1
|
Le Guyader FS, Ollivier J, Parnaudeau S, Gauffriau M, Papin M, Stavrakakis C, François V, Vincent-Hubert F, Garry P. Comparing Two Seawater Temperatures For Human Norovirus Depuration From Oysters. J Food Prot 2025; 88:100406. [PMID: 39547579 DOI: 10.1016/j.jfp.2024.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Despite regulations set up to monitor the microbiological quality of shellfish in producing areas, shellfish-borne gastroenteritis outbreaks still occur. Indeed, oyster depuration practices that are efficient to eliminate bacteria, fail to eliminate human norovirus from oyster flesh. In order to evaluate the impact of seawater temperature on the elimination of norovirus particles from oysters, large batches of oysters were contaminated using raw sewage containing norovirus and subjected to depuration at 8 °C or 18 °C. Over the experiment, quantitative RT-qPCR showed a one-log decrease of norovirus (both genogroups combined) genome copies per gram of digestive tissue after 41 days for oysters depurated at 8 °C and 24 days at 18 °C. The decrease of norovirus (both genogroups combined) in two batches of field-contaminated oysters depurated for two weeks at 18 °C was in the same range (21 and 23 days, respectively). All experiments showed a difference in genomic decay between the two norovirus genogroups, with norovirus genogroup I being more persistent in March/April compared to April/May.
Collapse
Affiliation(s)
| | - Joanna Ollivier
- Ifremer, U. Microbiologie Aliment Santé Environnement, LSEM/RBE, Nantes, France
| | - Sylvain Parnaudeau
- Ifremer, U. Microbiologie Aliment Santé Environnement, LSEM/RBE, Nantes, France
| | - Mathias Gauffriau
- Ifremer, U. Microbiologie Aliment Santé Environnement, LSEM/RBE, Nantes, France
| | - Mathias Papin
- Ifremer, U. EMMA Experimentale Mollusques Marins Atlantique, PMMB/RBE, Bouin, France
| | | | - Virginie François
- Ifremer, U. EMMA Experimentale Mollusques Marins Atlantique, PMMB/RBE, Bouin, France
| | | | - Pascal Garry
- Ifremer, U. Microbiologie Aliment Santé Environnement, LSEM/RBE, Nantes, France
| |
Collapse
|
2
|
Gaillard S, Small HJ, Carnegie RB, Harris TM, Tanniou S, Réveillon D, Hess P, Reece KS. Sublethal exposure of eastern oyster Crassostrea virginica to the goniodomin-producing dinoflagellate Alexandrium monilatum: Fate of toxins, histopathology, and gene expression. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:374-394. [PMID: 39739761 PMCID: PMC11685061 DOI: 10.1002/aah.10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 01/02/2025]
Abstract
OBJECTIVE The dinoflagellate Alexandrium monilatum forms blooms during summer in tributaries of the lower Chesapeake Bay. Questions persist about the potential for A. monilatum to negatively affect aquatic organisms. Its main toxin, goniodomin A (GDA), a polyketide macrolide, has been shown to have adverse effects on animals, for example through cytotoxicity and interaction with actin. METHODS Eastern oysters Crassostrea virginica were exposed for 96 h to sublethal concentrations of A. monilatum (615 ± 47 cells/mL [average ± SD]; containing mainly intracellular GDA [215 ± 7.15 pg/cell] and to a lesser extent goniodomin B, goniodomin C, and GDA seco-acid as quantified by liquid chromatography coupled to tandem mass spectrometry) or to nontoxic phytoplankton or were unexposed. They were subsequently depurated for 96 h by exposure to nontoxic phytoplankton. Clearance rates were estimated, and oysters were sampled daily and tissue (gill, digestive gland, and remaining tissues) excised for analyses by histopathology, gene expression quantified by quantitative PCR, and goniodomin quantification. RESULT A positive clearance rate, no mortality, and no tissue pathologies were observed in oysters exposed to A. monilatum. Goniodomin A was detected in gill 6 h after exposure (504 ± 329 μg/kg [average ± SE]) and to a lesser extent in the digestive gland and remaining soft tissues. In the digestive gland, a trend of transformation of GDA to GDA seco-acid was observed. The majority of toxins (≥83%) were depurated after 96 h. Expression of genes involved in oxidative response increased 14-fold after 6 h, and those involved in actin synthesis showed a 27-fold change after 24 h, while expression of apoptosis genes increased 6.9-fold after 96 h compared with the control (eastern oysters exposed to nontoxic phytoplankton). CONCLUSION Exposure experiments (nonsublethal or chronic) should be carried out to better assess the threat of this species and toxins for eastern oysters and other marine organisms.
Collapse
Affiliation(s)
- Sylvain Gaillard
- Virginia Institute of Marine ScienceWilliam & MaryGloucester PointVirginiaUSA
- Woods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Hamish J. Small
- Virginia Institute of Marine ScienceWilliam & MaryGloucester PointVirginiaUSA
| | - Ryan B. Carnegie
- Virginia Institute of Marine ScienceWilliam & MaryGloucester PointVirginiaUSA
| | - Thomas M. Harris
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| | | | | | | | - Kimberly S. Reece
- Virginia Institute of Marine ScienceWilliam & MaryGloucester PointVirginiaUSA
| |
Collapse
|
3
|
Mendela TS, Isaac SR, Enzor LA. Impacts of elevated temperature, decreased salinity and microfibers on the bioenergetics and oxidative stress in eastern oyster, Crassostrea virginica. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111002. [PMID: 38909831 DOI: 10.1016/j.cbpb.2024.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Projected increases in temperature and decreases in salinity associated with global climate change will likely have detrimental impacts on eastern oyster, Crassostrea virginica, as these variables can influence physiological processes in these keystone species. We set out to determine how the interactive effects of temperature (20 °C or 27 °C) and/or salinity (27‰ or 17‰) impacted the energetic reserves, aerobic and anaerobic metabolism, and changes to oxidative stress or total antioxidant potential as a consequence of an altered environment over a 21-day exposure. Gill and adductor muscle were used to quantify changes in total glycogen and lipid content, Electron Transport System and Citrate Synthase activities, Malate Dehydrogenase activity, Protein Carbonyl formation, lipid peroxidation, and total antioxidant potential. A second exposure was performed to determine if these environmental factors influenced the ingestion of microfibers, which are now one of the leading forms of marine debris. Elevated temperature and the combination of elevated temperature and decreased salinity led to an overall decline in oyster mass, which was exacerbated by the presence of microfibers. Changes in metabolism and oxidative stress were largely influenced by time, but exposure to elevated temperature, decreased salinity, the combination of these stressors or exposure to microfibers had small impacts on oyster physiology and survival. Overall these studies demonstrate that oyster are fairly resilient to changes in salinity in short-term exposures, and elevations in temperature or temperature combined with salinity result in changes to the oyster energetic response, which can be further impacted by the presence of microfibers.
