1
|
Parikh R, Parikh S, Berzin D, Vaknine H, Ovadia S, Likonen D, Greenberger S, Scope A, Elgavish S, Nevo Y, Plaschkes I, Nizri E, Kobiler O, Maliah A, Zaremba L, Mohan V, Sagi I, Ashery-Padan R, Carmi Y, Luxenburg C, Hoheisel JD, Khaled M, Levesque MP, Levy C. Recycled melanoma-secreted melanosomes regulate tumor-associated macrophage diversification. EMBO J 2024; 43:3553-3586. [PMID: 38719996 PMCID: PMC11377571 DOI: 10.1038/s44318-024-00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 09/07/2024] Open
Abstract
Extracellular vesicles (EVs) are important mediators of communication between cells. Here, we reveal a new mode of intercellular communication by melanosomes, large EVs secreted by melanocytes for melanin transport. Unlike small EVs, which are disintegrated within the receiver cell, melanosomes stay intact within them, gain a unique protein signature, and can then be further transferred to another cell as "second-hand" EVs. We show that melanoma-secreted melanosomes passaged through epidermal keratinocytes or dermal fibroblasts can be further engulfed by resident macrophages. This process leads to macrophage polarization into pro-tumor or pro-immune cell infiltration phenotypes. Melanosomes that are transferred through fibroblasts can carry AKT1, which induces VEGF secretion from macrophages in an mTOR-dependent manner, promoting angiogenesis and metastasis in vivo. In melanoma patients, macrophages that are co-localized with AKT1 are correlated with disease aggressiveness, and immunotherapy non-responders are enriched in macrophages containing melanosome markers. Our findings suggest that interactions mediated by second-hand extracellular vesicles contribute to the formation of the metastatic niche, and that blocking the melanosome cues of macrophage diversification could be helpful in halting melanoma progression.
Collapse
Affiliation(s)
- Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- The Ragon Institute of Mass General, Massachusetts Institute of Technology (MIT), and Harvard, MA 02139, Cambridge, USA
| | - Daniella Berzin
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Hananya Vaknine
- Institute of Pathology, E. Wolfson Medical Center, Holon, 58100, Israel
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Daniela Likonen
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | | | - Alon Scope
- The Kittner Skin Cancer Screening and Research Institute, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, 6423906, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv Universitygrid.12136.37, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Laureen Zaremba
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vishnu Mohan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Chen Luxenburg
- Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mehdi Khaled
- INSERM 1279, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Wagistrasse 18, CH-8952, Schlieren, Switzerland
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
2
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2024:S0022-202X(24)01919-5. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
3
|
Brombin A, Patton EE. Melanocyte lineage dynamics in development, growth and disease. Development 2024; 151:dev201266. [PMID: 39092608 DOI: 10.1242/dev.201266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.
Collapse
Affiliation(s)
- Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
4
|
El Mir J, Nasrallah A, Thézé N, Cario M, Fayyad-Kazan H, Thiébaud P, Rezvani HR. Xenopus as a model system for studying pigmentation and pigmentary disorders. Pigment Cell Melanoma Res 2024. [PMID: 38849973 DOI: 10.1111/pcmr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.
Collapse
Affiliation(s)
- Joudi El Mir
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Ali Nasrallah
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Nadine Thézé
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Muriel Cario
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
- Aquiderm, University of Bordeaux, Bordeaux, France
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Hadath, Lebanon
| | - Pierre Thiébaud
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
| | - Hamid-Reza Rezvani
- University of Bordeaux, Inserm, BRIC, UMR 1312, Bordeaux, France
- Aquiderm, University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Prospéri MT, Giordano C, Gomez-Duro M, Hurbain I, Macé AS, Raposo G, D’Angelo G. Extracellular vesicles released by keratinocytes regulate melanosome maturation, melanocyte dendricity, and pigment transfer. Proc Natl Acad Sci U S A 2024; 121:e2321323121. [PMID: 38607931 PMCID: PMC11032449 DOI: 10.1073/pnas.2321323121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
Extracellular vesicles (EVs) facilitate the transfer of proteins, lipids, and genetic material between cells and are recognized as an additional mechanism for sustaining intercellular communication. In the epidermis, the communication between melanocytes and keratinocytes is tightly regulated to warrant skin pigmentation. Melanocytes synthesize the melanin pigment in melanosomes that are transported along the dendrites prior to the transfer of melanin pigment to keratinocytes. EVs secreted by keratinocytes modulate pigmentation in melanocytes [(A. Lo Cicero et al., Nat. Commun. 6, 7506 (2015)]. However, whether EVs secreted by keratinocytes contribute to additional processes essential for melanocyte functions remains elusive. Here, we show that keratinocyte EVs enhance the ability of melanocytes to generate dendrites and mature melanosomes and promote their efficient transfer. Further, keratinocyte EVs carrying Rac1 induce important morphological changes, promote dendrite outgrowth, and potentiate melanin transfer to keratinocytes. Hence, in addition to modulating pigmentation, keratinocytes exploit EVs to control melanocyte plasticity and transfer capacity. These data demonstrate that keratinocyte-derived EVs, by regulating melanocyte functions, are major contributors to cutaneous pigmentation and expand our understanding of the mechanism underlying skin pigmentation via a paracrine EV-mediated communication.
