1
|
Siemsen BM, Franco D, Lobo MK. Corticostriatal contributions to dysregulated motivated behaviors in stress, depression, and substance use disorders. Neurosci Res 2025; 211:37-48. [PMID: 36565858 DOI: 10.1016/j.neures.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Coordinated network activity, particularly in circuits arising from the prefrontal cortex innervating the ventral striatum, is crucial for normal processing of reward-related information which is perturbed in several psychiatric disorders characterized by dysregulated reward-related behaviors. Stress-induced depression and substance use disorders (SUDs) both share this common underlying pathology, manifested as deficits in perceived reward in depression, and increased attribution of positive valence to drug-predictive stimuli and dysfunctional cognition in SUDs. Here we review preclinical and clinical data that support dysregulation of motivated and reward-related behaviors as a core phenotype shared between these two disorders. We posit that altered processing of reward-related stimuli arises from dysregulated control of subcortical circuits by upstream regions implicated in executive control. Although multiple circuits are directly involved in reward processing, here we focus specifically on the role of corticostriatal circuit dysregulation. Moreover, we highlight the growing body of evidence indicating that such abnormalities may be due to heightened neuroimmune signaling by microglia, and that targeting the neuroimmune system may be a viable approach to treating this shared symptom.
Collapse
Affiliation(s)
| | - Daniela Franco
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Ricci V, De Berardis D, Shoib S, Martinotti G, Maina G. Psychotic-Like Experiences in Young Recreational Users of Ketamine: A Case Study. J Psychoactive Drugs 2025:1-10. [PMID: 39780457 DOI: 10.1080/02791072.2025.2449909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
This study explores the psychotic-like experiences (PLEs) associated with recreational ketamine use among young adults. Ketamine, initially introduced as an anesthetic, is now widely used recreationally for its dissociative effects, raising concerns about its impact on mental health. Ten participants aged 18-24, who used ketamine recreationally multiple times a week, were assessed using the Community Assessment of Psychic Experiences (CAPE-42). Results showed a significant positive correlation between the frequency of ketamine use and PLEs, with no significant impact from other substances like THC, MDMA, and alcohol. These findings confirm ketamine's potential to induce psychotic-like symptoms by antagonizing NMDA receptors, similar to schizophrenia. The study underscores the need for preventive measures and targeted interventions to address the mental health risks of frequent ketamine use, particularly among young adults. However, limitations such as the small sample size and reliance on self-reported data suggest that further research is needed to establish causality and examine long-term effects. Overall, this study highlights the significant association between recreational ketamine use and increased PLEs, emphasizing the importance of early detection and intervention strategies.
Collapse
Affiliation(s)
- Valerio Ricci
- Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, Turin, Orbassano, Italy
| | - Domenico De Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Teramo, Italy
| | - Sheikh Shoib
- Department of Psychiatry, DH Pulwama, Kashmir, India
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio Chieti-Pescara, Chieti, Italy
| | - Giuseppe Maina
- Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, Turin, Orbassano, Italy
- Department of Neurosciences "Rita Levi Montalcini",University of Turin,Turin,Italy
| |
Collapse
|
3
|
Teranishi M, Ito M, Huang Z, Nishiyama Y, Masuda A, Mino H, Tachibana M, Inada T, Ohno K. Extremely Low-Frequency Electromagnetic Field (ELF-EMF) Increases Mitochondrial Electron Transport Chain Activities and Ameliorates Depressive Behaviors in Mice. Int J Mol Sci 2024; 25:11315. [PMID: 39457098 PMCID: PMC11508854 DOI: 10.3390/ijms252011315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Compromised mitochondrial electron transport chain (ETC) activities are associated with depression in humans and rodents. However, the effects of the enhancement of mitochondrial ETC activities on depression remain elusive. We recently reported that an extremely low-frequency electromagnetic field (ELF-EMF) of as low as 10 μT induced hormetic activation of mitochondrial ETC complexes in human/mouse cultured cells and mouse livers. Chronic social defeat stress (CSDS) for 10 consecutive days caused behavioral defects mimicking depression in mice, and using an ELF-EMF for two to six weeks ameliorated them. CSDS variably decreased the mitochondrial ETC proteins in the prefrontal cortex (PFC) in 10 days, which were increased by an ELF-EMF in six weeks. CSDS had no effect on the mitochondrial oxygen consumption rate in the PFC in 10 days, but using an ELF-EMF for six weeks enhanced it. CSDS inactivated SOD2 by enhancing its acetylation and increased lipid peroxidation in the PFC. In contrast, the ELF-EMF activated the Sirt3-FoxO3a-SOD2 pathway and suppressed lipid peroxidation. Furthermore, CSDS increased markers for mitophagy, which was suppressed by the ELF-EMF in six weeks. The ELF-EMF exerted beneficial hormetic effects on mitochondrial energy production, mitochondrial antioxidation, and mitochondrial dynamics in a mouse model of depression. We envisage that an ELF-EMF is a promising therapeutic option for depression.
Collapse
Affiliation(s)
- Masaki Teranishi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Zhizhou Huang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Yuki Nishiyama
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan;
| | - Masako Tachibana
- Department of Psychiatry, Nagoya University Hospital, Nagoya 466-8560, Japan;
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| |
Collapse
|
4
|
Zahid Z, Sultan ZW, Krause BM, Wenthur CJ, Pearce RA, Banks MI. Divergent Effects of Ketamine and the Serotoninergic Psychedelic 2,5-Dimethoxy-4-Iodoamphetamine on Hippocampal Plasticity and Metaplasticity. PSYCHEDELIC MEDICINE (NEW ROCHELLE, N.Y.) 2024; 2:166-177. [PMID: 39669671 PMCID: PMC11633440 DOI: 10.1089/psymed.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Introduction Serotonergic psychedelics and ketamine produce rapid and long-lasting symptomatic relief in multiple psychiatric disorders. Evidence suggests that despite having distinct molecular targets, both drugs may exert therapeutic benefit via their pro-neuroplastic effects. Following treatment with ketamine or serotonergic psychedelics, patients are reported to be more open to behavioral change, which is leveraged for psychotherapy-assisted reframing of narratives of the self. This period of enhanced behavioral change is postulated to be supported by a post-treatment window of enhanced neural plasticity, but evidence for such 'metaplastic' effects is limited. In this study, we tested for neural plasticity and metaplasticity in murine hippocampus. Methods Brain slices were obtained from C57BL/6J mice 24 hours after treatment (intraperitoneal injection) with saline, ketamine, or the serotonergic psychedelic 2,5-Dimethoxy-4-iodoamphetamine (DOI). Extracellular fiber volleys (FVs) and field excitatory postsynaptic potentials (fEPSPs) were recorded in stratum radiatum of CA1 in response to stimulation of Schaffer collateral fibers before and after induction of short-term and long-term potentiation (STP, LTP). Results Before LTP induction, responses differed across treatment groups (F1,2 = 5.407, p = 0.00665), with fEPSPs enhanced in slices from DOI-treated animals (p = 0.0182), but not ketamine-treated animals (p = 0.9786), compared to saline. There were no treatment effects on LT (F1,2 = 0.6, p = 0.516), but there were on STP (F1,2 =, p = 0.0167), with enhanced STP in DOI-treated (p = 0.0352) but not ketamine-treated (p = 0.9999) animals compared to saline. A presynaptic component to the mechanism for the DOI effects was suggested by (1) significantly enhanced FV amplitudes (F1,2 = 3.17, p = 0.049) in DOI-treated (p = 0.0457) but not ketamine-treated animals compared to saline (p = 0.8677); and (2) enhanced paired pulse ratios (F1,2 = 3.581, p = 0.0339) in slices from DOI-treated (p= 0.0257) but not ketamine-treated animals (p = 0.4845) compared to saline. Conclusions DOI, but not ketamine, induced significant neuroplastic and metaplastic effects at hippocampal CA1 synapses 24 hours after treatment, likely in part via a presynaptic mechanism.
