1
|
Rohner PT, Jones JA, Moczek AP. Plasticity, symbionts and niche construction interact in shaping dung beetle development and evolution. J Exp Biol 2024; 227:jeb245976. [PMID: 38449332 DOI: 10.1242/jeb.245976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Developmental plasticity is an important product of evolutionary processes, allowing organisms to maintain high fitness in the face of environmental perturbations. Once evolved, plasticity also has the potential to influence subsequent evolutionary outcomes, for example, by shaping phenotypic variation visible to selection and facilitating the emergence of novel trait variants. Furthermore, organisms may not just respond to environmental conditions through plasticity but may also actively modify the abiotic and (sym)biotic environments to which they themselves respond, causing plasticity to interact in complex ways with niche construction. Here, we explore developmental mechanisms and evolutionary consequences of plasticity in horned dung beetles. First, we discuss how post-invasion evolution of plasticity in an introduced Onthophagus species facilitated rapid range expansion and concurrent local adaptation of life history and morphology to novel climatic conditions. Second, we discuss how, in addition to plastically responding to variation in nutritional conditions, dung beetles engage in behaviors that modify the environment that they themselves respond to during later development. We document that these environment-modifying behaviors mask heritable variation for life history traits within populations, thereby shielding genetic variants from selection. Such cryptic genetic variation may be released and become selectable when these behaviors are compromised. Together, this work documents the complex interactions between plasticity, symbionts and niche construction, and highlights the usefulness of an integrative Eco-Evo-Devo framework to study the varied mechanisms and consequences of plasticity in development and evolution.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua A Jones
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
| |
Collapse
|
2
|
Riley CL, Oostra V, Plaistow SJ. Does the definition of a novel environment affect the ability to detect cryptic genetic variation? J Evol Biol 2023; 36:1618-1629. [PMID: 37897127 DOI: 10.1111/jeb.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023]
Abstract
Anthropogenic change exposes populations to environments that have been rare or entirely absent from their evolutionary past. Such novel environments are hypothesized to release cryptic genetic variation, a hidden store of variance that can fuel evolution. However, support for this hypothesis is mixed. One possible reason is a lack of clarity in what is meant by 'novel environment', an umbrella term encompassing conditions with potentially contrasting effects on the exposure or concealment of cryptic variation. Here, we use a meta-analysis approach to investigate changes in the total genetic variance of multivariate traits in ancestral versus novel environments. To determine whether the definition of a novel environment could explain the mixed support for a release of cryptic genetic variation, we compared absolute novel environments, those not represented in a population's evolutionary past, to extreme novel environments, those involving frequency or magnitude changes to environments present in a population's ancestry. Despite sufficient statistical power, we detected no broad-scale pattern of increased genetic variance in novel environments, and finding the type of novel environment did not explain any significant variation in effect sizes. When effect sizes were partitioned by experimental design, we found increased genetic variation in studies based on broad-sense measures of variance, and decreased variation in narrow-sense studies, in support of previous research. Therefore, the source of genetic variance, not the definition of a novel environment, was key to understanding environment-dependant genetic variation, highlighting non-additive genetic variance as an important component of cryptic genetic variation and avenue for future research.
Collapse
Affiliation(s)
- Camille L Riley
- Department of Evolution, Ecology, and Behaviour, IVES, University of Liverpool, Liverpool, UK
| | - Vicencio Oostra
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Stewart J Plaistow
- Department of Evolution, Ecology, and Behaviour, IVES, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Archambeau J, Benito Garzón M, de Miguel M, Brachi B, Barraquand F, González-Martínez SC. Reduced within-population quantitative genetic variation is associated with climate harshness in maritime pine. Heredity (Edinb) 2023; 131:68-78. [PMID: 37221230 PMCID: PMC10313832 DOI: 10.1038/s41437-023-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
How evolutionary forces interact to maintain genetic variation within populations has been a matter of extensive theoretical debates. While mutation and exogenous gene flow increase genetic variation, stabilizing selection and genetic drift are expected to deplete it. To date, levels of genetic variation observed in natural populations are hard to predict without accounting for other processes, such as balancing selection in heterogeneous environments. We aimed to empirically test three hypotheses: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e., experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from heterogeneous environments. Using growth, phenological and functional trait data from three clonal common gardens and 33 populations (522 clones) of maritime pine (Pinus pinaster Aiton), we estimated the association between the population-specific total genetic variances (i.e., among-clone variances) for these traits and ten population-specific indices related to admixture levels (estimated based on 5165 SNPs), environmental temporal and spatial heterogeneity and climate harshness. Populations experiencing colder winters showed consistently lower genetic variation for early height growth (a fitness-related trait in forest trees) in the three common gardens. Within-population quantitative genetic variation was not associated with environmental heterogeneity or population admixture for any trait. Our results provide empirical support for the potential role of natural selection in reducing genetic variation for early height growth within populations, which indirectly gives insight into the adaptive potential of populations to changing environments.
Collapse
Affiliation(s)
- Juliette Archambeau
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK.
| | | | - Marina de Miguel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | | | | | | |
Collapse
|
4
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Houslay TM, Earley RL, White SJ, Lammers W, Grimmer AJ, Travers LM, Johnson EL, Young AJ, Wilson A. Genetic integration of behavioural and endocrine components of the stress response. eLife 2022; 11:67126. [PMID: 35144728 PMCID: PMC8837200 DOI: 10.7554/elife.67126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 01/29/2022] [Indexed: 01/09/2023] Open
Abstract
The vertebrate stress response comprises a suite of behavioural and physiological traits that must be functionally integrated to ensure organisms cope adaptively with acute stressors. Natural selection should favour functional integration, leading to a prediction of genetic integration of these traits. Despite the implications of such genetic integration for our understanding of human and animal health, as well as evolutionary responses to natural and anthropogenic stressors, formal quantitative genetic tests of this prediction are lacking. Here, we demonstrate that acute stress response components in Trinidadian guppies are both heritable and integrated on the major axis of genetic covariation. This integration could either facilitate or constrain evolutionary responses to selection, depending upon the alignment of selection with this axis. Such integration also suggests artificial selection on the genetically correlated behavioural responses to stress could offer a viable non-invasive route to the improvement of health and welfare in captive animal populations.
Collapse
Affiliation(s)
- Thomas M Houslay
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, United States
| | - Stephen J White
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Wiebke Lammers
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Andrew J Grimmer
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Laura M Travers
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Elizabeth L Johnson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, United States
| | - Andrew J Young
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| | - Alastair Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, United Kingdom
| |
Collapse
|
6
|
Rodrigues LR, Zwoinska MK, Axel W Wiberg R, Snook RR. The genetic basis and adult reproductive consequences of developmental thermal plasticity. J Anim Ecol 2022; 91:1119-1134. [PMID: 35060127 PMCID: PMC9373847 DOI: 10.1111/1365-2656.13664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Increasing temperature and thermal variability generate profound selection on populations. Given the fast rate of environmental change, understanding the role of plasticity and genetic adaptation in response to increasing temperatures is critical. This may be especially true for thermal effects on reproductive traits in which thermal fertility limits at high temperatures may be lower than for survival traits. Consequences of changing environments during development on adult phenotypes may be particularly problematic for core traits such as reproduction that begin early in development. Here we examine the consequences of developmental thermal plasticity on subsequent adult reproductive traits and its genetic basis. We used a panel of Drosophila melanogaster (the Drosophila Genetic Reference Panel; DGRP) in which male fertility performance was previously defined as either showing relatively little (status = ‘high’‐performing lines) or substantial (‘low’‐performing lines) decline when exposed to increasing developmental temperatures. We used a thermal reaction norm approach to quantify variation in the consequences of developmental thermal plasticity on multiple adult reproductive traits, including sex‐specific responses, and to identify candidate genes underlying such variation. Developmental thermal stress impacted the means and thermal reaction norms of all reproductive traits except offspring sex ratio. Mating success declined as temperature increased with no difference between high and low lines, whereas increasing temperature resulted in declines for both male and female fertility and productivity but depended on line status. Fertility and offspring number were positively correlated within and between the sexes across lines, but males were more affected than females. We identified 933 SNPs with significant evolved genetic differentiation between high and low lines. In all, 54 of these lie within genomic windows of overall high differentiation, have significant effects of genotype on the male thermal reaction norm for productivity and are associated with 16 genes enriched for phenotypes affecting reproduction, stress responses and autophagy in Drosophila and other organisms. Our results illustrate considerable plasticity in male thermal limits on several reproductive traits following development at high temperature, and we identify differentiated loci with relevant phenotypic effects that may contribute to this population variation. While our work is on a single population, phenotypic results align with an increasing number of studies demonstrating the potential for stronger selection of thermal stress on reproductive traits, particularly in males. Such large fitness costs may have both short‐ and long‐term consequences for the evolution of populations in response to a warming world.
