1
|
Arunvinthan S, Gouri P, Divysha S, Devadharshini RK, Nithya Sree R. Effect of Trough Incidence Angle on the Aerodynamic Characteristics of a Biomimetic Leading-Edge Protuberanced (LEP) Wing at Various Turbulence Intensities. Biomimetics (Basel) 2024; 9:354. [PMID: 38921233 PMCID: PMC11202004 DOI: 10.3390/biomimetics9060354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
A series of wind tunnel tests were performed to investigate the effect of turbulent inflows on the aerodynamic characteristics of variously modified trough incident leading-edge-protuberanced (LEP) wing configurations at various turbulence intensities. A self-developed passive grid made of parallel arrays of round bars was placed at different locations of the wind tunnel to generate desired turbulence intensity. The aerodynamic forces acting over the trough incidence LEP wing configuration where obtained from surface pressure measurements made over the wing at different turbulence intensities using an MPS4264 Scanivalve simultaneous pressure scanner corresponding to a sampling frequency of 700 Hz. All the test models were tested at a wide range of angles of attack ranging between 0°≤α≤90° at turbulence intensities varying between 5.90% ≤ TI ≤ 10.54%. Results revealed that the time-averaged mean coefficient of lift (CL) increased with the increase in the turbulence intensity associated with smooth stall characteristics rendering the modified LEP test models advantageous. Furthermore, based on the surface pressure coefficients, the underlying dynamics behind the stall delay tendency were discussed. Additionally, attempts were made to statistically quantify the aerodynamic forces using standard deviation at both the pre-stall and the post-stall angles.
Collapse
Affiliation(s)
- Shanmugam Arunvinthan
- School of Mechanical Engineering, SASTRA University, Thanjavur 613401, Tamil Nadu, India; (P.G.); (S.D.); (R.D.); (R.N.S.)
| | | | | | | | | |
Collapse
|
2
|
Fish FE, Nicastro AJ, Cardenas KL, Segre PS, Gough WT, Kahane-Rapport SR, St. Leger J, Goldbogen JA. Spin-leap performance by cetaceans is influenced by moment of inertia. J Exp Biol 2024; 227:jeb246433. [PMID: 38149677 PMCID: PMC10914021 DOI: 10.1242/jeb.246433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Cetaceans are capable of extraordinary locomotor behaviors in both water and air. Whales and dolphins can execute aerial leaps by swimming rapidly to the water surface to achieve an escape velocity. Previous research on spinner dolphins demonstrated the capability of leaping and completing multiple spins around their longitudinal axis with high angular velocities. This prior research suggested the slender body morphology of spinner dolphins together with the shapes and positions of their appendages allowed for rapid spins in the air. To test whether greater moments of inertia reduced spinning performance, videos and biologging data of cetaceans above and below the water surface were obtained. The principal factors affecting the number of aerial spins a cetacean can execute were moment of inertia and use of control surfaces for subsurface corkscrewing. For spinner dolphin, Pacific striped dolphin, bottlenose dolphin, minke whale and humpback whale, each with swim speeds of 6-7 m s-1, our model predicted that the number of aerial spins executable was 7, 2, 2, 0.76 and 1, respectively, which was consistent with observations. These data implied that the rate of subsurface corkscrewing was limited to 14.0, 6.8, 6.2, 2.2 and 0.75 rad s-1 for spinner dolphins, striped dolphins, bottlenose dolphins, minke whales and humpback whales, respectively. In our study, the moment of inertia of the cetaceans spanned a 21,000-fold range. The greater moments of inertia for the last four species produced large torques on control surfaces that limited subsurface corkscrewing motion and aerial maneuvers compared with spinner dolphins.
Collapse
Affiliation(s)
- Frank E. Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Anthony J. Nicastro
- Department of Physics and Engineering, West Chester University, West Chester, PA 19383, USA
| | | | - Paolo S. Segre
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - William T. Gough
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | | | | | | |
Collapse
|
3
|
Westbury MV, Cabrera AA, Rey-Iglesia A, De Cahsan B, Duchêne DA, Hartmann S, Lorenzen ED. A genomic assessment of the marine-speciation paradox within the toothed whale superfamily Delphinoidea. Mol Ecol 2023; 32:4829-4843. [PMID: 37448145 DOI: 10.1111/mec.17069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
The impact of post-divergence gene flow in speciation has been documented across a range of taxa in recent years, and may have been especially widespread in highly mobile, wide-ranging marine species, such as cetaceans. Here, we studied individual genomes from nine species across the three families of the toothed whale superfamily Delphinoidea (Delphinidae, Phocoenidae and Monodontidae). To investigate the role of post-divergence gene flow in the speciation process, we used a multifaceted approach, including (i) phylogenomics, (ii) the distribution of shared derived alleles and (iii) demographic inference. We found the divergence of lineages within Delphinoidea did not follow a process of pure bifurcation, but was much more complex. Sliding-window phylogenomics reveal a high prevalence of discordant topologies within the superfamily, with further analyses indicating these discordances arose due to both incomplete lineage sorting and gene flow. D-statistics and f-branch analyses supported gene flow between members of Delphinoidea, with the vast majority of gene flow occurring as ancient interfamilial events. Demographic analyses provided evidence that introgressive gene flow has likely ceased between all species pairs tested, despite reports of contemporary interspecific hybrids. Our study provides the first steps towards resolving the large complexity of speciation within Delphinoidea; we reveal the prevalence of ancient interfamilial gene flow events prior to the diversification of each family, and suggest that contemporary hybridisation events may be disadvantageous, as hybrid individuals do not appear to contribute to the parental species' gene pools.
Collapse
Affiliation(s)
| | | | | | - Binia De Cahsan
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - David A Duchêne
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Hartmann
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
4
|
Pereira AG, Kohlsdorf T. Repeated evolution of similar phenotypes: Integrating comparative methods with developmental pathways. Genet Mol Biol 2023; 46:e20220384. [PMID: 37486083 PMCID: PMC10364090 DOI: 10.1590/1678-4685-gmb-2022-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Repeated phenotypes, often referred to as 'homoplasies' in cladistic analyses, may evolve through changes in developmental processes. Genetic bases of recurrent evolution gained attention and have been studied in the past years using approaches that combine modern analytical phylogenetic tools with the stunning assemblage of new information on developmental mechanisms. In this review, we evaluated the topic under an integrated perspective, revisiting the classical definitions of convergence and parallelism and detailing comparative methods used to evaluate evolution of repeated phenotypes, which include phylogenetic inference, estimates of evolutionary rates and reconstruction of ancestral states. We provide examples to illustrate how a given methodological approach can be used to identify evolutionary patterns and evaluate developmental mechanisms associated with the intermittent expression of a given trait along the phylogeny. Finally, we address why repeated trait loss challenges strict definitions of convergence and parallelism, discussing how changes in developmental pathways might explain the high frequency of repeated trait loss in specific lineages.
Collapse
Affiliation(s)
- Anieli Guirro Pereira
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Tiana Kohlsdorf
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Departamento de Biologia, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Graham AM, Jamison JM, Bustos M, Cournoyer C, Michaels A, Presnell JS, Richter R, Crocker DE, Fustukjian A, Hunter ME, Rea LD, Marsillach J, Furlong CE, Meyer WK, Clark NL. Reduction of Paraoxonase Expression Followed by Inactivation across Independent Semiaquatic Mammals Suggests Stepwise Path to Pseudogenization. Mol Biol Evol 2023; 40:msad104. [PMID: 37146172 PMCID: PMC10202596 DOI: 10.1093/molbev/msad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Convergent adaptation to the same environment by multiple lineages frequently involves rapid evolutionary change at the same genes, implicating these genes as important for environmental adaptation. Such adaptive molecular changes may yield either change or loss of protein function; loss of function can eliminate newly deleterious proteins or reduce energy necessary for protein production. We previously found a striking case of recurrent pseudogenization of the Paraoxonase 1 (Pon1) gene among aquatic mammal lineages-Pon1 became a pseudogene with genetic lesions, such as stop codons and frameshifts, at least four times independently in aquatic and semiaquatic mammals. Here, we assess the landscape and pace of pseudogenization by studying Pon1 sequences, expression levels, and enzymatic activity across four aquatic and semiaquatic mammal lineages: pinnipeds, cetaceans, otters, and beavers. We observe in beavers and pinnipeds an unexpected reduction in expression of Pon3, a paralog with similar expression patterns but different substrate preferences. Ultimately, in all lineages with aquatic/semiaquatic members, we find that preceding any coding-level pseudogenization events in Pon1, there is a drastic decrease in expression, followed by relaxed selection, thus allowing accumulation of disrupting mutations. The recurrent loss of Pon1 function in aquatic/semiaquatic lineages is consistent with a benefit to Pon1 functional loss in aquatic environments. Accordingly, we examine diving and dietary traits across pinniped species as potential driving forces of Pon1 functional loss. We find that loss is best associated with diving activity and likely results from changes in selective pressures associated with hypoxia and hypoxia-induced inflammation.
