1
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
2
|
Edwards MGP, Furuholmen-Jenssen T, Søegaard EGI, Thapa SB, Andersen JR. Exploring diet-induced ketosis with exogenous ketone supplementation as a potential intervention in post-traumatic stress disorder: a feasibility study. Front Nutr 2024; 11:1406366. [PMID: 39588043 PMCID: PMC11586679 DOI: 10.3389/fnut.2024.1406366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 11/27/2024] Open
Abstract
Background Post-Traumatic Stress Disorder (PTSD) is a severe and pervasive mental disorder, and patients experience numerous distressing symptoms and impairments that significantly impact their lives. In addition to being a mental disorder, PTSD is strongly associated with a wide range of metabolic abnormalities that affect the entire body. Existing treatment options of psychotherapy and medications are often ineffective. Exploring other potential treatments is necessitated. The ketogenic diet has shown potential as a metabolic therapy in certain neurological and mental disorders and is a promising intervention in the treatment of PTSD. Aim This study aimed to examine if a 4-week ketogenic diet intervention supplemented with exogenous ketones (KD-KS) was feasible in adult patients with PTSD, to what extent it was possible to recruit patients, attain and maintain ketosis (plasma concentration of β-hydroxybutyrate (BHB) ≥ 0.5 mmol/L), the occurrence of serious adverse reactions and adverse reactions to KD-KS, and acceptance of treatment. Our exploratory aims were changes in PTSD symptoms and health-related quality of life (QoL) from baseline to 4 weeks. Methods Patients 18 ≤ 65 years old, diagnosed with PTSD, and receiving outpatient treatment for PTSD at Southern Oslo District Psychiatric Centre (DPC), Oslo University Hospital, Oslo, Norway, were included. The intervention consisted of a ketogenic diet supplemented with β-hydroxybutyrate salt to obtain ketosis. PTSD symptoms were measured with the PTSD Checklist for DSM-5 (PCL-5) and QoL was measured with the RAND 36-Item Health Survey 1.0. Results During a 21-week inclusion period, three of four eligible patients (75% [95% CI: 30 to 95%]) were included. Two patients (67% [95% CI: 21 to 94%]) completed the 4-week intervention and one patient (33% [95% CI: 6 to 79%]) completed 2 weeks of intervention before discontinuing. Ketosis was achieved on day 1 in one patient, and on day 2 in two patients, and was maintained in 87% of the intervention. There were no serious adverse reactions. Adverse reactions were reported in a total of 70% of intervention days, the most frequent being headache followed by fatigue. The participant-perceived degree of adverse reactions was low to moderate. The treatment was accepted by patients on all intervention days. PCL-5 decreased by 20 points (70 to 50) in patient 1 and by 10 points (50 to 40) in patient 2, from baseline to 4 weeks, which is a reliable and clinically meaningful improvement. QoL improved in six of eight RAND-36 subscales in patient 1 and three of eight in patient 2. Patient 3 did not complete assessments after week 2. Conclusion To the best of our knowledge, this feasibility study is the first study examining a ketogenic diet intervention in patients with PTSD. Three of four predefined feasibility criteria were achieved. Ketosis was attained fast and maintained, patients were compliant and there were clinically meaningful improvements in PTSD symptoms and QoL. Despite the small sample size, the knowledge obtained in this study is important for the planning of future studies with ketogenic diet interventions in this patient group. It is a first step for potential dietary and metabolic therapies in PTSD. Further feasibility and pilot studies with larger sample sizes are needed to determine feasibility and safety before planning future randomised controlled trials investigating an effect. Clinical trial registration https://ClinicalTrials.gov, identifier NCT05415982.
Collapse
Affiliation(s)
- Maria G. P. Edwards
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Furuholmen-Jenssen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik Ganesh Iyer Søegaard
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Suraj Bahadur Thapa
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jens R. Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Sarnyai Z, Ben-Shachar D. Schizophrenia, a disease of impaired dynamic metabolic flexibility: A new mechanistic framework. Psychiatry Res 2024; 342:116220. [PMID: 39369460 DOI: 10.1016/j.psychres.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Schizophrenia is a chronic, neurodevelopmental disorder with unknown aetiology and pathophysiology that emphasises the role of neurotransmitter imbalance and abnormalities in synaptic plasticity. The currently used pharmacological approach, the antipsychotic drugs, which have limited efficacy and an array of side-effects, have been developed based on the neurotransmitter hypothesis. Recent research has uncovered systemic and brain abnormalities in glucose and energy metabolism, focusing on altered glycolysis and mitochondrial oxidative phosphorylation. These findings call for a re-conceptualisation of schizophrenia pathophysiology as a progressing bioenergetics failure. In this review, we provide an overview of the fundamentals of brain bioenergetics and the changes identified in schizophrenia. We then propose a new explanatory framework positing that schizophrenia is a disease of impaired dynamic metabolic flexibility, which also reconciles findings of abnormal glucose and energy metabolism in the periphery and in the brain along the course of the disease. This evidence-based framework and testable hypothesis has the potential to transform the way we conceptualise this debilitating condition and to develop novel treatment approaches.