Collapse
Affiliation(s)
| | | | | | - Rhonda R Snook
- Department of Zoology Stockholm University Stockholm Sweden
| |
Collapse
|
7
|
Abstract
AbstractUnderstanding the genetic architecture of complex trait adaptation in natural populations requires the continued development of tractable models that explicitly confront organismal and environmental complexity. A decade of high-throughput sequencing-based investigations into the genomic basis of migration points to an integrative framework that incorporates quantitative genetics, evolutionary developmental biology, phenotypic plasticity, and epigenetics to explain migration evolution. In this perspective, I argue that the transcontinental migration of the monarch butterfly (Danaus plexippus) can serve as a compelling system to study the mechanism of evolutionary lability of a complex trait. Monarchs show significant phenotypic and genotypic diversity across their global range, with phenotypic switching that allows for explicit study of evolutionary lability. A developmental approach for elucidating how migratory traits are generated and functionally integrated will be important for understanding the evolution of monarch migration traits. I propose a plasticity threshold model to describe migration lability, and I describe novel functional techniques that will help resolve open questions and model assumptions. I conclude by considering the relationships between adaptive genetic architecture, anthropogenic climate change, and conservation management practice and the timeliness of the monarch migration model to illuminate these connections given the rapid decline of the North American migration.
Collapse
|
8
|
Kelly PW, Pfennig DW, Pfennig KS. Adaptive Plasticity as a Fitness Benefit of Mate Choice. Trends Ecol Evol 2021; 36:294-307. [PMID: 33546877 DOI: 10.1016/j.tree.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/27/2022]
Abstract
Phenotypic plasticity and sexual selection can each promote adaptation in variable environments, but their combined influence on adaptive evolution is not well understood. We propose that sexual selection can facilitate adaptation in variable environments when individuals prefer mates that produce adaptively plastic offspring. We develop this hypothesis and review existing studies showing that diverse groups display both sexual selection and plasticity in nonsexual traits. Thus, plasticity could be a widespread but unappreciated benefit of mate choice. We describe methods and opportunities to test this hypothesis and describe how sexual selection might foster the evolution of phenotypic plasticity. Understanding this interplay between sexual selection and phenotypic plasticity might help predict which species will adapt to a rapidly changing world.
Collapse
Affiliation(s)
- Patrick W Kelly
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | - David W Pfennig
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Karin S Pfennig
- Department of Biology, Coker Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
9
|
Yates MC, Fraser DJ. Evaluating the correlation between genome-wide diversity and the release of plastic phenotypic variation in experimental translocations to novel natural environments. J Evol Biol 2020; 34:439-450. [PMID: 33274531 DOI: 10.1111/jeb.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022]
Abstract
Phenotypic reaction norms are often shaped and constrained by selection and are important for allowing organisms to respond to environmental change. However, selection cannot constrain reaction norms for environmental conditions that populations have not experienced. Consequently, cryptic neutral genetic variation for the reaction norm can accumulate such that a release of phenotypic variation occurs upon exposure to novel14 conditions. Most genomic diversity behaves as if functionally neutral. Therefore, genome-wide diversity metrics may correlate with levels of cryptic genetic variation and, as a result, exhibit a positive relationship with a release of phenotypic variation in novel environments. To test this hypothesis, we conducted translocations of juvenile brook trout (Salvelinus fontinalis) from 12 populations to novel uninhabited ponds that represented a gradient of environmental conditions. We assessed reaction norms for morphological traits (body size and four morphometric relative warps) across pond environmental gradients and evaluated the effect of genome-wide heterozygosity on phenotypic variability. All traits displayed plastic reaction norms. Overall, we found some evidence that a release of phenotypic variation consistent with cryptic genetic variation can occur in novel environmental conditions. However, the extent to which this release correlated with average genome-wide diversity was limited to only one of five traits examined. Our results suggest a limited link between genomic diversity26 and the accumulation of cryptic genetic variation in reaction norms. Similarly, reaction norms were constrained for many of the morphological traits examined. Past conditions may have constrained reaction norms in the putatively novel environments despite significant deviations from contemporary source population habitat. Additionally, as a generalist colonizing species brook trout may exhibit plastic phenotypes across a wide range of environmental conditions.
Collapse
Affiliation(s)
- Matthew C Yates
- Department of Biology, UQAM, Montreal, QC, Canada.,Group for Interuniversity Research in Limnology and Aquatic Environment (GRIL) at the Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Dylan J Fraser
- Group for Interuniversity Research in Limnology and Aquatic Environment (GRIL) at the Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
10
|
Ilan Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front Digit Health 2020; 2:569178. [PMID: 34713042 PMCID: PMC8521820 DOI: 10.3389/fdgth.2020.569178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) digital health systems have drawn much attention over the last decade. However, their implementation into medical practice occurs at a much slower pace than expected. This paper reviews some of the achievements of first-generation AI systems, and the barriers facing their implementation into medical practice. The development of second-generation AI systems is discussed with a focus on overcoming some of these obstacles. Second-generation systems are aimed at focusing on a single subject and on improving patients' clinical outcomes. A personalized closed-loop system designed to improve end-organ function and the patient's response to chronic therapies is presented. The system introduces a platform which implements a personalized therapeutic regimen and introduces quantifiable individualized-variability patterns into its algorithm. The platform is designed to achieve a clinically meaningful endpoint by ensuring that chronic therapies will have sustainable effect while overcoming compensatory mechanisms associated with disease progression and drug resistance. Second-generation systems are expected to assist patients and providers in adopting and implementing of these systems into everyday care.
Collapse
|
11
|
Akman M, Carlson JE, Latimer AM. Climate explains population divergence in drought-induced plasticity of functional traits and gene expression in a South African Protea. Mol Ecol 2020; 30:255-273. [PMID: 33098695 DOI: 10.1111/mec.15705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Long-term environmental variation often drives local adaptation and leads to trait differentiation across populations. Additionally, when traits change in an environment-dependent way through phenotypic plasticity, the genetic variation underlying plasticity will also be under selection. These processes could create a landscape of differentiation across populations in traits and their plasticity. Here, we performed a dry-down experiment under controlled conditions to measure responses in seedlings of a shrub species from the Cape Floristic Region, the common sugarbush (Protea repens). We measured morphological and physiological traits, and sequenced whole transcriptomes of leaf tissues from eight populations that represent both the climatic and the geographical distribution of this species. We found that there is substantial variation in how populations respond to drought, but we also observed common patterns such as reduced leaf size and leaf thickness, and up-regulation of stress-related and down-regulation of growth-related gene groups. Both high environmental heterogeneity and milder source site climates were associated with higher plasticity in various traits and co-expression gene networks. Associations between traits, trait plasticity, gene networks and the source site climate suggest that temperature may play a greater role in shaping these patterns when compared to precipitation, in line with recent changes in the region due to climate change. We also found that traits respond to climatic variation in an environment-dependent manner: some associations between traits and climate were apparent only under certain growing conditions. Together, our results uncover common responses of P. repens populations to drought, and climatic drivers of population differentiation in functional traits, gene expression and their plasticity.