Collapse
Affiliation(s)
- Marie-Thérèse Prospéri
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
| | - Cécile Giordano
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
| | - Mireia Gomez-Duro
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
| | - Ilse Hurbain
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (The Cell and Tissue Imaging Platform (PICT-IBiSA)), Paris Cedex 0575248, France
| | - Anne-Sophie Macé
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (The Cell and Tissue Imaging Platform (PICT-IBiSA)), Paris Cedex 0575248, France
| | - Graça Raposo
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (The Cell and Tissue Imaging Platform (PICT-IBiSA)), Paris Cedex 0575248, France
| | - Gisela D’Angelo
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
| |
Collapse
|
6
|
Bhat AM, Haroon R, Naikoo S, Sharma RR, Archoo S, Tasduq SA. (2-Methylbutyryl)shikonin Naturally Occurring Shikonin Derivative Ameliorates the α-MSH-Induced Melanogenesis via ERK1/2 and p38 MAP Kinase-Mediated Down-Regulation of the MITF Transcription Factor. Chem Res Toxicol 2024; 37:274-284. [PMID: 38271289 DOI: 10.1021/acs.chemrestox.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Cutaneous pigmentation is an important phenotypic trait whose regulation, despite recent advances, has yet to be completely elucidated. Melanogenesis, a physiological process of melanin production, is imperative for organism survival as it provides protection against the environmental insults that majorly involve sunlight-induced skin photodamage. However, immoderate melanin synthesis can cause pigmentation disorders associated with a psychosocial impact. In this study, the hypopigmentation effect of (2-methylbutyryl)shikonin, a natural product present in the root extract of Lithospermum erythrorhizon, and the underlying mechanisms responsible for the inhibition of melanin synthesis in α-MSH-stimulated B16F10 cells and C57BL/6J mice was studied. Non-cytotoxic concentrations of (2-methylbutyryl)shikonin significantly repressed cellular tyrosinase activity and melanin synthesis in both in vitro and in vivo models (C57BL/6J mice). (2-Methylbutyryl)shikonin remarkably abolished the protein expression of MITF, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2, thereby blocking the production of pigment melanin via modulating the phosphorylation status of MAPK proteins, viz., ERK1/2 and p38. In addition, specific inhibition of ERK1/2 attenuated the inhibitory effects of (2-methylbutyryl)shikonin on melanin synthesis, whereas selective inhibition of p38 augmented the inhibitory effect of BSHK on melanin synthesis. Moreover, topical application of (2-methylbutyryl)shikonin on C57BL/6J mouse tails remarkably induced tail depigmentation. In conclusion, with these findings, we, for the first time, report the hypopigmentation effect of (2-methylbutyryl)shikonin via inhibition of cellular tyrosinase enzyme activity, subsequently ameliorating the melanin production, thereby indicating that (2-methylbutyryl)shikonin is a potential natural therapy for hyperpigmentation disorders.
Collapse
Affiliation(s)
- Aalim Maqsood Bhat
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rashid Haroon
- Sher-e-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir 190011, India
| | - Shahid Naikoo
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Raghu Rai Sharma
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sajeeda Archoo
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sheikh A Tasduq
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
7
|
Zamudio Díaz DF, Busch L, Kröger M, Klein AL, Lohan SB, Mewes KR, Vierkotten L, Witzel C, Rohn S, Meinke MC. Significance of melanin distribution in the epidermis for the protective effect against UV light. Sci Rep 2024; 14:3488. [PMID: 38347037 PMCID: PMC10861496 DOI: 10.1038/s41598-024-53941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Melanin, the most abundant skin chromophore, is produced by melanocytes and is one of the key components responsible for mediating the skin's response to ultraviolet radiation (UVR). Because of its antioxidant, radical scavenging, and broadband UV absorbing properties, melanin reduces the penetration of UVR into the nuclei of keratinocytes. Despite its long-established photoprotective role, there is evidence that melanin may also induce oxidative DNA damage in keratinocytes after UV exposure and therefore be involved in the development of melanoma. The present work aimed at evaluating the dependence of UV-induced DNA damage on melanin content and distribution, using reconstructed human epidermis (RHE) models. Tanned and light RHE were irradiated with a 233 nm UV-C LED source at 60 mJ/cm2 and a UV lamp at 3 mJ/cm2. Higher UV-mediated free radicals and DNA damage were detected in tanned RHE with significantly higher melanin content than in light RHE. The melanin distribution in the individual models can explain the lack of photoprotection. Fluorescence lifetime-based analysis and Fontana-Masson staining revealed a non-homogeneous distribution and absence of perinuclear melanin in the tanned RHE compared to the in vivo situation in humans. Extracellularly dispersed epidermal melanin interferes with photoprotection of the keratinocytes.
Collapse
Affiliation(s)
- Daniela F Zamudio Díaz
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Loris Busch
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35032, Marburg, Germany
| | - Marius Kröger
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anna Lena Klein
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Silke B Lohan
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Karsten R Mewes
- Henkel AG & Co. KGaA, Henkelstr. 67, 40589, Düsseldorf, Germany
| | - Lars Vierkotten
- Henkel AG & Co. KGaA, Henkelstr. 67, 40589, Düsseldorf, Germany
| | - Christian Witzel
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
8
|
Hong C, Zhang Y, Yang L, Xu H, Cheng K, Lv Z, Chen K, Li Y, Wu H. Epimedin B exhibits pigmentation by increasing tyrosinase family proteins expression, activity, and stability. J Pharm Anal 2024; 14:69-85. [PMID: 38352950 PMCID: PMC10859565 DOI: 10.1016/j.jpha.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Epimedin B (EB) is one of the main flavonoid ingredients present in Epimedium brevicornum Maxim., a traditional herb widely used in China. Our previous study showed that EB was a stronger inducer of melanogenesis and an activator of tyrosinase (TYR). However, the role of EB in melanogenesis and the mechanism underlying the regulation remain unclear. Herein, as an extension to our previous investigation, we provide comprehensive evidence of EB-induced pigmentation in vivo and in vitro and elucidate the melanogenesis mechanism by assessing its effects on the TYR family of proteins (TYRs) in terms of expression, activity, and stability. The results showed that EB increased TYRs expression through microphthalmia-associated transcription factor-mediated p-Akt (referred to as protein kinase B (PKB))/glycogen synthase kinase 3β (GSK3β)/β-catenin, p-p70 S6 kinase cascades, and protein 38 (p38)/mitogen-activated protein (MAP) kinase (MAPK) and extracellular regulated protein kinases (ERK)/MAPK pathways, after which EB increased the number of melanosomes and promoted their maturation for melanogenesis in melanoma cells and human primary melanocytes/skin tissues. Furthermore, EB exerted repigmentation by stimulating TYR activity in hydroquinone- and N-phenylthiourea-induced TYR inhibitive models, including melanoma cells, zebrafish, and mice. Finally, EB ameliorated monobenzone-induced depigmentation in vitro and in vivo through the enhancement of TYRs stability by inhibiting TYR misfolding, TYR-related protein 1 formation, and retention in the endoplasmic reticulum and then by downregulating the ubiquitination and proteolysis processes. These data conclude that EB can target TYRs and alter their expression, activity, and stability, thus stimulating their pigmentation function, which might provide a novel rational strategy for hypopigmentation treatment in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Chen Hong
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Yifan Zhang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Haoyang Xu
- International Education College, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Kang Cheng
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai, 200000, China
| | - Zhi Lv
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai, 200000, China
| | - Kaixian Chen
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Huali Wu
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| |
Collapse
|
9
|
Liu HM, Tang W, Wang XY, Jiang JJ, Zhang Y, Liu QL, Wang W. Experimental and theoretical studies on inhibition against tyrosinase activity and melanin biosynthesis by antioxidant ergothioneine. Biochem Biophys Res Commun 2023; 682:163-173. [PMID: 37816300 DOI: 10.1016/j.bbrc.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023]
Abstract
Ergothioneine, a natural derivative of histidine with a thiol/thine tautomeric structure, exhibits exceptional antioxidant properties and inhibition activities on tyrosinase. In this study, enzyme kinetics experiments and chromatographic spectral analysis revealed that ergothioneine inhibited tyrosinase in a reversible and non-competitive manner, with an inhibition constant of 0.554 mg/mL (2.41 mM). As the concentration of ergothioneine increased, the extremely flexible loop structure of tyrosinase extended from 40.1 % to 41.0 %, effectively covering the active center or binding site. Theoretical molecular docking simulation results show that ergothioneine forms complexes with tyrosinase through hydrogen bonding and salt bridges in the active center of Cu ions. Additionally, it was observed that ergothioneine's antioxidant had a stronger reducing impact on dopaquinone, an intermediate in melanin production, than the effect of ascorbic acid at an equivalent concentration (0.5 mg/mL). Ergothioneine reduced the intracellular reactive oxygen species to lower levels than the control group without UVA radiation and regulated the proliferation and differentiation in B16-F10 melanocytes. Clinical trials have shown that a 0.1 % concentration of ergothioneine can effectively suppress melanin production in irradiated skin. The significant reduction in melanin index and an increase in the individual type angle (ITA°) degree were measured after 4 weeks. These results collectively suggest that ergothioneine may be a promising inhibitor of natural antioxidant tyrosinase. Furthermore, due to its safety and efficacy, ergothioneine could be considered one of the bioactive substances for further study on diseases related to melanin production and tyrosinase activity which is of great significance for the cosmetics, medicine and food industries.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China; Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xiao-Yi Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing-Jing Jiang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qing-Lei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China; Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China; Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai, 201418, China.