Collapse
Affiliation(s)
- Zoltán Sarnyai
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel; Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel.
| |
Collapse
|
4
|
Laurent N, Bellamy EL, Hristova D, Houston A. Ketogenic diets in clinical psychology: examining the evidence and implications for practice. Front Psychol 2024; 15:1468894. [PMID: 39391844 PMCID: PMC11464436 DOI: 10.3389/fpsyg.2024.1468894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The application of ketogenic dietary interventions to mental health treatments is increasingly acknowledged within medical and psychiatric fields, yet its exploration in clinical psychology remains limited. This article discusses the potential implications of ketogenic diets, traditionally utilized for neurological disorders, within broader mental health practices. Methods This article presents a perspective based on existing ketogenic diet research on historical use, biological mechanisms, and therapeutic benefits. It examines the potential application of these diets in mental health treatment and their relevance to clinical psychology research and practice. Results The review informs psychologists of the therapeutic benefits of ketogenic diets and introduces to the psychology literature the underlying biological mechanisms involved, such as modulation of neurotransmitters, reduction of inflammation, and stabilization of brain energy metabolism, demonstrating their potential relevance to biopsychosocial practice in clinical psychology. Conclusion By considering metabolic therapies, clinical psychologists can broaden their scope of biopsychosocial clinical psychology practice. This integration provides a care model that incorporates knowledge of the ketogenic diet as a treatment option in psychiatric care. The article emphasizes the need for further research and training for clinical psychologists to support the effective implementation of this metabolic psychiatry intervention.
Collapse
|
5
|
Longhitano C, Finlay S, Peachey I, Swift JL, Fayet-Moore F, Bartle T, Vos G, Rudd D, Shareef O, Gordon S, Azghadi MR, Campbell I, Sethi S, Palmer C, Sarnyai Z. The effects of ketogenic metabolic therapy on mental health and metabolic outcomes in schizophrenia and bipolar disorder: a randomized controlled clinical trial protocol. Front Nutr 2024; 11:1444483. [PMID: 39234289 PMCID: PMC11371693 DOI: 10.3389/fnut.2024.1444483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Background Schizophrenia, schizoaffective disorder, and bipolar affective disorder are debilitating psychiatric conditions characterized by a chronic pattern of emotional, behavioral, and cognitive disturbances. Shared psychopathology includes the pre-eminence of altered affective states, disorders of thoughts, and behavioral control. Additionally, those conditions share epidemiological traits, including significant cardiovascular, metabolic, infectious, and respiratory co-morbidities, resulting in reduced life expectancy of up to 25 years. Nutritional ketosis has been successfully used to treat a range of neurological disorders and preclinical data have convincingly shown potential for its use in animal models of psychotic disorders. More recent data from open clinical trials have pointed toward a dramatic reduction in psychotic, affective, and metabolic symptoms in both schizophrenia and bipolar affective disorder. Objectives to investigate the effects of nutritional ketosis via a modified ketogenic diet (MKD) over 14 weeks in stable community patients with bipolar disorder, schizoaffective disorder, or schizophrenia. Design A randomized placebo-controlled clinical trial of 100 non-hospitalized adult participants with a diagnosis of bipolar disorder, schizoaffective disorder, or schizophrenia who are capable of consenting and willing to change their diets. Intervention Dietitian-led and medically supervised ketogenic diet compared to a diet following the Australian Guide to Healthy Eating for 14 weeks. Outcomes The primary outcomes include psychiatric and cognitive measures, reported as symptom improvement and functional changes in the Positive and Negative Symptoms Scale (PANSS), Young Mania Rating Scale (YMS), Beck Depression Inventory (BDI), WHO Disability Schedule, Affect Lability Scale and the Cambridge Cognitive Battery. The secondary metabolic outcomes include changes in body weight, blood pressure, liver and kidney function tests, lipid profiles, and markers of insulin resistance. Ketone and glucose levels will be used to study the correlation between primary and secondary outcomes. Optional hair cortisol analysis will assess long-term stress and variations in fecal microbiome composition. Autonomic nervous system activity will be measured via wearable devices (OURA ring and EMBRACE wristband) in the form of skin conductance, oximetry, continuous pulse monitoring, respiratory rate, movement tracking, and sleep quality. Based on the encouraging results from established preclinical research, clinical data from other neurodevelopment disorders, and open trials in bipolar disorder and schizophrenia, we predict that the ketogenic metabolic therapy will be well tolerated and result in improved psychiatric and metabolic outcomes as well as global measures of social and community functioning. We additionally predict that a correlation may exist between the level of ketosis achieved and the metabolic, cognitive, and psychiatric outcomes in the intervention group.