Collapse
Affiliation(s)
- Zarmeen Zahid
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Ziyad W. Sultan
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Bryan M. Krause
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Cody J. Wenthur
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Robert A. Pearce
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| |
Collapse
|
5
|
De Jager JE, Boesjes R, Roelandt GHJ, Koliaki I, Sommer IEC, Schoevers RA, Nuninga JO. Shared effects of electroconvulsive shocks and ketamine on neuroplasticity: A systematic review of animal models of depression. Neurosci Biobehav Rev 2024; 164:105796. [PMID: 38981574 DOI: 10.1016/j.neubiorev.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Electroconvulsive shocks (ECS) and ketamine are antidepressant treatments with a relatively fast onset of therapeutic effects compared to conventional medication and psychotherapy. While the exact neurobiological mechanisms underlying the antidepressant response of ECS and ketamine are unknown, both interventions are associated with neuroplasticity. Restoration of neuroplasticity may be a shared mechanism underlying the antidepressant efficacy of these interventions. In this systematic review, literature of animal models of depression is summarized to examine the possible role of neuroplasticity in ECS and ketamine on a molecular, neuronal, synaptic and functional level, and specifically to what extent these mechanisms are shared between both interventions. The results highlight that hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) levels are consistently increased after ECS and ketamine. Moreover, both interventions positively affect glutamatergic neurotransmission, astrocyte and neuronal morphology, synaptic density, vasculature and functional plasticity. However, a small number of studies investigated these processes after ECS. Understanding the shared fundamental mechanisms of fast-acting antidepressants can contribute to the development of novel therapeutic approaches for patients with severe depression.
Collapse
Affiliation(s)
- Jesca E De Jager
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands.
| | - Rutger Boesjes
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Gijs H J Roelandt
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Ilektra Koliaki
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands
| | - Robert A Schoevers
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Jasper O Nuninga
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands; University Medical Centre Utrecht, Department of Psychiatry, the Netherlands
| |
Collapse
|
6
|
Huang B, Li X, Zheng Y, Mai Y, Zhang Z. Effects of esketamine on depression-like behavior and dendritic spine plasticity in the prefrontal cortex neurons of spared nerve injury-induced depressed mice. Braz J Med Biol Res 2024; 57:e13736. [PMID: 38985082 PMCID: PMC11249197 DOI: 10.1590/1414-431x2024e13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
The present study utilized the spared nerve injury (SNI) to create a mouse model of depression to investigate the impact of esketamine on depressive-like behaviors, on the expression of PSD-95 and CRMP2 proteins, and on changes in neuronal dendritic spine plasticity in the prefrontal cortex (PFC). Depressive-like behavioral tests were performed 1 h after esketamine treatment, and the PFC tissues were obtained on the fourth day after completing the behavioral tests. Then, dendritic spine density and morphology in the PFC were measured using Golgi staining, and CRMP2 and PSD-95 proteins were obtained from PFC tissue by western blotting. The results of this study showed that esketamine significantly increased the immobility time in the forced swimming test and tail suspension test. In the open field test, esketamine increased the time spent in the open arms, the time spent in the central area, and the total distance covered. It also increased the protein expression levels of CRMP2 and PSD-95 in addition to the total and mature dendritic spine density of the PFC in SNI-depressed mice. Esketamine can significantly improve depression-like behaviors in SNI-depressed mice and promote an increase in dendritic spine density and maturation in the PFC. These effects may be associated with changes in CRMP2 and PSD-95 expression.
Collapse
Affiliation(s)
- Bixin Huang
- Department of Anesthesiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Xiaoling Li
- Department of Anesthesiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Yuling Zheng
- Department of Anesthesiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Ying Mai
- Department of Anesthesiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Zhongqi Zhang
- Department of Anesthesiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| |
Collapse
|
7
|
Ribeiro-Davis A, Al Saeedy DY, Jahr FM, Hawkins E, McClay JL, Deshpande LS. Ketamine Produces Antidepressant Effects by Inhibiting Histone Deacetylases and Upregulating Hippocampal Brain-Derived Neurotrophic Factor Levels in a Diisopropyl Fluorophosphate-Based Rat Model of Gulf War Illness. J Pharmacol Exp Ther 2024; 388:647-654. [PMID: 37863487 PMCID: PMC10801753 DOI: 10.1124/jpet.123.001824] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/22/2023] Open
Abstract
Approximately one-third of Gulf War veterans suffer from Gulf War Illness (GWI), which encompasses mood disorders and depressive symptoms. Deployment-related exposure to organophosphate compounds has been associated with GWI development. Epigenetic modifications have been reported in GWI veterans. We previously showed that epigenetic histone dysregulations were associated with decreased brain-derived neurotrophic factor (BDNF) expression in a GWI rat model. GWI has no effective therapies. Ketamine (KET) has recently been approved by the Food and Drug Administration for therapy-resistant depression. Interestingly, BDNF upregulation underlies KET's antidepressant effect in GWI-related depression. Here, we investigated whether KET's effect on histone mechanisms signals BDNF upregulations in GWI. Male Sprague-Dawley rats were injected once daily with diisopropyl fluorophosphate (DFP; 0.5 mg/kg, s.c., 5 days). At 6 months following DFP exposure, KET (10 mg/kg, i.p.) was injected, and brains were dissected 24 hours later. Western blotting was used for protein expression, and epigenetic studies used chromatin immunoprecipitation methods. Dil staining was conducted for assessing dendritic spines. Our results indicated that an antidepressant dose of KET inhibited the upregulation of histone deacetylase (HDAC) enzymes in DFP rats. Furthermore, KET restored acetylated histone occupancy at the Bdnf promoter IV and induced BDNF protein expression in DFP rats. Finally, KET treatment also increased the spine density and altered the spine diversity with increased T-type and decreased S-type spines in DFP rats. Given these findings, we propose that KET's actions involve the inhibition of HDAC expression, upregulation of BDNF, and dendritic modifications that together ameliorates the pathologic synaptic plasticity and exerts an antidepressant effect in DFP rats. SIGNIFICANCE STATEMENT: This study offers evidence supporting the involvement of epigenetic histone pathways in the antidepressant effects of ketamine (KET) in a rat model of Gulf War Illness (GWI)-like depression. This effect is achieved through the modulation of histone acetylation at the Bdnf promoter, resulting in elevated brain-derived neurotrophic factor expression and subsequent dendritic remodeling in the hippocampus. These findings underscore the rationale for considering KET as a potential candidate for clinical trials aimed at managing GWI-related depression.
Collapse
Affiliation(s)
- Ana Ribeiro-Davis
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Dalia Y Al Saeedy
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Fay M Jahr
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Elisa Hawkins
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph L McClay
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Laxmikant S Deshpande
- Departments of Neurology (A.R.-D., E.H., L.S.D.), Pharmacology and Toxicology (L.S.D.), School of Medicine, Virginia Commonwealth University, Richmond, Virginia and Department of Pharmacotherapy and Outcome Sciences (D.Y.A.S., F.M.J., J.L.M.), School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
8
|
Burback L, Brémault-Phillips S, Nijdam MJ, McFarlane A, Vermetten E. Treatment of Posttraumatic Stress Disorder: A State-of-the-art Review. Curr Neuropharmacol 2024; 22:557-635. [PMID: 37132142 PMCID: PMC10845104 DOI: 10.2174/1570159x21666230428091433] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
This narrative state-of-the-art review paper describes the progress in the understanding and treatment of Posttraumatic Stress Disorder (PTSD). Over the last four decades, the scientific landscape has matured, with many interdisciplinary contributions to understanding its diagnosis, etiology, and epidemiology. Advances in genetics, neurobiology, stress pathophysiology, and brain imaging have made it apparent that chronic PTSD is a systemic disorder with high allostatic load. The current state of PTSD treatment includes a wide variety of pharmacological and psychotherapeutic approaches, of which many are evidence-based. However, the myriad challenges inherent in the disorder, such as individual and systemic barriers to good treatment outcome, comorbidity, emotional dysregulation, suicidality, dissociation, substance use, and trauma-related guilt and shame, often render treatment response suboptimal. These challenges are discussed as drivers for emerging novel treatment approaches, including early interventions in the Golden Hours, pharmacological and psychotherapeutic interventions, medication augmentation interventions, the use of psychedelics, as well as interventions targeting the brain and nervous system. All of this aims to improve symptom relief and clinical outcomes. Finally, a phase orientation to treatment is recognized as a tool to strategize treatment of the disorder, and position interventions in step with the progression of the pathophysiology. Revisions to guidelines and systems of care will be needed to incorporate innovative treatments as evidence emerges and they become mainstream. This generation is well-positioned to address the devastating and often chronic disabling impact of traumatic stress events through holistic, cutting-edge clinical efforts and interdisciplinary research.