Collapse
Affiliation(s)
- Allie M Graham
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Jerrica M Jamison
- Department of Biological Sciences, University of Toronto—Scarborough, Scarborough, Ontario, Canada
| | - Marisol Bustos
- Department of Biomedical Engineering, University of Texas—San Antonio, San Antonio, TX
| | | | - Alexa Michaels
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA
- The Jackson Laboratory, Bar Harbor, ME
| | - Jason S Presnell
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Rebecca Richter
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA
| | | | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL
| | - Lorrie D Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska—Fairbanks, Fairbanks, AK
| | - Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA
| | - Clement E Furlong
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Wynn K Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| |
Collapse
|
6
|
Silva AF, Seifert L, Fernandes RJ, Vilas Boas JP, Figueiredo P. Front crawl swimming coordination: a systematic review. Sports Biomech 2022:1-20. [PMID: 36223481 DOI: 10.1080/14763141.2022.2125428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 09/10/2022] [Indexed: 10/17/2022]
Abstract
Several constraints, including environmental (e.g., aquatic resistance, temperature and viscosity), organismic (e.g., anthropometry, buoyancy) and task-related (e.g., imposed swim speed or stroke rate) impact motor coordination and swimming performance. As motor coordination requires structurally organising intra- and inter-limb coupling, the purpose of this review was to update the literature concerning coordination between the upper-limbs in front crawl swimming. We focused on the effects of biomechanical, physiological, and personal (gender, skill level, and age) factors on coordination and performance. In fact, it could be highlighted that upper-limbs coordination varies with organismic, task and environmental constraints, resulting in several available motor solutions that should be adopted according to how each swimmer deals with occurring constraints. As such, there is no ideal or optimal coordination pattern that youth, learners and less-skilled swimmers should imitate.
Collapse
Affiliation(s)
- Ana F Silva
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
- Porto Biomechanics Laboratory, University of Porto, Porto, Portugal
| | - Ludovic Seifert
- Faculty of Sport Sciences, CETAPS EA3832, University of Rouen Normandy, Mont-Saint-Aignan, France
| | - Ricardo J Fernandes
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, LABIOMEP (Porto Biomechanics Laboratory), University of Porto, Porto, Portugal
| | - João Paulo Vilas Boas
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, LABIOMEP (Porto Biomechanics Laboratory), University of Porto, Porto, Portugal
| | - Pedro Figueiredo
- Physical Education Department, College of Education, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Consoli FMA, Bernaldo de Quirós Y, Arbelo M, Fulle S, Marchisio M, Encinoso M, Fernandez A, Rivero MA. Cetaceans Humerus Radiodensity by CT: A Useful Technique Differentiating between Species, Ecophysiology, and Age. Animals (Basel) 2022; 12:ani12141793. [PMID: 35883340 PMCID: PMC9311750 DOI: 10.3390/ani12141793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cetaceans are mammals that underwent a series of evolutionary adaptations to live in the aquatic environment, including morphological modifications of various anatomical structures of the skeleton and their bone mineral density (BMD); there are few studies on the latter. BMD is related to the radiodensity measured through computed tomography (CT) in Hounsfield units (HU). This work aimed to test and validate the usefulness of studying humeral bone radiodensity by CT of two cetacean species (the Atlantic spotted dolphin and the pygmy sperm whale) with different swimming and diving habits. The radiodensity was analysed at certain levels following a new protocol based on a review of previous studies. Humeral radiodensity values were related to four aspects: species, diving behaviour, swimming activity level, and age. We observed that the consistent differences in the radiodensity of the cortical bone of the distal epiphysis between animals of different life-history categories suggest that this bone portion could be particularly useful for future ontogenetic studies. Hence, this technique may be helpful in studying and comparing species with different ecophysiologies, particularly distinguishing between swimming and diving habits.
Collapse
Affiliation(s)
- Francesco Maria Achille Consoli
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria (ULPGC), 35400 Las Palmas, Spain; (F.M.A.C.); (M.A.); (A.F.); (M.A.R.)
- Department of Neuroscience Imaging and Clinical Sciences, University G. D’Annunzio, 66100 Chieti, Italy;
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria (ULPGC), 35400 Las Palmas, Spain; (F.M.A.C.); (M.A.); (A.F.); (M.A.R.)
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303, USA
- Correspondence:
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria (ULPGC), 35400 Las Palmas, Spain; (F.M.A.C.); (M.A.); (A.F.); (M.A.R.)
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University G. D’Annunzio, 66100 Chieti, Italy;
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), University G. D’Annunzio, 66100 Chieti, Italy;
| | - Mario Encinoso
- Hospital Clínico Veterinario, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Las Palmas, Spain;
| | - Antonio Fernandez
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria (ULPGC), 35400 Las Palmas, Spain; (F.M.A.C.); (M.A.); (A.F.); (M.A.R.)
| | - Miguel A. Rivero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria (ULPGC), 35400 Las Palmas, Spain; (F.M.A.C.); (M.A.); (A.F.); (M.A.R.)
| |
Collapse
|
8
|
Figgener C, Bernardo J, Plotkin PT. Marine turtles are only minimally sexually size dimorphic, a pattern that is distinct from most nonmarine aquatic turtles. Ecol Evol 2022; 12:e8963. [PMID: 35784046 PMCID: PMC9163671 DOI: 10.1002/ece3.8963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Turtles have been prominent subjects of sexual size dimorphism (SSD) analyses due to their compact taxonomy, mating systems, and habitat diversity. In prior studies, marine turtles were grouped with fully aquatic non-marine turtles (NMATs). This is interesting because it is well-established that the marine environment imposes a distinct selective milieu on body form of vagile vertebrates, driven by convergent adaptations for energy-efficient propulsion and drag reduction. We generated a comprehensive database of adult marine turtle body sizes (38,569 observations across all species), which we then used to evaluate the magnitude of SSD in marine turtles and how it compares to SSD in NMAT. We find that marine turtles are only minimally sexually size dimorphic, whereas NMAT typically exhibit female-biased SSD. We argue that the reason for this difference is the sustained long-distance swimming that characterizes marine turtle ecology, which entails significant energetic costs incurred by both sexes. Hence, the ability of either sex to allocate proportionately more to growth than the other is likely constrained, meaning that sexual differences in growth and resultant body size are not possible. Consequently, grouping marine turtles with NMAT dilutes the statistical signature of different kinds of selection on SSD and should be avoided in future studies.
Collapse
Affiliation(s)
- Christine Figgener
- Marine Biology Interdisciplinary ProgramTexas A&M UniversityCollege StationTexasUSA
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
- Department of OceanographyTexas A&M UniversityCollege StationTexasUSA
- Costa Rican Alliance for Sea Turtle Conservation & Science (COASTS)GandocaCosta Rica
| | - Joseph Bernardo
- Marine Biology Interdisciplinary ProgramTexas A&M UniversityCollege StationTexasUSA
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
- Program in Ecology and Evolutionary BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Pamela T. Plotkin
- Marine Biology Interdisciplinary ProgramTexas A&M UniversityCollege StationTexasUSA
- Department of OceanographyTexas A&M UniversityCollege StationTexasUSA
- Texas Sea GrantTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
9
|
Eldridge SA, Mortazavi F, Rice FL, Ketten DR, Wiley DN, Lyman E, Reidenberg JS, Hanke FD, DeVreese S, Strobel SM, Rosene DL. Specializations of somatosensory innervation in the skin of humpback whales (Megaptera novaeangliae). Anat Rec (Hoboken) 2022; 305:514-534. [PMID: 35023618 DOI: 10.1002/ar.24856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/12/2022]
Abstract
Cetacean behavior and life history imply a role for somatosensory detection of critical signals unique to their marine environment. As the sensory anatomy of cetacean glabrous skin has not been fully explored, skin biopsy samples of the flank skin of humpback whales were prepared for general histological and immunohistochemical (IHC) analyses of innervation in this study. Histology revealed an exceptionally thick epidermis interdigitated by numerous, closely spaced long, thin diameter penicillate dermal papillae (PDP). The dermis had a stratified organization including a deep neural plexus (DNP) stratum intermingled with small arteries that was the source of intermingled nerves and arterioles forming a more superficial subepidermal neural plexus (SNP) stratum. The patterns of nerves branching through the DNP and SNP that distribute extensive innervation to arteries and arterioles and to the upper dermis and PDP provide a dense innervation associated through the whole epidermis. Some NF-H+ fibers terminated at the base of the epidermis and as encapsulated endings in dermal papillae similar to Merkel innervation and encapsulated endings seen in terrestrial mammals. However, unlike in all mammalian species assessed to date, an unusual acellular gap was present between the perineural sheaths and the central core of axons in all the cutaneous nerves perhaps as mechanism to prevent high hydrostatic pressure from compressing and interfering with axonal conductance. Altogether the whale skin has an exceptionally dense low-threshold mechanosensory system innervation most likely adapted for sensing hydrodynamic stimuli, as well as nerves that can likely withstand high pressure experienced during deep dives.