| |
Collapse
|
10
|
Purswani JM, Bigham Z, Adotama P, Oh C, Xiao J, Maisonet O, Teruel JR, Gutierrez D, Tattersall IW, Perez CA, Gerber NK. Risk of Radiation Dermatitis in Patients With Skin of Color Who Undergo Radiation to the Breast or Chest Wall With and Without Regional Nodal Irradiation. Int J Radiat Oncol Biol Phys 2023; 117:468-478. [PMID: 37060928 DOI: 10.1016/j.ijrobp.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
PURPOSE Acute radiation dermatitis (ARD) is common after radiation therapy for breast cancer, with data indicating that ARD may disproportionately affect Black or African American (AA) patients. We evaluated the effect of skin of color (SOC) on physician-reported ARD in patients treated with radiation therapy. METHODS AND MATERIALS We identified patients treated with whole breast or chest wall ± regional nodal irradiation or high tangents using 50 Gy in 25 fractions from 2015 to 2018. Baseline skin pigmentation was assessed using the Fitzpatrick scale (I = light/pale white to VI = black/very dark brown) with SOC defined as Fitzpatrick scale IV to VI. We evaluated associations among SOC, physician-reported ARD, late hyperpigmentation, and use of oral and topical treatments for RD using multivariable models. RESULTS A total of 325 patients met eligibility, of which 40% had SOC (n = 129). On multivariable analysis, Black/AA race and chest wall irradiation had a lower odds of physician-reported grade 2 or 3 ARD (odds ratio [OR], 0.110; 95% confidence interval [CI], 0.030-0.397; P = .001; OR, 0.377; 95% CI, 0.161-0.883; P = .025), whereas skin bolus (OR, 8.029; 95% CI, 3.655-17.635; P = 0) and planning target volume D0.03cc (OR, 1.001; 95% CI, 1.000-1.001; P = .028) were associated with increased odds. On multivariable analysis, SOC (OR, 3.658; 95% CI, 1.236-10.830; P = .019) and skin bolus (OR, 26.786; 95% CI, 4.235-169.432; P = 0) were associated with increased odds of physician-reported late grade 2 or 3 hyperpigmentation. There was less frequent use of topical steroids to treat ARD and more frequent use of oral analgesics in SOC versus non-SOC patients (43% vs 63%, P < .001; 50% vs 38%, P = .05, respectively). CONCLUSIONS Black/AA patients exhibited lower odds of physician-reported ARD. However, we found higher odds of late hyperpigmentation in SOC patients, independent of self-reported race. These findings suggest that ARD may be underdiagnosed in SOC when using the physician-rated scale despite this late evidence of radiation-induced skin toxicity.
Collapse
Affiliation(s)
- Juhi M Purswani
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Zahna Bigham
- Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Prince Adotama
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Cheongeun Oh
- Department of Population Health, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Julie Xiao
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Olivier Maisonet
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Jose R Teruel
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Daniel Gutierrez
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Ian W Tattersall
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Carmen A Perez
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York
| | - Naamit K Gerber
- Department of Radiation Oncology, New York University Langone Health and Perlmutter Cancer Center, New York, New York.
| |
Collapse
|
11
|
Wang YJ, Chang CC, Wu YH, Huang L, Shen JW, Lu ME, Chiang HM, Lin BS. Adaptability of melanocytes post ultraviolet stimulation in patients with melasma. Lasers Surg Med 2023; 55:680-689. [PMID: 37365922 DOI: 10.1002/lsm.23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Dynamic in vivo changes in melanin in melasma lesions after exposure to ultraviolet (UV) irradiation have not been described. OBJECTIVES To determine whether melasma lesions and nearby perilesions demonstrated different adaptive responses to UV irradiation and whether the tanning responses were different among different locations on face. METHODS We collected sequential images from real-time cellular resolution full-field optical coherence tomography (CRFF-OCT) at melasma lesions and perilesions among 20 Asian patients. Quantitative and layer distribution analyses for melanin were performed using a computer-aided detection (CADe) system that utilizes spatial compounding-based denoising convolutional neural networks. RESULTS The detected melanin (D) is melanin with a diameter >0.5 µm, among which confetti melanin (C) has a diameter of >3.3 µm and corresponds to a melanosome-rich package. The calculated C/D ratio is proportional to active melanin transportation. Before UV exposure, melasma lesions had more detected melanin (p = 0.0271), confetti melanin (p = 0.0163), and increased C/D ratio (p = 0.0152) in the basal layer compared to those of perilesions. After exposure to UV irradiation, perilesions have both increased confetti melanin (p = 0.0452) and the C/D ratio (p = 0.0369) in basal layer, and this effect was most prominent in right cheek (p = 0.030). There were however no significant differences in the detected, confetti, or granular melanin areas before and after exposure to UV irradiation in melasma lesions in all the skin layers. CONCLUSIONS Hyperactive melanocytes with a higher baseline C/D ratio were noted in the melasma lesions. They were "fixed" on the plateau and were not responsive to UV irradiation regardless of the location on face. Perilesions retained adaptability with a dynamic response to UV irradiation, in which more confetti melanin was shed, mainly in the basal layer. Therefore, aggravating effect of UV on melasma was mainly due to UV-responsive perilesions rather than lesions.