Collapse
Affiliation(s)
- Lisa Burback
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | - Mirjam J. Nijdam
- ARQ National Psychotrauma Center, Diemen, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
9
|
Tse WS, Pochwat B, Szewczyk B, Misztak P, Bobula B, Tokarski K, Worch R, Czarnota-Bojarska M, Lipton SA, Zaręba-Kozioł M, Bijata M, Wlodarczyk J. Restorative effect of NitroSynapsin on synaptic plasticity in an animal model of depression. Neuropharmacology 2023; 241:109729. [PMID: 37797736 DOI: 10.1016/j.neuropharm.2023.109729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
In the search for new options for the pharmacological treatment of major depressive disorder, compounds with a rapid onset of action and high efficacy but lacking a psychotomimetic effect are of particular interest. In the present study, we evaluated the antidepressant potential of NitroSynapsin (NS) at behavioural, structural, and functional levels. NS is a memantine derivative and a dual allosteric N-methyl-d-aspartate receptors (NMDAR) antagonist using targeted delivery by the aminoadamantane of a warhead nitro group to inhibitory redox sites on the NMDAR. In a chronic restraint stress (CRS) mouse model of depression, five doses of NS administered on three consecutive days evoked antidepressant-like activity in the chronically stressed male C57BL/6J mice, reversing CRS-induced behavioural disturbances in sucrose preference and tail suspension tests. CRS-induced changes in morphology and density of dendritic spines in cerebrocortical neurons in the medial prefrontal cortex (mPFC) were also reversed by NS. Moreover, CRS-induced reduction in long-term potentiation (LTP) in the mPFC was found to be prevented by NS based on the electrophysiological recordings. Our study showed that NS restores structural and functional synaptic plasticity and reduces depressive behaviour to the level found in naïve animals. These results preliminarily revealed an antidepressant-like potency of NS.
Collapse
Affiliation(s)
- Wing Sze Tse
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Bartłomiej Pochwat
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland; Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; Department of Medicine and Surgery, University of Milano-Bicocca, 20-900, Monza, Italy
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Remigiusz Worch
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Marta Czarnota-Bojarska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Neurosciences, University of California, School of Medicine, La Jolla, San Diego, CA 92093, United States
| | - Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland.
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland.
| |
Collapse
|
10
|
Zavaliangos-Petropulu A, McClintock SM, Joshi SH, Taraku B, Al-Sharif NB, Espinoza RT, Narr KL. Hippocampal subfield volumes in treatment resistant depression and serial ketamine treatment. Front Psychiatry 2023; 14:1227879. [PMID: 37876623 PMCID: PMC10590913 DOI: 10.3389/fpsyt.2023.1227879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Subanesthetic ketamine is a rapidly acting antidepressant that has also been found to improve neurocognitive performance in adult patients with treatment resistant depression (TRD). Provisional evidence suggests that ketamine may induce change in hippocampal volume and that larger pre-treatment volumes might be related to positive clinical outcomes. Here, we examine the effects of serial ketamine treatment on hippocampal subfield volumes and relationships between pre-treatment subfield volumes and changes in depressive symptoms and neurocognitive performance. Methods Patients with TRD (N = 66; 31M/35F; age = 39.5 ± 11.1 years) received four ketamine infusions (0.5 mg/kg) over 2 weeks. Structural MRI scans, the National Institutes of Health Toolbox (NIHT) Cognition Battery, and Hamilton Depression Rating Scale (HDRS) were collected at baseline, 24 h after the first and fourth ketamine infusion, and 5 weeks post-treatment. The same data was collected for 32 age and sex matched healthy controls (HC; 17M/15F; age = 35.03 ± 12.2 years) at one timepoint. Subfield (CA1/CA3/CA4/subiculum/molecular layer/GC-ML-DG) volumes corrected for whole hippocampal volume were compared across time, between treatment remitters/non-remitters, and patients and HCs using linear regression models. Relationships between pre-treatment subfield volumes and clinical and cognitive outcomes were also tested. All analyses included Bonferroni correction. Results Patients had smaller pre-treatment left CA4 (p = 0.004) and GC.ML.DG (p = 0.004) volumes compared to HC, but subfield volumes remained stable following ketamine treatment (all p > 0.05). Pre-treatment or change in hippocampal subfield volumes over time showed no variation by remission status nor correlated with depressive symptoms (p > 0.05). Pre-treatment left CA4 was negatively correlated with improved processing speed after single (p = 0.0003) and serial ketamine infusion (p = 0.005). Left GC.ML.DG also negatively correlated with improved processing speed after single infusion (p = 0.001). Right pre-treatment CA3 positively correlated with changes in list sorting working memory at follow-up (p = 0.0007). Discussion These results provide new evidence to suggest that hippocampal subfield volumes at baseline may present a biomarker for neurocognitive improvement following ketamine treatment in TRD. In contrast, pre-treatment subfield volumes and changes in subfield volumes showed negligible relationships with ketamine-related improvements in depressive symptoms.
Collapse
Affiliation(s)
- Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Shawn M. McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States
| | - Shantanu H. Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Noor B. Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Randall T. Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine L. Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Bjornson KJ, Vanderplow AM, Yang Y, Anderson DR, Kermath BA, Cahill ME. Stress-mediated dysregulation of the Rap1 small GTPase impairs hippocampal structure and function. iScience 2023; 26:107566. [PMID: 37664580 PMCID: PMC10470260 DOI: 10.1016/j.isci.2023.107566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/15/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The effects of repeated stress on cognitive impairment are thought to be mediated, at least in part, by reductions in the stability of dendritic spines in brain regions critical for proper learning and memory, including the hippocampus. Small GTPases are particularly potent regulators of dendritic spine formation, stability, and morphology in hippocampal neurons. Through the use of small GTPase protein profiling in mice, we identify increased levels of synaptic Rap1 in the hippocampal CA3 region in response to escalating, intermittent stress. We then demonstrate that increased Rap1 in the CA3 is sufficient in and of itself to produce stress-relevant dendritic spine and cognitive phenotypes. Further, using super-resolution imaging, we investigate how the pattern of Rap1 trafficking to synapses likely underlies its effects on the stability of select dendritic spine subtypes. These findings illuminate the involvement of aberrant Rap1 regulation in the hippocampus in contributing to the psychobiological effects of stress.