Collapse
Affiliation(s)
- Melis Akman
- Department of Plant Sciences, UC Davis, Davis, CA, USA.,Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Jane E Carlson
- Department of Biology, Nicholls State University, Thibodaux, LA, USA.,Gulf Coast Network Inventory and Monitoring Program, National Park Services, Washington, DC, USA
| | | |
Collapse
|
12
|
Abstract
New species arise as the genomes of populations diverge. The developmental 'alarm clock' of speciation sounds off when sufficient divergence in genetic control of development leads hybrid individuals to infertility or inviability, the world awoken to the dawn of new species with intrinsic post-zygotic reproductive isolation. Some developmental stages will be more prone to hybrid dysfunction due to how molecular evolution interacts with the ontogenetic timing of gene expression. Considering the ontogeny of hybrid incompatibilities provides a profitable connection between 'evo-devo' and speciation genetics to better link macroevolutionary pattern, microevolutionary process, and molecular mechanisms. Here, we explore speciation alongside development, emphasizing their mutual dependence on genetic network features, fitness landscapes, and developmental system drift. We assess models for how ontogenetic timing of reproductive isolation can be predictable. Experiments and theory within this synthetic perspective can help identify new rules of speciation as well as rules in the molecular evolution of development.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of TorontoTorontoCanada
| | - Joanna D Bundus
- Department of Integrative Biology, University of Wisconsin – MadisonMadisonUnited States
| |
Collapse
|
13
|
Levis NA, Fuller CG, Pfennig DW. An experimental investigation of how intraspecific competition and phenotypic plasticity can promote the evolution of novel, complex phenotypes. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Intraspecific competition has long been considered a key driver of evolutionary diversification, but whether it can also promote evolutionary innovation is less clear. Here we examined the interplay between competition and phenotypic plasticity in fuelling the origins of a novel, complex phenotype – a distinctive carnivore morph found in spadefoot toad tadpoles (genus Spea) that specializes on fairy shrimp. We specifically sought to explore the possible origins of this phenotype by providing shrimp to Scaphiopus holbrookii tadpoles (the sister genus to Spea that does not produce carnivores) while subjecting them to competition for their standard diet of detritus. Previous research had shown that this species will eat shrimp when detritus is limited, and that these shrimp-fed individuals produce features that are redolent of a rudimentary Spea carnivore. In this study, we found that: (1) behavioural and morphological plasticity enabled some individuals to expand their diet to include shrimp; (2) there was heritable variation in this plasticity; and (3) individuals received a growth and development benefit by eating shrimp. Thus, novel resource use can arise via plasticity as an adaptive response to intraspecific competition. More generally, our results show how competition and plasticity may interact to pave the way for the evolution of complex, novel phenotypes, such as the distinctive carnivore morph in present-day Spea.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| | - Carly G Fuller
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| | - David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Mohl JE, Fetcher N, Stunz E, Tang J, Moody ML. Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum vaginatum), during an extreme heat event. Sci Rep 2020; 10:8990. [PMID: 32488082 PMCID: PMC7265556 DOI: 10.1038/s41598-020-65693-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/05/2020] [Indexed: 11/25/2022] Open
Abstract
Tussock cottongrass (Eriophorum vaginatum) is a foundation species for much of the arctic moist acidic tundra, which is currently experiencing extreme effects of climate change. The Arctic is facing higher summer temperatures and extreme weather events are becoming more common. We used Illumina RNA-Seq to analyse cDNA libraries for differential expression of genes from leaves of ecologically well-characterized ecotypes of tussock cottongrass found along a latitudinal gradient in the Alaskan Arctic and transplanted into a common garden. Plant sampling was performed on a typical summer day and during an extreme heat event. We obtained a de novo assembly that contained 423,353 unigenes. There were 363 unigenes up-regulated and 1,117 down-regulated among all ecotypes examined during the extreme heat event. Of these, 26 HSP unigenes had >log2-fold up-regulation. Several TFs associated with heat stress in previous studies were identified that had >log2-fold up- or down-regulation during the extreme heat event (e.g., DREB, NAC). There was consistent variation in DEGs among ecotypes, but not specifically related to whether plants originated from taiga or tundra ecosystems. As the climate changes it is essential to determine ecotypic diversity at the genomic level, especially for widespread species that impact ecosystem function.
Collapse
Affiliation(s)
- Jonathon E Mohl
- Bioinformatics Program, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Ned Fetcher
- Institute for Environmental Science and Sustainability, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Elizabeth Stunz
- Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Jianwu Tang
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Michael L Moody
- Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
15
|
Ilan Y. Order Through Disorder: The Characteristic Variability of Systems. Front Cell Dev Biol 2020; 8:186. [PMID: 32266266 PMCID: PMC7098948 DOI: 10.3389/fcell.2020.00186] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Randomness characterizes many processes in nature, and therefore its importance cannot be overstated. In the present study, we investigate examples of randomness found in various fields, to underlie its fundamental processes. The fields we address include physics, chemistry, biology (biological systems from genes to whole organs), medicine, and environmental science. Through the chosen examples, we explore the seemingly paradoxical nature of life and demonstrate that randomness is preferred under specific conditions. Furthermore, under certain conditions, promoting or making use of variability-associated parameters may be necessary for improving the function of processes and systems.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
16
|
Baker BH, Sultan SE, Lopez-Ichikawa M, Waterman R. Transgenerational effects of parental light environment on progeny competitive performance and lifetime fitness. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180182. [PMID: 30966959 DOI: 10.1098/rstb.2018.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plant and animal parents may respond to environmental conditions such as resource stress by altering traits of their offspring via heritable non-genetic effects. While such transgenerational plasticity can result in progeny phenotypes that are functionally pre-adapted to the inducing environment, it is unclear whether such parental effects measurably enhance the adult competitive success and lifetime reproductive output of progeny, and whether they may also adversely affect fitness if offspring encounter contrasting conditions. In glasshouse experiments with inbred genotypes of the annual plant Polygonum persicaria, we tested the effects of parental shade versus sun on (a) competitive performance of progeny in shade, and (b) lifetime reproductive fitness of progeny in three contrasting treatments. Shaded parents produced offspring with increased fitness in shade despite competition, as well as greater competitive impact on plant neighbours. Inherited effects of parental light conditions also significantly altered lifetime fitness: parental shade increased reproductive output for progeny in neighbour and understorey shade, but decreased fitness for progeny in sunny, dry conditions. Along with these substantial adaptive and maladaptive transgenerational effects, results show complex interactions between genotypes, parent environment and progeny conditions that underscore the role of environmental variability and change in shaping future adaptive potential. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Brennan H Baker
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| | - Sonia E Sultan
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| | | | - Robin Waterman
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| |
Collapse
|
17
|
Abstract
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.
Collapse
Affiliation(s)
- Kevin J. Parsons
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Kirsty McWhinnie
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Natalie Pilakouta
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Lynsey Walker
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
18
|
Casasa S, Moczek AP. Evolution of, and via, Developmental Plasticity: Insights through the Study of Scaling Relationships. Integr Comp Biol 2019; 59:1346-1355. [PMID: 31147701 DOI: 10.1093/icb/icz086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Scaling relationships emerge from differential growth of body parts relative to each other. As such, scaling relationships are at least in part the product of developmental plasticity. While some of the developmental genetic mechanisms underlying scaling relationships are starting to be elucidated, how these mechanisms evolve and give rise to the enormous diversity of allometric scaling observed in nature is less understood. Furthermore, developmental plasticity has itself been proposed as a mechanism that facilitates adaptation and diversification, yet its role in the developmental evolution of scaling relationships remains largely unknown. In this review, we first explore how the mechanisms of scaling relationships have evolved. We primarily focus on insect development and review how pathway components and pathway interactions have evolved across taxa to regulate scaling relationships across diverse traits. We then discuss the potential role of developmental plasticity in the evolution of scaling relationships. Specifically, we address the potential role of allometric plasticity and cryptic genetic variation in allometry in facilitating divergence via genetic accommodation. Collectively, in this article, we aim to bring together two aspects of developmental plasticity: the mechanistic underpinnings of scaling relationships and their evolution, and the potential role that plasticity plays in the evolutionary diversification of scaling relationships.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
19
|
Bemmels JB, Anderson JT. Climate change shifts natural selection and the adaptive potential of the perennial forb Boechera stricta in the Rocky Mountains. Evolution 2019; 73:2247-2262. [PMID: 31584183 DOI: 10.1111/evo.13854] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
Abstract
Heritable genetic variation is necessary for populations to evolve in response to anthropogenic climate change. However, antagonistic genetic correlations among traits may constrain the rate of adaptation, even if substantial genetic variation exists. We examine potential genetic responses to selection by comparing multivariate genetic variance-covariances of traits and fitness (multivariate Robertson-Price identities) across different environments in a reciprocal transplant experiment of the forb Boechera stricta in the Rocky Mountains. By transplanting populations into four common gardens arrayed along an elevational gradient, and exposing populations to control and snow removal treatments, we simulated future and current climates and snowmelt regimes. Genetic variation in flowering and germination phenology declined in plants moved downslope to warmer, drier sites, suggesting that these traits may have a limited ability to evolve under future climates. Simulated climate change via snow removal altered the strength of selection on flowering traits, but we found little evidence that genetic correlations among traits are likely to affect the rate of adaptation to climate change. Overall, our results suggest that climate change may alter the evolutionary potential of B. stricta, but reduced expression of genetic variation may be a larger impediment to adaptation than constraints imposed by antagonistic genetic correlations.