Collapse
Affiliation(s)
- Calogero Longhitano
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Sabine Finlay
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Isabella Peachey
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Jaymee-Leigh Swift
- Mater Hospital, Aurora Healthcare and James Cook University, Townsville, QLD, Australia
| | - Flavia Fayet-Moore
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- FoodiQ Global, Sydney, NSW, Australia
| | - Toby Bartle
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Gideon Vos
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- Electrical and Electronics Engineering, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Donna Rudd
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Omer Shareef
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| | - Shaileigh Gordon
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| | - Mostafa Rahimi Azghadi
- Electrical and Electronics Engineering, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Iain Campbell
- Centre for Clinical Brain Sciences, Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Zoltan Sarnyai
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
6
|
Garner S, Barkus E, Kraeuter AK. Positive and negative schizotypy personality traits are lower in individuals on ketogenic diet in a non-clinical sample. Schizophr Res 2024; 270:423-432. [PMID: 38991418 DOI: 10.1016/j.schres.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Schizotypal personality comprises traits such as odd beliefs, perceptual abnormalities, and social difficulties; these traits are distributed throughout the general population. While not meeting the clinical threshold for schizophrenia or schizotypal personality disorder, schizotypal personality traits still provide insights for understanding early clinical risk factors. Ketogenic diet reportedly reduces psychotic symptoms in preclinical and clinical studies. Therefore, we investigated whether ketogenic diet is associated with lower schizotypal traits in the general population. Participants following a ketogenic or other diet were recruited using opportunity sampling. Individuals completed a survey investigating general demographic, socioeconomic, health, diet and lifestyle questions, followed by the Schizotypal Personality Questionnaire - Brief Revised version (SPQ-BR). We found that individuals following a ketogenic diet (n = 118) had lower ideas of reference, magical thinking, suspiciousness, unusual perceptions, constricted affect, social anxiety scores, cognitive (positive) perceptual scores, interpersonal (negative) scores and total SPQ-BR compared to individuals on the other diets (n = 139). Magical thinking, constricted affect, social anxiety, cognitive perceptual, interpersonal scores and total SPQ-BR scores remained significant when we controlled for body mass index (BMI) and age. Disorganised features were not influenced by ketogenic diet. The longer individuals adhered to a ketogenic diet the lower their positive and negative schizotypy traits. These findings highlight that ketogenic diet is associated with lower non-clinical schizotypal personality traits. Our results suggest that ketogenic diet might have potential prophylactic properties for individuals at-risk for psychosis.