Collapse
Affiliation(s)
- Kathryn J. Bjornson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amanda M. Vanderplow
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yezi Yang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Danielle R. Anderson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bailey A. Kermath
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael E. Cahill
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Zhornitsky S, Oliva HNP, Jayne LA, Allsop ASA, Kaye AP, Potenza MN, Angarita GA. Changes in synaptic markers after administration of ketamine or psychedelics: a systematic scoping review. Front Psychiatry 2023; 14:1197890. [PMID: 37435405 PMCID: PMC10331617 DOI: 10.3389/fpsyt.2023.1197890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Background Ketamine and psychedelics have abuse liability. They can also induce "transformative experiences" where individuals experience enhanced states of awareness. This enhanced awareness can lead to changes in preexisting behavioral patterns which could be beneficial in the treatment of substance use disorders (SUDs). Preclinical and clinical studies suggest that ketamine and psychedelics may alter markers associated with synaptic density, and that these changes may underlie effects such as sensitization, conditioned place preference, drug self-administration, and verbal memory performance. In this scoping review, we examined studies that measured synaptic markers in animals and humans after exposure to ketamine and/or psychedelics. Methods A systematic search was conducted following PRISMA guidelines, through PubMed, EBSCO, Scopus, and Web of Science, based on a published protocol (Open Science Framework, DOI: 10.17605/OSF.IO/43FQ9). Both in vivo and in vitro studies were included. Studies on the following synaptic markers were included: dendritic structural changes, PSD-95, synapsin-1, synaptophysin-1, synaptotagmin-1, and SV2A. Results Eighty-four studies were included in the final analyses. Seventy-one studies examined synaptic markers following ketamine treatment, nine examined psychedelics, and four examined both. Psychedelics included psilocybin/psilocin, lysergic acid diethylamide, N,N-dimethyltryptamine, 2,5-dimethoxy-4-iodoamphetamine, and ibogaine/noribogaine. Mixed findings regarding synaptic changes in the hippocampus and prefrontal cortex (PFC) have been reported when ketamine was administered in a single dose under basal conditions. Similar mixed findings were seen under basal conditions in studies that used repeated administration of ketamine. However, studies that examined animals during stressful conditions found that a single dose of ketamine counteracted stress-related reductions in synaptic markers in the hippocampus and PFC. Repeated administration of ketamine also counteracted stress effects in the hippocampus. Psychedelics generally increased synaptic markers, but results were more consistently positive for certain agents. Conclusion Ketamine and psychedelics can increase synaptic markers under certain conditions. Heterogeneous findings may relate to methodological differences, agents administered (or different formulations of the same agent), sex, and type of markers. Future studies could address seemingly mixed results by using meta-analytical approaches or study designs that more fully consider individual differences.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Henrique N. P. Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Laura A. Jayne
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Aza S. A. Allsop
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Connecticut Council on Problem Gambling, Hartford, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
13
|
Wang YB, Song NN, Ding YQ, Zhang L. Neural plasticity and depression treatment. IBRO Neurosci Rep 2023; 14:160-184. [PMID: 37388497 PMCID: PMC10300479 DOI: 10.1016/j.ibneur.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.
Collapse
Affiliation(s)
- Yu-Bing Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
14
|
Zavaliangos-Petropulu A, Al-Sharif NB, Taraku B, Leaver AM, Sahib AK, Espinoza RT, Narr KL. Neuroimaging-Derived Biomarkers of the Antidepressant Effects of Ketamine. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:361-386. [PMID: 36775711 PMCID: PMC11483103 DOI: 10.1016/j.bpsc.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Major depressive disorder is a highly prevalent psychiatric disorder. Despite an extensive range of treatment options, about a third of patients still struggle to respond to available therapies. In the last 20 years, ketamine has gained considerable attention in the psychiatric field as a promising treatment of depression, particularly in patients who are treatment resistant or at high risk for suicide. At a subanesthetic dose, ketamine produces a rapid and pronounced reduction in depressive symptoms and suicidal ideation, and serial treatment appears to produce a greater and more sustained therapeutic response. However, the mechanism driving ketamine's antidepressant effects is not yet well understood. Biomarker discovery may advance knowledge of ketamine's antidepressant action, which could in turn translate to more personalized and effective treatment strategies. At the brain systems level, neuroimaging can be used to identify functional pathways and networks contributing to ketamine's therapeutic effects by studying how it alters brain structure, function, connectivity, and metabolism. In this review, we summarize and appraise recent work in this area, including 51 articles that use resting-state and task-based functional magnetic resonance imaging, arterial spin labeling, positron emission tomography, structural magnetic resonance imaging, diffusion magnetic resonance imaging, or magnetic resonance spectroscopy to study brain and clinical changes 24 hours or longer after ketamine treatment in populations with unipolar or bipolar depression. Though individual studies have included relatively small samples, used different methodological approaches, and reported disparate regional findings, converging evidence supports that ketamine leads to neuroplasticity in structural and functional brain networks that contribute to or are relevant to its antidepressant effects.
Collapse
Affiliation(s)
- Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Noor B Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Amber M Leaver
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Ashish K Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Randall T Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
15
|
Deyama S, Kaneda K. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine. Neuropharmacology 2023; 224:109335. [PMID: 36403852 DOI: 10.1016/j.neuropharm.2022.109335] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The neurotrophic hypothesis of depression proposes that reduced levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) contribute to neuronal atrophy or loss in the prefrontal cortex (PFC) and hippocampus and impaired hippocampal adult neurogenesis, which are associated with depressive symptoms. Chronic, but acute, treatment with typical monoaminergic antidepressants can at least partially reverse these deficits, in part via induction of BDNF and/or VEGF expression, consistent with their delayed onset of action. Ketamine, an N-methyl-d-aspartate receptor antagonist, exerts rapid and sustained antidepressant effects. Rodent studies have revealed that ketamine rapidly increases BDNF and VEGF release and/or expression in the PFC and hippocampus, which in turn increases the number and function of spine synapses in the PFC and hippocampal neurogenesis. Ketamine also induces the persistent release of insulin-like growth factor 1 (IGF-1) in the PFC of male mice. These neurotrophic effects of ketamine are associated with its rapid and sustained antidepressant effects. In this review, we first provide an overview of the neurotrophic hypothesis of depression and then discuss the role of BDNF, VEGF, IGF-1, and other growth factors (IGF-2 and transforming growth factor-β1) in the antidepressant effects of ketamine and its enantiomers. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
16
|
Ketamine, benzoate, and sarcosine for treating depression. Neuropharmacology 2023; 223:109351. [PMID: 36423705 DOI: 10.1016/j.neuropharm.2022.109351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Studies have demonstrated the beneficial therapeutic effects of sarcosine, benzoate, and ketamine (including esketamine and arketamine) on depression. These drugs mainly act by modulating N-methyl-d-aspartate glutamate receptors (NMDARs) and reducing inflammation in the brain. Although ketamine, benzoate, and sarcosine act differently as the antagonists or coagonists of NMDARs, they all have demonstrated efficacy in animal models or human trials. In vitro and in vivo studies have indicated that sarcosine, benzoate, and ketamine exert their anti-inflammatory effects by inhibiting microglial activity. This review summarizes and compares the efficacy of the possible therapeutic mechanisms of sarcosine, benzoate, ketamine, esketamine, and arketamine. These compounds act as both NMDAR modulators and anti-inflammatory drugs and thus can be effective in the treatment of depression.