Collapse
Affiliation(s)
- Tyler S Mendela
- Department of Biology, University of Hartford, West Hartford, CT, United States of America
| | - Sean R Isaac
- Department of Biology, University of Hartford, West Hartford, CT, United States of America
| | - Laura A Enzor
- Department of Biology, University of Hartford, West Hartford, CT, United States of America.
| |
Collapse
|
4
|
Vaidya R, Bodenstein S, Rasulova D, La Peyre J, Kelly M. Comparative Transcriptomic Analyses Reveal Differences in the Responses of Diploid and Triploid Eastern Oysters to Environmental Stress. Evol Appl 2024; 17:e70028. [PMID: 39444443 PMCID: PMC11496204 DOI: 10.1111/eva.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Triploid oysters are commonly used as the basis for production in the aquaculture of eastern oysters along the USA East and Gulf of Mexico coasts. While they are valued for their rapid growth, incidents of triploid mortality during summer months have been well documented in eastern oysters, especially at low salinity sites. We compared global transcriptomic responses of diploid and triploid oysters bred from the same three maternal source populations at two different hatcheries and outplanted to a high (annual mean salinity = 19.4 ± 6.7) and low (annual mean salinity = 9.3 ± 5.0) salinity site. Oysters were sampled for gene expression at the onset of a mortality event in the summer of 2021 to identify triploid-specific gene expression patterns associated with low salinity sites, which ultimately experienced greater triploid mortality. We also examined chromosome-specific gene expression to test for instances of aneuploidy in experimental triploid oyster lines, another possible contributor to elevated mortality in triploids. We observed a strong effect of hatchery conditions (cohort) on triploid-specific mortality (field data) and a strong interactive effect of hatchery, ploidy, and outplant site on gene expression. At the low salinity site where triploid oysters experienced high mortality, we observed downregulation of transcripts related to calcium signaling, ciliary activity, and cell cycle checkpoints in triploids relative to diploids. These transcripts suggest dampening of the salinity stress response and problems during cell division as key cellular processes associated with elevated mortality risk in triploid oysters. No instances of aneuploidy were detected in our triploid oyster lines. Our results suggest that triploid oysters may be fundamentally less tolerant of rapid decreases in salinity, indicating that oyster farmers may need to limit the use of triploid oysters to sites with more stable salinity conditions.
Collapse
Affiliation(s)
- Rujuta V. Vaidya
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Sarah Bodenstein
- Louisiana Sea Grant College ProgramLouisiana State UniversityBaton RougeLouisianaUSA
| | - Dildorakhon Rasulova
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Jerome F. La Peyre
- School of Animal SciencesLouisiana State University Agricultural CenterBaton RougeLouisianaUSA
| | - Morgan W. Kelly
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
5
|
Destoumieux-Garzón D, Montagnani C, Dantan L, Nicolas NDS, Travers MA, Duperret L, Charrière GM, Toulza E, Mitta G, Cosseau C, Escoubas JM. Cross-talk and mutual shaping between the immune system and the microbiota during an oyster's life. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230065. [PMID: 38497271 PMCID: PMC10945412 DOI: 10.1098/rstb.2023.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Caroline Montagnani
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Luc Dantan
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Noémie de San Nicolas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Marie-Agnès Travers
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Léo Duperret
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume M. Charrière
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume Mitta
- Ifremer, IRD, ILM, Université de Polynésie Française, UMR EIO, Vairao 98179, French Polynesia
| | - Céline Cosseau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| |
Collapse
|
6
|
George MN, Cattau O, Middleton MA, Lawson D, Vadopalas B, Gavery M, Roberts SB. Triploid Pacific oysters exhibit stress response dysregulation and elevated mortality following heatwaves. GLOBAL CHANGE BIOLOGY 2023; 29:6969-6987. [PMID: 37464471 DOI: 10.1111/gcb.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Polyploidy has been suggested to negatively impact environmental stress tolerance, resulting in increased susceptibility to extreme climate events. In this study, we compared the genomic and physiological response of diploid (2n) and triploid (3n) Pacific oysters (Crassostrea gigas) to conditions present during an atmospheric heatwave that impacted the Pacific Northwestern region of the United States in the summer of 2021. Climate stressors were applied either singly (single stressor; elevated seawater temperature, 30°C) or in succession (multiple stressor; elevated seawater temperature followed by aerial emersion at 44°C), replicating conditions present within the intertidal over a tidal cycle during the event. Oyster mortality rate was elevated within stress treatments with respect to the control and was significantly higher in triploids than diploids following multiple stress exposure (36.4% vs. 14.8%). Triploids within the multiple stressor treatment exhibited signs of energetic limitation, including metabolic depression, a significant reduction in ctenidium Na+ /K+ ATPase activity, and the dysregulated expression of genes associated with stress response, innate immunity, glucose metabolism, and mitochondrial function. Functional enrichment analysis of ploidy-specific gene sets identified that biological processes associated with metabolism, stress tolerance, and immune function were overrepresented within triploids across stress treatments. Our results suggest that triploidy impacts the transcriptional regulation of key processes that underly the stress response of Pacific oysters, resulting in downstream shifts in physiological tolerance limits that may increase susceptibility to extreme climate events that present multiple environmental stressors. The impact of chromosome set manipulation on the climate resilience of marine organisms has important implications for domestic food security within future climate scenarios, especially as triploidy induction becomes an increasingly popular tool to elicit reproductive control across a wide range of species used within marine aquaculture.