Collapse
Affiliation(s)
- Sarah Garner
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - Emma Barkus
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - Ann-Katrin Kraeuter
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle upon Tyne, UK; Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle upon Tyne, UK; NUTRAN, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|
7
|
Balestra F, Negro R, De Luca M, Depalo N, Rizzi F, Panzetta G, Arrè V, Mastrogiacomo R, Coletta S, Stabile D, Pesole PL, Cerabino N, Di Chito M, Shahini E, Giannelli G, De Pergola G, Scavo MP. Extracellular Vesicles Modulate Liver Cells Viability and Reactive Oxygen Species in Patients Following a Very Low-Calorie Ketogenic Diet. Nutrients 2024; 16:2386. [PMID: 39125267 PMCID: PMC11314450 DOI: 10.3390/nu16152386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The VLCKD is a diet recognized to promote rapid fat mobilization and reduce inflammation, hepatic steatosis, and liver fibrosis. Extracellular vesicles (EVs) mediate cell-to-cell communication. The aim of the study is to investigate the role of circulating EVs in cell proliferation, ketone bodies, and ROS production in patients on an 8-week VLCKD regimen. Participants were classified as responders (R) or non-responders (NR) to VLCKD treatment based on their fibroscan results. In vitro experiments with the hepatic cell lines HEPA-RG (normal hepatocytes) and LX-2 (stellate cells) were conducted to investigate the effects of circulating EVs on cell viability, ROS production, and ketone body presence. The findings reveal a notable reduction in cell viability in both cell lines when treated with exosomes (EXOs). In contrast, treatment with microvesicles (MVs) did not appear to affect cell viability, which remained unchanged. Additionally, the levels of ketone bodies measured in urine were not consistently correlated with the reduction of fibrosis in responders (R). Similarly, an increase in ketone bodies was observed in non-responders (NR), which was also not aligned with the expected reduction in fibrosis. This inconsistency stands in stark contrast to the levels of Reactive Oxygen Species (ROS), which exhibited a clear and consistent pattern in accordance with the dietary intervention. Finally, in this preliminary study, ROS has been identified as a potential diet adherence marker for VLCKD patients; the ROS levels reliably follow the progression of the fibrosis response, providing a more accurate reflection of the therapeutic effects.
Collapse
Affiliation(s)
- Francesco Balestra
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (F.B.); (M.D.L.); (G.P.)
| | - Roberto Negro
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (R.N.); (V.A.)
| | - Maria De Luca
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (F.B.); (M.D.L.); (G.P.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (F.R.); (R.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, Via Orabona 4, 70125 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (F.R.); (R.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, Via Orabona 4, 70125 Bari, Italy
| | - Giorgia Panzetta
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (F.B.); (M.D.L.); (G.P.)
| | - Valentina Arrè
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (R.N.); (V.A.)
| | - Rita Mastrogiacomo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (F.R.); (R.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, Via Orabona 4, 70125 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Sergio Coletta
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (S.C.); (D.S.); (P.L.P.)
| | - Dolores Stabile
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (S.C.); (D.S.); (P.L.P.)
| | - Pasqua Letizia Pesole
- Department of Pathology, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (S.C.); (D.S.); (P.L.P.)
| | - Nicole Cerabino
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, Via Turi 27, 70013 Castellana Grotte, Italy; (N.C.); (M.D.C.); (G.D.P.)
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, Via Turi 27, 70013 Castellana Grotte, Italy; (N.C.); (M.D.C.); (G.D.P.)
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy;
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy;
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “S. de Bellis”, Via Turi 27, 70013 Castellana Grotte, Italy; (N.C.); (M.D.C.); (G.D.P.)
| | - Maria Principia Scavo
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy; (F.B.); (M.D.L.); (G.P.)
| |
Collapse
|
8
|
Valeri J, Gisabella B, Pantazopoulos H. Dynamic regulation of the extracellular matrix in reward memory processes: a question of time. Front Cell Neurosci 2023; 17:1208974. [PMID: 37396928 PMCID: PMC10311570 DOI: 10.3389/fncel.2023.1208974] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Substance use disorders are a global health problem with increasing prevalence resulting in significant socioeconomic burden and increased mortality. Converging lines of evidence point to a critical role of brain extracellular matrix (ECM) molecules in the pathophysiology of substance use disorders. An increasing number of preclinical studies highlight the ECM as a promising target for development of novel cessation pharmacotherapies. The brain ECM is dynamically regulated during learning and memory processes, thus the time course of ECM alterations in substance use disorders is a critical factor that may impact interpretation of the current studies and development of pharmacological therapies. This review highlights the evidence for the involvement of ECM molecules in reward learning, including drug reward and natural reward such as food, as well as evidence regarding the pathophysiological state of the brain's ECM in substance use disorders and metabolic disorders. We focus on the information regarding time-course and substance specific changes in ECM molecules and how this information can be leveraged for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
9
|
Zambrano AK, Cadena-Ullauri S, Guevara-Ramírez P, Frias-Toral E, Ruiz-Pozo VA, Paz-Cruz E, Tamayo-Trujillo R, Chapela S, Montalván M, Sarno G, Guerra CV, Simancas-Racines D. The Impact of a Very-Low-Calorie Ketogenic Diet in the Gut Microbiota Composition in Obesity. Nutrients 2023; 15:2728. [PMID: 37375632 DOI: 10.3390/nu15122728] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The very-low-calorie KD (VLCKD) is characterized by a caloric intake of under 800 kcal/day divided into less than 50 g/day of carbohydrate (13%) and 1 to 1.5 g of protein/kg of body weight (44%) and 43% of fat. This low carbohydrate intake changes the energy source from glucose to ketone bodies. Moreover, clinical trials have consistently shown a beneficial effect of VLCKD in several diseases, such as heart failure, schizophrenia, multiple sclerosis, Parkinson's, and obesity, among others. The gut microbiota has been associated with the metabolic conditions of a person and is regulated by diet interactions; furthermore, it has been shown that the microbiota has a role in body weight homeostasis by regulating metabolism, appetite, and energy. Currently, there is increasing evidence of an association between gut microbiota dysbiosis and the pathophysiology of obesity. In addition, the molecular pathways, the role of metabolites, and how microbiota modulation could be beneficial remain unclear, and more research is needed. The objective of the present article is to contribute with an overview of the impact that VLCKD has on the intestinal microbiota composition of individuals with obesity through a literature review describing the latest research regarding the topic and highlighting which bacteria phyla are associated with obesity and VLCKD.