Collapse
|
17
|
Qu Y, Chang L, Ma L, Wan X, Hashimoto K. Rapid antidepressant-like effect of non-hallucinogenic psychedelic analog lisuride, but not hallucinogenic psychedelic DOI, in lipopolysaccharide-treated mice. Pharmacol Biochem Behav 2023; 222:173500. [PMID: 36476377 DOI: 10.1016/j.pbb.2022.173500] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Classical psychedelics with 5-hydroxytryptamine-2A receptor (5-HT2AR) agonism have rapid antidepressant actions in patients with depression. However, there is an ongoing debate over the role of 5-HT2AR in the antidepressant-like actions of psychedelics. In this study, we compared the effects of DOI (2,5-dimethoxy-4-iodoamphetamine: a hallucinogenic psychedelic drug with potent 5-HT2AR agonism), lisuride (non-hallucinogenic psychedelic analog with 5-HT2AR and 5-HT1AR agonisms), and the novel antidepressant (R)-ketamine on depression-like behavior and the decreased dendritic spine density in the brain of lipopolysaccharide (LPS)-treated mice. Saline (10 ml/kg), DOI (2.0 mg/kg), lisuride (1.0 mg/kg), or (R)-ketamine (10 mg/kg) was administered intraperitoneally to LPS (0.5 mg/kg, 23 h before)-treated mice. Both lisuride and (R)-ketamine significantly ameliorated the increased immobility time of forced swimming test, and the decreased dendritic spine density in the prelimbic region of medial prefrontal cortex, CA3 and dentate gyrus of hippocampus of LPS-treated mice. In contrast, DOI did not improve these changes produced after LPS administration. This study suggests that antidepressant-like effect of lisuride in LPS-treated mice is not associated with 5-HT2AR-related psychedelic effects. It is, therefore, unlikely that 5-HT2AR may play a major role in rapid-acting antidepressant actions of psychedelics although further detailed study is needed.
Collapse
Affiliation(s)
- Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
18
|
Pochwat B, Misztak P, Masternak J, Bączyńska E, Bijata K, Roszkowska M, Bijata M, Włodarczyk J, Szafarz M, Wyska E, Muszyńska B, Krakowska A, Opoka W, Nowak G, Szewczyk B. Combined hyperforin and lanicemine treatment instead of ketamine or imipramine restores behavioral deficits induced by chronic restraint stress and dietary zinc restriction in mice. Front Pharmacol 2022; 13:933364. [PMID: 36091748 PMCID: PMC9448861 DOI: 10.3389/fphar.2022.933364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical and preclinical studies show evidence that chronic stress or nutritional deficits in dietary zinc (Zn) intake may be risk factors for developing major depressive disorder (MDD). Furthermore, there may be possible links between low serum Zn levels and development of treatment-resistant depression. In the present work, we combined chronic restraint stress (CRS) and a low-zinc diet (ZnD) in mice and carried out a set of behavioral and biochemical studies. The mice were treated with four different antidepressant compounds, namely, ketamine, Ro 25–6981 (Ro), hyperforin and lanicemine (Hyp + Lan), and imipramine (IMI). We show that CRS or ZnD alone or a combination of CRS and ZnD (CRS + ZnD) induces anhedonia observed in the sucrose preference test (SPT). The behavioral effects of CRS were restored by ketamine or IMI. However, only Hyp + Lan restored the deficits in behavioral phenotype in mice subjected to CRS + ZnD. We also showed that the antidepressant-like effects observed in Hyp + Lan-treated CRS + ZnD mice were associated with changes in the morphology of the dendritic spines (restored physiological level) in the hippocampus (Hp). Finally, we studied the metabolism of ketamine and its brain absorption in CRS and CRS + ZnD mice. Our results suggest that CRS + ZnD does not alter the metabolism of ketamine to (2R,6R;2S,6S)-HNK; however, CRS + ZnD can induce altered bioavailability and distribution of ketamine in the Hp and frontal cortex (FC) in CRS + ZnD animals compared to the control and CRS groups.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Bartłomiej Pochwat, ; Bernadeta Szewczyk,
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Julia Masternak
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Ewa Bączyńska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Krystian Bijata
- Faculty of Chemistry, University of Warsaw, Warszawa, Poland
| | - Matylda Roszkowska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Krakowska
- Department of Inorganic and Analitycal Chemistry, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Włodzimierz Opoka
- Department of Inorganic and Analitycal Chemistry, Pharmacy Faculty, Jagiellonian University Medical College, Kraków, Poland
| | - Gabriel Nowak
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
- *Correspondence: Bartłomiej Pochwat, ; Bernadeta Szewczyk,
| |
Collapse
|
19
|
Pochwat B, Krupa AJ, Siwek M, Szewczyk B. New investigational agents for the treatment of major depressive disorder. Expert Opin Investig Drugs 2022; 31:1053-1066. [PMID: 35975761 DOI: 10.1080/13543784.2022.2113376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pharmacotherapy of depression is characterized by the delayed onset of action, chronic treatment requirements, and insufficient effectiveness. Ketamine, with its rapid action and long-lasting effects, represents a breakthrough in the modern pharmacotherapy of depression. AREAS COVERED : The current review summarizes the latest findings on the mechanism of the antidepressant action of ketamine and its enantiomers and metabolites. Furthermore, the antidepressant potential of psychedelics, non-hallucinogenic serotonergic modulators and metabotropic glutamate receptor ligands was discussed. EXPERT OPINION Recent data indicated that to achieve fast and long-acting antidepressant-like effects, compounds must induce durable effects on the architecture and density of dendritic spines in brain regions engaged in mood regulation. Such mechanisms underlie the actions of ketamine and psychedelics. These compounds trigger hallucinations; however, it is thought that these effects might be essential for their antidepressant action. Behavioral studies with serotonergic modulators affecting 5-HT1A (biased agonists), 5-HT4 (agonists), and 5-HT-7 (antagonists) receptors exert rapid antidepressant-like activity, but they seem to be devoid of this effects. Another way to avoid psychomimetic effects and achieve the desired rapid antidepressant-like effects is combined therapy. In this respect, ligands of metabotropic receptors show some potential.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Anna Julia Krupa
- Department of Psychiatry, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University Medical College, Krakow, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
20
|
Paredes D, Knippenberg AR, Bulin SE, Keppler LJ, Morilak DA. Adjunct treatment with ketamine enhances the therapeutic effects of extinction learning after chronic unpredictable stress. Neurobiol Stress 2022; 19:100468. [PMID: 35865972 PMCID: PMC9293662 DOI: 10.1016/j.ynstr.2022.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating illness characterized by dysfunction in the medial prefrontal cortex (mPFC). Although both pharmacological and cognitive behavioral interventions have shown some promise at alleviating symptoms, high attrition and persistence of treatment-resistant symptoms pose significant challenges that remain unresolved. Specifically, prolonged exposure therapy, a gold standard intervention to treat PTSD, has high dropout rates resulting in many patients receiving less than a fully effective course of treatment. Administering pharmacological treatments together with behavioral psychotherapies like prolonged exposure may offer an important avenue for enhancing therapeutic efficacy sooner, thus reducing the duration of treatment and mitigating the impact of attrition. In this study, using extinction learning as a rat model of exposure therapy, we hypothesized that administering ketamine as an adjunct treatment together with extinction will enhance the efficacy of extinction in reversing stress-induced deficits in set shifting, a measure of cognitive flexibility. Results showed that combining a sub-effective dose of ketamine with a shortened, sub-effective extinction protocol fully reversed stress-induced cognitive set-shifting deficits in both male and female rats. These effects may be due to shared molecular mechanisms between extinction and ketamine, such as increased neuronal plasticity in common circuitry (e.g., hippocampus-mPFC), or increased BDNF signaling. This work suggests that fast-acting drugs, such as ketamine, can be effectively used in combination with behavioral interventions to reduce treatment duration and potentially mitigate the impact of attrition. Future work is needed to delineate other pharmacotherapies that may complement the effects of extinction via shared or independent mechanisms.