Collapse
Affiliation(s)
- Sherri A Eldridge
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - Farzad Mortazavi
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Frank L Rice
- Integrated Tissue Dynamics, Rensselaer, New York, USA
| | - Darlene R Ketten
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - David N Wiley
- National Oceanic and Atmospheric Administration/ National Ocean Service/Stellwagen Bank National Marine Sanctuary, Scituate, Massachusetts, USA
| | - Ed Lyman
- Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, Hawaii, USA
| | - Joy S Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Frederike D Hanke
- University of Rostock, Institute for Biosciences, Neuroethology, Rostock, Germany
| | - Steffen DeVreese
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy.,Laboratory of Applied Bioacoustics, Technical University of Catalonia, BarcelonaTech, Barcelona, Spain
| | - Sarah McKay Strobel
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Waechter LS, Luiz OJ, Leprieur F, Bender MG. Functional biogeography of marine vertebrates in Atlantic Ocean reefs. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Luiza S. Waechter
- Programa de Pós‐Graduação em Biodiversidade Animal Departamento de Ecologia e Evolução CCNE Universidade Federal de Santa Maria Santa Maria Brazil
- Marine Macroecology and Conservation Lab Departamento de Ecologia Evolução CCNE Universidade Federal de Santa Maria Santa Maria Brazil
| | - Osmar J. Luiz
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD Montpellier France
- Institut Universitaire de France (IUF) Paris France
| | - Mariana G. Bender
- Programa de Pós‐Graduação em Biodiversidade Animal Departamento de Ecologia e Evolução CCNE Universidade Federal de Santa Maria Santa Maria Brazil
- Marine Macroecology and Conservation Lab Departamento de Ecologia Evolução CCNE Universidade Federal de Santa Maria Santa Maria Brazil
| |
Collapse
|
11
|
Gutarra S, Rahman IA. The locomotion of extinct secondarily aquatic tetrapods. Biol Rev Camb Philos Soc 2021; 97:67-98. [PMID: 34486794 DOI: 10.1111/brv.12790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
The colonisation of freshwater and marine ecosystems by land vertebrates has repeatedly occurred in amphibians, reptiles, birds and mammals over the course of 300 million years. Functional interpretations of the fossil record are crucial to understanding the forces shaping these evolutionary transitions. Secondarily aquatic tetrapods have acquired a suite of anatomical, physiological and behavioural adaptations to locomotion in water. However, much of this information is lost for extinct clades, with fossil evidence often restricted to osteological data and a few extraordinary specimens with soft tissue preservation. Traditionally, functional morphology in fossil secondarily aquatic tetrapods was investigated through comparative anatomy and correlation with living functional analogues. However, in the last two decades, biomechanics in palaeobiology has experienced a remarkable methodological shift. Anatomy-based approaches are increasingly rigorous, informed by quantitative techniques for analysing shape. Moreover, the incorporation of physics-based methods has enabled objective tests of functional hypotheses, revealing the importance of hydrodynamic forces as drivers of evolutionary innovation and adaptation. Here, we present an overview of the latest research on the locomotion of extinct secondarily aquatic tetrapods, with a focus on amniotes, highlighting the state-of-the-art experimental approaches used in this field. We discuss the suitability of these techniques for exploring different aspects of locomotory adaptation, analysing their advantages and limitations and laying out recommendations for their application, with the aim to inform future experimental strategies. Furthermore, we outline some unexplored research avenues that have been successfully deployed in other areas of palaeobiomechanical research, such as the use of dynamic models in feeding mechanics and terrestrial locomotion, thus providing a new methodological synthesis for the field of locomotory biomechanics in extinct secondarily aquatic vertebrates. Advances in imaging technology and three-dimensional modelling software, new developments in robotics, and increased availability and awareness of numerical methods like computational fluid dynamics make this an exciting time for analysing form and function in ancient vertebrates.
Collapse
Affiliation(s)
- Susana Gutarra
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K.,Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K
| | - Imran A Rahman
- Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K.,Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, U.K
| |
Collapse
|
12
|
Taverne M, Dutel H, Fagan M, Štambuk A, Lisičić D, Tadić Z, Fabre AC, Herrel A. From micro to macroevolution: drivers of shape variation in an island radiation of Podarcis lizards. Evolution 2021; 75:2685-2707. [PMID: 34382693 DOI: 10.1111/evo.14326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Phenotypictraits have been shown to evolve in response to variation in the environment. However, the evolutionary processes underlying the emergence of phenotypic diversity can typically only be understood at the population level. Consequently, how subtle phenotypic differences at the intraspecific level can give rise to larger-scale changes in performance and ecology remains poorly understood. We here tested for the covariation between ecology, bite force, jaw muscle architecture, and the three-dimensional shape of the cranium and mandible in 16 insular populations of the lizards Podarcis melisellensis and P. sicula. We then compared the patterns observed at the among-population level with those observed at the interspecific level. We found that three-dimensional head shape as well as jaw musculature evolve similarly under similar ecological circumstances. Depending on the type of food consumed or on the level of sexual competition, different muscle groups were more developed and appeared to underlie changes in cranium and mandible shape. Our findings show that the local selective regimes are primary drivers of phenotypic variation resulting in predictable patterns of form and function. Moreover, intraspecific patterns of variation were generally consistent with those at the interspecific level, suggesting that microevolutionary variation may translate into macroevolutionary patterns of ecomorphological diversity.
Collapse
Affiliation(s)
- Maxime Taverne
- UMR 7179, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Hugo Dutel
- School of Earth Sciences, University of Bristol, Bristol, UK.,Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, UK
| | - Michael Fagan
- Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, UK
| | - Anamaria Štambuk
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Duje Lisičić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zoran Tadić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Anthony Herrel
- UMR 7179, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
13
|
John JS, Thometz NM, Boerner K, Denum L, Kendall TL, Richter BP, Gaspard JC, Williams TM. Metabolic trade-offs in tropical and subtropical marine mammals: unique maintenance and locomotion costs in West Indian manatees and Hawaiian monk seals. J Exp Biol 2021; 224:jeb237628. [PMID: 34357378 PMCID: PMC8353161 DOI: 10.1242/jeb.237628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
Unlike the majority of marine mammal species, Hawaiian monk seals (Neomonachus schauinslandi) and West Indian manatees (Trichechus manatus latirostris) reside exclusively in tropical or subtropical waters. Although potentially providing an energetic benefit through reduced maintenance and thermal costs, little is known about the cascading effects that may alter energy expenditure during activity, dive responses and overall energy budgets for these warm-water species. To examine this, we used open-flow respirometry to measure the energy expended during resting and swimming in both species. We found that the average resting metabolic rates (RMRs) for both the adult monk seal (753.8±26.1 kJ h-1, mean±s.e.m.) and manatees (887.7±19.5 kJ h-1) were lower than predicted for cold-water marine mammal species of similar body mass. Despite these relatively low RMRs, both total cost per stroke and total cost of transport (COTTOT) during submerged swimming were similar to predictions for comparably sized marine mammals (adult monk seal: cost per stroke=5.0±0.2 J kg-1 stroke-1, COTTOT=1.7±0.1 J kg-1 m-1; manatees: cost per stroke=2.0±0.4 J kg-1 stroke-1, COTTOT=0.87±0.17 J kg-1 m-1). These lower maintenance costs result in less variability in adjustable metabolic costs that occur during submergence for warm-water species. However, these reduced maintenance costs do not appear to confer an advantage in overall energetic costs during activity, potentially limiting the capacity of warm-water species to respond to anthropogenic or environmental threats that require increased energy expenditure.
Collapse
Affiliation(s)
- Jason S. John
- University of California Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Nicole M. Thometz
- University of California Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
- University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117, USA
| | - Katharine Boerner
- Mote Marine Laboratory & Aquarium, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Laura Denum
- Mote Marine Laboratory & Aquarium, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Traci L. Kendall
- University of California Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Beau P. Richter
- University of California Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Joseph C. Gaspard
- Pittsburgh Zoo & PPG Aquarium, One Wild Place, Pittsburgh, PA 15206, USA
| | - Terrie M. Williams
- University of California Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
14
|
Gough WT, Smith HJ, Savoca MS, Czapanskiy MF, Fish FE, Potvin J, Bierlich KC, Cade DE, Di Clemente J, Kennedy J, Segre P, Stanworth A, Weir C, Goldbogen JA. Scaling of oscillatory kinematics and Froude efficiency in baleen whales. J Exp Biol 2021; 224:jeb237586. [PMID: 34109418 PMCID: PMC8317509 DOI: 10.1242/jeb.237586] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
High efficiency lunate-tail swimming with high-aspect-ratio lifting surfaces has evolved in many vertebrate lineages, from fish to cetaceans. Baleen whales (Mysticeti) are the largest swimming animals that exhibit this locomotor strategy, and present an ideal study system to examine how morphology and the kinematics of swimming scale to the largest body sizes. We used data from whale-borne inertial sensors coupled with morphometric measurements from aerial drones to calculate the hydrodynamic performance of oscillatory swimming in six baleen whale species ranging in body length from 5 to 25 m (fin whale, Balaenoptera physalus; Bryde's whale, Balaenoptera edeni; sei whale, Balaenoptera borealis; Antarctic minke whale, Balaenoptera bonaerensis; humpback whale, Megaptera novaeangliae; and blue whale, Balaenoptera musculus). We found that mass-specific thrust increased with both swimming speed and body size. Froude efficiency, defined as the ratio of useful power output to the rate of energy input ( Sloop, 1978), generally increased with swimming speed but decreased on average with increasing body size. This finding is contrary to previous results in smaller animals, where Froude efficiency increased with body size. Although our empirically parameterized estimates for swimming baleen whale drag were higher than those of a simple gliding model, oscillatory locomotion at this scale exhibits generally high Froude efficiency as in other adept swimmers. Our results quantify the fine-scale kinematics and estimate the hydrodynamics of routine and energetically expensive swimming modes at the largest scale.