Collapse
Affiliation(s)
- Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Hospital Británico de Buenos Aires, Equipo de Soporte Nutricional, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Gerardo Sarno
- "San Giovanni di Dio e Ruggi D'Aragona" University Hospital, Scuola Medica Salernitana, 84131 Salerno, Italy
| | - Claudia V Guerra
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
10
|
Mentzelou M, Dakanalis A, Vasios GK, Gialeli M, Papadopoulou SK, Giaginis C. The Relationship of Ketogenic Diet with Neurodegenerative and Psychiatric Diseases: A Scoping Review from Basic Research to Clinical Practice. Nutrients 2023; 15:nu15102270. [PMID: 37242153 DOI: 10.3390/nu15102270] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The ketogenic diet (KD) has become widespread for the therapy of epileptic pathology in childhood and adulthood. In the last few decades, the current re-emergence of its popularity has focused on the treatment of obesity and diabetes mellitus. KD also exerts anti-inflammatory and neuroprotective properties, which could be utilized for the therapy of neurodegenerative and psychiatric disorders. PURPOSE This is a thorough, scoping review that aims to summarize and scrutinize the currently available basic research performed in in vitro and in vivo settings, as well as the clinical evidence of the potential beneficial effects of KD against neurodegenerative and psychiatric diseases. This review was conducted to systematically map the research performed in this area as well as identify gaps in knowledge. METHODS We thoroughly explored the most accurate scientific web databases, e.g., PubMed, Scopus, Web of Science, and Google Scholar, to obtain the most recent in vitro and in vivo data from animal studies as well as clinical human surveys from the last twenty years, applying effective and characteristic keywords. RESULTS Basic research has revealed multiple molecular mechanisms through which KD can exert neuroprotective effects, such as neuroinflammation inhibition, decreased reactive oxygen species (ROS) production, decreased amyloid plaque deposition and microglial activation, protection in dopaminergic neurons, tau hyper-phosphorylation suppression, stimulating mitochondrial biogenesis, enhancing gut microbial diversity, restoration of histone acetylation, and neuron repair promotion. On the other hand, clinical evidence remains scarce. Most existing clinical studies are modest, frequently uncontrolled, and merely assess the short-term impacts of KD. Moreover, several clinical studies had large dropout rates and a considerable lack of compliance assessment, as well as an increased level of heterogeneity in the study design and methodology. CONCLUSIONS KD can exert substantial neuroprotective effects via multiple molecular mechanisms in various neurodegenerative and psychiatric pathological states. Large, long-term, randomized, double-blind, controlled clinical trials with a prospective design are strongly recommended to delineate whether KD may attenuate or even treat neurodegenerative and psychiatric disease development, progression, and symptomatology.