Collapse
Affiliation(s)
- Matthew N George
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, Washington, USA
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Olivia Cattau
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Mollie A Middleton
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
- Saltwater Inc., Anchorage, Alaska, USA
| | - Delaney Lawson
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Brent Vadopalas
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Mackenzie Gavery
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Steven B Roberts
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Wang Y, Liu X, Wang W, Sun G, Xu X, Feng Y, Li Z, Yang J. Investigating the Mechanism of Low-Salinity Environmental Adaptation in Sepia esculenta Larvae through Transcriptome Profiling. Animals (Basel) 2023; 13:3139. [PMID: 37835745 PMCID: PMC10571815 DOI: 10.3390/ani13193139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Sepia esculenta is an economically important mollusk distributed in the coastal waters of China. Juveniles are more susceptible to stimulation by the external environment than mature individuals. The ocean salinity fluctuates due to environmental changes. However, there is a lack of research on the salinity adaptations of S. esculenta. Therefore, in this study, we investigated the differential expression of genes in S. esculenta larvae after stimulation by low salinity. RNA samples were sequenced and 1039 differentially expressed genes (DEGs) were identified. Then, enrichment analysis was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, a protein-protein interaction network (PPI) was constructed, and the functions of key genes in S. esculenta larvae after low-salinity stimulation were explored. We suggest that low salinity leads to an excess proliferation of cells in S. esculenta larvae that, in turn, affects normal physiological activities. The results of this study can aid in the artificial incubation of S. esculenta and reduce the mortality of larvae.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
8
|
Joly LJ, Boersma M, Giraldo C, Mazurais D, Madec L, Collet S, Zambonino-Infante JL, Meunier CL. Smaller herring larval size-at-stage in response to environmental changes is associated with ontogenic processes and stress response. CONSERVATION PHYSIOLOGY 2023; 11:coad072. [PMID: 37711582 PMCID: PMC10498416 DOI: 10.1093/conphys/coad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Global change puts coastal systems under pressure, affecting the ecology and physiology of marine organisms. In particular, fish larvae are sensitive to environmental conditions, and their fitness is an important determinant of fish stock recruitment and fluctuations. To assess the combined effects of warming, acidification and change in food quality, herring larvae were reared in a control scenario (11°C*pH 8.0) and a scenario predicted for 2100 (14°C*pH 7.6) crossed with two feeding treatments (enriched in phosphorus and docosahexaenoic acid or not). The experiment lasted from hatching to the beginning of the post-flexion stage (i.e. all fins present) corresponding to 47 days post-hatch (dph) at 14°C and 60 dph at 11°C. Length and stage development were monitored throughout the experiment and the expression of genes involved in growth, metabolic pathways and stress responses were analysed for stage 3 larvae (flexion of the notochord). Although the growth rate was unaffected by acidification and temperature changes, the development was accelerated in the 2100 scenario, where larvae reached the last developmental stage at a smaller size (-8%). We observed no mortality related to treatments and no effect of food quality on the development of herring larvae. However, gene expression analyses revealed that heat shock transcripts expression was higher in the warmer and more acidic treatment. Our findings suggest that the predicted warming and acidification environment are stressful for herring larvae, inducing a decrease in size-at-stage at a precise period of ontogeny. This could either negatively affect survival and recruitment via the extension of the predation window or positively increase the survival by reducing the larval stage duration.
Collapse
Affiliation(s)
- Léa J Joly
- English Channel and North Sea Research Unit, Ifremer, 150 Quai Gambetta, 62200 Boulogne-sur-Mer, France
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Am Binnenhafen 1117, 27483 Helgoland, Germany
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| | - Maarten Boersma
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Am Binnenhafen 1117, 27483 Helgoland, Germany
- FB2, University of Bremen, Leobener Str, 28359 Bremen, Germany
| | - Carolina Giraldo
- English Channel and North Sea Research Unit, Ifremer, 150 Quai Gambetta, 62200 Boulogne-sur-Mer, France
| | - David Mazurais
- Physiology of Marine Organisms, Ifremer, Univ Brest, CNRS, IRD, LEMAR, ZI de la Pointe au Diable, 29280 Plouzané, France
| | - Lauriane Madec
- Physiology of Marine Organisms, Ifremer, Univ Brest, CNRS, IRD, LEMAR, ZI de la Pointe au Diable, 29280 Plouzané, France
| | - Sophie Collet
- Physiology of Marine Organisms, Ifremer, Univ Brest, CNRS, IRD, LEMAR, ZI de la Pointe au Diable, 29280 Plouzané, France
| | - José-Luis Zambonino-Infante
- Physiology of Marine Organisms, Ifremer, Univ Brest, CNRS, IRD, LEMAR, ZI de la Pointe au Diable, 29280 Plouzané, France
| | - Cédric L Meunier
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Am Binnenhafen 1117, 27483 Helgoland, Germany
| |
Collapse
|
9
|
Wang Y, Bao X, Wang W, Xu X, Liu X, Li Z, Yang J, Yuan T. Exploration of anti-stress mechanisms in high temperature exposed juvenile golden cuttlefish ( Sepia esculenta) based on transcriptome profiling. Front Physiol 2023; 14:1189375. [PMID: 37234426 PMCID: PMC10206265 DOI: 10.3389/fphys.2023.1189375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Sepia esculenta is a cephalopod widely distributed in the Western Pacific Ocean, and there has been growing research interest due to its high economic and nutritional value. The limited anti-stress capacity of larvae renders challenges for their adaptation to high ambient temperatures. Exposure to high temperatures produces intense stress responses, thereby affecting survival, metabolism, immunity, and other life activities. Notably, the molecular mechanisms by which larval cuttlefish cope with high temperatures are not well understood. As such, in the present study, transcriptome sequencing of S. esculenta larvae was performed and 1,927 differentially expressed genes (DEGs) were identified. DEGs were subjected to functional enrichment analyses using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The top 20 terms of biological processes in GO and 20 high-temperature stress-related pathways in KEGG functional enrichment analysis were identified. A protein-protein interaction network was constructed to investigate the interaction between temperature stress-related genes. A total of 30 key genes with a high degree of participation in KEGG signaling pathways or protein-protein interactions were identified and subsequently validated using quantitative RT-PCR. Through a comprehensive analysis of the protein-protein interaction network and KEGG signaling pathway, the functions of three hub genes (HSP90AA1, PSMD6, and PSMA5), which belong to the heat shock protein family and proteasome, were explored. The present results can facilitate further understanding of the mechanism of high temperature resistance in invertebrates and provide a reference for the S. esculenta industry in the context of global warming.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Tingzhu Yuan
- School of Agriculture, Ludong University, Yantai, China
- Marine Economy Promotion Center of Changdao County Marine Ecological Civilization Comprehensive Experimental Zone, Yantai, China
| |
Collapse
|
10
|
Hamilton JS, Piria M, Gavrilović A, Mrkonjić Fuka M, Svečnjak L, Nikolić S, Bakiu R, Gardner JPA. Limited population genetic variation but pronounced seascape genetic structuring in populations of the Mediterranean mussel ( Mytilus galloprovincialis) from the eastern Adriatic Sea. Ecol Evol 2023; 13:e9729. [PMID: 36713489 PMCID: PMC9873513 DOI: 10.1002/ece3.9729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
Population genetic analysis of variation at five neutral microsatellite loci for Mediterranean mussels (Mytilus galloprovincialis) from 18 sites along the eastern Adriatic Sea revealed little or no spatial variation. In contrast, seascape genetics analysis revealed a pronounced locus-specific gradient in allelic and genotypic frequencies across the study region. At a sixth locus, MGE7, the frequencies of two alleles, MGE7243 and MGE7249, were strongly associated, negatively and positively, respectively, with a single environmental variable - minimum salinity (minSAL). The frequency of the MGE7243/243 homozygous genotype was strongly negatively associated with minSAL, whereas the frequencies of the MGE7246/249 and the MGE7249/249 genotypes were strongly positively correlated with minSAL. Interpretation of these pronounced gradients is confounded by the fact that minSAL and another environmental variable, maximum sea surface temperature (maxSST), are highly correlated (R = -.911) and are therefore not necessarily acting independently. BLAST searches of the MGE7 locus against M. galloprovincialis whole genome shotgun sequence returned an alignment with contig mg10_S01094 (accession UYJE01010330.1) and 7 predicted M. galloprovincialis proteins VDI82194.1 - VDI82200.1. Conserved domain searches revealed a similar structure to the transcriptional regulator Msx2-interacting protein. The BLASTp search also returned significant alignments to Msx2-interacting proteins in Mytilus coruscus, Crassostrea virginica, and Haliotis rubra. The existence of the MGE7 gradient highlights the role that environmental variation may play in retarding gene flow among wild M. galloprovincialis populations, and also how the success of collection of young mussels (spat) from one site and their transfer to another site (the farm) may be influenced by a single factor such as minSAL or maxSST on a localized scale.