Collapse
Affiliation(s)
- Yen-Jen Wang
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Cosmetic Applications and Management, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Chang-Cheng Chang
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
- Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan
- School of Medicine, College of Medicine, China Medical University Hospital, Taichung, Taiwan
- Aesthetic Medical Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Hung Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Ling Huang
- Clinical Development, Apollo Medical Optics, Ltd., Taipei, Taiwan
| | - Jia-Wei Shen
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Meng-En Lu
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Bor-Shyh Lin
- Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan, Taiwan
| |
Collapse
|
12
|
Bento-Lopes L, Cabaço LC, Charneca J, Neto MV, Seabra MC, Barral DC. Melanin's Journey from Melanocytes to Keratinocytes: Uncovering the Molecular Mechanisms of Melanin Transfer and Processing. Int J Mol Sci 2023; 24:11289. [PMID: 37511054 PMCID: PMC10379423 DOI: 10.3390/ijms241411289] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Skin pigmentation ensures efficient photoprotection and relies on the pigment melanin, which is produced by epidermal melanocytes and transferred to surrounding keratinocytes. While the molecular mechanisms of melanin synthesis and transport in melanocytes are now well characterized, much less is known about melanin transfer and processing within keratinocytes. Over the past few decades, distinct models have been proposed to explain how melanin transfer occurs at the cellular and molecular levels. However, this remains a debated topic, as up to four different models have been proposed, with evidence presented supporting each. Here, we review the current knowledge on the regulation of melanin exocytosis, internalization, processing, and polarization. Regarding the different transfer models, we discuss how these might co-exist to regulate skin pigmentation under different conditions, i.e., constitutive and facultative skin pigmentation or physiological and pathological conditions. Moreover, we discuss recent evidence that sheds light on the regulation of melanin exocytosis by melanocytes and internalization by keratinocytes, as well as how melanin is stored within these cells in a compartment that we propose be named the melanokerasome. Finally, we review the state of the art on the molecular mechanisms that lead to melanokerasome positioning above the nuclei of keratinocytes, forming supranuclear caps that shield the nuclear DNA from UV radiation. Thus, we provide a comprehensive overview of the current knowledge on the molecular mechanisms regulating skin pigmentation, from melanin exocytosis by melanocytes and internalization by keratinocytes to processing and polarization within keratinocytes. A better knowledge of these molecular mechanisms will clarify long-lasting questions in the field that are crucial for the understanding of skin pigmentation and can shed light on fundamental aspects of organelle biology. Ultimately, this knowledge can lead to novel therapeutic strategies to treat hypo- or hyper-pigmentation disorders, which have a high socio-economic burden on patients and healthcare systems worldwide, as well as cosmetic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.B.-L.); (L.C.C.); (J.C.); (M.V.N.); (M.C.S.)
| |
Collapse
|
13
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Abstract
Over the past decade, melanoma has led the field in new cancer treatments, with impressive gains in on-treatment survival but more modest improvements in overall survival. Melanoma presents heterogeneity and transcriptional plasticity that recapitulates distinct melanocyte developmental states and phenotypes, allowing it to adapt to and eventually escape even the most advanced treatments. Despite remarkable advances in our understanding of melanoma biology and genetics, the melanoma cell of origin is still fiercely debated because both melanocyte stem cells and mature melanocytes can be transformed. Animal models and high-throughput single-cell sequencing approaches have opened new opportunities to address this question. Here, we discuss the melanocytic journey from the neural crest, where they emerge as melanoblasts, to the fully mature pigmented melanocytes resident in several tissues. We describe a new understanding of melanocyte biology and the different melanocyte subpopulations and microenvironments they inhabit, and how this provides unique insights into melanoma initiation and progression. We highlight recent findings on melanoma heterogeneity and transcriptional plasticity and their implications for exciting new research areas and treatment opportunities. The lessons from melanocyte biology reveal how cells that are present to protect us from the damaging effects of ultraviolet radiation reach back to their origins to become a potentially deadly cancer.
Collapse
Affiliation(s)
- Patricia P Centeno
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Valeria Pavet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Oncodrug Ltd, Alderly Park, Macclesfield, UK.
| |
Collapse
|
15
|
Karthikeyan R, Davies WI, Gunhaga L. Non-image-forming functional roles of OPN3, OPN4 and OPN5 photopigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
16
|
Lan Y, Zeng W, Wang Y, Dong X, Shen X, Gu Y, Zhang W, Lu H. Opsin 3 mediates UVA-induced keratinocyte supranuclear melanin cap formation. Commun Biol 2023; 6:238. [PMID: 36869204 PMCID: PMC9984416 DOI: 10.1038/s42003-023-04621-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Solar ultraviolet (UV) radiation-induced DNA damage is a major risk factor for skin cancer development. UV-induced redistribution of melanin near keratinocyte nuclei leads to the formation of a supranuclear cap, which acts as a natural sunscreen and protects DNA by absorbing and scattering UV radiation. However, the mechanism underlying the intracellular movement of melanin in nuclear capping is poorly understood. In this study, we found that OPN3 is an important photoreceptor in human epidermal keratinocytes and is critical for UVA-mediated supranuclear cap formation. OPN3 mediates supranuclear cap formation via the calcium-dependent G protein-coupled receptor signaling pathway and ultimately upregulates Dync1i1 and DCTN1 expression in human epidermal keratinocytes via activating calcium/CaMKII, CREB, and Akt signal transduction. Together, these results clarify the role of OPN3 in regulating melanin cap formation in human epidermal keratinocytes, greatly expanding our understanding of the phototransduction mechanisms involved in physiological function in skin keratinocytes.