Collapse
Affiliation(s)
- Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece
| | - Antonios Dakanalis
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece
| | - Maria Gialeli
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece
| | - Sousana K Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece
| |
Collapse
|
11
|
Dietch DM, Kerr-Gaffney J, Hockey M, Marx W, Ruusunen A, Young AH, Berk M, Mondelli V. Efficacy of low carbohydrate and ketogenic diets in treating mood and anxiety disorders: systematic review and implications for clinical practice. BJPsych Open 2023; 9:e70. [PMID: 37066662 PMCID: PMC10134254 DOI: 10.1192/bjo.2023.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND There is mounting interest in the potential efficacy of low carbohydrate and very low carbohydrate ketogenic diets in various neurological and psychiatric disorders. AIMS To conduct a systematic review and narrative synthesis of low carbohydrate and ketogenic diets (LC/KD) in adults with mood and anxiety disorders. METHOD MEDLINE, Embase, PsycINFO and Cochrane databases were systematically searched for articles from inception to 6 September 2022. Studies that included adults with any mood or anxiety disorder treated with a low carbohydrate or ketogenic intervention, reporting effects on mood or anxiety symptoms were eligible for inclusion. PROSPERO registration CRD42019116367. RESULTS The search yielded 1377 articles, of which 48 were assessed for full-text eligibility. Twelve heterogeneous studies (stated as ketogenic interventions, albeit with incomplete carbohydrate reporting and measurements of ketosis; diet duration: 2 weeks to 3 years; n = 389; age range 19 to 75 years) were included in the final analysis. This included nine case reports, two cohort studies and one observational study. Data quality was variable, with no high-quality evidence identified. Efficacy, adverse effects and discontinuation rates were not systematically reported. There was some evidence for efficacy of ketogenic diets in those with bipolar disorder, schizoaffective disorder and possibly unipolar depression/anxiety. Relapse after discontinuation of the diet was reported in some individuals. CONCLUSIONS Although there is no high-quality evidence of LC/KD efficacy in mood or anxiety disorders, several uncontrolled studies suggest possible beneficial effects. Robust studies are now needed to demonstrate efficacy, to identify clinical groups who may benefit and whether a ketogenic diet (beyond low carbohydrate) is required and to characterise adverse effects and the risk of relapse after diet discontinuation.
Collapse
Affiliation(s)
- Daniel M. Dietch
- Lonsdale Medical Centre, London, UK; and Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jess Kerr-Gaffney
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Meghan Hockey
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Anu Ruusunen
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland; and Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Allan H. Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Michael Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; and National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
12
|
Finlay S, Rudd D, McDermott B, Sarnyai Z. Allostatic load and systemic comorbidities in psychiatric disorders. Psychoneuroendocrinology 2022; 140:105726. [PMID: 35339811 DOI: 10.1016/j.psyneuen.2022.105726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022]
Abstract
Psychiatric disorders are complex, disabling, and chronic conditions that are often accompanied by one or more systemic medical comorbidities. In this narrative review, we provide an overview of the allostatic load concept, which represents a multi-system dysregulation in response to chronic stress and link it to systemic comorbidities associated with psychiatric disorders. We synthesized published literature gathered using Medline (Ovid), Scopus, and PsychInfo and identified a high frequency of systemic comorbidities for both mood and psychotic disorders. The identified cardiovascular, metabolic, and immune comorbidities may represent the result of chronic wear and tear caused by a complex interaction between chronic psychosocial stress, health risk behaviors, pharmacological stressors, and the biological systems involved in the development of allostatic load. These findings support the notion that psychiatric disorders should be re-conceptualized as systemic disorders, affecting the brain and systemic biological pathways in an interconnected fashion to result in systemic comorbidities. We suggest that the multi-systemic and multi-dimensional approach that drives the allostatic load concept should be considered for understanding comorbidities in vulnerable psychiatric patients.
Collapse
Affiliation(s)
- Sabine Finlay
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, Queensland, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia; College of Public Health, Medical & Veterinary Sciences, James Cook University, Queensland, Australia
| | - Donna Rudd
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, Queensland, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia; College of Public Health, Medical & Veterinary Sciences, James Cook University, Queensland, Australia
| | - Brett McDermott
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, Queensland, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia; College of Public Health, Medical & Veterinary Sciences, James Cook University, Queensland, Australia.