Collapse
Affiliation(s)
- Joanna S. Hamilton
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Marina Piria
- Department of Fisheries, Apiculture, Faculty of Agriculture, Wildlife Management and Special ZoologyUniversity of ZagrebZagrebCroatia
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Ana Gavrilović
- Department of Fisheries, Apiculture, Faculty of Agriculture, Wildlife Management and Special ZoologyUniversity of ZagrebZagrebCroatia
| | - Mirna Mrkonjić Fuka
- Department of Microbiology, Faculty of AgricultureUniversity of ZagrebZagrebCroatia
| | - Lidija Svečnjak
- Department of Fisheries, Apiculture, Faculty of Agriculture, Wildlife Management and Special ZoologyUniversity of ZagrebZagrebCroatia
| | - Slađana Nikolić
- Institute of Marine BiologyUniversity of MontenegroKotorMontenegro
| | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Faculty of Agriculture and EnvironmentAgricultural University of TiranaTiranaAlbania
- Albanian Center for Environmental Protection and Sustainable DevelopmentTiranaAlbania
| | | |
Collapse
|
11
|
Rahman MF, Billah MM, Kline RJ, Rahman MS. Effects of elevated temperature on 8-OHdG expression in the American oyster ( Crassostrea virginica): Induction of oxidative stress biomarkers, cellular apoptosis, DNA damage and γH2AX signaling pathways. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100079. [PMID: 36589260 PMCID: PMC9798191 DOI: 10.1016/j.fsirep.2022.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Global temperature is increasing due to anthropogenic activities and the effects of elevated temperature on DNA lesions are not well documented in marine organisms. The American oyster (Crassostrea virginica, an edible and commercially important marine mollusk) is an ideal shellfish species to study oxidative DNA lesions during heat stress. In this study, we examined the effects of elevated temperatures (24, 28, and 32 °C for one-week exposure) on heat shock protein-70 (HSP70, a biomarker of heat stress), 8‑hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), γ-histone family member X (γH2AX, a molecular biomarker of DNA damage), caspase-3 (CAS-3, a key enzyme of apoptotic pathway) and Bcl-2-associated X (BAX, an apoptosis regulator) protein and/or mRNA expressions in the gills of American oysters. Immunohistochemical and qRT-PCR results showed that HSP70, 8-OHdG, dsDNA, and γH2AX expressions in gills were significantly increased at high temperatures (28 and 32 °C) compared with control (24°C). In situ TUNEL analysis showed that the apoptotic cells in gill tissues were increased in heat-exposed oysters. Interestingly, the enhanced apoptotic cells were associated with increased CAS-3 and BAX mRNA and/or protein expressions, along with 8-OHdG levels in gills after heat exposure. Moreover, the extrapallial (EP) fluid (i.e., extracellular body fluid) protein concentrations were lower; however, the EP glucose levels were higher in heat-exposed oysters. Taken together, these results suggest that heat shock-driven oxidative stress alters extracellular body fluid conditions and induces cellular apoptosis and DNA damage, which may lead to increased 8-OHdG levels in cells/tissues in oysters.
Collapse
Key Words
- 8-OHdG, 8‑hydroxy-2′-deoxyguanosine
- BAX, bcl-2-associate X
- BSA, bovine serum albumin
- CAS-3, caspase-3
- Caspase 3
- DSBs, double-stranded breaks
- EP, extrapallial
- Extrapallial fluid
- HSP70
- HSP70, heat shock protein 70
- Heat stress
- Marine mollusks
- PBS, Phosphate buffer saline
- SSBs, single-stranded breaks
- TUNEL, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling
- dsDNA breaks
- dsDNA, double-stranded DNA
- qRT-PCR, quantitative real-time polymerase chain reaction
- ssDNA, single-stranded DNA
- γ-H2AX, γ-histone family member X
Collapse
Affiliation(s)
- Md Faizur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Mohammad Maruf Billah
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Richard J. Kline
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA,Corresponding author at: Department of Biology, University of Texas Rio Grande Valley, 1 West University Blvd., Brownsville, Texas 78520, USA.
