, United States
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Nutrition & Public Health, School of Nursing and Health Sciences, Merrimack College, North Andover, MA, United States
| |
Collapse
|
10
|
Luo L, Zhao L, Cui L, Peng C, Ou S, Zeng Y, Liu B. The roles of chromatin regulatory factors in endometriosis. J Assist Reprod Genet 2024; 41:863-873. [PMID: 38270747 PMCID: PMC11052748 DOI: 10.1007/s10815-024-03026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE Endometriosis is an estrogen-dependent inflammatory disease and one of the most common gynecological diseases in women of reproductive age. The aim of the review was to explore the relationship between the chromatin regulatory factors and endometriosis. METHODS By searching for literature on chromatin regulators and endometriosis in PuMed. Finally, 98 documents were selected. RESULTS Chromatin regulators (CRs) are essential epigenetic regulatory factors that can regulate chromatin structure changes and are usually divided into three categories: DNA methylation compounds, histone modification compounds, and chromatin remodeling complexes. Noncoding RNAs are also chromatin regulators and can form heterochromatin by binding to protein complexes. Chromatin regulators cause abnormal gene expression by regulating chromatin structure, thereby affecting the occurrence and development of endometriosis. CONCLUSION This review summarizes the participation of chromatin regulators in the mechanisms of endometriosis, and these changes in related chromatin regulators provide a comprehensive reference for diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Liumei Luo
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Zhao
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education; Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences,, Guangxi Medical University, Nanning, China
| | - Chuyu Peng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ou
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Zeng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
11
|
Liu H, Liang J, Dai X, Peng Y, Xiong W, Zhang L, Li X, Li W, Liu K, Bi S, Wang X, Zhang W, Liu Y. Transcriptome-wide N6-methyladenosine (m6A) methylation profiling of long non-coding RNAs in ovarian endometriosis. Genomics 2024; 116:110803. [PMID: 38290592 DOI: 10.1016/j.ygeno.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent internal epigenetic posttranscriptional mechanism for regulating mammalian RNA. Despite recent advances in determining the biological functions of m6A methylation, its association with the pathology of ovarian endometriosis remains uncertain. Herein, we performed m6A transcriptome-wide profiling to identify key lncRNAs with m6A modification involved in ovarian endometriosis development by bioinformatics analysis. We found the total m6A level was lower in ovarian endometriosis than in normal endometrium samples, with 9663 m6A peaks associated with 8989 lncRNAs detected in ovarian endometriosis and 9902 m6A peaks associated with 9210 lncRNAs detected in normal endometrium samples. These m6A peaks were primarily enriched within AAACU motifs. Functional enrichment analysis indicated that pathways involving the regulation of adhesion and development were significantly enriched in these differentially methylated lncRNAs. The regulatory relationships among lncRNAs, microRNAs (miRNAs), and mRNAs were identified by competing endogenous RNA (ceRNA) analysis and determination of the network regulating lncRNA-mRNA expression. Several specific lncRNA, including LINC00665, LINC00937, FZD10-AS1, DIO3OS and GATA2-AS1 which were differently expressed and modified by m6A, were validated using qRT-PCR and its interaction with infiltrating immune cells was explored. Furthermore, we found LncRNA DIO3OS promotes the invasion and migration of Human endometrial stromal cells (THESCs) and ALKBH5 regulates the expression of the lncRNA DIO3OS through m6A modification in vitro. Our study firstly revealed the transcriptome-wide map of m6A modification in lncRNAs of ovarian endometriosis. These findings may enable the determination of the underlying mechanism governing the pathogenesis of ovarian endometriosis and provide theoretical basis for further deeper research on the role of m6A in the development of ovarian endometriosis.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Dai
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuan Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Keyi Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siyi Bi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Banerjee S, Xu W, Doctor A, Driss A, Nezhat C, Sidell N, Taylor RN, Thompson WE, Chowdhury I. TNFα-Induced Altered miRNA Expression Links to NF-κB Signaling Pathway in Endometriosis. Inflammation 2023; 46:2055-2070. [PMID: 37389684 PMCID: PMC10673760 DOI: 10.1007/s10753-023-01862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-qPCR, the expression of several miRNAs was quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC), and also TNFα-treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT, and ERK was measured by western blot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly in EESCs compared to NESCs. Also, treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppressing the phosphorylation of AKT, ERK, and NF-κB.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Wei Xu
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Aaron Doctor
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ceana Nezhat
- Nezhat Medical Center, 5555 Peachtree Dunwoody Road, Atlanta, GA, 30342, USA
| | - Neil Sidell
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA.
| |
Collapse
|
13
|
Hon JX, Wahab NA, Karim AKA, Mokhtar NM, Mokhtar MH. MicroRNAs in Endometriosis: Insights into Inflammation and Progesterone Resistance. Int J Mol Sci 2023; 24:15001. [PMID: 37834449 PMCID: PMC10573326 DOI: 10.3390/ijms241915001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Endometriosis, a non-malignant gynecological disorder influenced by estrogen, involves the growth of endometrial tissue outside the uterus. Its development includes processes such as inflammation, progesterone resistance, angiogenesis, and cell proliferation. Epigenetic factors, particularly the dysregulation of microRNAs (miRNAs), have emerged as key factors in these mechanisms in endometriosis. This review aims to unveil the intricate molecular processes that control inflammation, progesterone resistance, and miRNA functions in endometriosis. In addition, it provides a comprehensive overview of the current understanding regarding the involvement of miRNAs in the inflammatory aspects of this condition. This synthesis encompasses research investigating the molecular underpinnings of inflammation, along with the biogenesis and roles of miRNAs in endometriosis. Furthermore, it examines human studies and functional analyses to establish the intricate connection between miRNAs, inflammation, and progesterone resistance in the context of endometriosis. The results highlight the significant impact of dysregulated miRNAs on the inflammatory pathways and hormonal imbalances characteristic of endometriosis. Consequently, miRNAs hold promise as potential non-invasive biomarkers and targeted therapeutic agents aimed at addressing inflammation and enhancing the response to progesterone treatment in individuals with endometriosis.
Collapse
Affiliation(s)
- Jing-Xian Hon
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norhazlina Abdul Wahab
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Abdul Kadir Abdul Karim
- Department of Obstetrics & Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
14
|
Soltani-Fard E, Asadi M, Taghvimi S, Vafadar A, Vosough P, Tajbakhsh A, Savardashtaki A. Exosomal microRNAs and long noncoding RNAs: as novel biomarkers for endometriosis. Cell Tissue Res 2023; 394:55-74. [PMID: 37480408 DOI: 10.1007/s00441-023-03802-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Endometriosis is a gynecological inflammatory disorder characterized by the development of endometrial-like cells outside the uterine cavity. This disease is associated with a wide range of clinical presentations, such as debilitating pelvic pain and infertility issues. Endometriosis diagnosis is not easily discovered by ultrasound or clinical examination. Indeed, difficulties in noninvasive endometriosis diagnosis delay the confirmation and management of the disorder, increase symptoms, and place a significant medical and financial burden on patients. So, identifying specific and sensitive biomarkers for this disease should therefore be a top goal. Exosomes are extracellular vesicles secreted by most cell types. They transport between cells' bioactive molecules such as noncoding RNAs and proteins. MicroRNAs and long noncoding RNAs which are key molecules transferred by exosomes have recently been identified to have a significant role in endometriosis by modulating different proteins and their related genes. As a result, the current review focuses on exosomal micro-and-long noncoding RNAs that are involved in endometriosis disease. Furthermore, major molecular mechanisms linking corresponding RNA molecules to endometriosis development will be briefly discussed to better clarify the potential functions of exosomal noncoding RNAs in the therapy and diagnosis of endometriosis.
Collapse
Affiliation(s)
- Elahe Soltani-Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Kai K, Joshi NR, Burns GW, Hrbek SM, Vegter EL, Ochoa-Bernal MA, Song Y, Moldovan GE, Sempere LF, Miyadahira EH, Serafini PC, Fazleabas AT. MicroRNA-210-3p Regulates Endometriotic Lesion Development by Targeting IGFBP3 in Baboons and Women with Endometriosis. Reprod Sci 2023; 30:2932-2944. [PMID: 37188982 PMCID: PMC10556147 DOI: 10.1007/s43032-023-01253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
MicroRNAs (miRs) play an important role in the pathophysiology of endometriosis; however, the role of miR-210 in endometriosis remains unclear. This study explores the role of miR-210 and its targets, IGFBP3 and COL8A1, in ectopic lesion growth and development. Matched eutopic (EuE) and ectopic (EcE) endometrial samples were obtained for analysis from baboons and women with endometriosis. Immortalized human ectopic endometriotic epithelial cells (12Z cells) were utilized for functional assays. Endometriosis was experimentally induced in female baboons (n = 5). Human matched endometrial and endometriotic tissues were obtained from women (n = 9, 18-45 years old) with regular menstrual cycles. Quantitative reverse transcript polymerase chain reaction (RT-qPCR) analysis was performed for in vivo characterization of miR-210, IGFBP3, and COL8A1. In situ hybridization and immunohistochemical analysis were performed for cell-specific localization. Immortalized endometriotic epithelial cell lines (12Z) were utilized for in vitro functional assays. MiR-210 expression was decreased in EcE, while IGFBP3 and COL8A1 expression was increased in EcE. MiR-210 was expressed in the glandular epithelium of EuE but attenuated in those of EcE. IGFBP3 and COL8A1 were expressed in the glandular epithelium of EuE and were increased compared to EcE. MiR-210 overexpression in 12Z cells suppressed IGFBP3 expression and attenuated cell proliferation and migration. MiR-210 repression and subsequent unopposed IGFBP3 expression may contribute to endometriotic lesion development by increasing cell proliferation and migration.