Collapse
Affiliation(s)
- Jordan B Bemmels
- Department of Genetics, University of Georgia, Athens, Georgia, 30602.,Current Address: Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, Georgia, 30602.,Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, Colorado, 81224
| |
Collapse
|
20
|
Levis NA, Pfennig DW. Plasticity‐led evolution: A survey of developmental mechanisms and empirical tests. Evol Dev 2019; 22:71-87. [DOI: 10.1111/ede.12309] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicholas A. Levis
- Department of Biology University of North Carolina Chapel Hill North Carolina
| | - David W. Pfennig
- Department of Biology University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
21
|
Stein LR, Bell AM. The role of variation and plasticity in parental care during the adaptive radiation of three-spine sticklebacks. Evolution 2019; 73:1037-1044. [PMID: 30843599 DOI: 10.1111/evo.13711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/20/2019] [Indexed: 12/26/2022]
Abstract
Phenotypic plasticity might influence evolutionary processes such as adaptive radiations. Plasticity in parental care might be especially effective in facilitating adaptive radiations if it allows populations to persist in novel environments. Here, we test the hypothesis that behavioral plasticity by parents in response to predation risk facilitated the adaptive radiation of three-spine sticklebacks. We compared the behavior of fathers across multiple ancestral (marine) and derived (freshwater) stickleback populations that differ in time since establishment. We measured behavioral plasticity in fathers in response to a predator found only in freshwater environments, simulating conditions marine males experience when colonizing freshwater. The antipredator behavior of males from newly established freshwater populations was intermediate between marine populations and well-established freshwater populations. In contrast to our predictions, on average, there was greater behavioral plasticity in derived freshwater populations than in ancestral marine populations. However, we found greater individual variation in behavioral reaction norms in marine populations compared to well-established freshwater populations, with newly established freshwater populations intermediate. This suggests that standing variation in behavioral reaction norms within ancestral populations might provide different evolutionary trajectories, and illustrates how plasticity can contribute to adaptive radiations.
Collapse
Affiliation(s)
- Laura R Stein
- Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801.,Current address: Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019
| | - Alison M Bell
- Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801.,Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
22
|
Salinas S, Irvine SE, Schertzing CL, Golden SQ, Munch SB. Trait variation in extreme thermal environments under constant and fluctuating temperatures. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180177. [PMID: 30966956 PMCID: PMC6365863 DOI: 10.1098/rstb.2018.0177] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 01/26/2023] Open
Abstract
Climate change is increasingly exposing populations to rare and novel environmental conditions. Theory suggests that extreme conditions will expose cryptic phenotypes, with a concomitant increase in trait variation. Although some empirical support for this exists, it is also well established that physiological mechanisms (e.g. heat shock protein expression) change when organisms are exposed to constant versus fluctuating temperatures. To determine the effect of common, rare and novel temperatures on the release of hidden variation, we exposed fathead minnows, Pimephales promelas, to five fluctuating and four constant temperature regimes (constant treatments: 23.5, 25, 28.5 and 31°C; all fluctuating treatments shared a minimum temperature of 22°C at 00.00 and a maximum of 25, 28, 31, 34 or 37°C at 12.00). We measured each individual's length weekly over 60 days, critical thermal maximum (CTmax), five morphometric traits (eye anterior-posterior distance, pelvic fin length, pectoral fin length, pelvic fin ray count and pectoral fin ray count) and fluctuating asymmetry (FA, absolute difference between left and right morphometric measurements; FA is typically associated with stress). Length-at-age in both constant and fluctuating conditions decreased with temperature, and this trait's variance decreased with temperature under fluctuating conditions but increased and then decreased in constant temperatures. CTmax in both treatments increased with increasing water temperature, while its variance decreased in warmer waters. No consistent pattern in mean or variance was found across morphometric traits or FA. Our results suggest that, for fathead minnows, variance can decrease in important traits (e.g. length-at-age and CTmax) as the environment becomes more stressful, so it may be difficult to establish comprehensive rules for the effects of rarer or stressful environments on trait variation. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Santiago Salinas
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, MI 49006, USA
| | - Shannon E. Irvine
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, MI 49006, USA
| | - Claire L. Schertzing
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, MI 49006, USA
| | - Shelby Q. Golden
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, MI 49006, USA
| | - Stephan B. Munch
- National Marine Fisheries Service, NOAA, 110 Shaffer Road, Santa Cruz, CA 95060, USA
- Center for Stock Assessment Research, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
23
|
Schwab DB, Casasa S, Moczek AP. On the Reciprocally Causal and Constructive Nature of Developmental Plasticity and Robustness. Front Genet 2019; 9:735. [PMID: 30687394 PMCID: PMC6335315 DOI: 10.3389/fgene.2018.00735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/22/2018] [Indexed: 01/29/2023] Open
Abstract
Exposure to environmental variation is a characteristic feature of normal development, one that organisms can respond to during their lifetimes by actively adjusting or maintaining their phenotype in order to maximize fitness. Plasticity and robustness have historically been studied by evolutionary biologists through quantitative genetic and reaction norm approaches, while more recent efforts emerging from evolutionary developmental biology have begun to characterize the molecular and developmental genetic underpinnings of both plastic and robust trait formation. In this review, we explore how our growing mechanistic understanding of plasticity and robustness is beginning to force a revision of our perception of both phenomena, away from our conventional view of plasticity and robustness as opposites along a continuum and toward a framework that emphasizes their reciprocal, constructive, and integrative nature. We do so in three sections. Following an introduction, the first section looks inward and reviews the genetic, epigenetic, and developmental mechanisms that enable organisms to sense and respond to environmental conditions, maintaining and adjusting trait formation in the process. In the second section, we change perspective and look outward, exploring the ways in which organisms reciprocally shape their environments in ways that influence trait formation, and do so through the lens of behavioral plasticity, niche construction, and host-microbiota interactions. In the final section, we revisit established plasticity and robustness concepts in light of these findings, and highlight research opportunities to further advance our understanding of the causes, mechanisms, and consequences of these ubiquitous, and interrelated, phenomena.
Collapse
|
24
|
Donnelly K, Cavers S, Cottrell JE, Ennos RA. Cryptic genetic variation and adaptation to waterlogging in Caledonian Scots pine, Pinus sylvestris L. Ecol Evol 2018; 8:8665-8675. [PMID: 30271535 PMCID: PMC6157661 DOI: 10.1002/ece3.4389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 12/05/2022] Open
Abstract
Local adaptation occurs as the result of differential selection among populations. Observations made under common environmental conditions may reveal phenotypic differences between populations with an underlying genetic basis; however, exposure to a contrasting novel environment can trigger release of otherwise unobservable (cryptic) genetic variation. We conducted a waterlogging experiment on a common garden trial of Scots pine, Pinus sylvestris (L.), saplings originating from across a steep rainfall gradient in Scotland. A flood treatment was maintained for approximately 1 year; physiological responses were gauged periodically in terms of photochemical capacity as measured via chlorophyll fluorescence. During the treatment, flooded individuals experienced a reduction in photochemical capacity, F v /F m, this reduction being greater for material originating from drier, eastern sites. Phenotypic variance was increased under flooding, and this increase was notably smaller in saplings originating from western sites where precipitation is substantially greater and waterlogging is more common. We conclude that local adaptation has occurred with respect to waterlogging tolerance and that, under the flooding treatment, the greater increase in variability observed in populations originating from drier sites is likely to reflect a relative absence of past selection. In view of a changing climate, we note that comparatively maladapted populations may possess considerable adaptive potential, due to cryptic genetic variation, that should not be overlooked.