| |
Collapse
|
12
|
Álvarez-Vergara F, Sanchez-Hernandez JC, Sabat P. Biochemical and osmoregulatory responses of the African clawed frog experimentally exposed to salt and pesticide. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109367. [PMID: 35569782 DOI: 10.1016/j.cbpc.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Salinization and pollution are two main environmental stressors leading deterioration to water quality and degradation of aquatic ecosystems. Amphibians are a highly sensitive group of vertebrates to environmental disturbance of aquatic ecosystems. However, studies on the combined effect of salinization and pollution on the physiology of amphibians are limited. In this study, we measured the standard metabolic rate (SMR) and biochemical parameters of adult males of the invasive frog Xenopus laevis after 45 days of exposure to contrasting salinity environments (400 and 150 mOsm NaCl) with either 1.0 μg/L of the organophosphate pesticide chlorpyrifos (CPF) or pesticide-free medium. Our results revealed a decrease in SMR of animals exposed to the pesticide and in the ability to concentrate the plasma in animals exposed simultaneously to both stressors. The lack of ability to increase plasma concentration in animals exposed to both salt water and CPF, suggests that osmoregulatory response is decreased by pesticide exposure. In addition, we found an increase of liver citrate synthase activity in response to salt stress. Likewise, the liver acetylcholinesterase (AChE) activity decreased by 50% in frogs exposed to salt water and CPF and 40% in those exposed only to CPF, which suggest an additive effect of salinity on inhibition of AChE. Finally, oxidative stress increased as shown by the higher lipid peroxidation and concentration of aqueous peroxides found in the group exposed to salt water and pesticide. Thus, our results revealed that X. laevis physiology is compromised by salinization and pesticide exposure to both environmental stressors join.
Collapse
Affiliation(s)
- Felipe Álvarez-Vergara
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
| | - Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Science (ICAM), University of Castilla-La Mancha, 45071 Toledo, Spain
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
13
|
Liu A, Hou X, Zhang J, Wang W, Dong X, Li J, Zhu X, Xing Q, Huang X, Hu J, Bao Z. Tissue-Specific and Time-Dependent Expressions of PC4s in Bay Scallop ( Argopecten irradians irradians) Reveal Function Allocation in Thermal Response. Genes (Basel) 2022; 13:genes13061057. [PMID: 35741819 PMCID: PMC9223095 DOI: 10.3390/genes13061057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Transcriptional coactivator p15 (PC4) encodes a structurally conserved but functionally diverse protein that plays crucial roles in RNAP-II-mediated transcription, DNA replication and damage repair. Although structures and functions of PC4 have been reported in most vertebrates and some invertebrates, the PC4 genes were less systematically identified and characterized in the bay scallop Argopecten irradians irradians. In this study, five PC4 genes (AiPC4s) were successfully identified in bay scallops via whole-genome scanning through in silico analysis. Protein structure and phylogenetic analyses of AiPC4s were conducted to determine the identities and evolutionary relationships of these genes. Expression levels of AiPC4s were assessed in embryos/larvae at all developmental stages, in healthy adult tissues and in different tissues (mantles, gills, hemocytes and hearts) being processed under 32 °C stress with different time durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d and 10 d). Spatiotemporal expression profiles of AiPC4s suggested the functional roles of the genes in embryos/larvae at all developmental stages and in healthy adult tissues in bay scallop. Expression regulations (up- and down-) of AiPC4s under high-temperature stress displayed both tissue-specific and time-dependent patterns with function allocations, revealing that AiPC4s performed differentiated functions in response to thermal stress. This work provides clues of molecular function allocation of PC4 in scallops in response to thermal stress and helps in illustrating how marine bivalves resist elevated seawater temperature.
Collapse
Affiliation(s)
- Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Wen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xuecheng Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Jianshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-82031969
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
14
|
Kim DH, Park JC, Lee JS. G protein-coupled receptors (GPCRs) in rotifers and cladocerans: Potential applications in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109297. [PMID: 35183764 DOI: 10.1016/j.cbpc.2022.109297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
The G protein-coupled receptor (GPCR) superfamily plays a fundamental role in both sensory functions and the regulation of homeostasis, and is highly conserved across the eukaryote taxa. Its functional diversity is related to a conserved seven-transmembrane core and invariant set of intracellular signaling mechanisms. The interplay between these properties is key to the evolutionary success of GPCR. As this superfamily originated from a common ancestor, GPCR genes have evolved via lineage-specific duplications through the process of adaptation. Here we summarized information on GPCR gene families in rotifers and cladocerans based on their evolutionary position in aquatic invertebrates and their potential application in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Phylogenetic analyses were conducted to examine the evolutionary significance of GPCR gene families and to provide structural insight on their role in aquatic invertebrates. In particular, most GPCR gene families have undergone sporadic evolutionary processes, but some GPCRs are highly conserved across species despite the dynamics of GPCR evolution. Overall, this review provides a better understanding of GPCR evolution in aquatic invertebrates and expand our knowledge of the potential application of these receptors in various fields.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
15
|
Craig CA, Fox DW, Zhai L, Walters LJ. In-situ microplastic egestion efficiency of the eastern oyster Crassostrea virginica. MARINE POLLUTION BULLETIN 2022; 178:113653. [PMID: 35447440 DOI: 10.1016/j.marpolbul.2022.113653] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MP) are a pervasive environmental pollutant that enter coastal water bodies, posing an ingestion risk to marine biota. This study quantified the ability of the Eastern oyster (Crassostrea virginica) to egest MP in-situ in their biodeposits - feces and pseudofeces. Oysters of all sizes were able to egest environmental MP at a mean rate of 1 MP per 1 h through feces, and 1 MP per 2 h through pseudofeces. Smaller C. virginica were more efficient at egesting MP, and efficiency decreased by 0.8% per 1-g increase in tissue weight, with C. virginica of harvestable size being much less efficient. These findings are of relevance to resource managers for C. virginica populations as it further contributes to our understanding of MP accumulation in wild populations and has implications for not just C. virginica but also for their consumers.
Collapse
Affiliation(s)
- Casey A Craig
- Department of Biology, University of Central Florida, 32816, USA.