Collapse
Affiliation(s)
- Denisse Paredes
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Anna R. Knippenberg
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Lydia J. Keppler
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - David A. Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Corresponding author. Department of Pharmacology, Mail Code 7764 University of Texas Health Science Center, San Antonio 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| |
Collapse
|
21
|
Kundakovic M, Rocks D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Front Neuroendocrinol 2022; 66:101010. [PMID: 35716803 PMCID: PMC9715398 DOI: 10.1016/j.yfrne.2022.101010] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Women are at twice the risk for anxiety and depression disorders as men are, although the underlying biological factors and mechanisms are largely unknown. In this review, we address this sex disparity at both the etiological and mechanistic level. We dissect the role of fluctuating sex hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. We provide parallel evidence in humans and rodents that brain structure and function vary with naturally-cycling ovarian hormones. This female-unique brain plasticity and associated vulnerability are primarily driven by estrogen level changes. For the first time, we provide a sex hormone-driven molecular mechanism, namely chromatin organizational changes, that regulates neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. Finally, we map out future directions including experimental and clinical studies that will facilitate novel sex- and gender-informed approaches to treat depression and anxiety disorders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
22
|
Yu G, Cao F, Hou T, Cheng Y, Jia B, Yu L, Chen W, Xu Y, Chen M, Wang Y. Astrocyte reactivation in medial prefrontal cortex contributes to obesity-promoted depressive-like behaviors. J Neuroinflammation 2022; 19:166. [PMID: 35761401 PMCID: PMC9235218 DOI: 10.1186/s12974-022-02529-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about how the obesogenic environment influences emotional states associated with glial responses and neuronal function. Here, we investigated glial reactivation and neuronal electrophysiological properties in emotion-related brain regions of high-fat diet (HFD) and ob/ob mice under chronic stress. METHODS The glial reactivation and neuronal activities in emotion-related brain regions were analyzed among normal diet mice (ND), HFD mice, wild-type mice, and ob/ob mice. To further activate or inhibit astrocytes in medial prefrontal cortex (mPFC), we injected astrocytes specific Gq-AAV or Gi-AAV into mPFC and ongoing treated mice with CNO. RESULTS The results showed that obesogenic factors per se had no significant effect on neuronal activities in emotion-related brain regions, or on behavioral performance. However, exposure to a chronic stressor profoundly reduced the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) in the mPFC; depressive-like behaviors were seen, accompanied by significant upregulation of astrocyte reactivation. We identified resilient and susceptible mice among chronic social defeat stress-exposed HFD mice. As expected, astrocyte reactivity was upregulated, while neuronal activity was depressed, in the mPFC of susceptible compared to resilient mice. Furthermore, activating astrocytes resulted in similar levels of neuronal activity and depressive-like behaviors between resilient and susceptible mice. Additionally, inhibiting astrocyte reactivation in the mPFC of HFD mice upregulated neuronal activities and inhibited depressive-like behaviors. CONCLUSIONS These observations indicate that obesogenic factors increase the risk of depression, and improve our understanding of the pathological relationship between obesity and depression.
Collapse
Affiliation(s)
- Gang Yu
- Department of Gastrointestinal Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China.,Bariatric Center, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Feng Cao
- Department of Gastrointestinal Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China.,Bariatric Center, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Tingting Hou
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China.,Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Yunsheng Cheng
- Department of Gastrointestinal Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China.,Bariatric Center, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Benli Jia
- Department of Gastrointestinal Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China.,Bariatric Center, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Liang Yu
- Department of Gastrointestinal Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China.,Bariatric Center, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wanjing Chen
- Department of Gastrointestinal Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China.,Bariatric Center, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yanyan Xu
- Department of Gastrointestinal Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China.,Bariatric Center, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Mingming Chen
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China. .,Department of Neurology, Yale University School of Medicine, New Haven, 06536, USA.
| | - Yong Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China. .,Bariatric Center, the Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
23
|
Tan Y, Fujita Y, Pu Y, Chang L, Qu Y, Wang X, Hashimoto K. Repeated intermittent administration of (R)-ketamine during juvenile and adolescent stages prevents schizophrenia-relevant phenotypes in adult offspring after maternal immune activation: a role of TrkB signaling. Eur Arch Psychiatry Clin Neurosci 2022; 272:693-701. [PMID: 34977960 PMCID: PMC9095544 DOI: 10.1007/s00406-021-01365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) plays a role in the etiology of schizophrenia. MIA by prenatal exposure of polyinosinic:polycytidylic acid [poly(I:C)] in rodents caused behavioral and neurobiological changes relevant to schizophrenia in adult offspring. We investigated whether the novel antidepressant (R)-ketamine could prevent the development of psychosis-like phenotypes in adult offspring after MIA. We examined the effects of (R)-ketamine (10 mg/kg/day, twice weekly for 4 weeks) during juvenile and adolescent stages (P28-P56) on the development of cognitive deficits, loss of parvalbumin (PV)-immunoreactivity in the medial prefrontal cortex (mPFC), and decreased dendritic spine density in the mPFC and hippocampus from adult offspring after prenatal poly(I:C) exposure. Furthermore, we examined the role of TrkB in the prophylactic effects of (R)-ketamine. Repeated intermittent administration of (R)-ketamine during juvenile and adolescent stages significantly blocked the development of cognitive deficits, reduced PV-immunoreactivity in the prelimbic (PrL) of mPFC, and decreased dendritic spine density in the PrL of mPFC, CA3 and dentate gyrus of the hippocampus from adult offspring after prenatal poly(I:C) exposure. Furthermore, pretreatment with ANA-12 (TrkB antagonist: twice weekly for 4 weeks) significantly blocked the beneficial effects of (R)-ketamine on cognitive deficits of adult offspring after prenatal poly(I:C) exposure. These data suggest that repeated intermittent administration of (R)-ketamine during juvenile and adolescent stages could prevent the development of psychosis in adult offspring after MIA. Therefore, (R)-ketamine would be a potential prophylactic drug for young subjects with high-risk for psychosis.
Collapse
Affiliation(s)
- Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xinming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
24
|
Rapid-acting antidepressants and the circadian clock. Neuropsychopharmacology 2022; 47:805-816. [PMID: 34837078 PMCID: PMC8626287 DOI: 10.1038/s41386-021-01241-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
A growing number of epidemiological and experimental studies has established that circadian disruption is strongly associated with psychiatric disorders, including major depressive disorder (MDD). This association is becoming increasingly relevant considering that modern lifestyles, social zeitgebers (time cues) and genetic variants contribute to disrupting circadian rhythms that may lead to psychiatric disorders. Circadian abnormalities associated with MDD include dysregulated rhythms of sleep, temperature, hormonal secretions, and mood which are modulated by the molecular clock. Rapid-acting antidepressants such as subanesthetic ketamine and sleep deprivation therapy can improve symptoms within 24 h in a subset of depressed patients, in striking contrast to conventional treatments, which generally require weeks for a full clinical response. Importantly, animal data show that sleep deprivation and ketamine have overlapping effects on clock gene expression. Furthermore, emerging data implicate the circadian system as a critical component involved in rapid antidepressant responses via several intracellular signaling pathways such as GSK3β, mTOR, MAPK, and NOTCH to initiate synaptic plasticity. Future research on the relationship between depression and the circadian clock may contribute to the development of novel therapeutic strategies for depression-like symptoms. In this review we summarize recent evidence describing: (1) how the circadian clock is implicated in depression, (2) how clock genes may contribute to fast-acting antidepressants, and (3) the mechanistic links between the clock genes driving circadian rhythms and neuroplasticity.