Collapse
Affiliation(s)
- Kevin Donnelly
- Institute of Evolutionary BiologySchool of Biological SciencesAshworth LaboratoriesUniversity of EdinburghEdinburghUK
- NERC Centre for Ecology and Hydrology, EdinburghPenicuik, MidlothianUK
| | - Stephen Cavers
- NERC Centre for Ecology and Hydrology, EdinburghPenicuik, MidlothianUK
| | | | - Richard A. Ennos
- Institute of Evolutionary BiologySchool of Biological SciencesAshworth LaboratoriesUniversity of EdinburghEdinburghUK
| |
Collapse
|
25
|
Ramakers JJC, Culina A, Visser ME, Gienapp P. Environmental coupling of heritability and selection is rare and of minor evolutionary significance in wild populations. Nat Ecol Evol 2018; 2:1093-1103. [PMID: 29915341 PMCID: PMC6027994 DOI: 10.1038/s41559-018-0577-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/15/2018] [Indexed: 01/01/2023]
Abstract
Predicting the rate of adaptation to environmental change in wild populations is important for understanding evolutionary change. However, predictions may be unreliable if the two key variables affecting the rate of evolutionary change-heritability and selection-are both affected by the same environmental variable. To determine how general such an environmentally induced coupling of heritability and selection is, and how this may influence the rate of adaptation, we made use of freely accessible, open data on pedigreed wild populations to answer this question at the broadest possible scale. Using 16 populations from 10 vertebrate species, which provided data on 50 traits (relating to body mass, morphology, physiology, behaviour and life history), we found evidence for an environmentally induced relationship between heritability and selection in only 6 cases, with weak evidence that this resulted in an increase or decrease in the expected selection response. We conclude that such a coupling of heritability and selection is unlikely to strongly affect evolutionary change, even though both heritability and selection are commonly postulated to be dependent on the environment.
Collapse
Affiliation(s)
- Jip J C Ramakers
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, the Netherlands.
| | - Antica Culina
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, the Netherlands
| |
Collapse
|
26
|
Ramakers JJC, Cobben MMP, Bijma P, Reed TE, Visser ME, Gienapp P. Maternal Effects in a Wild Songbird Are Environmentally Plastic but Only Marginally Alter the Rate of Adaptation. Am Nat 2018; 191:E144-E158. [PMID: 29693435 DOI: 10.1086/696847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite ample evidence for the presence of maternal effects (MEs) in a variety of traits and strong theoretical indications for their evolutionary consequences, empirical evidence to what extent MEs can influence evolutionary responses to selection remains ambiguous. We tested the degree to which MEs can alter the rate of adaptation of a key life-history trait, clutch size, using an individual-based model approach parameterized with experimental data from a long-term study of great tits (Parus major). We modeled two types of MEs: (i) an environmentally plastic ME, in which the relationship between maternal and offspring clutch size depended on the maternal environment via offspring condition, and (ii) a fixed ME, in which this relationship was constant. Although both types of ME affected the rate of adaptation following an abrupt environmental shift, the overall effects were small. We conclude that evolutionary consequences of MEs are modest at best in our study system, at least for the trait and the particular type of ME we considered here. A closer link between theoretical and empirical work on MEs would hence be useful to obtain accurate predictions about the evolutionary consequences of MEs more generally.
Collapse
|
27
|
The role of ancestral phenotypic plasticity in evolutionary diversification: population density effects in horned beetles. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Levis NA, Pfennig DW. Phenotypic plasticity, canalization, and the origins of novelty: Evidence and mechanisms from amphibians. Semin Cell Dev Biol 2018; 88:80-90. [PMID: 29408711 DOI: 10.1016/j.semcdb.2018.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
A growing number of biologists have begun asking whether environmentally induced phenotypic change--'phenotypic plasticity'--precedes and facilitates the origin and canalization of novel, complex phenotypes. However, such 'plasticity-first evolution' (PFE) remains controversial. Here, we summarize the PFE hypothesis and describe how it can be evaluated in natural systems. We then review the evidence for PFE from amphibians (a group in which phenotypic plasticity is especially widespread) and describe how phenotypic plasticity might have facilitated macroevolutionary change. Finally, we discuss what is known about the proximate mechanisms of PFE in amphibians. We close with suggestions for future research. As we describe, amphibians offer some of the best support for plasticity's role in the origin of evolutionary novelties.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
29
|
Donelson JM, Salinas S, Munday PL, Shama LNS. Transgenerational plasticity and climate change experiments: Where do we go from here? GLOBAL CHANGE BIOLOGY 2018; 24:13-34. [PMID: 29024256 DOI: 10.1111/gcb.13903] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/30/2017] [Indexed: 05/18/2023]
Abstract
Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental conditions that may promote it, its relationship to within-generation plasticity (WGP) and its role in evolutionary potential. In this review, we consider how the detection of TGP in climate change experiments is affected by the predictability of environmental variation, as well as the timing and magnitude of environmental change cues applied. We also discuss the need to design experiments that are able to distinguish TGP from selection and TGP from WGP in multigenerational experiments. We conclude by suggesting future research directions that build on the knowledge to date and admit the limitations that exist, which will depend on the way environmental change is simulated and the type of experimental design used. Such an approach will open up this burgeoning area of research to a wider variety of organisms and allow better predictive capacity of the role of TGP in the response of organisms to future climate change.
Collapse
Affiliation(s)
- Jennifer M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | | | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Lisa N S Shama
- Coastal Ecology Section, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Wadden Sea Station Sylt, List, Germany
| |
Collapse
|
30
|
Gunter HM, Schneider RF, Karner I, Sturmbauer C, Meyer A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol Ecol 2017; 26:6634-6653. [PMID: 29098748 DOI: 10.1111/mec.14405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/06/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Adaptive radiations are characterized by adaptive diversification intertwined with rapid speciation within a lineage resulting in many ecologically specialized, phenotypically diverse species. It has been proposed that adaptive radiations can originate from ancestral lineages with pronounced phenotypic plasticity in adaptive traits, facilitating ecologically driven phenotypic diversification that is ultimately fixed through genetic assimilation of gene regulatory regions. This study aimed to investigate how phenotypic plasticity is reflected in gene expression patterns in the trophic apparatus of several lineages of East African cichlid fishes, and whether the observed patterns support genetic assimilation. This investigation used a split brood experimental design to compare adaptive plasticity in species from within and outside of adaptive radiations. The plastic response was induced in the crushing pharyngeal jaws through feeding individuals either a hard or soft diet. We find that nonradiating, basal lineages show higher levels of adaptive morphological plasticity than the derived, radiated lineages, suggesting that these differences have become partially genetically fixed during the formation of the adaptive radiations. Two candidate genes that may have undergone genetic assimilation, gif and alas1, were identified, in addition to alterations in the wiring of LPJ patterning networks. Taken together, our results suggest that genetic assimilation may have dampened the inducibility of plasticity related genes during the adaptive radiations of East African cichlids, flattening the reaction norms and canalizing their feeding phenotypes, driving adaptation to progressively more narrow ecological niches.