Collapse
Affiliation(s)
- Kentaro Kai
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Yufu, Japan
| | - Niraj R Joshi
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Gregory W Burns
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Samantha M Hrbek
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Erin L Vegter
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Maria Ariadna Ochoa-Bernal
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Yong Song
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Genna E Moldovan
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Lorenzo F Sempere
- Department of Radiology, Precision Health Program, Michigan State University, East Lansing, MI, USA
| | | | - Paulo C Serafini
- Department of Gynecology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Asgerally T Fazleabas
- Department of Obstetrics and Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
16
|
Xu Y, Liu H, Xiong W, Peng Y, Li X, Long X, Jin J, Liang J, Weng R, Liu J, Zhang L, Liu Y. A novel mechanism regulating pyroptosis-induced fibrosis in endometriosis via lnc-MALAT1/miR-141-3p/NLRP3 pathway†. Biol Reprod 2023; 109:156-171. [PMID: 37233993 DOI: 10.1093/biolre/ioad057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 05/27/2023] Open
Abstract
Endometriosis is a chronic inflammatory disease distinguished by ectopic endometrium and fibrosis. NLRP3 inflammasome and pyroptosis are present in endometriosis. Aberrant increase of Long noncoding (Lnc)-metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a vital role in endometriosis. However, the relationship between lnc-MALAT1, pyroptosis, and fibrosis is not completely known. In the present study, we found that the pyroptosis levels in ectopic endometrium of patients with endometriosis were significantly increased, consistent with fibrosis levels. Lipopolysaccharide (LPS) + ATP could induce pyroptosis of primary endometrial stromal cells (ESCs), thereby releasing interleukin (IL)-1β and stimulating transforming growth factor (TGF)-β1-mediated fibrosis. NLRP3 inhibitor MCC950 had the same effect as TGF-β1 inhibitor SB-431542 in suppressing the fibrosis-inducing effect of LPS + ATP in vivo and in vitro. The abnormal increase of lnc-MALAT1 in ectopic endometrium was connected with NLRP3-mediated pyroptosis and fibrosis. Leveraging bioinformatic prediction and luciferase assays combined with western blotting and quantitative reverse transcriptase-polymerase chain reaction, we validated that lnc-MALAT1 sponges miR-141-3p to promote NLRP3 expression. Silencing lnc-MALAT1 in HESCs ameliorated NLRP3-mediated pyroptosis and IL-1β release, thereby relieving TGF-β1-mediated fibrosis. Consequently, our findings suggest that lnc-MALAT1 is critical for NLRP3-induced pyroptosis and fibrosis in endometriosis through sponging miR-141-3p, which may indicate a new therapeutic target of endometriosis treatment.
Collapse
Affiliation(s)
- Ying Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Reproductive Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Peng
- Department of Obstetrics and Gynecology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Long
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Jin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiwen Weng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Banerjee S, Xu W, Doctor A, Driss A, Nezhat C, Sidell N, Taylor RN, Thompson WE, Chowdhury I. TNFα-induced altered miRNA expression links to NF-κB signaling pathway in endometriosis. RESEARCH SQUARE 2023:rs.3.rs-2870585. [PMID: 37205467 PMCID: PMC10187425 DOI: 10.21203/rs.3.rs-2870585/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB-signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-QPCR, the expression of several miRNAs were quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC) and also TNFα treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT and ERK was measured by westernblot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly (p < 0.05) in EESCs compared to NESC. Also treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppresses the phosphorylation of AKT, ERK, and NF-κB.
Collapse
Affiliation(s)
| | - Wei Xu
- Morehouse School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen LH, Lo WC, Huang HY, Wu HM. A Lifelong Impact on Endometriosis: Pathophysiology and Pharmacological Treatment. Int J Mol Sci 2023; 24:7503. [PMID: 37108664 PMCID: PMC10139092 DOI: 10.3390/ijms24087503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Endometriosis is a chronic inflammatory disease associated with bothersome symptoms in premenopausal women and is complicated with long-term systemic impacts in the post-menopausal stage. It is generally defined by the presence of endometrial-like tissue outside the uterine cavity, which causes menstrual disorders, chronic pelvic pain, and infertility. Endometriotic lesions can also spread and grow in extra-pelvic sites; the chronic inflammatory status can cause systemic effects, including metabolic disorder, immune dysregulation, and cardiovascular diseases. The uncertain etiologies of endometriosis and their diverse presentations limit the treatment efficacy. High recurrence risk and intolerable side effects result in poor compliance. Current studies for endometriosis have paid attention to the advances in hormonal, neurological, and immunological approaches to the pathophysiology and their potential pharmacological intervention. Here we provide an overview of the lifelong impacts of endometriosis and summarize the updated consensus on therapeutic strategies.
Collapse
Affiliation(s)
- Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wei-Che Lo
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
20
|
Rossi M, Seidita I, Vannuccini S, Prisinzano M, Donati C, Petraglia F. Epigenetics, endometriosis and sex steroid receptors: An update on the epigenetic regulatory mechanisms of estrogen and progesterone receptors in patients with endometriosis. VITAMINS AND HORMONES 2023; 122:171-191. [PMID: 36863793 DOI: 10.1016/bs.vh.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Endometriosis is a benign gynecological disease affecting ∼10% of reproductive-aged women and is defined as the presence of endometrial glands and stroma outside the uterine cavity. Endometriosis can cause a variety of health problems, from pelvic discomfort to catamenial pneumothorax, but it's mainly linked with severe and chronic pelvic pain, dysmenorrhea, and deep dyspareunia, as well as reproductive issues. The pathogenesis of endometriosis involves an endocrine dysfunction, with estrogen dependency and progesterone resistance, and inflammatory mechanism activation, together with impaired cell proliferation and neuroangiogenesis. The present chapter aims to discuss the main epigenetic mechanisms related to estrogen receptors (ERs) and progesterone receptors (PRs) in patients with endometriosis. There are numerous epigenetic mechanisms participating in endometriosis, regulating the expression of the genes encoding these receptors both indirectly, through the regulation of transcription factors, and directly, through DNA methylation, histone modifications, micro RNAs and long noncoding RNAs. This represents an open field of investigation, which may lead to important clinical implications such as the development of epigenetic drugs for the treatment of endometriosis and the identification of specific and early biomarkers for the disease.
Collapse
Affiliation(s)
- Margherita Rossi
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Isabelle Seidita
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Silvia Vannuccini
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Matteo Prisinzano
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Chiara Donati
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
21
|
Antonio LGL, Meola J, Rosa-e-Silva ACJDS, Nogueira AA, Candido dos Reis FJ, Poli-Neto OB, Rosa-e-Silva JC. Altered Differential Expression of Genes and microRNAs Related to Adhesion and Apoptosis Pathways in Patients with Different Phenotypes of Endometriosis. Int J Mol Sci 2023; 24:ijms24054434. [PMID: 36901866 PMCID: PMC10002379 DOI: 10.3390/ijms24054434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
We aim to investigate the expression of genes (MAPK1 and CAPN2) and microRNAs (miR-30a-5p, miR-7-5p, miR-143-3p, and miR-93-5p) involved in adhesion and apoptosis pathways in superficial peritoneal endometriosis (SE), deep infiltrating endometriosis (DE), and ovarian endometrioma (OE), and to evaluate whether these lesions share the same pathophysiological mechanisms. We used samples of SE (n = 10), DE (n = 10), and OE (n = 10), and endometrial biopsies of these respective patients affected with endometriosis under treatment at a tertiary University Hospital. Endometrial biopsies collected in the tubal ligation procedure from women without endometriosis comprised the control group (n = 10). Quantitative real-time polymerase chain reaction was performed. The expression of MAPK1 (p < 0.0001), miR-93-5p (p = 0.0168), and miR-7-5p (p = 0.0006) was significantly lower in the SE group than in the DE and OE groups. The expression of miR-30a (p = 0.0018) and miR-93 (p = 0.0052) was significantly upregulated in the eutopic endometrium of women with endometriosis compared to the controls. MiR-143 (p = 0.0225) expression also showed a statistical difference between the eutopic endometrium of women with endometriosis and the control group. In summary, SE showed lower pro-survival gene expression and miRNAs involved in this pathway, indicating that this phenotype has a different pathophysiological mechanism compared to DE and OE.
Collapse
|
22
|
Li Q, Yang L, Zhang F, Liu J, Jiang M, Chen Y, Ren C. m6A methyltransferase METTL3 inhibits endometriosis by regulating alternative splicing of MIR17HG. Reproduction 2023; 165:197-208. [PMID: 36445237 DOI: 10.1530/rep-22-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
In brief Inflammation and abnormal immune response are the key processes in the development of endometriosis (EMs), and m6A modification can regulate the inflammatory response. This study reveals that METTL3-mediated N6-methyladenosine (m6A) modification plays an important role in EMs. Abstract m6A modification is largely involved in the development of different diseases. This study intended to investigate the implication of m6A methylation transferase methyltransferase like 3 (METTL3) in EMs. EMs- and m6A-related mRNAs and long non-coding RNAs were identified through bioinformatics analysis. Next, EM mouse models established by endometrial autotransplantation and mouse endometrial stromal cell (mESC) were prepared and treated with oe-METTL3 or sh-MIR17HG for pinpointing the in vitro and in vivo effects of METTL3 on EMs in relation to MIR17HG through the determination of mESC biological processes as well as estradiol (E2) and related lipoprotein levels. We demonstrated that METTL3 and MIR17HG were downregulated in the EMs mouse model. Overexpression of METTL3 suppressed the proliferation, migration, and invasion of mESCs. In addition, METTL3 enhanced the expression of MIR17HG through m6A modification. Moreover, METTL3 could inhibit the E2 level and alter related lipoprotein levels in EMs mice through the upregulation of MIR17HG. The present study highlighted that the m6A methylation transferase METTL3 prevents EMs progression by upregulating MIR17HG expression.