Collapse
Affiliation(s)
- Yinghua Lan
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Xian Dong
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Xiaoping Shen
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Yangguang Gu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China.
| |
Collapse
|
17
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
18
|
de Szalay S, Wertz PW. Protective Barriers Provided by the Epidermis. Int J Mol Sci 2023; 24:ijms24043145. [PMID: 36834554 PMCID: PMC9961209 DOI: 10.3390/ijms24043145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The skin is the largest organ of the body and consists of an epidermis, dermis and subcutaneous adipose tissue. The skin surface area is often stated to be about 1.8 to 2 m2 and represents our interface with the environment; however, when one considers that microorganisms live in the hair follicles and can enter sweat ducts, the area that interacts with this aspect of the environment becomes about 25-30 m2. Although all layers of the skin, including the adipose tissue, participate in antimicrobial defense, this review will focus mainly on the role of the antimicrobial factors in the epidermis and at the skin surface. The outermost layer of the epidermis, the stratum corneum, is physically tough and chemically inert which protects against numerous environmental stresses. It provides a permeability barrier which is attributable to lipids in the intercellular spaces between the corneocytes. In addition to the permeability barrier, there is an innate antimicrobial barrier at the skin surface which involves antimicrobial lipids, peptides and proteins. The skin surface has a low surface pH and is poor in certain nutrients, which limits the range of microorganisms that can survive there. Melanin and trans-urocanic acid provide protection from UV radiation, and Langerhans cells in the epidermis are poised to monitor the local environment and to trigger an immune response as needed. Each of these protective barriers will be discussed.
Collapse
Affiliation(s)
- Sarah de Szalay
- Sarah de Szalay Consulting, LLC, Wesy Milford, NJ 07480, USA
| | - Philip W. Wertz
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|
19
|
Staged Excision of Lentigo Maligna of the Head and Neck: Assessing Surgical Excision Margins With Melan A, SOX10, and PRAME Immunohistochemistry. Am J Dermatopathol 2023; 45:107-112. [PMID: 36669074 DOI: 10.1097/dad.0000000000002354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/22/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Staged excision has emerged as a superior treatment option for lentigo maligna (LM) of the head and neck when compared with conventional wide local excision. Assessing surgical excision margins for remaining LM poses a diagnostic challenge. OBJECTIVES To determine whether immunohistochemical (IHC) staining with SOX10 and preferentially expressed antigen in melanoma (PRAME) aids in diagnosing LM on excision margins compared with conventional hematoxylin and eosin and Melan A IHC staining. METHODS This study included cases of LM of the head and neck treated with staged excision. Histological findings were reviewed according to standard criteria for the diagnosis of LM and compared with the results after IHC staining for Melan A, SOX10, and PRAME. RESULTS The cohort consisted of 35 sections. Based on hematoxylin and eosin and Melan A IHC staining, 23 sections were diagnosed as LM by the initial pathologist. Further staining with SOX10 IHC showed only 8 to be consistent with a diagnosis of LM and 9 revealing features of actinic melanocyte hyperplasia. PRAME was positive in 5 of the 8 cases of LM and negative in all 9 cases of actinic melanocyte hyperplasia (P = 0.009). The presence of melanocyte nests (P = 0.29) and pagetoid spread (P = 0.003) was the most reliable histological findings distinguishing LM from its mimics. CONCLUSION SOX10 is a more specific and sensitive marker for melanocytes when assessing for LM on excision margins compared with Melan A. The addition of PRAME can be useful to confirm or exclude the diagnosis in challenging cases.
Collapse
|
20
|
Sevilla A, Chéret J, Lee W, Paus R. Concentration-dependent stimulation of melanin production as well as melanocyte and keratinocyte proliferation by melatonin in human eyelid epidermis. Exp Dermatol 2023; 32:684-693. [PMID: 36601673 DOI: 10.1111/exd.14740] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
It remains unclear how the multifunctional indoleamine neurohormone, melatonin, alters melanin production and melanocytes within intact human epidermis under physiologically relevant conditions. In the current pilot study, we aimed to clarify this in long-term organ-cultured, full-thickness human eyelid skin, selected for its clinically recognized sensitivity to pigmentation-modulatory hormones. Warthin-Starry histochemistry showed that 100 μM melatonin significantly increased epidermal melanin content and melanocyte dendricity after 6 days of organ culture, even though tyrosinase activity in situ was inhibited, as assessed by quantitative immunohistomorphometry. While the higher melatonin dose tested here (200 μM) did not change epidermal melanization, but again inhibited tyrosinase activity, it increased the number and proliferation of both gp100+ epidermal melanocytes and keratinocytes as well as protein expression of the premelanosomal marker, gp100, ex vivo. Contrary to most previous studies, these eyelid skin organ culture results suggest that long-term melatonin application exerts overall stimulatory, dose-dependent effects on the epidermal pigmentary unit within intact human skin, which appear surprisingly tyrosinase-independent. While these provocative preliminary findings require further work-up and independent confirmation, they encourage one to systematically explore whether prolonged melatonin therapy can (re-)stimulate melanogenesis and increase the pool/activity of epidermal melanocytes in hypopigmented skin lesions.
Collapse
Affiliation(s)
- Alec Sevilla
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Wendy Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,CUTANEON - Skin & Hair Innovations, Hamburg, Germany.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
21
|
Zhang Y, Zeng H, Hu Y, Jiang L, Fu C, Zhang L, Zhang F, Zhang X, Zhu L, Huang J, Chen J, Zeng Q. Establishment and validation of evaluation models for post-inflammatory pigmentation abnormalities. Front Immunol 2022; 13:991594. [PMID: 36389813 PMCID: PMC9646533 DOI: 10.3389/fimmu.2022.991594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 02/06/2024] Open
Abstract
Post-inflammatory skin hyper- or hypo-pigmentation is a common occurrence with unclear etiology. There is currently no reliable method to predict skin pigmentation outcomes after inflammation. In this study, we analyzed the 5 GEO datasets to screen for inflammatory-related genes involved in melanogenesis, and used candidate cytokines to establish different machine learning (LASSO regression, logistic regression and Random Forest) models to predict the pigmentation outcomes of post-inflammatory skin. Further, to further validate those models, we evaluated the role of these candidate cytokines in pigment cells. We found that IL-37, CXCL13, CXCL1, CXCL2 and IL-19 showed high predictive value in predictive models. All models accurately classified skin samples with different melanogenesis-related gene scores in the training and testing sets (AUC>0.7). Meanwhile, we mainly evaluated the effects of IL-37 in pigment cells, and found that it increased the melanin content and expression of melanogenesis-related genes (MITF, TYR, TYRP1 and DCT), also enhanced tyrosinase activity. In addition, CXCL13, CXCL1, CXCL2 and IL-19 could down-regulate the expression of several melanogenesis-related genes. In conclusion, evaluation models basing on machine learning may be valuable in predicting outcomes of post-inflammatory pigmentation abnormalities. IL-37, CXCL1, CXCL2, CXCL13 and IL-19 are involved in regulating post-inflammatory pigmentation abnormalities.