Collapse
Affiliation(s)
- William T. Gough
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Hayden J. Smith
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Department of Physics, Southwestern University, Georgetown, TX 78626, USA
| | - Matthew S. Savoca
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Max F. Czapanskiy
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Frank E. Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Jean Potvin
- Department of Physics, Saint Louis University, Saint Louis, MO 63103, USA
| | - K. C. Bierlich
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - David E. Cade
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - John Kennedy
- Department of Physics, Saint Louis University, Saint Louis, MO 63103, USA
| | - Paolo Segre
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | | | - Caroline Weir
- Falklands Conservation, Stanley FIQQ 1ZZ, Falkland Islands
| | | |
Collapse
|
15
|
Bories P, Rikardsen AH, Leonards P, Fisk AT, Tartu S, Vogel EF, Bytingsvik J, Blévin P. A deep dive into fat: Investigating blubber lipidomic fingerprint of killer whales and humpback whales in northern Norway. Ecol Evol 2021; 11:6716-6729. [PMID: 34141252 PMCID: PMC8207449 DOI: 10.1002/ece3.7523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 11/10/2022] Open
Abstract
In cetaceans, blubber is the primary and largest lipid body reservoir. Our current understanding about lipid stores and uses in cetaceans is still limited, and most studies only focused on a single narrow snapshot of the lipidome. We documented an extended lipidomic fingerprint in two cetacean species present in northern Norway during wintertime. We were able to detect 817 molecular lipid species in blubber of killer whales (Orcinus orca) and humpback whales (Megaptera novaeangliae). The profiles were largely dominated by triradylglycerols in both species and, to a lesser extent, by other constituents including glycerophosphocholines, phosphosphingolipids, glycerophosphoethanolamines, and diradylglycerols. Through a unique combination of traditional statistical approaches, together with a novel bioinformatic tool (LION/web), we showed contrasting fingerprint composition between species. The higher content of triradylglycerols in humpback whales is necessary to fuel their upcoming half a year fasting and energy-demanding migration between feeding and breeding grounds. In adipocytes, we assume that the intense feeding rate of humpback whales prior to migration translates into an important accumulation of triacylglycerol content in lipid droplets. Upstream, the endoplasmic reticulum is operating at full capacity to supply acute lipid storage, consistent with the reported enrichment of glycerophosphocholines in humpback whales, major components of the endoplasmic reticulum. There was also an enrichment of membrane components, which translates into higher sphingolipid content in the lipidome of killer whales, potentially as a structural adaptation for their higher hydrodynamic performance. Finally, the presence of both lipid-enriched and lipid-depleted individuals within the killer whale population in Norway suggests dietary specialization, consistent with significant differences in δ15N and δ13C isotopic ratios in skin between the two groups, with higher values and a wider niche for the lipid-enriched individuals. Results suggest the lipid-depleted killer whales were herring specialists, while the lipid-enriched individuals might feed on both herrings and seals.
Collapse
Affiliation(s)
| | - Audun H. Rikardsen
- Department of Arctic and Marine BiologyUiT ‐ The Arctic University of NorwayTromsøNorway
| | - Pim Leonards
- Department of Environment and HealthVrije UniversiteitAmsterdamThe Netherlands
| | - Aaron T. Fisk
- School of the EnvironmentUniversity of WindsorWindsorONCanada
| | - Sabrina Tartu
- Centre d'Etudes Biologiques de ChizéVilliers en BoisFrance
| | - Emma F. Vogel
- Department of Arctic and Marine BiologyUiT ‐ The Arctic University of NorwayTromsøNorway
| | | | | |
Collapse
|
16
|
Battista NA. Swimming Through Parameter Subspaces of a Simple Anguilliform Swimmer. Integr Comp Biol 2020; 60:1221-1235. [DOI: 10.1093/icb/icaa130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synopsis
Computational scientists have investigated swimming performance across a multitude of different systems for decades. Most models depend on numerous model input parameters and performance is sensitive to those parameters. In this article, parameter subspaces are qualitatively identified in which there exists enhanced swimming performance for an idealized, simple swimming model that resembles a Caenorhabditis elegans, an organism that exhibits an anguilliform mode of locomotion. The computational model uses the immersed boundary method to solve the fluid-interaction system. The 1D swimmer propagates itself forward by dynamically changing its preferred body curvature. Observations indicate that the swimmer’s performance appears more sensitive to fluid scale and stroke frequency, rather than variations in the velocity and acceleration of either its upstroke or downstroke as a whole. Pareto-like optimal fronts were also identified within the data for the cost of transport and swimming speed. While this methodology allows one to locate robust parameter subspaces for desired performance in a straight-forward manner, it comes at the cost of simulating orders of magnitude more simulations than traditional fluid–structure interaction studies.
Collapse
Affiliation(s)
- Nicholas A Battista
- Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road, Ewing Township, NJ 08628, USA
- Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road, Ewing Township, NJ 08628, USA
| |
Collapse
|
17
|
Shormann DE, in het Panhuis M. Performance evaluation of humpback whale-inspired shortboard surfing fins based on ocean wave fieldwork. PLoS One 2020; 15:e0232035. [PMID: 32315359 PMCID: PMC7173857 DOI: 10.1371/journal.pone.0232035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/05/2020] [Indexed: 11/18/2022] Open
Abstract
We present field results revealing improved surfing performance when a novel approach (“Real Whale”, RW) is used for applying several of the humpback whale’s passive flow control mechanisms, including tubercles, to surfboard fins. It is also the first study presenting evidence of dynamic performance of tubercled designs rotating on all three axes. We evaluated low aspect ratio, thruster-style 3-fin configurations used in high-performance surfing. Fieldwork involved surfing almost 2,000 ocean waves from around the world, comparing standard commercial fins with straight leading edges to RW fins. We collected surfing data from instrumentation attached to surfboards, including GPS and 9-axis motion sensors. Eighteen turn performance values were measured and calculated, including novel, surfing-specific rotational power coefficients. ANOVA revealed surfers using RW fins showed significant improvements in power generation compared to when they used standard commercial fins. Turn rates using RW fins also improved, although not significantly. We found using RW fins allowed a skilled surfer to improve their surfing performance relative to a professionally ranked surfer.
Collapse
Affiliation(s)
- David E. Shormann
- DIVE, LLC, Haleiwa, HI, United States of America
- Surf Engineering Association, Kiama Downs, NSW, Australia
- * E-mail:
| | - Marc in het Panhuis
- Surf Engineering Association, Kiama Downs, NSW, Australia
- Surf Flex Lab, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
18
|
Kosma MM, Werth AJ, Szabo AR, Straley JM. Pectoral herding: an innovative tactic for humpback whale foraging. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191104. [PMID: 31824717 PMCID: PMC6837203 DOI: 10.1098/rsos.191104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Humpback whales (Megaptera novaeangliae) have exceptionally long pectorals (i.e. flippers) that aid in shallow water navigation, rapid acceleration and increased manoeuvrability. The use of pectorals to herd or manipulate prey has been hypothesized since the 1930s. We combined new technology and a unique viewing platform to document the additional use of pectorals to aggregate prey during foraging events. Here, we provide a description of 'pectoral herding' and explore the conditions that may promote this innovative foraging behaviour. Specifically, we analysed aerial videos and photographic sequences to assess the function of pectorals during feeding events near salmon hatchery release sites in Southeast Alaska (2016-2018). We observed the use of solo bubble-nets to initially corral prey, followed by calculated movements to establish a secondary boundary with the pectorals-further condensing prey and increasing foraging efficiency. We found three ways in which humpback whales use pectorals to herd prey: (i) create a physical barrier to prevent evasion, (ii) cause water motion to guide prey towards the mouth, and (iii) position the ventral side to reflect light and alter prey movement. Our findings suggest that behavioural plasticity may aid foraging in changing environments and shifts in prey availability. Further study would clarify if 'pectoral herding' is used as a principal foraging tool by the broader humpback whale population and the conditions that promote its use.
Collapse
Affiliation(s)
- Madison M. Kosma
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, AK 99801, USA
| | - Alexander J. Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA
| | | | - Janice M. Straley
- Department of Natural Sciences, University of Alaska Southeast, Sitka, AK 99835, USA
| |
Collapse
|
19
|
Jones A, Marshall CD. Does Vibrissal Innervation Patterns and Investment Predict Hydrodynamic Trail Following Behavior of Harbor Seals (
Phoca vitulina
)? Anat Rec (Hoboken) 2019; 302:1837-1845. [DOI: 10.1002/ar.24134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/07/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Aubree Jones
- Department of Marine BiologyTexas A&M University Galveston Campus Galveston, Texas
| | - Christopher D. Marshall
- Department of Marine BiologyTexas A&M University Galveston Campus Galveston, Texas
- Department of Wildlife and Fisheries SciencesTexas A&M University College Station Texas
| |
Collapse
|
20
|
DeBlois MC, Motani R. Flipper bone distribution reveals flexible trailing edge in underwater flying marine tetrapods. J Morphol 2019; 280:908-924. [PMID: 31006912 DOI: 10.1002/jmor.20992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 11/07/2022]
Abstract
Hydrofoil-shaped limbs (flipper-hydrofoils) have evolved independently several times in secondarily marine tetrapods and generally fall into two functional categories: (1) those that produce the majority of thrust during locomotion (propulsive flipper-hydrofoils); (2) those used primarily to steer and resist destabilizing movements such as yaw, pitch, and roll (controller flipper-hydrofoils). The morphological differences between these two types have been poorly understood. Theoretical and experimental studies on engineered hydrofoils suggest that flapping hydrofoils with a flexible trailing edge are more efficient at producing thrust whereas hydrofoils used in steering and stabilization benefit from a more rigid one. To investigate whether the trailing edge is generally more flexible in propulsive flipper-hydrofoils, we compared the bone distribution along the chord in both flipper types. The propulsive flipper-hydrofoil group consists of the forelimbs of Chelonioidea, Spheniscidae, and Otariidae. The controller flipper-hydrofoil group consists of the forelimbs of Cetacea. We quantified bone distribution from radiographs of species representing more than 50% of all extant genera for each clade. Our results show that the proportion of bone in both groups is similar along the leading edge (0-40% of the chord) but is significantly less along the trailing edge for propulsive flipper-hydrofoils (40-80% of the chord). Both flipper-hydrofoil types have little to no bony tissue along the very edge of the trailing edge (80-100% of the chord). This suggests a relatively flexible trailing edge for propulsive flipper-hydrofoils compared to controller flipper-hydrofoils in line with findings from prior studies. This study presents a morphological correlate for inferring flipper-hydrofoil function in extinct taxa and highlights the importance of a flexible trailing edge in the evolution of propulsive flipper-hydrofoils in marine tetrapods.