Collapse
Affiliation(s)
- Helen M Gunter
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Ralf F Schneider
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology, University of Konstanz, Konstanz, Germany
| | | | | | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology, University of Konstanz, Konstanz, Germany.,Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, USA
| |
Collapse
|
31
|
Environmental and genetic determinants of transcriptional plasticity in Chinook salmon. Heredity (Edinb) 2017; 120:38-50. [PMID: 29234168 DOI: 10.1038/s41437-017-0009-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 11/08/2022] Open
Abstract
Variation in gene transcription is widely believed to be the mechanistic basis of phenotypically plastic traits; however, comparatively little is known about the inheritance patterns of transcriptional variation that would allow us to predict its response to selection. In addition, acclimation to different environmental conditions influences acute transcriptional responses to stress and it is unclear if these effects are heritable. To address these gaps in knowledge, we assayed levels of messenger RNA for 14 candidate genes at rest and in response to a 24-h confinement stress for 72 half-sib families of Chinook salmon reared in two different environments (hatchery and semi-natural stream channel). We observed extensive plasticity for mRNA levels of metabolic and stress response genes and demonstrated that mRNA level plasticity due to rearing environment affects mRNA level plasticity in response to stress. These effects have important implications for natural populations experiencing multiple stressors. We identified genotype-by-environment interactions for mRNA levels that were dominated by maternal effects; however, mRNA level response to challenge also exhibited a non-additive genetic basis. Our results indicate that while plasticity for mRNA levels can evolve, predicting the outcome of selection will be difficult. The inconsistency in genetic architecture among treatment groups suggests there is considerable cryptic genetic variation for gene expression.
Collapse
|
32
|
Abstract
In recent decades, the phenotype of an organism (i.e. its traits and behaviour) has been studied as the outcome of a developmental 'programme' coded in its genotype. This deterministic view is implicit in the Modern Synthesis approach to adaptive evolution as a sorting process among genetic variants. Studies of developmental pathways have revealed that genotypes are in fact differently expressed depending on environmental conditions. Accordingly, the genotype can be understood as a repertoire of potential developmental outcomes or norm of reaction. Reconceiving the genotype as an environmental response repertoire rather than a fixed developmental programme leads to three critical evolutionary insights. First, plastic responses to specific conditions often comprise functionally appropriate trait adjustments, resulting in an individual-level, developmental mode of adaptive variation. Second, because genotypes are differently expressed depending on the environment, the genetic diversity available to natural selection is itself environmentally contingent. Finally, environmental influences on development can extend across multiple generations via cytoplasmic and epigenetic factors transmitted to progeny individuals, altering their responses to their own, immediate environmental conditions and, in some cases, leading to inherited but non-genetic adaptations. Together, these insights suggest a more nuanced understanding of the genotype and its evolutionary role, as well as a shift in research focus to investigating the complex developmental interactions among genotypes, environments and previous environments.
Collapse
Affiliation(s)
- Sonia E. Sultan
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
33
|
Snoek BL, Sterken MG, Bevers RPJ, Volkers RJM, Van't Hof A, Brenchley R, Riksen JAG, Cossins A, Kammenga JE. Contribution of trans regulatory eQTL to cryptic genetic variation in C. elegans. BMC Genomics 2017; 18:500. [PMID: 28662696 PMCID: PMC5492678 DOI: 10.1186/s12864-017-3899-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cryptic genetic variation (CGV) is the hidden genetic variation that can be unlocked by perturbing normal conditions. CGV can drive the emergence of novel complex phenotypes through changes in gene expression. Although our theoretical understanding of CGV has thoroughly increased over the past decade, insight into polymorphic gene expression regulation underlying CGV is scarce. Here we investigated the transcriptional architecture of CGV in response to rapid temperature changes in the nematode Caenorhabditis elegans. We analyzed regulatory variation in gene expression (and mapped eQTL) across the course of a heat stress and recovery response in a recombinant inbred population. Results We measured gene expression over three temperature treatments: i) control, ii) heat stress, and iii) recovery from heat stress. Compared to control, exposure to heat stress affected the transcription of 3305 genes, whereas 942 were affected in recovering animals. These affected genes were mainly involved in metabolism and reproduction. The gene expression pattern in recovering animals resembled both the control and the heat-stress treatment. We mapped eQTL using the genetic variation of the recombinant inbred population and detected 2626 genes with an eQTL in the heat-stress treatment, 1797 in the control, and 1880 in the recovery. The cis-eQTL were highly shared across treatments. A considerable fraction of the trans-eQTL (40–57%) mapped to 19 treatment specific trans-bands. In contrast to cis-eQTL, trans-eQTL were highly environment specific and thus cryptic. Approximately 67% of the trans-eQTL were only induced in a single treatment, with heat-stress showing the most unique trans-eQTL. Conclusions These results illustrate the highly dynamic pattern of CGV across three different environmental conditions that can be evoked by a stress response over a relatively short time-span (2 h) and that CGV is mainly determined by response related trans regulatory eQTL. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3899-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Roel P J Bevers
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Rita J M Volkers
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Arjen Van't Hof
- Centre for Genome research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Rachel Brenchley
- Centre for Genome research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Andrew Cossins
- Centre for Genome research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
34
|
Changes in structural and pigmentary colours in response to cold stress in Polyommatus icarus butterflies. Sci Rep 2017; 7:1118. [PMID: 28442788 PMCID: PMC5430924 DOI: 10.1038/s41598-017-01273-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/28/2017] [Indexed: 11/15/2022] Open
Abstract
While numerous papers have investigated the effects of thermal stress on the pigmentary colours of butterfly wings, such studies regarding structural colours are mostly lacking, despite the important role they play in sexual communication. To gain insight into the possible differences between the responses of the two kinds of colouration, we investigated the effects of prolonged cold stress (cooling at 5 °C for up to 62 days) on the pupae of Polyommatus icarus butterflies. The wing surfaces coloured by photonic crystal-type nanoarchitectures (dorsal) and by pigments (ventral) showed markedly different behaviours. The ventral wing surfaces exhibited stress responses proportional in magnitude to the duration of cooling and showed the same trend for all individuals, irrespective of their sex. On the dorsal wing surface of the males, with blue structural colouration, a smaller magnitude response was found with much more pronounced individual variations, possibly revealing hidden genetic variations. Despite the typical, pigmented brown colour of the dorsal wing surface of the females, all cooled females exhibited a certain degree of blue colouration. UV-VIS spectroscopy, optical microscopy, and scanning and transmission electron microscopy were used to evaluate the magnitude and character of the changes induced by the prolonged cold stress.
Collapse
|
35
|
Diamond SE, Martin RA. The interplay between plasticity and evolution in response to human-induced environmental change. F1000Res 2016; 5:2835. [PMID: 28003883 PMCID: PMC5147521 DOI: 10.12688/f1000research.9731.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 11/22/2022] Open
Abstract
Some populations will cope with human-induced environmental change, and others will undergo extirpation; understanding the mechanisms that underlie these responses is key to forecasting responses to environmental change. In cases where organisms cannot disperse to track suitable habitats, plastic and evolved responses to environmental change will determine whether populations persist or perish. However, the majority of studies consider plasticity and evolution in isolation when in fact plasticity can shape evolution and plasticity itself can evolve. In particular, whether cryptic genetic variation exposed by environmental novelty can facilitate adaptive evolution has been a source of controversy and debate in the literature and has received even less attention in the context of human-induced environmental change. However, given that many studies indicate organisms will be unable to keep pace with environmental change, we need to understand how often and the degree to which plasticity can facilitate adaptive evolutionary change under novel environmental conditions.