Collapse
Affiliation(s)
- Qian Li
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Li Yang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Feng Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Jiaxi Liu
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Min Jiang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Yannan Chen
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Chenchen Ren
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Szaflik T, Romanowicz H, Szyłło K, Smolarz B. Long Non-Coding RNA SNHG4 Expression in Women with Endometriosis: A Pilot Study. Genes (Basel) 2023; 14:152. [PMID: 36672893 PMCID: PMC9859099 DOI: 10.3390/genes14010152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Endometriosis is a chronic disease of the genital organs that mainly affects women of reproductive age. The analysis of long non-coding RNA (lncRNA) in endometriosis is a novel field of science. Recently, attention has been drawn to SNHG4, which is incorrectly expressed in various human diseases, including endometriosis. AIM The aim of this pilot study was to analyze the expression of lncRNA small nucleolar RNA host gene 4 (SNHG4) and to investigate its significance in endometriosis. MATERIAL AND METHODS LncRNA SNHG4 expression was investigated in paraffin blocks in endometriosis patients (n = 100) and in endometriosis-free controls (n = 100) using a real-time PCR assay. RESULTS This study revealed a higher expression of SNHG4 in endometriosis patients than in controls. A statistically significant relationship between expression level and SNHG4 was found in relation to The Revised American Society for Reproductive Medicine classification of endometriosis, 1996, in the group of patients with endometriosis. CONCLUSION This pilot study has revealed that gene expression in SNHG4 plays an important role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Tomasz Szaflik
- Department of Gynaecology, Oncological Gynaecology and Endometriosis Treatment, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Krzysztof Szyłło
- Department of Gynaecology, Oncological Gynaecology and Endometriosis Treatment, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
24
|
Bonavina G, Taylor HS. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front Endocrinol (Lausanne) 2022; 13:1020827. [PMID: 36387918 PMCID: PMC9643365 DOI: 10.3389/fendo.2022.1020827] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the clinically recognized association between endometriosis and infertility, the mechanisms implicated in endometriosis-associated infertility are not fully understood. Endometriosis is a multifactorial and systemic disease that has pleiotropic direct and indirect effects on reproduction. A complex interaction between endometriosis subtype, pain, inflammation, altered pelvic anatomy, adhesions, disrupted ovarian reserve/function, and compromised endometrial receptivity as well as systemic effects of the disease define endometriosis-associated infertility. The population of infertile women with endometriosis is heterogeneous, and diverse patients' phenotypes can be observed in the clinical setting, thus making difficult to establish a precise diagnosis and a single mechanism of endometriosis related infertility. Moreover, clinical management of infertility associated with endometriosis can be challenging due to this heterogeneity. Innovative non-invasive diagnostic tools are on the horizon that may allow us to target the specific dysfunctional alteration in the reproduction process. Currently the treatment should be individualized according to the clinical situation and to the suspected level of impairment. Here we review the etiology of endometriosis related infertility as well as current treatment options, including the roles of surgery and assisted reproductive technologies.
Collapse
Affiliation(s)
- Giulia Bonavina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Bao Q, Zheng Q, Wang S, Tang W, Zhang B. LncRNA HOTAIR regulates cell invasion and migration in endometriosis through miR-519b-3p/PRRG4 pathway. Front Oncol 2022; 12:953055. [PMID: 36338672 PMCID: PMC9634122 DOI: 10.3389/fonc.2022.953055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Endometriosis is a common benign disease in gynecology and has malignant biological behaviors, such as hyperplasia, invasion, metastasis, and recurrence. However, the pathogenesis of endometriosis remains unclear. The present study aimed to investigate whether LncRNA HOTAIR regulates cell invasion and migration in endometriosis by regulating the miR-519b-3p/PRRG4 pathway. The qRT-PCR results showed that the average relative expression of LncRNA HOTAIR was much higher in ectopic endometrial tissues than in eutopic endometrial tissues. Scratch and transwell assays showed that the cell migration and invasion ability of LncRNA HOTAIR overexpression group was significantly higher than those in the control group. Conversely, the LncRNA HOTAIR knockdown group showed the opposite results. Bioinformatics analysis suggested that the downstream target genes of LncRNA HOTAIR were miR-519b-3p and Prrg4. Knockdown of LncRNA HOTAIR can reduce the up-regulation of Prrg4 by miR-519b-3p and then inhibit the invasion and migration ability of endometrial stromal cells. In Conclusion, LncRNA HOTAIR can regulate the ability of invasion and migration of endometrial stromal cells, and its mechanism is proved by regulating the miR-519b-3p/PRRG4 pathway.
Collapse
Affiliation(s)
- Qiufang Bao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Obstetrics and Gynecology, The First Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Qiaomei Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Obstetrics and Gynecology, The First Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Shaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Obstetrics and Gynecology, The First Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Wenlu Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Obstetrics and Gynecology, The First Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Obstetrics and Gynecology, The First Clinical College of Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Bin Zhang,
| |
Collapse
|
26
|
Analysis of Long Non-Coding RNA (lncRNA) UCA1, MALAT1, TC0101441, and H19 Expression in Endometriosis. Int J Mol Sci 2022; 23:ijms231911583. [PMID: 36232884 PMCID: PMC9570462 DOI: 10.3390/ijms231911583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Endometriosis is a disease of complex etiology. Hormonal, immunological, and environmental factors are involved in its formation. In recent years, special attention has been paid to genetic mechanisms that can have a significant impact on the increased incidence of endometriosis. The study aimed to analyze the expression of four long non-coding RNA (lncRNA) genes, UCA1, MALAT1, TC0101441, and H19, in the context of the risk of developing endometriosis. The material for genetic testing for the expression of lncRNA genes were tissue slices embedded in paraffin blocks from patients with endometriosis (n = 100) and the control group (n = 100). Gene expression was determined by the RT-PCR technique. The expression of the H19 gene in endometriosis patients was statistically significantly lower than in the control group. A statistically significant association was found between H19 gene expression in relation to The Revised American Society for Reproductive Medicine classification of endometriosis (rASRM) in the group of patients with endometriosis. Research suggests that H19 expression plays an important role in the pathogenesis of endometriosis.
Collapse
|
27
|
Regulation of angiogenesis by microRNAs and long non-coding RNAs in endometriosis. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Roles of microRNAs in Regulating Apoptosis in the Pathogenesis of Endometriosis. Life (Basel) 2022; 12:life12091321. [PMID: 36143357 PMCID: PMC9500848 DOI: 10.3390/life12091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Endometriosis is a gynecologic disorder characterized by the presence of endometrial tissues outside the uterine cavity affecting reproductive-aged women. Previous studies have shown that microRNAs and their target mRNAs are expressed differently in endometriosis, suggesting that this molecule may play a role in the development and persistence of endometriotic lesions. microRNA (miRNA), a small non-coding RNA fragment, regulates cellular functions such as cell proliferation, differentiation, and apoptosis by the post-transcriptional modulation of gene expression. In this review, we focused on the dysregulated miRNAs in women with endometriosis and their roles in the regulation of apoptosis. The dysregulated miRNAs and their target genes in this pathophysiology were highlighted. Circulating miRNAs as potential biomarkers for the diagnosis of endometriosis have also been identified. As shown by various studies, miRNAs were reported to be a potent regulator of gene expression in endometriosis; thus, identifying the dysregulated miRNAs and their target genes could help discover new therapeutic targets for treating this disease. The goal of this review is to draw attention to the functions that miRNAs play in the pathophysiology of endometriosis, particularly those that govern cell death.
Collapse
|
29
|
Abo C, Biquard L, Girardet L, Chouzenoux S, Just PA, Chapron C, Vaiman D, Borghese B. Unbiased In Silico Analysis of Gene Expression Pinpoints Circulating miRNAs Targeting KIAA1324, a New Gene Drastically Downregulated in Ovarian Endometriosis. Biomedicines 2022; 10:biomedicines10092065. [PMID: 36140165 PMCID: PMC9495942 DOI: 10.3390/biomedicines10092065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022] Open
Abstract
Objective: To identify circulating miRNAs associated with ovarian endometriosis (OMA), and to analyze candidate genes targeted by these miRNAs. Methods: Putative regulating miRNAs were identified through an original bioinformatics approach. We first queried the miRWalk 2.0 database to collect putative miRNA targets. Then, we matched it to a transcriptomic dataset of OMA. Moving from gene expression in the tissue to possible alterations in the patient plasma, a selection of these miRNAs was quantified by qRT-PCR in plasma samples from 93 patients with isolated OMA and 95 patients surgically checked as free from endometriosis. Then, we characterized the genes regulated by more than one miRNA and validated them by immunohistochemistry and transfection experiments on endometrial cell primary cultures obtained from endometrial biopsies of 10 women with and without endometriosis with miRNA mimics. Stromal and epithelial cells were isolated and cultured separately and gene expression levels were measured by RT-qPCR. Results: Eight miRNAs were identified by bioinformatics analysis. Two of them were overexpressed in plasma from OMA patients: let-7b-5p and miR-92a-3p (p < 0.005). Three miRNAs, let-7b and miR-92a-3p, and miR-93-5p potentially targeted KIAA1324, an estrogen-responsive gene and one of the most downregulated genes in OMA. Transfection experiments with mimics of these two miRNAs showed a strong decrease in KIAA1324 expression, up to 40%. Immunohistochemistry revealed a moderate-to-intense staining for KIAA1324 in the eutopic endometrium and a faint-to-moderate staining in the ectopic endometrium for half of the samples, which is concordant with the transcriptomic data. Discussion and Conclusion: Our results suggested that KIAA1324 might be involved in endometriosis through the downregulating action of two circulating miRNAs. As these miRNAs were found to be overexpressed, their quantification in plasma could provide a tool for an early diagnosis of endometriosis.