Collapse
Affiliation(s)
- Mark C DeBlois
- Department of Earth and Planetary Sciences, University of California, Davis, California
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, California
| |
Collapse
|
21
|
Beltran RS, Burns JM, Breed GA. Convergence of biannual moulting strategies across birds and mammals. Proc Biol Sci 2019; 285:rspb.2018.0318. [PMID: 29769361 DOI: 10.1098/rspb.2018.0318] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Birds and mammals have developed numerous strategies for replacing worn feathers and hair. Moulting usually occurs on an annual basis; however, moults that take place twice per year (biannual moults) also occur. Here, we review the forces driving the evolution of various moult strategies, focusing on the special case of the complete biannual moult as a convergence of selection pressures across birds and mammals. Current evidence suggests that harsh environmental conditions or seasonality (e.g. larger variation in temperatures) drive evolution of a biannual moult. In turn, the biannual moult can respond to secondary selection that results in phenotypic alteration such as colour changes for mate choice dynamics (sexual selection) or camouflage requirements (natural selection). We discuss the contributions of natural and sexual selection to the evolution of biannual moulting strategies in the contexts of energetics, niche selection, functionality and physiological mechanisms. Finally, we suggest that moult strategies are directly related to species niche because environmental attributes drive the utility (e.g. thermoregulation, camouflage, social dynamics) of the hair or feathers. Functional efficiency of moult may be undermined if the pace of evolution fails to match that of the changing climate. Thus, future research should seek to understand the plasticity of moult duration and phenology, especially in the context of annual cycles.
Collapse
Affiliation(s)
- Roxanne S Beltran
- Department of Biology and Wildlife, University of Alaska Fairbanks, 101 Murie Building, 982 Koyukuk Drive, Fairbanks, AK 99775, USA .,Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA
| | - Greg A Breed
- Department of Biology and Wildlife, University of Alaska Fairbanks, 101 Murie Building, 982 Koyukuk Drive, Fairbanks, AK 99775, USA.,Institute of Arctic Biology, University of Alaska Fairbanks, 311 Irving I, Fairbanks, AK 99775, USA
| |
Collapse
|
22
|
Pearson LE, Weitzner EL, Burns JM, Hammill MO, Liwanag HEM. From ice to ocean: changes in the thermal function of harp seal pelt with ontogeny. J Comp Physiol B 2019; 189:501-511. [PMID: 30923894 DOI: 10.1007/s00360-019-01214-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
Abstract
Many animals exhibit ontogenetic changes associated with adaptations for survival. Harp seals (Pagophilus groenlandicus) live in the Arctic and rely on thick insulation to maintain thermal homeostasis. Adult harp seals primarily use blubber for insulation, but newborn harp seals rely on a lanugo pelt while nursing, as their blubber layer develops and their first-year pelage grows. This study compared ontogenetic changes in the thermal properties of harp seal pelts in water and in air. Thermal conductivity, pelt thickness, and thermal resistance were measured in water for pelts of harp seal neonates (1 day old), thin whitecoats (4 day old), fat whitecoats (9 day old), ragged jackets (2 week old), beaters (3 week old), and adults and compared to previously published measurements made on the same pelts in air. Pelt conductivity was significantly higher in water than air for pre-molt and molting pups (P ≤ 0.031). Unlike adult pelage, which flattened underwater, lanugo hairs lifted underwater, a phenomenon that has not been reported previously. Thermal resistance of the pelt was significantly reduced in water compared to air for neonates and thin whitecoats (P ≤ 0.0001). A mathematical model of conductive heat transfer for an ellipsoid body showed volume-specific heat loss in water decreased and then stabilized as harp seals aged (P = 0.0321) and was significantly higher for neonates, thin whitecoats, and ragged jackets in water than in air (P ≤ 0.0089). Overall, pelt function is reduced in water for harp seal pups with lanugo, and this renders neonates and thin whitecoats particularly vulnerable to heat loss if submerged.
Collapse
Affiliation(s)
- Linnea E Pearson
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2150 Koyukuk Dr., Fairbanks, AK, 99775, USA.
| | - Emma L Weitzner
- Department of Biological Sciences, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA
| | - Jennifer M Burns
- Department of Biology, University of Alaska Anchorage, 3101 Science Cir., Anchorage, AK, 99508, USA
| | - Mike O Hammill
- Department of Fisheries and Oceans, Maurice Lamontagne Institute, 850 Route de la Mer, Mont-Joli, QC, H5H 3Z4, Canada
| | - Heather E M Liwanag
- Department of Biological Sciences, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA
| |
Collapse
|
23
|
Law CJ, Slater GJ, Mehta RS. Shared extremes by ectotherms and endotherms: Body elongation in mustelids is associated with small size and reduced limbs. Evolution 2019; 73:735-749. [PMID: 30793764 DOI: 10.1111/evo.13702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/08/2023]
Abstract
An elongate body with reduced or absent limbs has evolved independently in many ectothermic vertebrate lineages. While much effort has been spent examining the morphological pathways to elongation in these clades, quantitative investigations into the evolution of elongation in endothermic clades are lacking. We quantified body shape in 61 musteloid mammals (red panda, skunks, raccoons, and weasels) using the head-body elongation ratio. We also examined the morphological changes that may underlie the evolution toward more extreme body plans. We found that a mustelid clade comprised of the subfamilies Helictidinae, Guloninae, Ictonychinae, Mustelinae, and Lutrinae exhibited an evolutionary transition toward more elongate bodies. Furthermore, we discovered that elongation of the body is associated with the evolution of other key traits such as a reduction in body size and a reduction in forelimb length but not hindlimb length. This relationship between body elongation and forelimb length has not previously been quantitatively established for mammals but is consistent with trends exhibited by ectothermic vertebrates and suggests a common pattern of trait covariance associated with body shape evolution. This study provides the framework for documenting body shapes across a wider range of mammalian clades to better understand the morphological changes influencing shape disparity across all vertebrates.
Collapse
Affiliation(s)
- Chris J Law
- Department of Ecology and Evolutionary Biology, Coastal Biology Building, University of California, Santa Cruz, California, 95060
| | - Graham J Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, 60637
| | - Rita S Mehta
- Department of Ecology and Evolutionary Biology, Coastal Biology Building, University of California, Santa Cruz, California, 95060
| |
Collapse
|
24
|
Salmon M, Mott CR, Bresette MJ. Biphasic allometric growth in juvenile green turtles Chelonia mydas. ENDANGER SPECIES RES 2018. [DOI: 10.3354/esr00930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Park JY, Kim K, Sohn H, Kim HW, An YR, Kang JH, Kim EM, Kwak W, Lee C, Yoo D, Jung J, Sung S, Yoon J, Kim H. Deciphering the evolutionary signatures of pinnipeds using novel genome sequences: The first genomes of Phoca largha, Callorhinus ursinus, and Eumetopias jubatus. Sci Rep 2018; 8:16877. [PMID: 30442995 PMCID: PMC6237890 DOI: 10.1038/s41598-018-34758-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023] Open
Abstract
The pinnipeds, which comprise seals, sea lions, and walruses, are a remarkable group of marine animals with unique adaptations to semi-aquatic life. However, their genomes are poorly characterized. In this study, we sequenced and characterized the genomes of three pinnipeds (Phoca largha, Callorhinus ursinus, and Eumetopias jubatus), focusing on site-wise sequence changes. We detected rapidly evolving genes in pinniped lineages and substitutions unique to pinnipeds associated with amphibious sound perception. Phenotypic convergence-related sequence convergences are not common in marine mammals. For example, FASN, KCNA5, and IL17RA contain substitutions specific to pinnipeds, yet are potential candidates of phenotypic convergence (blubber, response to hypoxia, and immunity to pathogens) in all marine mammals. The outcomes of this study will provide insight into targets for future studies of convergent evolution or gene function.
Collapse
Affiliation(s)
- Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, 216 Haean-ro, Gijang-eup, Gijang gun, Busan, 46083, Republic of Korea
| | - Kwondo Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak Gu, Seoul, Republic of Korea
- C&K genomics, C-1008, H businesspark, 26, Beobwon-ro 9-gil, Songpa-gu, Seoul, Republic of Korea
| | - Hawsun Sohn
- Cetacean Research Institute, National Institute of Fisheries Science, 250 Jangsaengpo Gorae-ro, Nam-gu, Ulsan, 44780, Republic of Korea
| | - Hyun Woo Kim
- Cetacean Research Institute, National Institute of Fisheries Science, 250 Jangsaengpo Gorae-ro, Nam-gu, Ulsan, 44780, Republic of Korea
| | - Yong-Rock An
- Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea, eocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Jung-Ha Kang
- Biotechnology Research Division, National Institute of Fisheries Science, 216 Haean-ro, Gijang-eup, Gijang gun, Busan, 46083, Republic of Korea
| | - Eun-Mi Kim
- Biotechnology Research Division, National Institute of Fisheries Science, 216 Haean-ro, Gijang-eup, Gijang gun, Busan, 46083, Republic of Korea
| | - Woori Kwak
- C&K genomics, C-1008, H businesspark, 26, Beobwon-ro 9-gil, Songpa-gu, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak Gu, Seoul, Republic of Korea
| | - DongAhn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak Gu, Seoul, Republic of Korea
- C&K genomics, C-1008, H businesspark, 26, Beobwon-ro 9-gil, Songpa-gu, Seoul, Republic of Korea
| | - Jaehoon Jung
- C&K genomics, C-1008, H businesspark, 26, Beobwon-ro 9-gil, Songpa-gu, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Kwan-ak Gu, Seoul, Republic of Korea
| | - Samsun Sung
- C&K genomics, C-1008, H businesspark, 26, Beobwon-ro 9-gil, Songpa-gu, Seoul, Republic of Korea
| | - Joon Yoon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak Gu, Seoul, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak Gu, Seoul, Republic of Korea.