Collapse
|
25
|
Scotton E, Antqueviezc B, Vasconcelos M, Dalpiaz G, Paul Géa L, Ferraz Goularte J, Colombo R, Ribeiro Rosa A. Is (R)-ketamine a Potential Therapeutic Agent for Treatment-Resistant Depression with Less Detrimental Side Effects? A Review of Molecular Mechanisms Underlying Ketamine and its Enantiomers. Biochem Pharmacol 2022; 198:114963. [PMID: 35182519 DOI: 10.1016/j.bcp.2022.114963] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Approximately one-third of individuals with major depressive disorder are resistant to conventional antidepressants (i.e., monoamine-based therapies), and, even among respondents, a proper therapeutic effect may require weeks of treatment. Ketamine, a racemic mixture of the two enantiomers, (R)-ketamine and (S)-ketamine, is an N-methyl-d-aspartate receptor (NMDAR) antagonist and has been shown to have rapid-acting antidepressant properties in patients with treatment-resistant depression (TRD). Although (R)-ketamine has a lower affinity for NMDAR, it presents greater potency and longer-lasting antidepressant properties, with no major side effects, than racemic ketamine or (S)-ketamine in preclinical findings. Thereby, ketamine and its enantiomers have not only an antagonistic effect on NMDAR but also a strong synaptogenic-modulatory effect, which is impaired in TRD pathophysiology. In this review, we summarize the current evidence regarding the modulation of neurotransmission, neuroplasticity, and neural network activity as putative mechanisms of these rapid-acting antidepressants, highlighting differences on intracellular signaling pathways of synaptic proteins such as mammalian target of rapamycin (mTOR), extracellular signal-regulated kinase (ERK) and brain-derived neurotrophic factor (BDNF). In addition, we discuss probable mechanisms involved in the side effects of ketamine and its enantiomers.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology, Programa de Pós-Graduação em Farmacologia e Terapêutica, UFRGS, Porto Alegre, RS, Brazil.
| | - Bárbara Antqueviezc
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Mailton Vasconcelos
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Instituto de Psicologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Giovana Dalpiaz
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Luiza Paul Géa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Jéferson Ferraz Goularte
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.
| | - Adriane Ribeiro Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology, Programa de Pós-Graduação em Farmacologia e Terapêutica, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Grossman YS, Fillinger C, Manganaro A, Voren G, Waldman R, Zou T, Janssen WG, Kenny PJ, Dumitriu D. Structure and function differences in the prelimbic cortex to basolateral amygdala circuit mediate trait vulnerability in a novel model of acute social defeat stress in male mice. Neuropsychopharmacology 2022; 47:788-799. [PMID: 34799681 PMCID: PMC8782864 DOI: 10.1038/s41386-021-01229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 02/03/2023]
Abstract
Stressful life events are ubiquitous and well-known to negatively impact mental health. However, in both humans and animal models, there is large individual variability in how individuals respond to stress, with some but not all experiencing long-term adverse consequences. While there is growing understanding of the neurobiological underpinnings of the stress response, much less is known about how neurocircuits shaped by lifetime experiences are activated during an initial stressor and contribute to this selective vulnerability versus resilience. We developed a model of acute social defeat stress (ASDS) that allows classification of male mice into "susceptible" (socially avoidant) versus "resilient" (expressing control-level social approach) one hour after exposure to six minutes of social stress. Using circuit tracing and high-resolution confocal imaging, we explored differences in activation and dendritic spine density and morphology in the prelimbic cortex to basolateral amygdala (PL→BLA) circuit in resilient versus susceptible mice. Susceptible mice had greater PL→BLA recruitment during ASDS and activated PL→BLA neurons from susceptible mice had more and larger mushroom spines compared to resilient mice. We hypothesized identified structure/function differences indicate an overactive PL→BLA response in susceptible mice and used an intersectional chemogenetic approach to inhibit the PL→BLA circuit during or prior to ASDS. We found in both cases that this blocked ASDS-induced social avoidance. Overall, we show PL→BLA structure/function differences mediate divergent behavioral responses to ASDS in male mice. These results support PL→BLA circuit overactivity during stress as a biomarker of trait vulnerability and potential target for prevention of stress-induced psychopathology.
Collapse
Affiliation(s)
- Yael S Grossman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Duke University School of Medicine, Durham, NC, USA
| | - Clementine Fillinger
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessia Manganaro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - George Voren
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Waldman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiffany Zou
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dani Dumitriu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, Columbia University, New York, NY, USA.
- Sackler Institute, Columbia University, New York, NY, USA.
- Columbia Population Research Center, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
27
|
Moraga-Amaro R, Guerrin CGJ, Reali Nazario L, Lima Giacobbo B, J O Dierckx RA, Stehberg J, de Vries EFJ, Doorduin J. A single dose of ketamine cannot prevent protracted stress-induced anhedonia and neuroinflammation in rats. Stress 2022; 25:145-155. [PMID: 35384793 DOI: 10.1080/10253890.2022.2045269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Worldwide, millions of people suffer from treatment-resistant depression. Ketamine, a glutamatergic receptor antagonist, can have a rapid antidepressant effect even in treatment-resistant patients. A proposed mechanism for the antidepressant effect of ketamine is the reduction of neuroinflammation. To further explore this hypothesis, we investigated whether a single dose of ketamine can modulate protracted neuroinflammation in a repeated social defeat (RSD) stress rat model, which resembles features of depression. To this end, male animals exposed to RSD were injected with ketamine (20 mg/kg) or vehicle. A combination of behavioral analyses and PET scans of the inflammatory marker TSPO in the brain were performed. Rats submitted to RSD showed anhedonia-like behavior in the sucrose preference test, decreased weight gain, and increased TSPO levels in the insular and entorhinal cortices, as observed by [11C]-PK11195 PET. Whole brain TSPO levels correlated with corticosterone levels in several brain regions of RSD exposed animals, but not in controls. Ketamine injection 1 day after RSD disrupted the correlation between TSPO levels and serum corticosterone levels, but had no effect on depressive-like symptoms, weight gain or the protracted RSD-induced increase in TSPO expression in male rats. These results suggest that ketamine does not exert its effect on the hypothalamic-pituitary-adrenal axis by modulation of neuroinflammation.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Cyprien G J Guerrin
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Luiza Reali Nazario
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Bruno Lima Giacobbo
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Erik F J de Vries
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| |
Collapse
|
28
|
Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Mol Psychiatry 2022; 27:1618-1629. [PMID: 34819637 PMCID: PMC9095473 DOI: 10.1038/s41380-021-01377-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
(R,S)-ketamine elicits rapid-acting and sustained antidepressant actions in treatment-resistant patients with depression. (R)-ketamine produces longer-lasting antidepressant effects than (S)-ketamine in rodents; however, the precise molecular mechanisms underlying antidepressant actions of (R)-ketamine remain unknown. Using isobaric Tag for Relative and Absolute Quantification, we identified nuclear receptor-binding protein 1 (NRBP1) that could contribute to different antidepressant-like effects of the two enantiomers in chronic social defeat stress (CSDS) model. NRBP1 was localized in the microglia and neuron, not astrocyte, of mouse medial prefrontal cortex (mPFC). (R)-ketamine increased the expression of NRBP1, brain-derived neurotrophic factor (BDNF), and phosphorylated cAMP response element binding protein (p-CREB)/CREB ratio in primary microglia cultures thorough the extracellular signal-regulated kinase (ERK) activation. Furthermore, (R)-ketamine could activate BDNF transcription through activation of CREB as well as MeCP2 (methyl-CpG binding protein 2) suppression in microglia. Single intracerebroventricular (i.c.v.) injection of CREB-DNA/RNA heteroduplex oligonucleotides (CREB-HDO) or BDNF exon IV-HDO blocked the antidepressant-like effects of (R)-ketamine in CSDS susceptible mice. Moreover, microglial depletion by colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX3397 blocked the antidepressant-like effects of (R)-ketamine in CSDS susceptible mice. In addition, inhibition of microglia by single i.c.v. injection of mannosylated clodronate liposomes (MCLs) significantly blocked the antidepressant-like effects of (R)-ketamine in CSDS susceptible mice. Finally, single i.c.v. injection of CREB-HDO, BDNF exon IV-HDO or MCLs blocked the beneficial effects of (R)-ketamine on the reduced dendritic spine density in the mPFC of CSDS susceptible mice. These data suggest a novel ERK-NRBP1-CREB-BDNF pathways in microglia underlying antidepressant-like effects of (R)-ketamine.