Collapse
Affiliation(s)
- Sarah E. Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan A. Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
Parsons KJ, Concannon M, Navon D, Wang J, Ea I, Groveas K, Campbell C, Albertson RC. Foraging environment determines the genetic architecture and evolutionary potential of trophic morphology in cichlid fishes. Mol Ecol 2016; 25:6012-6023. [PMID: 27516345 DOI: 10.1111/mec.13801] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022]
Abstract
Phenotypic plasticity allows organisms to change their phenotype in response to shifts in the environment. While a central topic in current discussions of evolutionary potential, a comprehensive understanding of the genetic underpinnings of plasticity is lacking in systems undergoing adaptive diversification. Here, we investigate the genetic basis of phenotypic plasticity in a textbook adaptive radiation, Lake Malawi cichlid fishes. Specifically, we crossed two divergent species to generate an F3 hybrid mapping population. At early juvenile stages, hybrid families were split and reared in alternate foraging environments that mimicked benthic/scraping or limnetic/sucking modes of feeding. These alternate treatments produced a variation in morphology that was broadly similar to the major axis of divergence among Malawi cichlids, providing support for the flexible stem theory of adaptive radiation. Next, we found that the genetic architecture of several morphological traits was highly sensitive to the environment. In particular, of 22 significant quantitative trait loci (QTL), only one was shared between the environments. In addition, we identified QTL acting across environments with alternate alleles being differentially sensitive to the environment. Thus, our data suggest that while plasticity is largely determined by loci specific to a given environment, it may also be influenced by loci operating across environments. Finally, our mapping data provide evidence for the evolution of plasticity via genetic assimilation at an important regulatory locus, ptch1. In all, our data address long-standing discussions about the genetic basis and evolution of plasticity. They also underscore the importance of the environment in affecting developmental outcomes, genetic architectures, morphological diversity and evolutionary potential.
Collapse
Affiliation(s)
- Kevin J Parsons
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Moira Concannon
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Dina Navon
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jason Wang
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ilene Ea
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Kiran Groveas
- Fundamentals of Science Research Program, Ossining High School, Ossining, NY, 10562, USA
| | - Calum Campbell
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - R Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
37
|
Wood CW, Brodie ED. Environmental effects on the structure of the G-matrix. Evolution 2016; 69:2927-40. [PMID: 26462609 DOI: 10.1111/evo.12795] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022]
Abstract
Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance-covariance (G) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between-environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between-population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G. Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments.
Collapse
Affiliation(s)
- Corlett W Wood
- Mountain Lake Biological Station, and Department of Biology, University of Virginia, Charlottesville, Virginia, 22904.
| | - Edmund D Brodie
- Mountain Lake Biological Station, and Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| |
Collapse
|
38
|
Dammerman KJ, Steibel JP, Scribner KT. Increases in the mean and variability of thermal regimes result in differential phenotypic responses among genotypes during early ontogenetic stages of lake sturgeon ( Acipenser fulvescens). Evol Appl 2016; 9:1258-1270. [PMID: 27877204 PMCID: PMC5108217 DOI: 10.1111/eva.12409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/14/2016] [Indexed: 12/23/2022] Open
Abstract
Climate change is affecting thermal conditions worldwide. Understanding organismal responses associated with predicted changes are essential for predicting population persistence. Few studies have examined the effects of both increased mean and variance in temperature on organismal traits, particularly during early life stages. Using lake sturgeon (Acipenser fulvescens) from Black Lake, MI, we tested whether phenotypic variation differed among families reared in two constant (10 and 18°C) and two fluctuating‐temperature treatments (10–19°C) representing temperatures experienced in the river and a simulated anthropogenic disturbance. Body length, body area, and yolk‐sac area were quantified at hatch. Family‐by‐treatment interactions explained up to 50% of the variance observed among families in offspring hatch traits. Families incubated in 18°C and the fluctuating anthropogenic treatment had 6–10 times higher variance in traits than those incubated at 10°C. Hatched larvae were placed in raceways with ambient river water. Emergence body length, emergence timing, and growth were quantified upon emergence. Families differed in time to emergence and growth with the greatest range observed in the 18°C treatment. Results demonstrate that differential responses among genotypes to changes in the mean and variability of thermal incubation regimes can affect traits at hatch as well as a subsequent ontogenetic stage.
Collapse
Affiliation(s)
- Kari J Dammerman
- Department of Integrative Biology Michigan State University East Lansing MI USA; U.S. Fish and Wildlife Service Columbia River Fish and Wildlife Conservation Office Vancouver WA USA
| | - Juan P Steibel
- Department of Animal Science Michigan State University East Lansing MI USA; Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
| | - Kim T Scribner
- Department of Integrative Biology Michigan State University East Lansing MI USA; Department of Fisheries and Wildlife Michigan State University East Lansing MI USA; Ecology, Evolutionary Biology, and Behavior Program Michigan State University East Lansing MI USA
| |
Collapse
|
39
|
Wood CW, Brodie ED. Evolutionary response when selection and genetic variation covary across environments. Ecol Lett 2016; 19:1189-200. [DOI: 10.1111/ele.12662] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Corlett W. Wood
- Mountain Lake Biological Station and Department of Biology University of Virginia Charlottesville VA22904 USA
| | - Edmund D. Brodie
- Mountain Lake Biological Station and Department of Biology University of Virginia Charlottesville VA22904 USA
| |
Collapse
|
40
|
Miller CW, McDonald GC, Moore AJ. The tale of the shrinking weapon: seasonal changes in nutrition affect weapon size and sexual dimorphism, but not contemporary evolution. J Evol Biol 2016; 29:2266-2275. [PMID: 27468122 DOI: 10.1111/jeb.12954] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/05/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022]
Abstract
Sexually selected traits are often highly variable in size within populations due to their close link with the physical condition of individuals. Nutrition has a large impact on physical condition, and thus, any seasonal changes in nutritional quality are predicted to alter the average size of sexually selected traits as well as the degree of sexual dimorphism in populations. However, although traits affected by mate choice are well studied, we have a surprising lack of knowledge of how natural variation in nutrition affects the expression of sexually selected weapons and sexual dimorphism. Further, few studies explicitly test for differences in the heritability and mean-scaled evolvability of sexually selected traits across conditions. We studied Narnia femorata (Hemiptera: Coreidae), an insect where males use their hind legs as weapons and the femurs are enlarged, to understand the extent to which weapon expression, sexual dimorphism and evolvability change across the actual range of nutrition available in the wild. We found that insects raised on a poor diet (cactus without fruit) are nearly monomorphic, whereas those raised on a high-quality diet (cactus with ripe fruit) are distinctly sexually dimorphic via the expression of large hind leg weapons in males. Contrary to our expectations, we found little evidence of a potential for evolutionary change for any trait measured. Thus, although we show weapons are highly condition dependent, and changes in weapon expression and dimorphism could alter evolutionary dynamics, our populations are unlikely to experience further evolutionary changes under current conditions.
Collapse
Affiliation(s)
- C W Miller
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA.
| | - G C McDonald
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - A J Moore
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
41
|
Evaluating ‘Plasticity-First’ Evolution in Nature: Key Criteria and Empirical Approaches. Trends Ecol Evol 2016; 31:563-574. [DOI: 10.1016/j.tree.2016.03.012] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 01/19/2023]
|
42
|
Xu Q, Zhu C, Fan Y, Song Z, Xing S, Liu W, Yan J, Sang T. Population transcriptomics uncovers the regulation of gene expression variation in adaptation to changing environment. Sci Rep 2016; 6:25536. [PMID: 27150248 PMCID: PMC4858677 DOI: 10.1038/srep25536] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/19/2016] [Indexed: 11/23/2022] Open
Abstract
Expression variation plays an important role in plant adaptation, but little is known about the factors impacting the expression variation when population adapts to changing environment. We used RNA-seq data from 80 individuals in 14 Miscanthus lutarioriparius populations, which were transplanted into a harsh environment from native habitat, to investigate the expression level, expression diversity and genetic diversity for genes expressed in both environments. The expression level of genes with lower expression level or without SNP tended to be more changeable in new environment, which suggested highly expressed genes experienced stronger purifying selection than those at lower level. Low proportion of genes with population effect confirmed the weak population structure and frequent gene flow in these populations. Meanwhile, the number of genes with environment effect was the most frequent compared with that with population effect. Our results showed that environment and genetic diversity were the main factors determining gene expression variation in population. This study could facilitate understanding the mechanisms of global gene expression variation when plant population adapts to changing environment.