- C&K genomics, C-1008, H businesspark, 26, Beobwon-ro 9-gil, Songpa-gu, Seoul, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, Kwan-ak Gu, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Meyer WK, Jamison J, Richter R, Woods SE, Partha R, Kowalczyk A, Kronk C, Chikina M, Bonde RK, Crocker DE, Gaspard J, Lanyon JM, Marsillach J, Furlong CE, Clark NL. Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals. Science 2018; 361:591-594. [PMID: 30093596 DOI: 10.1126/science.aap7714] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 06/29/2018] [Indexed: 01/17/2023]
Abstract
Mammals diversified by colonizing drastically different environments, with each transition yielding numerous molecular changes, including losses of protein function. Though not initially deleterious, these losses could subsequently carry deleterious pleiotropic consequences. We have used phylogenetic methods to identify convergent functional losses across independent marine mammal lineages. In one extreme case, Paraoxonase 1 (PON1) accrued lesions in all marine lineages, while remaining intact in all terrestrial mammals. These lesions coincide with PON1 enzymatic activity loss in marine species' blood plasma. This convergent loss is likely explained by parallel shifts in marine ancestors' lipid metabolism and/or bloodstream oxidative environment affecting PON1's role in fatty acid oxidation. PON1 loss also eliminates marine mammals' main defense against neurotoxicity from specific man-made organophosphorus compounds, implying potential risks in modern environments.
Collapse
Affiliation(s)
- Wynn K Meyer
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jerrica Jamison
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Richter
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stacy E Woods
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Raghavendran Partha
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Kowalczyk
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Kronk
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert K Bonde
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | | | - Janet M Lanyon
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Judit Marsillach
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Clement E Furlong
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA. .,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Atkinson EM, Bateman AW, Dill LM, Krkošek M, Reynolds JD, Godwin SC. Oust the louse: leaping behaviour removes sea lice from wild juvenile sockeye salmon Oncorhynchus nerka. JOURNAL OF FISH BIOLOGY 2018; 93:263-271. [PMID: 29956312 DOI: 10.1111/jfb.13684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
We conducted a manipulative field experiment to determine whether the leaping behaviour of wild juvenile sockeye salmon Oncorhynchus nerka dislodges ectoparasitic sea lice Caligus clemensi and Lepeophtheirus salmonis by comparing sea-lice abundances between O. nerka juveniles prevented from leaping and juveniles allowed to leap at a natural frequency. Juvenile O. nerka allowed to leap had consistently fewer sea lice after the experiment than fish that were prevented from leaping. Combined with past research, these results imply potential costs due to parasitism and indicate that the leaping behaviour of juvenile O. nerka does, in fact, dislodge sea lice.
Collapse
Affiliation(s)
- Emma M Atkinson
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Andrew W Bateman
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
- Salmon Coast Field Station, Simoom Sound, British Columbia, Canada
| | - Lawrence M Dill
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Martin Krkošek
- Salmon Coast Field Station, Simoom Sound, British Columbia, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - John D Reynolds
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sean C Godwin
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
28
|
Goldbogen JA, Cade DE, Boersma AT, Calambokidis J, Kahane-Rapport SR, Segre PS, Stimpert AK, Friedlaender AS. Using Digital Tags With Integrated Video and Inertial Sensors to Study Moving Morphology and Associated Function in Large Aquatic Vertebrates. Anat Rec (Hoboken) 2018; 300:1935-1941. [PMID: 28971623 DOI: 10.1002/ar.23650] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
The anatomy of large cetaceans has been well documented, mostly through dissection of dead specimens. However, the difficulty of studying the world's largest animals in their natural environment means the functions of anatomical structures must be inferred. Recently, non-invasive tracking devices have been developed that measure body position and orientation, thereby enabling the detailed reconstruction of underwater trajectories. The addition of cameras to the whale-borne tags allows the sensor data to be matched with real-time observations of how whales use their morphological structures, such as flukes, flippers, feeding apparatuses, and blowholes for the physiological functions of locomotion, feeding, and breathing. Here, we describe a new tag design with integrated video and inertial sensors and how it can be used to provide insights to the function of whale anatomy. This technology has the potential to facilitate a wide range of discoveries and comparative studies, but many challenges remain to increase the resolution and applicability of the data. Anat Rec, 300:1935-1941, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - D E Cade
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - A T Boersma
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | | | - S R Kahane-Rapport
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - P S Segre
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - A K Stimpert
- Vertebrate Ecology Laboratory, Moss Landing Marine Laboratories, Moss Landing, California
| | - A S Friedlaender
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, Oregon
| |
Collapse
|
29
|
Bunjevac J, Turk J, Rinehart A, Zhang W. Wake induced by an undulating elephant seal whisker. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0484-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Bora M, Kottapalli AGP, Miao J, Triantafyllou MS. Sensing the flow beneath the fins. BIOINSPIRATION & BIOMIMETICS 2018; 13:025002. [PMID: 29239859 DOI: 10.1088/1748-3190/aaa1c2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flow sensing, maneuverability, energy efficiency and vigilance of surroundings are the key factors that dictate the performance of marine animals. Be it swimming at high speeds, attack or escape maneuvers, sensing and survival hydrodynamics are a constant feature of life in the ocean. Fishes are capable of performing energy efficient maneuvers, including capturing energy from vortical structures in water. These impressive capabilities are made possible by the uncanny ability of fish to sense minute pressure and flow variations on their body. This is achieved by arrays of biological neuromast sensors on their bodies that 'feel' the surroundings through 'touch at a distance' sensing. The main focus of this paper is to review the various biomimetic material approaches in developing superficial neuromast inspired ultrasensitive MEMS sensors. Principals and methods that translate biomechanical filtering properties of canal neuromasts to benefit artificial MEMS sensors have also been discussed. MEMS sensors with ultrahigh flow sensitivity and accuracy have been developed mainly through inspiration from the hair cell and cupula structures in the neuromast. Canal-inspired packages have proven beneficial in hydrodynamic flow filtering in artificial sensors enabling signal amplification and noise attenuation. A special emphasis has been placed on the recent innovations that closely mimic the structural and material designs of stereocilia of neuromasts by exploring soft polymers.
Collapse
Affiliation(s)
- Meghali Bora
- Center for Environmental Sensing and Modeling (CENSAM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Singapore 138602, Singapore. These authors contributed equally to this work
| | | | | | | |
Collapse
|
31
|
Rinehart A, Shyam V, Zhang W. Characterization of seal whisker morphology: implications for whisker-inspired flow control applications. BIOINSPIRATION & BIOMIMETICS 2017; 12:066005. [PMID: 28840853 DOI: 10.1088/1748-3190/aa8885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Seals with beaded whiskers-the majority of true seals (Phocids)-are able to trace even minute disturbance caused by prey fish in the ambient flow using only sensory input from their whiskers. The unique three-dimensional undulating morphology of seal whiskers has been associated with their capability of suppressing vortex-induced vibration and reducing drag. The exceptional hydrodynamic traits of seal whiskers are of great interest in renovating the design of aero-propulsion flow components and high-sensitivity flow sensors. It is essential to have well-documented data of seal whisker morphology with statistically meaningful generalization, as the solid foundation for whisker-inspired flow control applications. However, the available whisker morphology data is either incomplete, with measurements of only a few key parameters, or based on a very limited sample size in case studies. This work characterizes the morphology of 27 beaded seal whiskers (harbor seal and elephant seal), using high-resolution computer-tomography scanning at NASA's Glenn Research Center in Cleveland, OH. Over two thousand cross-sectional slices for every individual whisker sample are reconstructed, to generate three-dimensional morphology. This is followed by detailed statistical analysis of a set of key parameters, under an established framework (Hanke et al 2010 J. Exp. Biol. 213 2665-72). While the length parameters are generally consistent with previous studies, we note that the angle of incidence of elliptical cross-sections varies in a wide range, with a majority falling between [Formula: see text] and [Formula: see text]. Angles of incidence at both peaks and troughs appear to roughly follow a Gaussian distribution, but no clear preference of orientation is identified. We discuss the current knowledge of whisker-inspired flow studies, focusing on choices of morphology parameters. The new understanding of whisker morphology can better inform future design of high-sensitivity flow sensors and aero-propulsion flow structures.