| | - David W Fox
- Department of Chemistry, University of Central Florida, 32816, USA; NanoScience Technology Center, University of Central Florida, 32816, USA
| | - Lei Zhai
- Department of Chemistry, University of Central Florida, 32816, USA; NanoScience Technology Center, University of Central Florida, 32816, USA
| | - Linda J Walters
- Department of Biology, University of Central Florida, 32816, USA
| |
Collapse
|
16
|
Hornick KM, Plough LV. Genome-wide analysis of natural and restored eastern oyster populations reveals local adaptation and positive impacts of planting frequency and broodstock number. Evol Appl 2022; 15:40-59. [PMID: 35126647 PMCID: PMC8792482 DOI: 10.1111/eva.13322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 01/20/2023] Open
Abstract
The release of captive-bred plants and animals has increased worldwide to augment declining species. However, insufficient attention has been given to understanding how neutral and adaptive genetic variation are partitioned within and among proximal natural populations, and the patterns and drivers of gene flow over small spatial scales, which can be important for restoration success. A seascape genomics approach was used to investigate population structure, local adaptation, and the extent to which environmental gradients influence genetic variation among natural and restored populations of Chesapeake Bay eastern oysters Crassostrea virginica. We also investigated the impact of hatchery practices on neutral genetic diversity of restored reefs and quantified the broader genetic impacts of large-scale hatchery-based bivalve restoration. Restored reefs showed similar levels of diversity as natural reefs, and striking relationships were found between planting frequency and broodstock numbers and genetic diversity metrics (effective population size and relatedness), suggesting that hatchery practices can have a major impact on diversity. Despite long-term restoration activities, haphazard historical translocations, and high dispersal potential of larvae that could homogenize allele frequencies among populations, moderate neutral population genetic structure was uncovered. Moreover, environmental factors, namely salinity, pH, and temperature, play a major role in the distribution of neutral and adaptive genetic variation. For marine invertebrates in heterogeneous seascapes, collecting broodstock from large populations experiencing similar environments to candidate sites may provide the most appropriate sources for restoration and ensure population resilience in the face of rapid environmental change. This is one of a few studies to demonstrate empirically that hatchery practices have a major impact on the retention of genetic diversity. Overall, these results contribute to the growing body of evidence for fine-scale genetic structure and local adaptation in broadcast-spawning marine species and provide novel information for the management of an important fisheries resource.
Collapse
Affiliation(s)
- Katherine M. Hornick
- University of Maryland Center for Environmental ScienceHorn Point LaboratoryCambridgeMarylandUSA
| | - Louis V. Plough
- University of Maryland Center for Environmental ScienceHorn Point LaboratoryCambridgeMarylandUSA
| |
Collapse
|
17
|
Yin X, Wei W, Zhuang X, Li Z, Liu C, Ou M, Dong W, Wang F, Huang L, Liao M, Liu Y, Wang W. Determining the function of LvSmad3 on Litopenaeus vannamei in response to acute low temperature stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104209. [PMID: 34303729 DOI: 10.1016/j.dci.2021.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Smad3 is a key mediator of the canonical TGF-β signaling pathway and plays an important role in TGF-β1-mediated transcriptional regulation. However, the function of Smad3 in crustaceans such as shrimp, is still poorly understood and needs to be further explored. We characterized Litopenaeus vannamei Smad3 (LvSmad3) and its biological functions were investigated in response low temperature stress. Full-length LvSmad3 cDNA was 2341bp and contained an open reading frame (ORF) of 1326 bp that encoded a 441 amino acid long protein, with a predicted molecular mass of 48.35 kDa. Phylogenetic analysis revealed that LvSmad3 has a high degree of similarity with other known species. LvSmad3 mRNA was detected in all the tested tissues and highest transcription occurred mostly in gills. Further research showed that suppressing the expression of Smad3 could reduce ROS production, DNA damage and the apoptosis rate in shrimp hemocyte under low temperature compared with the dsGFP group. Thus, we speculated that Smad3 could promote the apoptosis of hemocytes. We confirmed that Smad3 could inhibit apoptosis in the hepatopancreas by suppressing the expression of pro-apoptotic genes. Taken together, the silencing of Smad3 can reduce ROS production induced by low temperature stress, weaken the damage to hemocytes and the hepatopancreas by inhibit the apoptosis.
Collapse
Affiliation(s)
- Xiaoli Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Zhonghua Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Mufei Ou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
18
|
Griffiths JS, Johnson KM, Kelly MW. Evolutionary Change in the Eastern Oyster, Crassostrea Virginica, Following Low Salinity Exposure. Integr Comp Biol 2021; 61:1730-1740. [PMID: 34448845 DOI: 10.1093/icb/icab185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The presence of standing genetic variation will play a role in determining a population's capacity to adapt to environmentally relevant stressors. In the Gulf of Mexico, extreme climatic events and anthropogenic changes to local hydrology will expose productive oyster breeding grounds to stressful low salinity conditions. We identified genetic variation for performance under low salinity (due to the combined effects of low salinity and genetic load) using a single-generation selection experiment on larvae from two populations of the eastern oyster, Crassostrea virginica. We used pool-sequencing to test for allele frequency differences at 152 salinity-associated genes for larval families pre- and post-low salinity exposure. Our results have implications for how evolutionary change occurs during early life history stages at environmentally relevant salinities. Consistent with observations of high genetic load observed in oysters, we demonstrate evidence for purging of deleterious alleles at the larval stage in C. virginica. In addition, we observe increases in allele frequencies at multiple loci, suggesting that natural selection for low salinity performance at the larval stage can act as a filter for genotypes found in adult populations.
Collapse
Affiliation(s)
- Joanna S Griffiths
- Department of Environmental Toxicology and Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Kevin M Johnson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.,California Sea Grant, University of California San Diego, La Jolla, CA 92093, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
19
|
Sirovy KA, Johnson KM, Casas SM, La Peyre JF, Kelly MW. Lack of genotype-by-environment interaction suggests limited potential for evolutionary changes in plasticity in the eastern oyster, Crassostrea virginica. Mol Ecol 2021; 30:5721-5734. [PMID: 34462983 DOI: 10.1111/mec.16156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Eastern oysters in the northern Gulf of Mexico are facing rapid environmental changes and can respond to this change via plasticity or evolution. Plasticity can act as an immediate buffer against environmental change, but this buffering could impact the organism's ability to evolve in subsequent generations. While plasticity and evolution are not mutually exclusive, the relative contribution and interaction between them remains unclear. In this study, we investigate the roles of plastic and evolved responses to environmental variation and Perkinsus marinus infection in Crassostrea virginica by using a common garden experiment with 80 oysters from six families outplanted at two field sites naturally differing in salinity. We use growth data, P. marinus infection intensities, 3' RNA sequencing (TagSeq) and low-coverage whole-genome sequencing to identify the effect of genotype, environment and genotype-by-environment interaction on the oyster's response to site. As one of first studies to characterize the joint effects of genotype and environment on transcriptomic and morphological profiles in a natural setting, we demonstrate that C. virginica has a highly plastic response to environment and that this response is parallel among genotypes. We also find that genes responding to genotype have distinct and opposing profiles compared to genes responding to environment with regard to expression levels, Ka/Ks ratios and nucleotide diversity. Our findings suggest that C. virginica may be able to buffer the immediate impacts of future environmental changes by altering gene expression and physiology, but the lack of genetic variation in plasticity suggests limited capacity for evolved responses.