Collapse
Affiliation(s)
- Qin Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Caiyun Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Fan
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilai Xing
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Yan
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Tao Sang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
43
|
Ehrenreich IM, Pfennig DW. Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. ANNALS OF BOTANY 2016; 117:769-79. [PMID: 26359425 PMCID: PMC4845796 DOI: 10.1093/aob/mcv130] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Most, if not all, organisms possess the ability to alter their phenotype in direct response to changes in their environment, a phenomenon known as phenotypic plasticity. Selection can break this environmental sensitivity, however, and cause a formerly environmentally induced trait to evolve to become fixed through a process called genetic assimilation. Essentially, genetic assimilation can be viewed as the evolution of environmental robustness in what was formerly an environmentally sensitive trait. Because genetic assimilation has long been suggested to play a key role in the origins of phenotypic novelty and possibly even new species, identifying and characterizing the proximate mechanisms that underlie genetic assimilation may advance our basic understanding of how novel traits and species evolve. SCOPE This review begins by discussing how the evolution of phenotypic plasticity, followed by genetic assimilation, might promote the origins of new traits and possibly fuel speciation and adaptive radiation. The evidence implicating genetic assimilation in evolutionary innovation and diversification is then briefly considered. Next, the potential causes of phenotypic plasticity generally and genetic assimilation specifically are examined at the genetic, molecular and physiological levels and approaches that can improve our understanding of these mechanisms are described. The review concludes by outlining major challenges for future work. CONCLUSIONS Identifying and characterizing the proximate mechanisms involved in phenotypic plasticity and genetic assimilation promises to help advance our basic understanding of evolutionary innovation and diversification.
Collapse
Affiliation(s)
- Ian M Ehrenreich
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA and
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
44
|
Tabib A, Vishwanathan S, Seleznev A, McKeown PC, Downing T, Dent C, Sanchez-Bermejo E, Colling L, Spillane C, Balasubramanian S. A Polynucleotide Repeat Expansion Causing Temperature-Sensitivity Persists in Wild Irish Accessions of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1311. [PMID: 27630650 PMCID: PMC5006647 DOI: 10.3389/fpls.2016.01311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/16/2016] [Indexed: 05/15/2023]
Abstract
Triplet repeat expansions underlie several human genetic diseases such as Huntington's disease and Friedreich's ataxia. Although such mutations are primarily known from humans, a triplet expansion associated genetic defect has also been reported at the IIL1 locus in the Bur-0 accession of the model plant Arabidopsis thaliana. The IIL1 triplet expansion is an example of cryptic genetic variation as its phenotypic effects are seen only under genetic or environmental perturbation, with high temperatures resulting in a growth defect. Here we demonstrate that the IIL1 triplet expansion associated growth defect is not a general stress response and is specific to particular environmental perturbations. We also confirm and map genetic modifiers that suppress the effect of IIL1 triplet repeat expansion. By collecting and analyzing accessions from the island of Ireland, we recover the repeat expansion in wild populations suggesting that the repeat expansion has persisted at least 60 years in Ireland. Through genome-wide genotyping, we show that the repeat expansion is present in diverse Irish populations. Our findings indicate that even deleterious alleles can persist in populations if their effect is conditional. Our study demonstrates that analysis of groups of wild populations is a powerful tool for understanding the dynamics of cryptic genetic variation.
Collapse
Affiliation(s)
- Amanda Tabib
- School of Biological Sciences, Monash UniversityMelbourne, VIC, Australia
| | | | - Andrei Seleznev
- School of Biological Sciences, Monash UniversityMelbourne, VIC, Australia
| | - Peter C. McKeown
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of IrelandGalway, Ireland
| | - Tim Downing
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of IrelandGalway, Ireland
- School of Biotechnology, Dublin City UniversityDublin, Ireland
| | - Craig Dent
- School of Biological Sciences, Monash UniversityMelbourne, VIC, Australia
| | | | - Luana Colling
- School of Biological Sciences, Monash UniversityMelbourne, VIC, Australia
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of IrelandGalway, Ireland
| | - Sureshkumar Balasubramanian
- School of Biological Sciences, Monash UniversityMelbourne, VIC, Australia
- *Correspondence: Sureshkumar Balasubramanian
| |
Collapse
|
45
|
Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 2015; 16:611-22. [PMID: 26370902 DOI: 10.1038/nrg3982] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.
Collapse
|
46
|
Pristine Wilderness to Crippled Ecosystems: A Foray Through More Than Half a Century of Herpetology1. J HERPETOL 2015. [DOI: 10.1670/14-144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Horgan-Kobelski T, Matesanz S, Sultan SE. Limits to Future Adaptation in the Invasive PlantPolygonum cespitosum: Expression of Functional and Fitness Traits at Elevated CO2. J Hered 2015; 107:42-50. [DOI: 10.1093/jhered/esv070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
|
48
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
49
|
Zhu W, Ausin I, Seleznev A, Méndez-Vigo B, Picó FX, Sureshkumar S, Sundaramoorthi V, Bulach D, Powell D, Seemann T, Alonso-Blanco C, Balasubramanian S. Natural Variation Identifies ICARUS1, a Universal Gene Required for Cell Proliferation and Growth at High Temperatures in Arabidopsis thaliana. PLoS Genet 2015; 11:e1005085. [PMID: 25951176 PMCID: PMC4423873 DOI: 10.1371/journal.pgen.1005085] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/20/2015] [Indexed: 12/17/2022] Open
Abstract
Plants are highly sensitive to environmental changes and even small variations in ambient temperature have severe consequences on their growth and development. Temperature affects multiple aspects of plant development, but the processes and mechanisms underlying thermo-sensitive growth responses are mostly unknown. Here we exploit natural variation in Arabidopsis thaliana to identify and characterize novel components and processes mediating thermo-sensitive growth responses in plants. Phenotypic screening of wild accessions identified several strains displaying pleiotropic growth defects, at cellular and organism levels, specifically at high ambient temperatures. Positional cloning and characterization of the underlying gene revealed that ICARUS1 (ICA1), which encodes a protein of the tRNAHis guanylyl transferase (Thg1) superfamily, is required for plant growth at high temperatures. Transcriptome and gene marker analyses together with DNA content measurements show that ICA1 loss-of-function results in down regulation of cell cycle associated genes at high temperatures, which is linked with a block in G2/M transition and endoreduplication. In addition, plants with mutations in ICA1 show enhanced sensitivity to DNA damage. Characterization of additional strains that carry lesions in ICA1, but display normal growth, shows that alternative splicing is likely to alleviate the deleterious effects of some natural mutations. Furthermore, analyses of worldwide and regional collections of natural accessions indicate that ICA1 loss-of-function has arisen several times independently, and that these occur at high frequency in some local populations. Overall our results suggest that ICA1-mediated-modulation of fundamental processes such as tRNAHis maturation, modify plant growth responses to temperature changes in a quantitative and reversible manner, in natural populations. The increase in average temperatures across the globe has been predicted to have negative impacts on agricultural productivity. Therefore, there is a need to understand the molecular mechanisms that underlie plant growth responses to varying temperature regimes. At present, very little is known about the genes and pathways that modulate thermo-sensory growth responses in plants. In this article, the authors exploit natural variation in the commonly occurring weed thale cress (Arabidopsis thaliana) and identify a gene referred to as ICARUS1 to be required for plant growth at higher ambient temperatures. Plants carrying lesions in this gene stop growing at high temperatures and revert to growth when temperatures reduce. Using a combination of computational, molecular and cell biological approaches, the authors demonstrate that allelic variation at ICARUS1, which encodes an enzyme required for the fundamental biochemical process of tRNAHis maturation, underlies variation in thermo-sensory growth responses of A. thaliana. Furthermore, the authors discover that the deleterious impact of a natural mutation in ICARUS1 is suppressed through alternative splicing, thus suggesting the potential for alternative splicing to buffer the impacts of some natural mutations. These results support that modulation of fundamental processes, in addition to transcriptional regulation, mediate thermo-sensory growth responses in plants.
Collapse
Affiliation(s)
- Wangsheng Zhu
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Israel Ausin
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Andrei Seleznev
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Belén Méndez-Vigo
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - F. Xavier Picó
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | | | | | - Dieter Bulach
- Victorian Bioinformatics Consortium, Monash University, Victoria, Australia
| | - David Powell
- Victorian Bioinformatics Consortium, Monash University, Victoria, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Victoria, Australia
| | - Carlos Alonso-Blanco
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail: (CAB); (SB)
| | | |
Collapse
|
50
|
|