Collapse
Affiliation(s)
- Yushan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yibo Hu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Hong C, Yang L, Zhang Y, Li Y, Wu H. Epimedium brevicornum Maxim. Extract exhibits pigmentation by melanin biosynthesis and melanosome biogenesis/transfer. Front Pharmacol 2022; 13:963160. [PMID: 36249817 PMCID: PMC9557186 DOI: 10.3389/fphar.2022.963160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Epimedium brevicornum Maxim. (Epimedii Folium) is a traditional medicine widely utilized in China for sexual dysfunction and osteoporosis treatment. Recently, studies have reported that Epimedium flavonoid icariin displayed hair growth and melanogenic ability by targeting tyrosinase activity. Nevertheless, icariin hydrolysate icariside II and icaritin cause depigmentation due to their tyrosinase inhibition. These pigment functional discrepancies from Epimedium constituents arouse our great interest. Then, this study focused on the pigmentation effects of Epimedii Folium extract (EFE) on melanin synthesis and melanosome biogenesis/transfer, and further identified the bioactive constituents. First, in in vitro systemic studies, we discovered that the potent melanogenic and repigmented effects of EFE were dependent on concentration and amount of time in multi-melanocytes, normal human skin tissue, and vitiligo perilesional areas. In vivo, EFE exhibited repigmented effect on two kinds of depigmented models of N-phenylthiourea-induced zebrafish and hydroquinone-induced mice. Mechanistically, EFE strongly promoted tyrosinase activity and upregulated the protein expression of tyrosinase families which finally contribute to melanin biosynthesis by activating the MAPK/ERK1/2 signal pathway. In addition, EFE effectively increased melanosome number, accelerated melanosome maturity and cytoplasmic transport through the growth/extension of melanocyte dendrites, and induced melanosome transfer from melanocyte to keratinocyte for pigmentation. The six main flavonoid ingredients were identified among EFE. Compared to others, epimedin B (EB) was confirmed as a high-content, low-toxicity, and effective melanogenic compound in EFE. Taking all these together, this study systematically demonstrates the potential pigmentation effect of Epimedium brevicornum Maxim., and clarifies its related molecular mechanisms and melanogenesis basis. These results give additional insight into Epimedium herb pharmacology and may provide a novel therapy basis for hypopigmentation disorders.
Collapse
Affiliation(s)
- Chen Hong
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Wu, ; Yiming Li,
| | - Huali Wu
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Wu, ; Yiming Li,
| |
Collapse
|
23
|
Hall MJ, Lopes-Ventura S, Neto MV, Charneca J, Zoio P, Seabra MC, Oliva A, Barral DC. Reconstructed human pigmented skin/epidermis models achieve epidermal pigmentation through melanocore transfer. Pigment Cell Melanoma Res 2022; 35:425-435. [PMID: 35325505 PMCID: PMC9543140 DOI: 10.1111/pcmr.13039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/12/2022] [Indexed: 12/15/2022]
Abstract
The skin acts as a barrier to environmental insults and provides many vital functions. One of these is to shield DNA from harmful ultraviolet radiation, which is achieved by skin pigmentation arising as melanin is produced and dispersed within the epidermal layer. This is a crucial defence against DNA damage, photo‐ageing and skin cancer. The mechanisms and regulation of melanogenesis and melanin transfer involve extensive crosstalk between melanocytes and keratinocytes in the epidermis, as well as fibroblasts in the dermal layer. Although the predominant mechanism of melanin transfer continues to be debated and several plausible models have been proposed, we and others previously provided evidence for a coupled exo/phagocytosis model. Herein, we performed histology and immunohistochemistry analyses and demonstrated that a newly developed full‐thickness three‐dimensional reconstructed human pigmented skin model and an epidermis‐only model exhibit dispersed pigment throughout keratinocytes in the epidermis. Transmission electron microscopy revealed melanocores between melanocytes and keratinocytes, suggesting that melanin is transferred through coupled exocytosis/phagocytosis of the melanosome core, or melanocore, similar to our previous observations in human skin biopsies. We, therefore, present evidence that our in vitro models of pigmented human skin show epidermal pigmentation comparable to human skin. These findings have a high value for studies of skin pigmentation mechanisms and pigmentary disorders, whilst reducing the reliance on animal models and human skin biopsies.
Collapse
Affiliation(s)
- Michael J Hall
- CEDOC - Chronic Diseases Research Centre, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sara Lopes-Ventura
- Biomolecular Diagnostic Laboratory, Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| | - Matilde V Neto
- CEDOC - Chronic Diseases Research Centre, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - João Charneca
- CEDOC - Chronic Diseases Research Centre, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Patricia Zoio
- Biomolecular Diagnostic Laboratory, Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| | - Miguel C Seabra
- CEDOC - Chronic Diseases Research Centre, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal.,UCL Institute of Ophthalmology, University College London, London, UK
| | - Abel Oliva
- Biomolecular Diagnostic Laboratory, Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa (UNL), Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | - Duarte C Barral
- CEDOC - Chronic Diseases Research Centre, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Rachinger N, Mittag N, Böhme-Schäfer I, Xiang W, Kuphal S, Bosserhoff AK. Alpha-Synuclein and Its Role in Melanocytes. Cells 2022; 11:cells11132087. [PMID: 35805172 PMCID: PMC9265281 DOI: 10.3390/cells11132087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Pigmentation is an important process in skin physiology and skin diseases and presumably also plays a role in Parkinson’s disease (PD). In PD, alpha-Synuclein (aSyn) has been shown to be involved in the pigmentation of neurons. The presynaptic protein is intensively investigated for its pathological role in PD, but its physiological function remains unknown. We hypothesized that aSyn is both involved in melanocytic differentiation and melanosome trafficking processes. We detected a strong expression of aSyn in human epidermal melanocytes (NHEMs) and observed its regulation in melanocytic differentiation via the microphthalmia-associated transcription factor (MITF), a central regulator of differentiation. Moreover, we investigated its role in pigmentation by performing siRNA experiments but found no effect on the total melanin content. We discovered a localization of aSyn to melanosomes, and further analysis of aSyn knockdown revealed an important role in melanocytic morphology and a reduction in melanosome release. Additionally, we found a reduction of transferred melanosomes in co-culture experiments of melanocytes and keratinocytes but no complete inhibition of melanosome transmission. In summary, this study highlights a novel physiological role of aSyn in melanocytic morphology and its so far unknown function in the pigment secretion in melanocytes.