Collapse
Affiliation(s)
- Carole Abo
- U1016 Institut Cochin, Institut National de la Santé et de la Recherche Médicale, UMR8104 Centre National de la Recherche Scientifique, 75016 Paris, France
- Faculty of Medicine, University of Paris, 75006 Paris, France
| | - Louise Biquard
- U1016 Institut Cochin, Institut National de la Santé et de la Recherche Médicale, UMR8104 Centre National de la Recherche Scientifique, 75016 Paris, France
- Faculty of Medicine, University of Paris, 75006 Paris, France
| | - Laura Girardet
- U1016 Institut Cochin, Institut National de la Santé et de la Recherche Médicale, UMR8104 Centre National de la Recherche Scientifique, 75016 Paris, France
- Faculty of Medicine, University of Paris, 75006 Paris, France
| | - Sandrine Chouzenoux
- U1016 Institut Cochin, Institut National de la Santé et de la Recherche Médicale, UMR8104 Centre National de la Recherche Scientifique, 75016 Paris, France
- Faculty of Medicine, University of Paris, 75006 Paris, France
| | - Pierre-Alexandre Just
- U1016 Institut Cochin, Institut National de la Santé et de la Recherche Médicale, UMR8104 Centre National de la Recherche Scientifique, 75016 Paris, France
- Faculty of Medicine, University of Paris, 75006 Paris, France
- Department of Pathological Anatomy and Cytology, Hôpital Cochin, Assistance Publique—Hôpitaux de Paris, 75004 Paris, France
| | - Charles Chapron
- U1016 Institut Cochin, Institut National de la Santé et de la Recherche Médicale, UMR8104 Centre National de la Recherche Scientifique, 75016 Paris, France
- Faculty of Medicine, University of Paris, 75006 Paris, France
- Department of Gynecologic Surgery, Hôpital Cochin, Assistance Publique—Hôpitaux de Paris, 75004 Paris, France
| | - Daniel Vaiman
- U1016 Institut Cochin, Institut National de la Santé et de la Recherche Médicale, UMR8104 Centre National de la Recherche Scientifique, 75016 Paris, France
- Faculty of Medicine, University of Paris, 75006 Paris, France
| | - Bruno Borghese
- U1016 Institut Cochin, Institut National de la Santé et de la Recherche Médicale, UMR8104 Centre National de la Recherche Scientifique, 75016 Paris, France
- Faculty of Medicine, University of Paris, 75006 Paris, France
- Department of Gynecologic Surgery, Hôpital Cochin, Assistance Publique—Hôpitaux de Paris, 75004 Paris, France
- Correspondence:
| |
Collapse
|
30
|
A review of the effects of estrogen and epithelial-mesenchymal transformation on intrauterine adhesion and endometriosis. Transpl Immunol 2022; 79:101679. [PMID: 35908631 DOI: 10.1016/j.trim.2022.101679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022]
Abstract
Uterus transplantation has become an option for women suffering from some form of infertility. Current review discusses key physiological functions of the endometrium requiring the transition of tissue cells between the mesenchyme and epithelial cell phenotype, a process known as epithelial-mesenchymal transition (EMT). Estrogen and EMT play a key role in the pathogenesis and treatment of intrauterine adhesion and endometriosis. There is also a close regulatory relationship between estrogen and EMT, and investigation of this relationship is of great significance for the treatment of endometrial disorders. The present review discusses the effects of estrogen on endometrial dysfunction, with a focus on the relationship between estrogen and EMT in endometrial disorders, taking into consideration the mechanisms by which receptors that regulate their functions and proteins that regulate their local biological functions interact with the factors involved in EMT. In addition, the review summarizes emerging drugs targeting receptors or proteins and provides information on the direction of new therapies for endometrial disorders.
Collapse
|
31
|
Liu Y, Wang J, Zhang X. An Update on the Multifaceted Role of NF-kappaB in Endometriosis. Int J Biol Sci 2022; 18:4400-4413. [PMID: 35864971 PMCID: PMC9295070 DOI: 10.7150/ijbs.72707] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/12/2022] [Indexed: 11/14/2022] Open
Abstract
Endometriosis remains a common but challenging gynecological disease among reproductive-aged women with an unclear pathogenesis and limited therapeutic options. Numerous pieces of evidence suggest that NF-κB signaling, a major regulator of inflammatory responses, is overactive in endometriotic lesions and contributes to the onset, progression, and recurrence of endometriosis. Several factors, such as estrogen, progesterone, oxidative stress, and noncoding RNAs, can regulate NF-κB signaling in endometriosis. In the present review, we discuss the mechanisms by which these factors regulate NF-κB during endometriosis progression and provide an update on the role of NF-κB in affecting endometriotic cells, peritoneal macrophages (PMs) as well as endometriosis-related symptoms, such as pain and infertility. Furthermore, the preclinical drugs for blocking NF-κB signaling in endometriosis are summarized, including plant-derived medicines, NF-κB inhibitors, other known drugs, and the potential anti-NF-κB drugs predicted through the Drug-Gene Interaction Database. The present review discusses most of the studies concerning the multifaceted role of NF-κB signaling in endometriosis and provides a summary of NF-κB-targeted treatment in detail.
Collapse
Affiliation(s)
- Yuanmeng Liu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
32
|
Xie C, Yin Z, Liu Y. Analysis of characteristic genes and ceRNA regulation mechanism of endometriosis based on full transcriptional sequencing. Front Genet 2022; 13:902329. [PMID: 35938015 PMCID: PMC9353714 DOI: 10.3389/fgene.2022.902329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Endometriosis is a common gynecological disorder that usually causes infertility, pelvic pain, and ovarian masses. This study aimed to mine the characteristic genes of endometriosis, and explore the regulatory mechanism and potential therapeutic drugs based on whole transcriptome sequencing data and resources from public databases, providing a theoretical basis for the diagnosis and treatment of endometriosis. Methods: The transcriptome data of the five eutopic (EU) and ectopic (EC) endometrium samples were obtained from Beijing Obstetrics and Gynecology Hospital, Beijing, China, and dinified as the own data set. The expression and clinical data of EC and EU samples in GSE25628 and GSE7305 datasets were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds). Differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify the endometriosis-related differentially expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted by the “clusterProfiler” R package. Then, characteristic genes for endometriosis were identified by the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithm. The expression of characteristic genes was verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western-blot. The receiver operating characteristic (ROC) curve was used to evaluate the discriminatory ability of characteristic genes. We assessed the abundance of infiltrating immune cells in each sample using MCP-counter and ImmuCellAI algorithms. The competitive endogenous RNA (ceRNA) regulatory network of characteristic genes was created by Cytoscape and potential targeting drugs were obtained in the CTD database. Results: 44 endometriosis-related differentially expressed genes were obtained from GSE25628 and the own dataset. Subsequently, LASSO and SVM-RFE algorithms identified four characteristic genes, namely ACLY, PTGFR, ADH1B, and MYOM1. The results of RT-PCR and western-blot were consistent with those of sequencing. The result of ROC curves indicated that the characteristic genes had powerful abilities in distinguishing EC samples from EU samples. Infiltrating immune cells analysis suggested that there was a certain difference in immune microenvironment between EC and EU samples. The characteristic genes were significantly correlated with specific differential immune cells between EC and EU samples. Then, a ceRNA regulatory network of characteristic genes was constructed and showed a total of 7, 11, 11, and 1 miRNA associated with ACLY, ADH1B, PTGFR, and MYOM1, respectively. Finally, we constructed a gene-compound network and mined 30 drugs targeting ACLY, 33 drugs targeting ADH1B, 13 drugs targeting MYOM1, and 12 drugs targeting PTGFR. Conclusion: Comprehensive bioinformatic analysis was used to identify characteristic genes, and explore ceRNA regulatory network and potential therapeutic agents for endometriosis. Altogether, these findings provide new insights into the diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
| | | | - Yong Liu
- *Correspondence: Chengmao Xie, ; Yong Liu,
| |
Collapse
|
33
|
Bendifallah S, Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E. A Bioinformatics Approach to MicroRNA-Sequencing Analysis Based on Human Saliva Samples of Patients with Endometriosis. Int J Mol Sci 2022; 23:8045. [PMID: 35887388 PMCID: PMC9317484 DOI: 10.3390/ijms23148045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Endometriosis, defined by the presence of endometrium-like tissue outside the uterus, affects 2-10% of the female population, i.e., around 190 million women, worldwide. The aim of the prospective ENDO-miRNA study was to develop a bioinformatics approach for microRNA-sequencing analysis of 200 saliva samples for miRNAome expression and to test its diagnostic accuracy for endometriosis. Among the 200 patients, 76.5% (n = 153) had confirmed endometriosis and 23.5% (n = 47) had no endometriosis (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). The number of expressed miRNAs ranged from 1250 (outlier) to 2561 per sample. Some 2561 miRNAs were found to be differentially expressed in the saliva samples of patients with endometriosis compared with the control patients. Among these, 1.17% (n = 30) were up- or downregulated. Among these, the F1-score, sensitivity, specificity, and AUC ranged from 11-86.8%, 5.8-97.4%, 10.6-100%, and 39.3-69.2%, respectively. Here, we report a bioinformatic approach to saliva miRNA sequencing and analysis. We underline the advantages of using saliva over blood in terms of ease of collection, reproducibility, stability, safety, non-invasiveness. This report describes the whole saliva transcriptome to make miRNA quantification a validated, standardized, and reliable technique for routine use. The methodology could be applied to build a saliva signature of endometriosis.