Collapse
Affiliation(s)
- Kyle A Sirovy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kevin M Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sandra M Casas
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Jerome F La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
20
|
Johnson KM, Jones HR, Casas SM, La Peyre JF, Kelly MW. Transcriptomic signatures of temperature adaptation in the eastern oyster Crassostrea virginica. J Evol Biol 2021; 34:1212-1224. [PMID: 33837581 DOI: 10.1111/jeb.13789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 02/09/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022]
Abstract
The large geographic distribution of the eastern oyster, Crassostrea virginica, makes it an ideal species to test how populations have adapted to latitudinal gradients in temperature. Despite inhabiting distinct thermal regimes, populations of C. virginica near the species' southern and northern geographic range show no population differences in their physiological response to temperature. In this study, we used comparative transcriptomics to understand how oysters from either end of the species' range maintain enantiostasis across three acclimation temperatures (10, 20, and 30°C). With this approach, we identified genes that were differentially expressed in response to temperature between individuals of C. virginica collected from New Brunswick, Canada and Louisiana, USA. We observed a core set of genes whose expression responded to temperature in both populations, but also an even larger set of genes with expression patterns that were unique to each population. Intriguingly, the genes with population-specific responses to temperature had elevated FST and Ka/Ks ratios compared to the genome-wide average. In contrast, genes showing only a response to temperature were found to only have elevated FST values suggesting that divergent FST may be due to selection on linked regulatory regions rather than positive selection on protein coding regions. Taken together, our results suggest that, despite coarse-scale physiological similarities, natural selection has shaped divergent gene expression responses to temperature in geographically separated populations of this broadly eurythermal marine invertebrate.
Collapse
Affiliation(s)
- Kevin M Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA.,California Sea Grant, University of California San Diego, La Jolla, CA, USA
| | - Hollis R Jones
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Department of Animal Science, University of California, Davis, CA, USA
| | - Sandra M Casas
- School of Animal Sciences, Louisiana State University Ag Center, Baton Rouge, LA, USA
| | - Jerome F La Peyre
- School of Animal Sciences, Louisiana State University Ag Center, Baton Rouge, LA, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
21
|
Identification of Distant Regulatory Elements Using Expression Quantitative Trait Loci Mapping for Heat-Responsive Genes in Oysters. Genes (Basel) 2021; 12:genes12071040. [PMID: 34356056 PMCID: PMC8303352 DOI: 10.3390/genes12071040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Many marine ectotherms, especially those inhabiting highly variable intertidal zones, develop high phenotypic plasticity in response to rapid climate change by modulating gene expression levels. Herein, we examined the regulatory architecture of heat-responsive gene expression plasticity in oysters using expression quantitative trait loci (eQTL) analysis. Using a backcross family of Crassostrea gigas and its sister species Crassostrea angulata under acute stress, 56 distant regulatory regions accounting for 6–26.6% of the gene expression variation were identified for 19 heat-responsive genes. In total, 831 genes and 164 single nucleotide polymorphisms (SNPs) that could potentially regulate expression of the target genes were screened in the eQTL region. The association between three SNPs and the corresponding target genes was verified in an independent family. Specifically, Marker13973 was identified for heat shock protein (HSP) family A member 9 (HspA9). Ribosomal protein L10a (RPL10A) was detected approximately 2 kb downstream of the distant regulatory SNP. Further, Marker14346-48 and Marker14346-85 were in complete linkage disequilibrium and identified for autophagy-related gene 7 (ATG7). Nuclear respiratory factor 1 (NRF1) was detected approximately 3 kb upstream of the two SNPs. These results suggested regulatory relationships between RPL10A and HSPA9 and between NRF1 and ATG7. Our findings indicate that distant regulatory mutations play an important role in the regulation of gene expression plasticity by altering upstream regulatory factors in response to heat stress. The identified eQTLs provide candidate biomarkers for predicting the persistence of oysters under future climate change scenarios.
Collapse
|
22
|
Donelan SC, Breitburg D, Ogburn MB. Context-dependent carryover effects of hypoxia and warming in a coastal ecosystem engineer. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02315. [PMID: 33636022 PMCID: PMC8243920 DOI: 10.1002/eap.2315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 05/20/2023]
Abstract
Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can "carry over" to have long-term effects on organism fitness. Despite the potential importance of these within-generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re-exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel-cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (Crassostrea virginica), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel-cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel-cycling hypoxia and warming on oyster tissue : shell growth, and these effects were context-dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context-dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters.
Collapse
Affiliation(s)
- Sarah C. Donelan
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Denise Breitburg
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Matthew B. Ogburn
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| |
Collapse
|
23
|
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108971. [PMID: 33421636 DOI: 10.1016/j.cbpc.2020.108971] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Exposure to a variety of environmental factors such as temperature, pH, oxygen and salinity may influence the oxidative status in aquatic organisms. The present review article focuses on the modulation of oxidative stress with reference to the generation of reactive oxygen species (ROS) in aquatic animals from different phyla. The focus of the review article is to explore the plausible mechanisms of physiological changes occurring in aquatic animals due to altered salinity in terms of oxidative stress. Apart from the seasonal variations in salinity, global warming and anthropogenic activities have also been found to influence oxidative health status of aquatic organisms. These effects are discussed with an objective to develop precautionary measures to protect the diversity of aquatic species with sustainable conservation. Comparative analyses among different aquatic species suggest that salinity alone or in combination with other abiotic factors are intricately associated with modulation in oxidative stress in a species-specific manner in aquatic animals. Osmoregulation under salinity stress in relation to energy demand and supply are also discussed. The literature survey of >50 years (1960-2020) indicates that oxidative stress status and comparative analysis of redox modulation have evolved from the analysis of various biotic and/or abiotic factors to the study of cellular signalling pathways in these aquatic organisms.