Collapse
Affiliation(s)
- Nicole Rachinger
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Nora Mittag
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany;
| | - Ines Böhme-Schäfer
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
- Correspondence:
| |
Collapse
|
25
|
Gelmi MC, Houtzagers LE, Strub T, Krossa I, Jager MJ. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int J Mol Sci 2022; 23:6001. [PMID: 35682684 PMCID: PMC9181002 DOI: 10.3390/ijms23116001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. Although it has been studied extensively in cutaneous melanoma, the role of MITF in uveal melanoma (UM) has not been explored in much detail. We review the literature about the role of MITF in normal melanocytes, in cutaneous melanoma, and in UM. In normal melanocytes, MITF regulates melanocyte development, melanin synthesis, and melanocyte survival. The expression profile and the behaviour of MITF-expressing cells suggest that MITF promotes local proliferation and inhibits invasion, inflammation, and epithelial-to-mesenchymal (EMT) transition. Loss of MITF expression leads to increased invasion and inflammation and is more prevalent in malignant cells. Cutaneous melanoma cells switch between MITF-high and MITF-low states in different phases of tumour development. In UM, MITF loss is associated with loss of BAP1 protein expression, which is a marker of poor prognosis. These data indicate a dual role for MITF in benign and malignant melanocytic cells.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Laurien E. Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Thomas Strub
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Imène Krossa
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| |
Collapse
|
26
|
Casalou C, Moreiras H, Mayatra JM, Fabre A, Tobin DJ. Loss of 'Epidermal Melanin Unit' Integrity in Human Skin During Melanoma-Genesis. Front Oncol 2022; 12:878336. [PMID: 35574390 PMCID: PMC9097079 DOI: 10.3389/fonc.2022.878336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma can be a most challenging neoplasm of high lethality, in part due to its extreme heterogeneity and characteristic aggressive and invasive nature. Indeed, its moniker 'the great masquerader' reflects that not all melanomas are created equal in terms of their originating cellular contexts, but also that melanoma cells in the malignant tumor can adopt a wide range of different cell states and variable organotropism. In this review, we focus on the early phases of melanomagenesis by discussing how the originating pigment cell of the melanocyte lineage can be influenced to embark on a wide range of tumor fates with distinctive microanatomical pathways. In particular, we assess how cells of the melanocyte lineage can differ by maturation status (stem cell; melanoblast; transiently amplifying cell; differentiated; post-mitotic; terminally-differentiated) as well as by micro-environmental niche (in the stratum basale of the epidermis; within skin appendages like hair follicle, eccrine gland, etc). We discuss how the above variable contexts may influence the susceptibility of the epidermal-melanin unit (EMU) to become unstable, which may presage cutaneous melanoma development. We also assess how unique features of follicular-melanin unit(s) (FMUs) can, by contrast, protect melanocytes from melanomagenesis. Lastly, we postulate how variable melanocyte fates in vitiligo, albinism, psoriasis, and alopecia areata may provide new insights into immune-/non immune-mediated outcomes for melanocytes in cutaneous melanin units.
Collapse
Affiliation(s)
- Cristina Casalou
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Hugo Moreiras
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jay M Mayatra
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- Department of Histopathology, St Vincent's University Hospital, Dublin, Ireland.,UCD School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Desmond J Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Lehloenya RJ, Phillips EJ, Pasieka HB, Peter J. Recognizing Drug Hypersensitivity in Pigmented Skin. Immunol Allergy Clin North Am 2022; 42:219-238. [PMID: 35469616 PMCID: PMC9952815 DOI: 10.1016/j.iac.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The imagery of pigmented skin is underrepresented in teaching materials such as textbooks, journals, and online references, and this has resulted in poorer diagnostic and management outcomes of skin pathology, including delayed cutaneous drug hypersensitivity reactions. In this review, we use clinical images to highlight factors that impact clinical presentations and sequelae of drug hypersensitivity reactions in pigmented skin compared with nonpigmented skin. We describe clinical features in some anatomic sites that aid diagnosis or are associated with more severe sequelae. Finally, we discuss strategies that may aid the diagnosis and management of these reactions in pigmented skin.
Collapse
Affiliation(s)
- Rannakoe J Lehloenya
- Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Dermatology ward G23, New Groote Schuur Hospital, Observatory, Cape Town 7925, South Africa; Combined Drug Allergy Clinic, Groote Schuur Hospital, Dermatology ward G23, New Groote Schuur Hospital, Observatory, Cape Town 7925, South Africa.
| | - Elizabeth J Phillips
- Center for Drug Safety & Immunology, Vanderbilt University Medical Center, Nashville, TN; Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Helena B Pasieka
- Department of Dermatology, Uniformed Serviced University, Bethesda, MD, USA; Department of Medicine, Uniformed Serviced University, Bethesda, MD, USA; Department of Dermatology, MedStar Washington Hospital Center/Georgetown University Hospital, Washington, DC, USA; The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA
| | - Jonny Peter
- Combined Drug Allergy Clinic, Groote Schuur Hospital, Dermatology ward G23, New Groote Schuur Hospital, Observatory, Cape Town 7925, South Africa; Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town Lung institute, George Street, Mowbray, 7925, Cape Town, South Africa; Allergy and Immunology Unit, University of Cape Town Lung Institute, Old Main Building, Groote Schuur Hospital, Anzio Road, 7925, Cape Town, South Africa
| |
Collapse
|
28
|
Moreiras H, Bento-Lopes L, Neto MV, Escrevente C, Cabaço LC, Hall MJ, Ramalho JS, Seabra MC, Barral DC. Melanocore uptake by keratinocytes occurs through phagocytosis and involves Protease-activated receptor-2 internalization. Traffic 2022; 23:331-345. [PMID: 35426185 PMCID: PMC9543991 DOI: 10.1111/tra.12843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 12/01/2022]
Abstract
In the skin epidermis, melanin is produced and stored within melanosomes in melanocytes, and then transferred to keratinocytes. Different models have been proposed to explain the melanin transfer mechanism, which differ essentially in how melanin is transferred - either in a membrane-bound melanosome or as a melanosome core, i.e., melanocore. Here, we investigated the endocytic route followed by melanocores and melanosomes during internalization by keratinocytes, by comparing the uptake of melanocores isolated from the supernatant of melanocyte cultures, with melanosomes isolated from melanocytes. We show that inhibition of actin dynamics impairs the uptake of both melanocores and melanosomes. Moreover, depletion of critical proteins involved in actin-dependent uptake mechanisms, namely Rac1, CtBP1/BARS, Cdc42 or RhoA, together with inhibition of Rac1-dependent signaling pathways or macropinocytosis suggest that melanocores are internalized by phagocytosis, whereas melanosomes are internalized by macropinocytosis. Interestingly, we found that Rac1, Cdc42 and RhoA are differently activated by melanocore or melanosome stimulation, supporting the existence of two distinct internalization routes of melanin internalization. Furthermore, we show that melanocore uptake induces Protease-activated receptor-2 (PAR-2) internalization by keratinocytes to a higher extent than melanosomes. Since skin pigmentation was shown to be regulated by PAR-2 activation, our results further support the melanocore-based mechanism of melanin transfer and further refine this model, which can now be described as coupled melanocore exo/phagocytosis.