Collapse
Affiliation(s)
- Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hospital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6: Endometriosis Expert Center (C3E), Sorbonne University (GRC6 C3E SU), 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hospital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6: Endometriosis Expert Center (C3E), Sorbonne University (GRC6 C3E SU), 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | | | - Ludmila Jornea
- Paris Brain Institute-Institut du Cerveau-ICM, Sorbonne University, Inserm U1127, CNRS UMR 7225, AP-HP-Hôpital Pitié-Salpêtrière, 75013 Paris, France;
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hospital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6: Endometriosis Expert Center (C3E), Sorbonne University (GRC6 C3E SU), 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hospital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hospital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6: Endometriosis Expert Center (C3E), Sorbonne University (GRC6 C3E SU), 75020 Paris, France
| |
Collapse
|
34
|
Liu S, Qiu J, Tang X, Li Q, Shao W. Estrogen Regulates the Expression and Function of lncRNA-H19 in Ectopic Endometrium. Int J Womens Health 2022; 14:821-830. [PMID: 35789921 PMCID: PMC9250333 DOI: 10.2147/ijwh.s365943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are involved in the pathogenesis of endometriosis and can be regulated by estrogen. This study aimed to investigate the role of estrogen in regulating the expression and function of lncRNA-H19 in endometriosis. Methods Endometrial stromal cells (ESCs) were isolated from ectopic, eutopic endometrium with endometriosis and control endometrium without endometriosis, and lncRNA-H19 expression was detected using real-time polymerase chain reaction (RT-PCR). Ectopic endometrial stromal cells (ecESCs) were treated with 17β-estradiol at 10−8mol/L for 0, 12, 24 and 48 hours, and lncRNA-H19 expressions of cells were evaluated using RT-PCR. After ecESCs were treated with 17β-estradiol for 48 hours, lncRNA-H19 expression was knocked down and cell proliferative and invasive abilities were compared. Results The expression of lncRNA-H19 in ecESCs was significantly higher than that in eutopic endometrial stromal cells (euESCs) and control ESCs. After treated with 17β-estradiol, ecESCshadupregulatedlncRNA-H19 expression with time-dependent manner. Cell proliferation and invasion increased when estrogen upregulated lncRNA-H19 expression in ecESCs, however, cell proliferation restored and cell invasion did not change when lncRNA-H19 was knocked down in ecESCs. Conclusion The expression and function of lncRNA-H19 was regulated by estrogen in ecESCs, which probably contributed to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Songping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Department of Obstetrics and Gynecology, Zhenjiang Maternal and Child Hospital, Zhenjiang, Jiangsu, People’s Republic of China
- Correspondence: Songping Liu, Email
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Qinmei Li
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Wei Shao
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
35
|
Chen X, Liu M. CircATRNL1 increases acid-sensing ion channel 1 to advance epithelial-mesenchymal transition in endometriosis by binding to microRNA-103a-3p. Reprod Biol 2022; 22:100643. [DOI: 10.1016/j.repbio.2022.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
|
36
|
Nothnick WB, Peterson R, Minchella P, Falcone T, Graham A, Findley A. The Relationship and Expression of miR-451a, miR-25-3p and PTEN in Early Peritoneal Endometriotic Lesions and Their Modulation In Vitro. Int J Mol Sci 2022; 23:5862. [PMID: 35682544 PMCID: PMC9180609 DOI: 10.3390/ijms23115862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND miR-451a can function as a tumor suppresser and has been shown to be elevated in both endometriotic lesion tissue and serum from women with endometriosis. To further explore the role of miR-451a in the pathophysiology of endometriosis, specifically, further evaluating its association with the tumor suppressor, phosphatase and tensin homolog (PTEN), we examined their expression in individual endometriotic lesion tissue to gain insight into their relationship and further explore if miR-451a regulates PTEN expression. METHODS A total of 55 red, peritoneal endometriotic lesions and matched eutopic endometrial specimens were obtained from 46 patients with endometriosis. miR-451a, miR-25-3p and PTEN mRNA levels were assessed by qRT-PCR and reported for each matched eutopic and ectopic sample. To evaluate miR-451a and miR-25-3p expression of miR-25-3p and PTEN, respectively, 12Z cells (endometriotic epithelial cell line) were transfected and miR-25-3p expression was assessed by qRT-PCR, while PTEN protein expression was assessed by Western blotting. RESULTS PTEN and miR-25-3p expression exhibited an inverse relationship, as did miR-25-3p and miR-451a in individual lesions. Over-expression of miR-451a in 12Z cells resulted in down-regulation of miR-25-3p, while up-regulation of miR-25-3p resulted in down-regulation of PTEN protein expression. CONCLUSIONS By assessing individual endometriotic lesion expression, we discovered an inverse relationship between miR-451a, miR-25-3p and PTEN, while in vitro cell transfection studies suggest that miR-451a may regulate PTEN expression via modulating miR-25-3p.
Collapse
Affiliation(s)
- Warren B. Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.P.); (P.M.); (A.G.)
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Riley Peterson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.P.); (P.M.); (A.G.)
| | - Paige Minchella
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.P.); (P.M.); (A.G.)
| | - Tommaso Falcone
- Cleveland Clinic, London E1 4DG, UK;
- Cleveland Clinic, Lerner College of Medicine, Cleveland, OH 44101, USA
| | - Amanda Graham
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.P.); (P.M.); (A.G.)
| | - Austin Findley
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
37
|
Bendifallah S, Dabi Y, Suisse S, Delbos L, Poilblanc M, Descamps P, Golfier F, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E. Endometriosis Associated-miRNome Analysis of Blood Samples: A Prospective Study. Diagnostics (Basel) 2022; 12:1150. [PMID: 35626305 PMCID: PMC9140062 DOI: 10.3390/diagnostics12051150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to describe the bioinformatics approach to analyze miRNome with Next Generation Sequencing (NGS) of 200 plasma samples from patients with and without endometriosis. Patients were prospectively included in the ENDO-miRNA study that selected patients with pelvic pain suggestive of endometriosis. miRNA sequencing was performed using an Novaseq6000 sequencer (Illumina, San Diego, CA, USA). Small RNA-seq of 200 plasma samples yielded ~4228 M raw sequencing reads. A total of 2633 miRNAs were found differentially expressed. Among them, 8.6% (n = 229) were up- or downregulated. For these 229 miRNAs, the F1-score, sensitivity, specificity, and AUC ranged from 0-88.2%, 0-99.4%, 4.3-100%, and 41.5-68%, respectively. Utilizing the combined bioinformatic and NGS approach, a specific and broad panel of miRNAs was detected as being potentially suitable for building a blood signature of endometriosis.
Collapse
Affiliation(s)
- Sofiane Bendifallah
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University (GRC6 C3E SU), 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (E.D.)
- Cancer Biology and Therapeutics INSERM UMR_S_938, Centre de Recherche Saint-Antoine (CRSA), 75020 Paris, France
| | - Yohann Dabi
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University (GRC6 C3E SU), 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (E.D.)
- Cancer Biology and Therapeutics INSERM UMR_S_938, Centre de Recherche Saint-Antoine (CRSA), 75020 Paris, France
| | | | - Léa Delbos
- Endometriosis Expert Center—Pays de la Loire, Department of Obstetrics and Reproductive Medicine—CHU d’Angers, 49100 Angers, France; (L.D.); (P.D.)
| | - Mathieu Poilblanc
- Endometriosis Expert Center—Steering Committee of the EndAURA Network, Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, 69310 Pierre Bénite, France; (M.P.); (F.G.)
| | - Philippe Descamps
- Endometriosis Expert Center—Pays de la Loire, Department of Obstetrics and Reproductive Medicine—CHU d’Angers, 49100 Angers, France; (L.D.); (P.D.)
| | - Francois Golfier
- Endometriosis Expert Center—Steering Committee of the EndAURA Network, Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, 69310 Pierre Bénite, France; (M.P.); (F.G.)
| | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 75006 Paris, France;
| | - Delphine Bouteiller
- Genotyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University (GRC6 C3E SU), 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (E.D.)
- Cancer Biology and Therapeutics INSERM UMR_S_938, Centre de Recherche Saint-Antoine (CRSA), 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France;
| | - Emile Daraï
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University (GRC6 C3E SU), 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (E.D.)