| |
Collapse
|
13
|
Danan A, Westman EC, Saslow LR, Ede G. The Ketogenic Diet for Refractory Mental Illness: A Retrospective Analysis of 31 Inpatients. Front Psychiatry 2022; 13:951376. [PMID: 35873236 PMCID: PMC9299263 DOI: 10.3389/fpsyt.2022.951376] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND HYPOTHESIS The robust evidence base supporting the therapeutic benefit of ketogenic diets in epilepsy and other neurological conditions suggests this same metabolic approach may also benefit psychiatric conditions. STUDY DESIGN In this retrospective analysis of clinical care, 31 adults with severe, persistent mental illness (major depressive disorder, bipolar disorder, and schizoaffective disorder) whose symptoms were poorly controlled despite intensive psychiatric management were admitted to a psychiatric hospital and placed on a ketogenic diet restricted to a maximum of 20 grams of carbohydrate per day as an adjunct to conventional inpatient care. The duration of the intervention ranged from 6 to 248 days. STUDY RESULTS Three patients were unable to adhere to the diet for >14 days and were excluded from the final analysis. Among included participants, means and standard deviations (SDs) improved for the Hamilton Depression Rating Scale scores from 25.4 (6.3) to 7.7 (4.2), P < 0.001 and the Montgomery-Åsberg Depression Rating Scale from 29.6 (7.8) to 10.1 (6.5), P < 0.001. Among the 10 patients with schizoaffective illness, mean (SD) of the Positive and Negative Syndrome Scale (PANSS) scores improved from 91.4 (15.3) to 49.3 (6.9), P < 0.001. Significant improvements were also observed in metabolic health measures including weight, blood pressure, blood glucose, and triglycerides. CONCLUSIONS The administration of a ketogenic diet in this semi-controlled setting to patients with treatment-refractory mental illness was feasible, well-tolerated, and associated with significant and substantial improvements in depression and psychosis symptoms and multiple markers of metabolic health.
Collapse
Affiliation(s)
- Albert Danan
- Rangueil Faculty of Medicine, University of Toulouse, Toulouse, France
| | - Eric C Westman
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Laura R Saslow
- Department of Health Behavior and Biological Sciences, School of Nursing, University of Michigan, Ann Arbor, MI, United States
| | - Georgia Ede
- Independent Researcher, Northampton, MA, United States
| |
Collapse
|
14
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
15
|
Jones GH, Vecera CM, Pinjari OF, Machado-Vieira R. Inflammatory signaling mechanisms in bipolar disorder. J Biomed Sci 2021; 28:45. [PMID: 34112182 PMCID: PMC8194019 DOI: 10.1186/s12929-021-00742-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with a high individual and societal burden. While not all patients display overt markers of elevated inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease, and likely explains the elevated rates of comorbid inflammatory illnesses seen in this population. While individual systems have been intensely studied and targeted, a relative paucity of attention has been given to the interconnecting role of inflammatory signals therein. This review presents an updated overview of some of the most prominent pathophysiologic mechanisms in bipolar disorder, from mitochondrial, endoplasmic reticular, and calcium homeostasis, to purinergic, kynurenic, and hormonal/neurotransmitter signaling, showing inflammation to act as a powerful nexus between these systems. Several areas with a high degree of mechanistic convergence within this paradigm are highlighted to present promising future targets for therapeutic development and screening.
Collapse
Affiliation(s)
- Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA.
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| | - Omar F Pinjari
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| |
Collapse
|
16
|
Mechanisms of insulin resistance, mitochondrial dysfunction and the action of the ketogenic diet in bipolar disorder. Focus on the PI3K/AKT/HIF1-a pathway. Med Hypotheses 2020; 145:110299. [PMID: 33091780 DOI: 10.1016/j.mehy.2020.110299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/19/2020] [Indexed: 12/15/2022]
Abstract
Over the past decade evidence from multiple research trajectories have converged to provide evidence that impaired glucose metabolism and mitochondrial dysfunction in the brain are the critical issues laying at the root of Bipolar Disorder (BD). These developments have been paralleled by increasing recognition of the systemic metabolic dysfunction accompanying mood disorders. Significant insulin resistance (IR) occurs in BD patients and this has been demonstrated to be related to illness severity independent of medication status. Preliminary evidence for a therapeutic effect of a Ketogenic Diet (KD) in BD and other neuropsychiatric conditions has recently refocused interest in the role of IR in BD pathogenesis. In this paper we review evidence of hyperinsulinemia in BD as the primary cause of mitochondrial dysfunction mediated by impairment of the PI3K/AKT/HIF1-a insulin signaling pathway. This cascade of dysfunction directly suppresses the Pyruvate Dehydrogenase Complex through HIF1-a mediated activation of Pyruvate dehydrogenase kinase 1 (PDK1) leading to the Warburg effect and mitochondrial dysfunction. We review evidence that the KD acts directly on each of these mechanisms and propose that a trial of KD in BD with a mechanistic component is needed to further investigate the role of IR in BD.
Collapse
|