Collapse
Affiliation(s)
- Aidan Rinehart
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, United States of America
| | | | | |
Collapse
|
32
|
Chikina M, Robinson JD, Clark NL. Hundreds of Genes Experienced Convergent Shifts in Selective Pressure in Marine Mammals. Mol Biol Evol 2016; 33:2182-92. [PMID: 27329977 DOI: 10.1093/molbev/msw112] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mammal species have made the transition to the marine environment several times, and their lineages represent one of the classical examples of convergent evolution in morphological and physiological traits. Nevertheless, the genetic mechanisms of their phenotypic transition are poorly understood, and investigations into convergence at the molecular level have been inconclusive. While past studies have searched for convergent changes at specific amino acid sites, we propose an alternative strategy to identify those genes that experienced convergent changes in their selective pressures, visible as changes in evolutionary rate specifically in the marine lineages. We present evidence of widespread convergence at the gene level by identifying parallel shifts in evolutionary rate during three independent episodes of mammalian adaptation to the marine environment. Hundreds of genes accelerated their evolutionary rates in all three marine mammal lineages during their transition to aquatic life. These marine-accelerated genes are highly enriched for pathways that control recognized functional adaptations in marine mammals, including muscle physiology, lipid-metabolism, sensory systems, and skin and connective tissue. The accelerations resulted from both adaptive evolution as seen in skin and lung genes, and loss of function as in gustatory and olfactory genes. In regard to sensory systems, this finding provides further evidence that reduced senses of taste and smell are ubiquitous in marine mammals. Our analysis demonstrates the feasibility of identifying genes underlying convergent organism-level characteristics on a genome-wide scale and without prior knowledge of adaptations, and provides a powerful approach for investigating the physiological functions of mammalian genes.
Collapse
Affiliation(s)
- Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh
| | - Joseph D Robinson
- Department of Molecular and Cell Biology, University of California Berkeley
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh
| |
Collapse
|
33
|
Jastrebsky RA, Bartol IK, Krueger PS. Turning performance in squid and cuttlefish: unique dual mode, muscular hydrostatic systems. J Exp Biol 2016; 219:1317-26. [DOI: 10.1242/jeb.126839] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/18/2016] [Indexed: 11/20/2022]
Abstract
Although steady swimming has received considerable attention in prior studies, unsteady swimming movements represent a larger portion of many aquatic animals' locomotive repertoire and have not been examined extensively. Squids and cuttlefishes are cephalopods with unique muscular hydrostat-driven, dual mode propulsive systems involving paired fins and a pulsed jet. These animals exhibit a wide range of swimming behavior, but turning performance has not been examined quantitatively. Brief squid Lolliguncula brevis and dwarf cuttlefish Sepia bandensis were filmed during turns using high-speed cameras. Kinematic features were tracked, including the length specific radius of the turn (R/L), a measure of maneuverability, and angular velocity (ω), a measure of agility. Both L. brevis and S. bandensis demonstrated high maneuverability, with (R/L)min values=3.4x10−3±5.9x10−4 and 1.2x10−3±4.7x10−4 (mean±s.e.m.), respectively, which are the lowest measures of (R/L) reported for any aquatic taxa. Lolliguncula brevis exhibited higher agility than S. bandensis (ωamax=725.8° s−1 vs. ωamax=485.0° s−1), and both cephalopods have intermediate agility when compared with flexible-bodied and rigid-bodied nekton of similar size, reflecting their hybrid body architecture. In L. brevis, jet flows were the principal driver of angular velocity. Asymmetric fin motions played a reduced role, and arm wrapping increased turning performance to varying degrees depending on the species. This study indicates that coordination between the jet and fins is important for turning performance, with L. brevis achieving faster turns than S. bandensis and S. bandensis achieving tighter, more controlled turns than L. brevis.
Collapse
Affiliation(s)
| | - Ian K. Bartol
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Paul S. Krueger
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
34
|
Carrillo JM, Overstreet RM, Raga JA, Aznar FJ. Living on the Edge: Settlement Patterns by the Symbiotic Barnacle Xenobalanus globicipitis on Small Cetaceans. PLoS One 2015; 10:e0127367. [PMID: 26083019 PMCID: PMC4470508 DOI: 10.1371/journal.pone.0127367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/13/2015] [Indexed: 11/24/2022] Open
Abstract
The highly specialized coronulid barnacle Xenobalanus globicipitis attaches exclusively on cetaceans worldwide, but little is known about the factors that drive the microhabitat patterns on its hosts. We investigate this issue based on data on occurrence, abundance, distribution, orientation, and size of X. globicipitis collected from 242 striped dolphins (Stenella coeruleoalba) that were stranded along the Mediterranean coast of Spain. Barnacles exclusively infested the fins, particularly along the trailing edge. Occurrence, abundance, and density of X. globicipitis were significantly higher, and barnacles were significantly larger, on the caudal fin than on the flippers and dorsal fin. Barnacles were found more frequently and in greater numbers on the dorsal rather than ventral side of the caudal fin and on the central third of dorsal and ventral fluke surfaces. Nearly all examined individuals attached with their cirral fan oriented opposite to the fluke edge. We suggest that X. globicipitis may chemically recognize dolphins as a substratum, but fins, particularly the flukes, are passively selected because of creation of vortices that increase contact of cyprids with skin and early survival of these larvae at the corresponding sites. Cyprids could actively select the trailing edge and orient with the cirri facing the main direction of flow. Attachment on the dorsal side of the flukes is likely associated with asymmetrical oscillation of the caudal fin, and the main presence on the central segment of the flukes could be related to suitable water flow conditions generated by fluke performance for both settlement and nutrient filtration.
Collapse
Affiliation(s)
- Juan M. Carrillo
- Department of Coastal Sciences, University of Southern Mississippi, Ocean Springs, Mississippi, United States of America
| | - Robin M. Overstreet
- Department of Coastal Sciences, University of Southern Mississippi, Ocean Springs, Mississippi, United States of America
| | - Juan A. Raga
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, Paterna, Valencia, Spain
| | - Francisco J. Aznar
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, Paterna, Valencia, Spain
- * E-mail:
| |
Collapse
|
35
|
Lauder GV, Tangorra JL. Fish Locomotion: Biology and Robotics of Body and Fin-Based Movements. SPRINGER TRACTS IN MECHANICAL ENGINEERING 2015. [DOI: 10.1007/978-3-662-46870-8_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Tabatabaei M, Olcay AB, Gokçen G, Heperkan HA. Drag force and jet propulsion investigation of a swimming squid. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159202092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Suzuki I, Sato K, Fahlman A, Naito Y, Miyazaki N, Trites AW. Drag, but not buoyancy, affects swim speed in captive Steller sea lions. Biol Open 2014; 3:379-86. [PMID: 24771620 PMCID: PMC4021360 DOI: 10.1242/bio.20146130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Swimming at an optimal speed is critical for breath-hold divers seeking to maximize the time they can spend foraging underwater. Theoretical studies have predicted that the optimal swim speed for an animal while transiting to and from depth is independent of buoyancy, but is dependent on drag and metabolic rate. However, this prediction has never been experimentally tested. Our study assessed the effects of buoyancy and drag on the swim speed of three captive Steller sea lions (Eumetopias jubatus) that made 186 dives. Our study animals were trained to dive to feed at fixed depths (10–50 m) under artificially controlled buoyancy and drag conditions. Buoyancy and drag were manipulated using a pair of polyvinyl chloride (PVC) tubes attached to harnesses worn by the sea lions, and buoyancy conditions were designed to fall within the natural range of wild animals (∼12–26% subcutaneous fat). Drag conditions were changed with and without the PVC tubes, and swim speeds were recorded and compared during descent and ascent phases using an accelerometer attached to the harnesses. Generalized linear mixed-effect models with the animal as the random variable and five explanatory variables (body mass, buoyancy, dive depth, dive phase, and drag) showed that swim speed was best predicted by two variables, drag and dive phase (AIC = −139). Consistent with a previous theoretical prediction, the results of our study suggest that the optimal swim speed of Steller sea lions is a function of drag, and is independent of dive depth and buoyancy.
Collapse
Affiliation(s)
- Ippei Suzuki
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan Department of Natural Environmental Study, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Andreas Fahlman
- Department of Life Science, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA Department of Zoology and Marine Mammal Research Unit, Fisheries Center, University of British Columbia, 2204 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yasuhiko Naito
- National Institute of Polar Research, 10-3 Midoricho, Tachikawa, Tokyo 190-8518, Japan
| | - Nobuyuki Miyazaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Andrew W Trites
- Department of Zoology and Marine Mammal Research Unit, Fisheries Center, University of British Columbia, 2204 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
38
|
Murphy CT, Eberhardt WC, Calhoun BH, Mann KA, Mann DA. Effect of angle on flow-induced vibrations of pinniped vibrissae. PLoS One 2013; 8:e69872. [PMID: 23922834 PMCID: PMC3724740 DOI: 10.1371/journal.pone.0069872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/12/2013] [Indexed: 11/26/2022] Open
Abstract
Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina) and northern elephant seals (Mirounga angustirostris) and the smooth vibrissae of California sea lions (Zalophus californianus). Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90°) to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°), compared to when the thin edge faced into the flow (0°). Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self-noise of the vibrissae.