- Cancer Biology and Therapeutics INSERM UMR_S_938, Centre de Recherche Saint-Antoine (CRSA), 75020 Paris, France
| |
Collapse
|
38
|
Soroczynska K, Zareba L, Dlugolecka M, Czystowska-Kuzmicz M. Immunosuppressive Extracellular Vesicles as a Linking Factor in the Development of Tumor and Endometriotic Lesions in the Gynecologic Tract. Cells 2022; 11:cells11091483. [PMID: 35563789 PMCID: PMC9105295 DOI: 10.3390/cells11091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Both gynecological tumors and endometriosis require for their development a favorable environment, termed in the case of tumors a "pre-metastatic niche" and in case of endometriosis a "pro-endometriotic niche". This is characterized by chronic inflammation and immunosuppression that support the further progression of initial lesions. This microenvironment is established and shaped in the course of a vivid cross-talk between the tumor or endometrial cells with other stromal, endothelial and immune cells. There is emerging evidence that extracellular vesicles (EVs) play a key role in this cellular communication, mediating both in tumors and endometriosis similar immunosuppressive and pro-inflammatory mechanisms. In this review, we discuss the latest findings about EVs as immunosuppressive factors, highlighting the parallels between gynecological tumors and endometriosis. Furthermore, we outline their role as potential diagnostic or prognostic biomarkers as well as their future in therapeutic applications.
Collapse
Affiliation(s)
- Karolina Soroczynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Lukasz Zareba
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Magdalena Dlugolecka
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Malgorzata Czystowska-Kuzmicz
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Correspondence:
| |
Collapse
|
39
|
Differential Expression and Bioinformatics Analysis of tRF/tiRNA in Endometriosis Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9911472. [PMID: 35281615 PMCID: PMC8913131 DOI: 10.1155/2022/9911472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/22/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022]
Abstract
Background. Endometriosis (EMs) is a benign chronic condition that tends to recur in women of childbearing age, with an incidence of approximately 10%. It is a multifactorial disease for which the pathogenesis is currently unclear. This study is aimed at investigating the expression and clinical significance of tRNA-derived small RNA (tsRNA), a novel noncoding small RNA with potential regulatory functions, in endometriosis. Methods. The tRF/tiRNA expression profiles in endometrial tissues from three pairs of endometriosis patients and controls were detected by tRF&tiRNA PCR microarray technology and then verified by quantitative real-time polymerase chain reaction (qPCR). The target genes and target sites of TRF396, tiRNA-5030-GlnTTG-3, TRF308, and TRF320 were predicted by miRanda, and the network diagram of their interaction with miRNA was drawn. The impact of tRNA-derived fragments on the pathogenesis of endometriosis was analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Results. Two upregulated and 19 downregulated tRNA-derived fragments were identified. The qRT-PCR results of 2 upregulated and 2 downregulated RNA-derived fragments were consistent with the RNA Seq data. The OR2B4 gene related to TRF396, the DGAT1 gene related to tiRNA-5030-GlnTTG-3, the KLF16 gene of TRF308, and the RNF213 gene of TRF320 had significant correlations. Gene Ontology and pathway analysis showed that the target genes of TRF396 and tiRNA-5030-GlnTTG-3 were mainly involved in the intrinsic components of the membrane and the overall composition of the membrane in cell components; molecular functions mainly involve olfactory conduction and G protein-coupled receptor activity. In the biological process, it was mainly involved in the detection of sensory stimuli. The target genes of TRF308 and TRF320 were mainly involved in the intracellular part; molecular functions are mainly related to DNA binding transcription factor activity and protein binding and mainly related to biological regulation of biological processes. Pathway analysis showed that the RAP1 signaling pathway and the AXON GUIDANCE signaling pathway may participate in the progression of endometriosis. Conclusion. The differential expression of tRF/tiRNA in endometriosis may be related to the pathogenesis of endometriosis. Furthermore, tRF/tiRNA may be a biomarker for the diagnosis and treatment of EMs in the future.
Collapse
|
40
|
Wang X, Wu P, Zeng C, Zhu J, Zhou Y, Lu Y, Xue Q. Long Intergenic Non-Protein Coding RNA 02381 Promotes the Proliferation and Invasion of Ovarian Endometrial Stromal Cells through the miR-27b-3p/CTNNB1 Axis. Genes (Basel) 2022; 13:433. [PMID: 35327987 PMCID: PMC8955621 DOI: 10.3390/genes13030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Catenin Beta 1 (CTNNB1) is a key regulator of cell proliferation and invasion in endometriosis; however, its upstream factor is not clear. Long noncoding RNAs may participate in endometriosis. The aim of this study was to investigate the mechanism of interaction between LINC02381 and CTNNB1 in endometriosis. METHOD Screening and validation of RNAs were completed by whole transcriptional sequencing and qRT-PCR. The subcellular localization of LINC02381 was determined by RNA in situ hybridization and nucleo-cytoplasmic separation. Plasmids were transfected for functional experiments. Luciferase assay was used to verify the binding relationship. RESULTS The expression of LINC02381 and CTNNB1 was significantly increased in ovarian ectopic endometrial tissues (OSAs) and ectopic endometrial stromal cells (ESCs). When LINC02381 was downregulated in ESCs, the expression of CTNNB1, metallopeptidase 9 (MMP9) and cyclinD1, as well as ESCs invasion and proliferation, decreased. LINC02381 was mainly present in the cytoplasm of ESCs, indicating that it may act as a competitive endogenous RNA. Bioinformatic analysis revealed that microRNA-27b-3p (miR-27b-3p) is a downstream target of LINC02381. miR-27b-3p decreased in OSAs and ESCs. Moreover, when miR-27b-3p was upregulated in ESCs, the expression of CTNNB1, MMP9 and cyclinD1, as well as the invasion and proliferation ability of ESCs, were reduced. Additionally, rescue experiments demonstrated that the expression of CTNNB1, MMP9 and cyclinD1, as well as the invasion and proliferation ability, were significantly increased in the group transfected with both sh-LINC02381 and a miR-27b-3p inhibitor. CONCLUSION LINC02381 upregulated CTNNB1 by adsorbing miR-27b-3p, causing increased proliferation and invasion of ESCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China; (X.W.); (P.W.); (C.Z.); (J.Z.); (Y.Z.); (Y.L.)
| |
Collapse
|
41
|
Bendifallah S, Suisse S, Puchar A, Delbos L, Poilblanc M, Descamps P, Golfier F, Jornea L, Bouteiller D, Touboul C, Dabi Y, Daraï E. Salivary MicroRNA Signature for Diagnosis of Endometriosis. J Clin Med 2022; 11:612. [PMID: 35160066 PMCID: PMC8836532 DOI: 10.3390/jcm11030612] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Endometriosis diagnosis constitutes a considerable economic burden for the healthcare system with diagnostic tools often inconclusive with insufficient accuracy. We sought to analyze the human miRNAome to define a saliva-based diagnostic miRNA signature for endometriosis. METHODS We performed a prospective ENDO-miRNA study involving 200 saliva samples obtained from 200 women with chronic pelvic pain suggestive of endometriosis collected between January and June 2021. The study consisted of two parts: (i) identification of a biomarker based on genome-wide miRNA expression profiling by small RNA sequencing using next-generation sequencing (NGS) and (ii) development of a saliva-based miRNA diagnostic signature according to expression and accuracy profiling using a Random Forest algorithm. RESULTS Among the 200 patients, 76.5% (n = 153) were diagnosed with endometriosis and 23.5% (n = 47) without (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). Quantification of the filtered reads and identification of known miRNAs yielded ~190 M sequences that were mapped to 2561 known miRNAs. Of the 2561 known miRNAs, the feature selection with Random Forest algorithm generated after internally cross validation a saliva signature of endometriosis composed of 109 miRNAs. The respective sensitivity, specificity, and AUC for the diagnostic miRNA signature were 96.7%, 100%, and 98.3%. CONCLUSIONS The ENDO-miRNA study is the first prospective study to report a saliva-based diagnostic miRNA signature for endometriosis. This could contribute to improving early diagnosis by means of a non-invasive tool easily available in any healthcare system.
Collapse
Affiliation(s)
- Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.P.); (C.T.); (Y.D.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| | | | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.P.); (C.T.); (Y.D.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| | - Léa Delbos
- Department of Obstetrics and Reproductive Medicine, Centre Hospitalier Universitaire, 49000 Angers, France; (L.D.); (P.D.)
- Endometriosis Expert Center, Pays de la Loire, 49000 Angers, France
| | - Mathieu Poilblanc
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, 69008 Lyon, France; (M.P.); (F.G.)
- Endometriosis Expert Center, Steering Committee of the EndAURA Network, 75020 Paris, France
| | - Philippe Descamps
- Department of Obstetrics and Reproductive Medicine, Centre Hospitalier Universitaire, 49000 Angers, France; (L.D.); (P.D.)
- Endometriosis Expert Center, Pays de la Loire, 49000 Angers, France
| | - Francois Golfier
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, 69008 Lyon, France; (M.P.); (F.G.)