Collapse
Affiliation(s)
- Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India.
| |
Collapse
|
24
|
Johnson KM, Kelly MW. Population epigenetic divergence exceeds genetic divergence in the Eastern oyster Crassostrea virginica in the Northern Gulf of Mexico. Evol Appl 2020; 13:945-959. [PMID: 32431745 PMCID: PMC7232765 DOI: 10.1111/eva.12912] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/23/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Populations may respond to environmental heterogeneity via evolutionary divergence or phenotypic plasticity. While evolutionary divergence occurs through DNA sequence differences among populations, plastic divergence among populations may be generated by changes in the epigenome. Here, we present the results of a genome-wide comparison of DNA methylation patterns and genetic structure among four populations of Eastern oyster (Crassostrea virginica) in the northern Gulf of Mexico. We used a combination of restriction site-associated DNA sequencing (RADseq) and reduced representation bisulfite sequencing (RRBS) to explore population structure, gene-wide averages of F ST, and DNA methylation differences between oysters inhabiting four estuaries with unique salinity profiles. This approach identified significant population structure despite a moderately low F ST (0.02) across the freshwater boundary of the Mississippi river, a finding that may reflect recent efforts to restore oyster stock populations. Divergence between populations in CpG methylation was greater than for divergence in F ST, likely reflecting environmental effects on DNA methylation patterns. Assessment of CpG methylation patterns across all populations identified that only 26% of methylated DNA was intergenic; and, only 17% of all differentially methylated regions (DMRs) were within these same regions. DMRs within gene bodies between sites were associated with genes known to be involved in DNA damage repair, ion transport, and reproductive timing. Finally, when assessing the correlation between genomic variation and DNA methylation between these populations, we observed population-specific DNA methylation profiles that were not directly associated with single nucleotide polymorphisms or broader gene-body mean F ST trends. Our results suggest that C. virginica may use DNA methylation to generate environmentally responsive plastic phenotypes and that there is more divergence in methylation than divergence in allele frequencies.
Collapse
Affiliation(s)
- Kevin M. Johnson
- Department of Biological SciencesLouisiana State UniversityBaton RougeLAUSA
| | - Morgan W. Kelly
- Department of Biological SciencesLouisiana State UniversityBaton RougeLAUSA
| |
Collapse
|
25
|
Hidalgo J, Álvarez-Vergara F, Peña-Villalobos I, Contreras-Ramos C, Sanchez-Hernandez JC, Sabat P. Effect of salinity acclimation on osmoregulation, oxidative stress, and metabolic enzymes in the invasive Xenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:333-340. [PMID: 32306529 DOI: 10.1002/jez.2360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
Aquatic animals often display physiological adjustments to improve their biological performance and hydrosaline balance in saline environments. In addition to energetic costs associated with osmoregulation, oxidative stress, and the activation of the antioxidant system are common cellular responses to salt stress in many species, but the knowledge of osmoregulation-linked oxidative homeostasis in amphibians is scarce. Here we studied the biochemical responses and oxidative responses of Xenopus laevis females exposed for 40 days to two contrasting salinities: hypo-osmotic (150 mOsm·kg-1 ·H2 O NaCl, HYPO group) and hyper-osmotic environments (340 mOsm·kg-1 ·H2 O NaCl, HYPER group). We found an increase of plasma osmolality and plasma urea concentration in the animals incubated in the HYPER treatment. Increases in electrolyte concentration were paralleled with an increase of both citrate synthase and cytochrome c oxidase activities in liver and heart. Interestingly, HYPO group had higher catabolic activity of the skin and liver total antioxidant capacity (TAC), compared with animals from the HYPER group. Moreover, there was an inverse relationship between liver TAC and plasma osmolality; and with the metabolic enzymes from liver. These findings suggest that salinity induces changes in urea metabolism and specific activity of metabolic enzymes, which appears to be tissue-dependent in X. laevis. Contrary to our expectations, we also found a moderate change in the oxidative status as revealed by the increase in TAC activity in the animals acclimated to low salinity medium, but constancy in the lipid peroxidation of membranes.
Collapse
Affiliation(s)
- Jaime Hidalgo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile
| | - Felipe Álvarez-Vergara
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile
| | - Isaac Peña-Villalobos
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile.,Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carolina Contreras-Ramos
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile
| | - Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653, Santiago, Chile.,Departamento de Ecología, Center of Applied Ecology & Sustainability (CAPES-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Nash S, Rahman MS. Short‐term heat stress impairs testicular functions in the American oyster,Crassostrea virginica: Molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol Reprod Dev 2019; 86:1444-1458. [DOI: 10.1002/mrd.23268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/28/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Sarah Nash
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande Valley Brownsville Texas
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande Valley Brownsville Texas
- Department of BiologyUniversity of Texas Rio Grande Valley Brownsville Texas
- Division of Biochemistry and Molecular BiologyUniversity of Texas Rio Grande Valley Brownsville Texas
| |
Collapse
|
27
|
Wang X, Wang Y. Editorial: Molecular Physiology in Molluscs. Front Physiol 2019; 10:1131. [PMID: 31555152 PMCID: PMC6743046 DOI: 10.3389/fphys.2019.01131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/16/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Youji Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
28
|
Nash S, Johnstone J, Rahman MS. Elevated temperature attenuates ovarian functions and induces apoptosis and oxidative stress in the American oyster, Crassostrea virginica: potential mechanisms and signaling pathways. Cell Stress Chaperones 2019; 24:957-967. [PMID: 31363994 PMCID: PMC6717220 DOI: 10.1007/s12192-019-01023-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Global climate change is predicted to intensify thermal stress in marine and coastal organisms, affecting their development, growth, and reproductive functions. In this study, we performed histological observations on ovarian development, immunohistochemical analyses of ovarian heat shock protein-70 (HSP70), nitrotyrosine protein (NTP, an indicator of reactive nitrogen species (RNS)), and dinitrophenyl protein (DNP, an indicator of protein oxidation) expressions, in situ TUNEL assay for cellular apoptosis, biochemical analyses of ovarian caspase-3/7 activity and protein carbonyl (PC, a measure of reactive oxygen species (ROS)) contents, nitrate/nitrite (NOx) levels, and extrapallial fluid (EPF, an important body fluid) pH in the American oyster, Crassostrea virginica. Oysters were exposed to medium (28 °C) and high (32 °C) temperatures under controlled laboratory conditions for 1 week. Oysters exposed to higher temperatures significantly decreased the number and diameter of eggs, and EPF protein concentrations compared with controls (24 °C). In contrast, EPF pH, ovarian HSP70 mRNA levels, and protein expression were increased after heat exposure, consistent with increased ovarian apoptosis. The enhanced apoptosis in ovaries was associated with increased ovarian caspase-3/7 activity, PC contents, NOx levels, and NTP and DNP expressions in heat-exposed oysters. Collectively, these results suggest that higher temperatures drastically increase RNS and ROS levels, increasing incidence of apoptosis and subsequently reducing ovarian functions in oysters.
Collapse
Affiliation(s)
- Sarah Nash
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | - Jackson Johnstone
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | - Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA.
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA.
| |
Collapse
|