Collapse
Affiliation(s)
- Christin T Murphy
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States of America.
| | | | | | | | | |
Collapse
|
39
|
Simon M, Johnson M, Madsen PT. Keeping momentum with a mouthful of water: behavior and kinematics of humpback whale lunge feeding. J Exp Biol 2012; 215:3786-98. [DOI: 10.1242/jeb.071092] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Rorqual baleen whales lunge feed by engulfment of tons of prey-laden water in a large and expandable buccal pouch. According to prior interpretations, feeding rorquals are brought to a near-halt at the end of each lunge by drag forces primarily generated by the open mouth. Accelerating the body from a standstill is energetically costly and is purported to be the key factor determining oxygen consumption in lunge-feeding rorquals, explaining the shorter dive times than expected given their sizes. Here, we use multi-sensor archival tags (DTAGs) sampling at high rates in a fine-scale kinematic study of lunge feeding to examine the sequence of events within lunges and how energy may be expended and conserved in the process of prey capture. Analysis of 479 lunges from five humpback whales reveals that the whales accelerate as they acquire prey, opening their gape in synchrony with strong fluke strokes. The high forward speed (mean depth rate: 2.0±0.32 m s−1) during engulfment serves both to corral active prey and to expand the ventral margin of the buccal pouch and so maximize the engulfed water volume. Deceleration begins after mouth opening when the pouch nears full expansion and momentum starts to be transferred to the engulfed water. Lunge-feeding humpback whales time fluke strokes throughout the lunge to impart momentum to the engulfed water mass and so avoid a near or complete stop, but instead continue to glide at ~1–1.5 m s−1 after the lunge has ended. Subsequent filtration and prey handling appear to take an average of 46 s and are performed in parallel with re-positioning for the next lunge.
Collapse
Affiliation(s)
- Malene Simon
- Zoophysiology, Department of Bioscience, Aarhus University, C. F. Møllers Allé, Building 1131, 8000 Aarhus C, Denmark
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, P.O. Box 570, Kivioq 2, 3900 Nuuk, Greenland
| | - Mark Johnson
- Zoophysiology, Department of Bioscience, Aarhus University, C. F. Møllers Allé, Building 1131, 8000 Aarhus C, Denmark
- Sea Mammal Research Unit, University of St Andrews, Fife KY16 8LB, UK
| | - Peter T. Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, C. F. Møllers Allé, Building 1131, 8000 Aarhus C, Denmark
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
40
|
Miersch L, Hanke W, Wieskotten S, Hanke FD, Oeffner J, Leder A, Brede M, Witte M, Dehnhardt G. Flow sensing by pinniped whiskers. Philos Trans R Soc Lond B Biol Sci 2012; 366:3077-84. [PMID: 21969689 DOI: 10.1098/rstb.2011.0155] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair.
Collapse
Affiliation(s)
- L Miersch
- Biosciences, Sensory and Cognitive Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rosenblum HG, Long JH, Porter ME. Sink and swim: kinematic evidence for lifting-body mechanisms in negatively buoyant electric rays Narcine brasiliensis. J Exp Biol 2011; 214:2935-48. [DOI: 10.1242/jeb.053108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Unlike most batoid fishes, electric rays neither oscillate nor undulate their body disc to generate thrust. Instead they use body–caudal–fin (BCF) locomotion. In addition, these negatively buoyant rays perform unpowered glides as they sink in the water column. In combination, BCF swimming and unpowered gliding are opposite ends on a spectrum of swimming, and electric rays provide an appropriate study system for understanding how the performance of each mode is controlled hydrodynamically. We predicted that the dorso-ventrally flattened body disc generates lift during both BCF swimming and gliding. To test this prediction, we examined 10 neonate lesser electric rays, Narcine brasiliensis, as they swam and glided. From video, we tracked the motion of the body, disc, pelvic fins and tail. By correlating changes in the motions of those structures with swimming performance, we have kinematic evidence that supports the hypothesis that the body disc is generating lift. Most importantly, both the pitch of the body disc and the tail, along with undulatory frequency, interact to control horizontal swimming speed and Strouhal number during BCF swimming. During gliding, the pitch of the body disc and the tail also interact to control the speed on the glide path and the glide angle.
Collapse
Affiliation(s)
- Hannah G. Rosenblum
- Vassar College, Department of Biology, 124 Raymond Ave, Box 731, Poughkeepsie, NY 12604, USA
| | - John H. Long
- Vassar College, Department of Biology, 124 Raymond Ave, Box 731, Poughkeepsie, NY 12604, USA
| | - Marianne E. Porter
- Vassar College, Department of Biology, 124 Raymond Ave, Box 731, Poughkeepsie, NY 12604, USA
| |
Collapse
|
42
|
Gläser N, Wieskotten S, Otter C, Dehnhardt G, Hanke W. Hydrodynamic trail following in a California sea lion (Zalophus californianus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:141-51. [PMID: 20959994 DOI: 10.1007/s00359-010-0594-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/28/2010] [Accepted: 10/02/2010] [Indexed: 10/18/2022]
Abstract
The mystacial vibrissae of pinnipeds constitute a sensory system for active touch and detection of hydrodynamic events. Harbour seals (Phoca vitulina) and California sea lions (Zalophus californianus) can both detect hydrodynamic stimuli caused by a small sphere vibrating in the water (hydrodynamic dipole stimuli). Hydrodynamic trail following has only been shown in harbour seals. Hydrodynamical and biomechanical studies of single vibrissae of the two species showed that the specialized undulated structure of harbour seal vibrissae, as opposed to the smooth structure of sea lion vibrissae, suppresses self-generated noise in the actively moving animal. Here we tested whether also sea lions were able to perform hydrodynamic trail following in spite of their non-specialized hair structure. Hydrodynamic trails were generated by a remote-controlled miniature submarine. Linear trails could be followed with high accuracy, comparable to the performance of harbour seals, but in contrast, increasing delay resulted in a reduced performance as compared to harbour seals. The results of this study are consistent with the hypothesis that structural differences in the vibrissal hair types of otariid compared to phocid pinnipeds lead to different sensitivity of the vibrissae during forward swimming, but still reveal a good performance even in the species with non-specialized hair type.
Collapse
Affiliation(s)
- Nele Gläser
- Institute for Biosciences, Rostock University, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | | | | | | | | |
Collapse
|
43
|
Hanke W, Witte M, Miersch L, Brede M, Oeffner J, Michael M, Hanke F, Leder A, Dehnhardt G. Harbor seal vibrissa morphology suppresses vortex-induced vibrations. ACTA ACUST UNITED AC 2010; 213:2665-72. [PMID: 20639428 DOI: 10.1242/jeb.043216] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Harbor seals (Phoca vitulina) often live in dark and turbid waters, where their mystacial vibrissae, or whiskers, play an important role in orientation. Besides detecting and discriminating objects by direct touch, harbor seals use their whiskers to analyze water movements, for example those generated by prey fish or by conspecifics. Even the weak water movements left behind by objects that have passed by earlier can be sensed and followed accurately (hydrodynamic trail following). While scanning the water for these hydrodynamic signals at a swimming speed in the order of meters per second, the seal keeps its long and flexible whiskers in an abducted position, largely perpendicular to the swimming direction. Remarkably, the whiskers of harbor seals possess a specialized undulated surface structure, the function of which was, up to now, unknown. Here, we show that this structure effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced by the shedding of vortices from the whiskers (vortex-induced vibrations). Using force measurements, flow measurements and numerical simulations, we find that the dynamic forces on harbor seal whiskers are, by at least an order of magnitude, lower than those on sea lion (Zalophus californianus) whiskers, which do not share the undulated structure. The results are discussed in the light of pinniped sensory biology and potential biomimetic applications.
Collapse
Affiliation(s)
- Wolf Hanke
- Institute for Biosciences, Department of Sensory and Cognitive Ecology, Marine Science Center, University of Rostock, 18059 Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ginter CC, Böttger SA, Fish FE. Morphology and microanatomy of harbor porpoise (Phocoena phocoena) dorsal fin tubercles. J Morphol 2010; 272:27-33. [DOI: 10.1002/jmor.10891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/14/2010] [Accepted: 07/18/2010] [Indexed: 11/11/2022]
|
45
|
Bonnet X, Delmas V, El-Mouden H, Slimani T, Sterijovski B, Kuchling G. Is sexual body shape dimorphism consistent in aquatic and terrestrial chelonians? ZOOLOGY 2010; 113:213-20. [PMID: 20832271 DOI: 10.1016/j.zool.2010.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 02/18/2010] [Accepted: 03/15/2010] [Indexed: 11/27/2022]
Abstract
Comparisons between aquatic and terrestrial species provide an opportunity to examine how sex-specific adaptations interact with the environment to influence body shape. In terrestrial female tortoises, selection for fecundity favors the development of a large internal abdominal cavity to accommodate the clutch; in conspecific males, sexual selection favors mobility with large openings in the shell. To examine to what extent such trends apply in aquatic chelonians we compared the body shape of males and females of two aquatic turtles (Chelodina colliei and Mauremys leprosa). In both species, females were larger than males. When controlled for body size, females exhibited a greater relative internal volume and a higher body condition index than males; both traits potentially correlate positively with fecundity. Males were more streamlined (hydrodynamic), and exhibited larger openings in the shell providing more space to move their longer limbs; such traits probably improve mobility and copulation ability (the males chase and grab the female for copulation). Overall, although the specific constraints imposed by terrestrial and aquatic locomotion shape the morphology of chelonians differently (aquatic turtles were flatter, hence more hydrodynamic than terrestrial tortoises), the direction for sexual shape dimorphism remained unaffected. Our main conclusion is that the direction of sexual shape dimorphism is probably more consistent than sexual size dimorphism in the animal kingdom.
Collapse
Affiliation(s)
- Xavier Bonnet
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, UPR 1934, F-79360 Beauvoir sur Niort, France.
| | | | | | | | | | | |
Collapse
|
46
|
Schwenk K, Padilla DK, Bakken GS, Full RJ. Grand challenges in organismal biology. Integr Comp Biol 2009; 49:7-14. [DOI: 10.1093/icb/icp034] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|