- Endometriosis Expert Center, Steering Committee of the EndAURA Network, 75020 Paris, France
| | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 75020 Paris, France;
| | - Delphine Bouteiller
- Genotyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Epinière, Institut du Cerveau, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.P.); (C.T.); (Y.D.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| | - Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.P.); (C.T.); (Y.D.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.P.); (C.T.); (Y.D.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
42
|
de Oliveira RZ, de Oliveira Buono F, Cressoni ACL, Penariol LBC, Padovan CC, Tozetti PA, Poli-Neto OB, Ferriani RA, Orellana MD, Rosa-E-Silva JC, Meola J. Overexpression of miR-200b-3p in Menstrual Blood-Derived Mesenchymal Stem Cells from Endometriosis Women. Reprod Sci 2022; 29:734-742. [PMID: 35075610 DOI: 10.1007/s43032-022-00860-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
The key relationship between Sampson's theory and the presence of mesenchymal stem cells in the menstrual flow (MenSCs), as well as the changes in post-transcriptional regulatory processes as actors in the etiopathogenesis of endometriosis, are poorly understood. No study to date has investigated the imbalance of miRNAs in MenSCs related to the disease. Thus, through literature and in silico analyses, we selected four predicted miRNAs as regulators of EGR1, SNAI1, NR4A1, NR4A2, ID1, LAMC3, and FOSB involved in pathways of apoptosis, angiogenesis, response to steroid hormones, migration, differentiation, and cell proliferation. These genes are frequently overexpressed in the endometriosis condition in our group studies. They were the trigger for the miRNAs search. Therefore, a case-control study was conducted with MenSCs of women with and without endometriosis (ten samples per group). Crossing information obtained from the STRING, PubMed, miRPathDB, miRWalk, and DIANA TOOLS databases, we chose to explore the expression of miR-21-5p, miR-100-5p, miR-143-3p, and miR-200b-3p by RT-qPCR. We found an upregulation of the miR-200b-3p in endometriosis MenSCs (P = 0.0207), with a 7.93-fold change (ratio of geometric means) compared to control. Overexpression of miR-200b has been associated with increased cell proliferation, stemness, and accentuated mesenchymal-epithelial transition process in eutopic endometrium of endometriosis. We believe that dysregulated miR-200b-3p may establish primary changes in the MenSCs, thus favoring tissue implantation at the ectopic site.
Collapse
Affiliation(s)
- Rafael Zucco de Oliveira
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fabiana de Oliveira Buono
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ana Clara Lagazzi Cressoni
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Letícia Bruna Corrêa Penariol
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Cristiana Carolina Padovan
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Patricia Aparecida Tozetti
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Omero Benedito Poli-Neto
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rui Alberto Ferriani
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona), CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Maristela Delgado Orellana
- Center for Cell Therapy and Reginal Blood Center, University of São Paulo, Ribeirão Preto, São Paulo, 14051-140, Brazil
| | - Júlio Cesar Rosa-E-Silva
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Juliana Meola
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- National Institute of Hormones and Women's Health (Hormona), CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.
| |
Collapse
|
43
|
Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E, Bendifallah S. Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Plasma Micro-RNA Expression. Diagnostics (Basel) 2022; 12:175. [PMID: 35054341 PMCID: PMC8774370 DOI: 10.3390/diagnostics12010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective "ENDO-miRNA" study were analyzed and all known human miRNAs were sequenced. For each miRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. miRNAs with an AUC ≥ 0.6 were selected for further analysis. A comprehensive review of recent articles from the PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science databases was performed to identify functions and pathways associated with the selected miRNAs. In total, 2633 miRNAs were found in the patients with endometriosis. Among the 57 miRNAs with an AUC ≥ 0.6: 20 had never been reported before; one (miR-124-3p) had previously been observed in endometriosis; and the remaining 36 had been reported in benign and malignant disorders. miR-124-3p is involved in ectopic endometrial cell proliferation and invasion and plays a role in the following pathways: mTOR, STAT3, PI3K/Akt, NF-κB, ERK, PLGF-ROS, FGF2-FGFR, MAPK, GSK3B/β-catenin. Most of the remaining 36 miRNAs are involved in carcinogenesis through cell proliferation, apoptosis, and invasion. The three main pathways involved are Wnt/β-catenin, PI3K/Akt, and NF-KB. Our results provide evidence of the relation between the miRNA profiles of patients with endometriosis and various signaling pathways implicated in its pathophysiology.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | | | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France;
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
44
|
Shi L, Wei X, Wu B, Yuan C, Li C, Dai Y, Chen J, Zhou F, Lin X, Zhang S. Molecular Signatures Correlated With Poor IVF Outcomes: Insights From the mRNA and lncRNA Expression of Endometriotic Granulosa Cells. Front Endocrinol (Lausanne) 2022; 13:825934. [PMID: 35295989 PMCID: PMC8919698 DOI: 10.3389/fendo.2022.825934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
The outcomes of in vitro fertilization (IVF) for endometriotic women are significantly worse than for patients without ovarian endometriosis (OEM), as shown by fewer retrieved oocytes. However, the exact pathophysiological mechanism is still unknown. Thus, we conducted a prospective study that analyzed mRNA and lncRNA transcriptome between granulosa cells (GCs) from patients with fewer retrieved oocytes due to OEM and GCs from controls with male factor (MF) infertility using an RNA sequencing approach. We found a group of significantly differentially expressed genes (DEGs), including NR5A2, MAP3K5, PGRMC2, PRKAR2A, DEPTOR, ITGAV, KPNB1, GPC6, EIF3A, and SMC5, which were validated to be upregulated and negatively correlated with retrieved oocyte numbers in GCs of patients with OEM, while DUSP1 demonstrated the opposite. The molecular functions of these DEGs were mainly enriched in pathways involving mitogen-activated protein kinase (MAPK) signaling, Wnt signaling, steroid hormone response, apoptosis, and cell junction. Furthermore, we performed lncRNA analysis and identified a group of differentially expressed known/novel lncRNAs that were co-expressed with the validated DEGs and correlated with retrieved oocyte numbers. Co-expression networks were constructed between the DEGs and known/novel lncRNAs. These distinctive molecular signatures uncovered in this study are involved in the pathological regulation of ovarian reserve dysfunction in OEM patients.
Collapse
Affiliation(s)
- Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xianjiang Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Bingbing Wu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chunhui Yuan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jianmin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiang Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang,
| |
Collapse
|
45
|
Wei Z, Hu Y, He X, Zhang M, Zhang X, Wang Y, Fang X, Li L. Knockdown hsa_circ_0063526 inhibits endometriosis progression via regulating the miR-141-5p / EMT axis and downregulating estrogen receptors. Aging (Albany NY) 2021; 13:26095-26117. [PMID: 34967761 PMCID: PMC8751610 DOI: 10.18632/aging.203799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022]
Abstract
Endometriosis can cause severe social burdens. Abnormal circular RNA levels have been found to lead to changes of related gene expression, thereby mediating the occurrence and development of a series of diseases, including endometriosis. The role of circRNA in endometriosis is still in its infancy. This study will explore the role of circRNA hsa_circ_0063526 with microRNA-141-5p in the development of endometriosis. The expression levels of genes were detected by RT-qPCR. Transwell, wound-healing, and EdU assays were performed on the End1 / E6E7 cell line from the endometriosis patient. PCR and immunohistochemistry were used to detect the expression of candidate regulatory genes in ectopic lesions in an endometriosis mice model. The expression level of hsa_circ_0063526 in ectopic tissue of endometriosis patients was significantly higher than control (P<0.05), The expression levels of hsa_circ_0063526 and miRNA-141-5P in ectopic tissue of endometriosis were negatively correlated (P<0.05). Knockdown of hsa_circ_0063526 inhibited the invasion, migration, and proliferation ability of End1 / E6E7 cell; the inhibition of microRNA-141-5p rescued this inhibition (P <0.05). In vivo experiments showed that miR-141-5p and si-hsa_circ_0063526 treatment reduced lesion size and regulated endometriosis genes. Our data suggest that hsa_circ_0063526 and miR-141-5p are possible biomarkers and therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Zhangming Wei
- Department of Obstetrics, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.,The First Affiliated Hospital, Jinan University, Guangzhou 510000, Guangdong, China.,Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, P.R. China
| | - Yi Hu
- The First Affiliated Hospital, Department of Obstetrics and Gynaecology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xiang He
- Department of Obstetrics, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.,The First Affiliated Hospital, Jinan University, Guangzhou 510000, Guangdong, China.,Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, P.R. China
| | - Mengmeng Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, P.R. China
| | - Xinyue Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, P.R. China
| | - Yali Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, P.R. China
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.,The First Affiliated Hospital, Jinan University, Guangzhou 510000, Guangdong, China
| |
Collapse
|
46
|
Sun SG, Guo JJ, Qu XY, Tang XY, Lin YY, Hua KQ, Qiu JJ. The extracellular vesicular pseudogene LGMNP1 induces M2-like macrophage polarization by upregulating LGMN and serves as a novel promising predictive biomarker for ovarian endometriosis recurrence. Hum Reprod 2021; 37:447-465. [PMID: 34893848 DOI: 10.1093/humrep/deab266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION How does ectopic endometrial stromal cell (Ecto-ESC)-derived extracellular vesicular Legumain pseudogene 1 (EV-LGMNP1), a newly identified pseudogene of Legumain (LGMN), contribute to M2-phenotype macrophage polarization, and does it predict recurrence in patients with ovarian endometriosis (EMs)? SUMMARY ANSWER EV-LGMNP1, which is abundant in Ecto-ESCs and serum from ovarian EMs, can direct macrophages towards an M2 phenotype by upregulating LGMN expression and is a promising biomarker for predicting ovarian EMs recurrence. WHAT IS KNOWN ALREADY Extracellular vesicles (EVs) can mediate cell-to-cell crosstalk to promote disease progression via cargo molecule transport. Recently, LGMNP1, a newly identified pseudogene of LGMN, has been reported to promote cancer progression by upregulating LGMN. LGMN is a well-studied protein that can induce M2-like polarization. STUDY DESIGN, SIZE, DURATION An in vitro study was conducted with Ecto-ESCs isolated from ectopic endometrial samples, collected from two patients with ovarian EMs (diagnosed by laparoscopy and histological analysis). A clinical retrospective cohort study of 52 ovarian EMs patients and 21 controls with available preoperative serum samples was carried out (2013-2017). The follow-up period ended either at the time of recurrence or on 31 December 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS Ecto-ESC-derived EVs (EV/Ecto-ESCs) were characterized by nanoparticle tracking analysis, transmission electron microscopy and western blotting. EV internalization by THP-1 cells, which are the most widely used primary human macrophages model, was detected by fluorescence labelling. After EV treatment, THP-1 cell polarization was detected by quantitative real-time PCR (qRT-PCR) and western blot analyses of CD86 (M1-related marker) and CD206 (M2-related marker). LGMNP1 mRNA expression level in EVs from both primary ectopic endometrioc stromal cells and serum was examined using qRT-PCR. Additionally, the expression of LGMN, the downstream target gene of LGMNP1, in THP-1 cells was evaluated using qRT-PCR and western blotting. Kaplan-Meier and multivariate Cox regression analyses were applied to evaluate the independent predictive factors of EMs recurrence-free survival. A novel nomogram model based on serum EV-LGMNP1 was then formulated to predict EMs recurrence. MAIN RESULTS AND THE ROLE OF CHANCE In vitro assays demonstrated that EV/Ecto-ESCs drove macrophages towards an M2-like phenotype. Moreover, LGMNP1 contributed to EV/Ecto-ESC-induced M2 macrophage polarization by upregulating LGMN mRNA expression levels. Clinically, serum EV-LGMNP1 was more highly expressed in recurrent EMs patients than in controls and EMs patients without recurrence. Survival analysis and our novel nomogram reconfirmed that serum EV-LGMNP1 was a novel promising and meaningful non-invasive biomarker for predicting EMs recurrence. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In vitro experiments were only performed on samples from two patients with ovarian endometriosis, and a larger sample size is needed. ESCs isolated from the eutopic endometrium of EMs and non-EMs patients should be studied in the future. Additionally, in vitro experiments should be performed using endometrial epithelium cells and further in vivo experiments, such as using mice endometriotic models to investigate whether EV/Ecto could induce M2 macrophage polarization, should be conducted. Moreover, multicentre, large-sample data are needed to validate our predictive nomogram model. WIDER IMPLICATIONS OF THE FINDINGS Our study provides novel insights into the mechanism of M2 polarization involved in ovarian EMs progression mediated by an 'EV-shuttled pseudogene LGMNP1' mode. In addition, serum EV-LGMNP1 may serve as a novel non-invasive biomarker for predicting recurrence, providing a new therapeutic target for ovarian EMs. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by funding from the National Natural Science Foundation of China (81971361), the Natural Science Foundation of Shanghai Science and Technology (19ZR1406900), the Shanghai 'Rising Stars of Medical Talent' Youth Development Program (AB83030002019004), the Clinical Research Plan of SHDC (SHDC2020CR4087), the Shanghai Municipal Health Commission (202040498), the Research and Innovation Project of the Shanghai Municipal Education Commission (2019-01-07-00-07-E00050) and the Clinical Research Plan of SHDC (SHDC2020CR1045B). There are no competing interests to declare.