Collapse
Affiliation(s)
- Hugo Moreiras
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Liliana Bento-Lopes
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Matilde V Neto
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cristina Escrevente
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Luís C Cabaço
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Michael J Hall
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - José S Ramalho
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Miguel C Seabra
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Duarte C Barral
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
29
|
Du Z, D’Alessandro E, Zheng Y, Wang M, Chen C, Wang X, Song C. Retrotransposon Insertion Polymorphisms (RIPs) in Pig Coat Color Candidate Genes. Animals (Basel) 2022; 12:ani12080969. [PMID: 35454216 PMCID: PMC9031378 DOI: 10.3390/ani12080969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
The diversity of livestock coat color results from human positive selection and represents an indispensable part of breed identity. As an important biodiversity resource, pigs have many special characteristics, including the most visualized feature, coat color, and excellent adaptation, and the coat color represents an important phenotypic characteristic of the pig breed. Exploring the genetic mechanisms of phenotypic characteristics and the melanocortin system is of considerable interest in domestic animals because their energy metabolism and pigmentation have been under strong selection. In this study, 20 genes related to coat color in mammals were selected, and the structural variations (SVs) in these genic regions were identified by sequence alignment across 17 assembled pig genomes, from representing different types of pigs (miniature, lean, and fat type). A total of 167 large structural variations (>50 bp) of coat-color genes, which overlap with retrotransposon insertions (>50 bp), were obtained and designated as putative RIPs. Finally, 42 RIPs were confirmed by PCR detection. Additionally, eleven RIP sites were further evaluated for their genotypic distributions by PCR in more individuals of eleven domesticated breeds representing different coat color groups. Differential distributions of these RIPs were observed across populations, and some RIPs may be associated with breed differences.
Collapse
Affiliation(s)
- Zhanyu Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Via Palatucci, 98168 Messina, Italy;
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Mengli Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (Y.Z.); (M.W.); (C.C.); (X.W.)
- Correspondence:
| |
Collapse
|
30
|
Xiang B, Li Y, Li J, Li J, Jiang H, Zhang Q. MiR-19 3b regulated the formation of coat colors by targeting WNT10A and GNAI2 in Cashmere goats. Anim Biotechnol 2021:1-9. [PMID: 34747678 DOI: 10.1080/10495398.2021.1998089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MiRNAs as a series of small noncoding RNAs that play a crucial part in regulating coat color and hair follicle development. In the previous Solexa sequencing experiments, there were many miRNAs expressed differentially in alpacas with different coat color, including miR-193b.But the mechanism of miR-193b in mammalian pigmentation is still unknown. In this study, bioinformatics analysis showed that WNT10A and GNAI2 might be the target genes of miR-193b. qRT-PCR showed the expression of miR-193b in white Cashmere goats' skins was obviously lower than that in browns, and the expression of WNT10A and GNAI2 were similar with miR-193b. The protein levels of WNT10A and GNAI2 indicated the same findings. Furthermore, the expression of WNT10A and GNAI2 in keratinocytes were analyzed from mRNA and protein levels, the results manifested that the group of overexpression of miR-193b in HaCaT cells increased the expressions of target genes, and miR-193b inhibition group reduced expressions. Luciferase report assays confirmed that the targeting relationship between miR-193b and target genes (WNT10A and GNAI2), the results showed that miR-193b was positively correlated with target genes. These experimental data showed that miR-193b might participate in adjustment of coat color in skin tissue of Cashmere goat by targeting WNT10A and GNAI2.
Collapse
Affiliation(s)
- Ba Xiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun, China
| | - Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Jianyu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - HuaiZhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - QiaoLing Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
31
|
Le L, Sirés-Campos J, Raposo G, Delevoye C, Marks MS. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr Comp Biol 2021; 61:1517-1545. [PMID: 34021746 PMCID: PMC8516112 DOI: 10.1093/icb/icab078] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanins, the main pigments of the skin and hair in mammals, are synthesized within membrane-bound organelles of melanocytes called melanosomes. Melanosome structure and function are determined by a cohort of resident transmembrane proteins, many of which are expressed only in pigment cells and localize specifically to melanosomes. Defects in the genes that encode melanosome-specific proteins or components of the machinery required for their transport in and out of melanosomes underlie various forms of ocular or oculocutaneous albinism, characterized by hypopigmentation of the hair, skin, and eyes and by visual impairment. We review major components of melanosomes, including the enzymes that catalyze steps in melanin synthesis from tyrosine precursors, solute transporters that allow these enzymes to function, and structural proteins that underlie melanosome shape and melanin deposition. We then review the molecular mechanisms by which these components are biosynthetically delivered to newly forming melanosomes-many of which are shared by other cell types that generate cell type-specific lysosome-related organelles. We also highlight unanswered questions that need to be addressed by future investigation.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Figon F, Deravi LF, Casas J. Barriers and Promises of the Developing Pigment Organelle Field. Integr Comp Biol 2021; 61:1481-1489. [PMID: 34283212 DOI: 10.1093/icb/icab164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Many colors and patterns in nature are regulated by the packaging and processing of intracellular pigment-containing organelles within cells. Spanning both molecular and tissue-level spatial scales with chemical and physical (structural) elements of coloration, pigment organelles represent an important but largely understudied feature of every biological system capable of coloration. Although vertebrate melanosomes have historically been the best-known and most studied pigment organelle, recent reports suggest a surge in studies focusing on other pigment organelles producing a variety of non-melanic pigments, optic crystals and structural colors through their geometric arrangement. In this issue, we showcase the importance these integrative and comparative studies and discuss their results which aid in our understanding of organelle form and function in their native environment. Specifically, we highlight how pigment organelles can be studied at different scales of organization, across multiple species in biology, and with an interdisciplinary approach to better understand the biological and chemical mechanisms underlying color. This type of comparative approach provides evidence for a common origin and identity of membrane-bound pigment organelles not only in vertebrates, as was originally postulated 40 years ago, but in all animals. This indicates that we have much to gain by studying a variety of pigment organelles, as the specific biological context may provide important and unique insights into various aspects of its life. We conclude by highlighting some barriers to this research and discussing strategies to overcome them through a discussion of future directions for pigment organelle research.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| | - Leila F Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, 37200 Tours, France
| |
Collapse
|