Collapse
Affiliation(s)
- S G Sun
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - J J Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - X Y Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - X Y Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Y Y Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - K Q Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - J J Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
47
|
Zhang J, Zhang J, Cong S, Feng J, Pan L, Zhu Y, Zhang A, Ma J. Transcriptome profiling of lncRNA and co-expression network in the vaginal epithelial tissue of women with lubrication disorders. PeerJ 2021; 9:e12485. [PMID: 34824921 PMCID: PMC8590395 DOI: 10.7717/peerj.12485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Background Vaginal lubrication is a crucial physiological response that occurs at the beginning of sexual arousal. However, research on lubrication disorders (LD) is still in its infancy, and the role of long non-coding RNAs (lncRNAs) in LD remains unclear. This study aimed to explore the function of lncRNAs in the pathogenesis of vaginal LD. Methods The expression profiles of LD and normal control (NC) lncRNAs were examined using next-generation sequencing (NGS), and eight selected differentially expressed lncRNAs were verified by quantitative real-time PCR. We conducted GO annotation and KEGG pathway enrichment analyses to determine the principal functions of significantly deregulated genes. LncRNA-mRNA co-expression and protein-protein interaction (PPI) networks were constructed and the lncRNA transcription factors (TFs) were predicted. Results From the results, we identified 181,631 lncRNAs and 145,224 mRNAs in vaginal epithelial tissue. Subsequently, our preliminary judgment revealed a total of 499 up-regulated and 337 down-regulated lncRNAs in LD. The top three enriched GO items of the dysregulated lncRNAs included the following significant terms: “contractile fiber part,” “actin filament-based process,” and “contractile fiber”. The most enriched pathways were “cell-extracellular matrix interactions,” “muscle contraction,” “cell-cell communication,” and “cGMP-PKG signaling pathway”. Our results also showed that the lncRNA-mRNA co-expression network was a powerful platform for predicting lncRNA functions. We determined the three hub genes, ADCY5, CXCL12, and NMU, using PPI network construction and analysis. A total of 231 TFs were predicted with RHOXF1, SNAI2, ZNF354C and TBX15 were suspected to be involved in the mechanism of LD. Conclusion In this study, we constructed the lncRNA-mRNA co-expression network, predicted the lncRNA TFs, and comprehensively analyzed lncRNA expression profiles in LD, providing a basis for future studies on LD clinical biomarkers and therapeutic targets. Further research is also needed to fully determine lncRNA’s role in LD development.
Collapse
Affiliation(s)
- Jingjing Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jing Zhang
- Jiangsu Health Vocational College, Nanjing, China
| | - Shengnan Cong
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jingyi Feng
- High School Affiliated to Nanjing Normal University International Department, Nanjing, China
| | - Lianjun Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yuan Zhu
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Aixia Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jiehua Ma
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
48
|
Zhang Y, Gong S, Su Y, Yao M, Liu X, Gong Z, Sui H, Luo M. Follicular development in livestock: Influencing factors and underlying mechanisms. Anim Sci J 2021; 92:e13657. [PMID: 34796578 DOI: 10.1111/asj.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Livestock farming development has become increasingly important in recent years. It not only provides us with meat nutrition and pet feeding but also increases the economic value by providing numerous employment opportunities, which improves our life quality. The livestock farming development depends on successful animal reproduction. As a vital process in animal reproduction, folliculogenesis and its influencing factors as well as their underlying mechanisms need to be understood thoroughly. This review is aimed at summarizing the factors such as cellular processes, gene regulation, noncoding RNAs and other endocrine or paracrine regulatory factors that affect follicular development, and their underlying mechanisms of action in livestock in order to provide novel insights for future studies. The above factors were found as significant determinants influencing the follicular development in livestock through various signaling pathways.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China.,Jiaxiang County Animal Husbandry and Veterinary Bureau, Jining, China
| | - Shuai Gong
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Minhua Yao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xiaocui Liu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Mingjiu Luo
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
49
|
miRNAs and lncRNAs: Potential Non-Invasive Biomarkers for Endometriosis. Biomedicines 2021; 9:biomedicines9111662. [PMID: 34829891 PMCID: PMC8615815 DOI: 10.3390/biomedicines9111662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Many studies have tried to understand the mechanism of endometriosis and its manner of manifestation. However, the only method of diagnosis considered as the gold standard in endometriosis is an invasive method called exploratory laparoscopy. Hence, there is a need to identify non-invasive or minimally invasive methods to minimize patients' suffering, thus increasing their addressability at the earliest possible staging of the disease, and to diagnose this condition as soon as possible. miRNAs (microRNAs) and lncRNAs (long-noncoding RNAs) are potential non-invasive diagnostic methods for endometriosis. Multiple clinical trials indicate that miRNA can be used as a non-invasive method in the diagnosis and differentiation of endometriosis stages.
Collapse
|
50
|
Zhuo X, Bai K, Wang Y, Liu P, Xi W, She J, Liu J. Long-chain noncoding RNA-GAS5/hsa-miR-138-5p attenuates high glucose-induced cardiomyocyte damage by targeting CYP11B2. Biosci Rep 2021; 41:BSR20202232. [PMID: 33682891 PMCID: PMC8485392 DOI: 10.1042/bsr20202232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) is one of the complications experienced by patients with diabetes. In recent years, long noncoding RNAs (lncRNAs) have been investigated because of their role in the progression of various diseases, including DCM. The purpose of the present study was to explore the role of lncRNA GAS5 in high glucose (HG)-induced cardiomyocyte injury and apoptosis. MATERIALS AND METHODS We constructed HG-induced AC16 cardiomyocytes and a streptozotocin (STZ)-induced rat diabetes model. GAS5 was overexpressed and knocked out at the cellular level, and GAS5 was knocked down by lentiviruses at the animal level to observe its effect on myocardial injury. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of GAS5. Cell proliferation and apoptosis after GAS5 knockout were detected by CCK-8, TUNEL, and flow cytometry assays. ELISA was used to detect the changes in myocardial enzyme content in cells and animal myocardial tissues during the action of GAS5 on myocardial injury. RESULTS GAS5 expression was up-regulated in HG-treated AC16 cardiomyocytes and the rat diabetic myocardial injury model. The down-regulation of GAS5 could inhibit HG-induced myocardial damage. This work proved that the down-regulation of GAS5 could reverse cardiomyocyte injury and apoptosis by targeting miR-138 to down-regulate CYP11B2. CONCLUSION We confirmed for the first time that the down-regulation of GAS5 could reverse CYP11B2 via the miR-138 axis to reverse HG-induced cardiomyocyte injury. This research might provide a new direction for explaining the developmental mechanism of DCM and potential targets for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Xiaozhen Zhuo
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Kai Bai
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yingxian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Peining Liu
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Wen Xi
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jianqing She
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Junhui Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|