Collapse
|
29
|
Lukasiewicz K, Baker JJ, Zuo Y, Lu J. Serotonergic Psychedelics in Neural Plasticity. Front Mol Neurosci 2021; 14:748359. [PMID: 34712118 PMCID: PMC8545892 DOI: 10.3389/fnmol.2021.748359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Psychedelics, compounds that can induce dramatic changes in conscious experience, have been used by humans for centuries. Recent studies have shown that certain psychedelics can induce neural plasticity by promoting neurite growth and synapse formation. In this review, we focus on the role of classical serotonergic psychedelics in neural plasticity and discuss its implication for their therapeutic potentials.
Collapse
Affiliation(s)
- Kacper Lukasiewicz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jacob J Baker
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
30
|
Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE. Psychedelics and Other Psychoplastogens for Treating Mental Illness. Front Psychiatry 2021; 12:727117. [PMID: 34671279 PMCID: PMC8520991 DOI: 10.3389/fpsyt.2021.727117] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Psychedelics have inspired new hope for treating brain disorders, as they seem to be unlike any treatments currently available. Not only do they produce sustained therapeutic effects following a single administration, they also appear to have broad therapeutic potential, demonstrating efficacy for treating depression, post-traumatic stress disorder (PTSD), anxiety disorders, substance abuse disorder, and alcohol use disorder, among others. Psychedelics belong to a more general class of compounds known as psychoplastogens, which robustly promote structural and functional neural plasticity in key circuits relevant to brain health. Here we discuss the importance of structural plasticity in the treatment of neuropsychiatric diseases, as well as the evidence demonstrating that psychedelics are among the most effective chemical modulators of neural plasticity studied to date. Furthermore, we provide a theoretical framework with the potential to explain why psychedelic compounds produce long-lasting therapeutic effects across a wide range of brain disorders. Despite their promise as broadly efficacious neurotherapeutics, there are several issues associated with psychedelic-based medicines that drastically limit their clinical scalability. We discuss these challenges and how they might be overcome through the development of non-hallucinogenic psychoplastogens. The clinical use of psychedelics and other psychoplastogenic compounds marks a paradigm shift in neuropsychiatry toward therapeutic approaches relying on the selective modulation of neural circuits with small molecule drugs. Psychoplastogen research brings us one step closer to actually curing mental illness by rectifying the underlying pathophysiology of disorders like depression, moving beyond simply treating disease symptoms. However, determining how to most effectively deploy psychoplastogenic medicines at scale will be an important consideration as the field moves forward.
Collapse
Affiliation(s)
- Maxemiliano V. Vargas
- Neuroscience Graduate Program, University of California, Davis, Davis, CA, United States
| | - Retsina Meyer
- Delix Therapeutics, Inc., Concord, MA, United States
| | - Arabo A. Avanes
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Program, University of California, Davis, Davis, CA, United States
| | - Mark Rus
- Delix Therapeutics, Inc., Concord, MA, United States
| | - David E. Olson
- Delix Therapeutics, Inc., Concord, MA, United States
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, Sacramento, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|
31
|
Zhang J, Ma L, Wan X, Shan J, Qu Y, Hashimoto K. (R)-Ketamine attenuates LPS-induced endotoxin-derived delirium through inhibition of neuroinflammation. Psychopharmacology (Berl) 2021; 238:2743-2753. [PMID: 34313805 DOI: 10.1007/s00213-021-05889-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE (R)-Ketamine produced beneficial effects in a variety of models of inflammatory diseases, including low dose of bacterial lipopolysaccharide (LPS) (0.5-1.0 mg/kg)-induced endotoxemia. LPS-treated mice have been used as animal model of delirium. OBJECTIVES We investigated the effects of (R)-ketamine in neuroinflammation and cognitive impairment in rodents after administration of high dose of LPS. METHODS LPS (5 mg/kg) or saline was administered intraperitoneally (i.p.) to mice. (R)-Ketamine (10 mg/kg) was administrated i.p. 24 h before and/or 10 min after LPS injection. RESULTS LPS (5.0 mg/kg) caused a remarkable splenomegaly and increased plasma levels of pro-inflammatory cytokines [i.e., interleukin (IL-6), IL-17A, and interferon (IFN)-γ]. There were positive correlations between spleen weight and plasma cytokines levels. Furthermore, LPS led to increased levels of pro-inflammatory cytokines in the prefrontal cortex (PFC) and hippocampus. Moreover, LPS impaired the natural and learned behaviors, as demonstrated by a decrease in the number of mice's entries and duration in the novel arm in the Y maze test and an increase in the latency of mice to eat the food in the buried food test. Interestingly, the treatment with (R)-ketamine (twice 24 h before and 10 min after LPS injection) significantly attenuated LPS-induced splenomegaly, central and systemic inflammation, and cognitive impairment. CONCLUSION Our results highlighted the importance of combined prophylactic and therapeutic use of (R)-ketamine in the attenuation of LPS-induced systemic inflammation, neuroinflammation, and cognitive impairment in mice. It is likely that (R)-ketamine could be a prophylactic drug for delirium.
Collapse
Affiliation(s)
- Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.,Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430022, People's Republic of China
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
32
|
Artin H, Zisook S, Ramanathan D. How do serotonergic psychedelics treat depression: The potential role of neuroplasticity. World J Psychiatry 2021; 11:201-214. [PMID: 34168967 PMCID: PMC8209538 DOI: 10.5498/wjp.v11.i6.201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Depression is a common mental disorder and one of the leading causes of disability around the world. Monoaminergic antidepressants often take weeks to months to work and are not effective for all patients. This has led to a search for a better understanding of the pathogenesis of depression as well as to the development of novel antidepressants. One such novel antidepressant is ketamine, which has demonstrated both clinically promising results and contributed to new explanatory models of depression, including the potential role of neuroplasticity in depression. Early clinical trials are now showing promising results of serotonergic psychedelics for depression; however, their mechanism of action remains poorly understood. This paper seeks to review the effect of depression, classic antidepressants, ketamine, and serotonergic psychedelics on markers of neuroplasticity at a cellular, molecular, electrophysiological, functional, structural, and psychological level to explore the potential role that neuroplasticity plays in the treatment response of serotonergic psychedelics.
Collapse
Affiliation(s)
- Hewa Artin
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, United States
| | - Sidney Zisook
- Department of Psychiatry, UC San Diego, San Diego, CA 92093, United States
| | - Dhakshin Ramanathan
- Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA 92161, United States
| |
Collapse
|
33
|
Qu Y, Shan J, Wang S, Chang L, Pu Y, Wang X, Tan Y, Yamamoto M, Hashimoto K. Rapid-acting and long-lasting antidepressant-like action of (R)-ketamine in Nrf2 knock-out mice: a role of TrkB signaling. Eur Arch Psychiatry Clin Neurosci 2021; 271:439-446. [PMID: 33180200 DOI: 10.1007/s00406-020-01208-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
The transcription nuclear factor-erythroid factor 2-related factor 2 (Nrf2) plays a key role in inflammation that is involved in depression. We previously reported that Nrf2 knock-out (KO) mice exhibit depression-like phenotypes through systemic inflammation. (R)-ketamine, an enantiomer of ketamine, has rapid-acting and long-lasting antidepressant-like effects in rodents. We investigated whether (R)-ketamine can produce antidepressant-like effects in Nrf2 KO mice. Effects of (R)-ketamine on the depression-like phenotypes in Nrf2 KO mice were examined. Furthermore, the role of TrkB in the antidepressant-like actions of (R)-ketamine was also examined. In the tail-suspension test (TST) and forced swimming test (FST), (R)-ketamine (10 mg/kg) significantly attenuated the increased immobility times of TST and FST in the Nrf2 KO mice. In the sucrose preference test (SPT), (R)-ketamine significantly ameliorated the reduced preference of SPT in Nrf2 KO mice. Decreased expression of synaptic proteins (i.e., GluA1 and PSD-95) in the medial prefrontal cortex (mPFC) of Nrf2 KO mice was significantly ameliorated after a single injection of (R)-ketamine. Furthermore, the pre-treatment with the TrkB antagonist ANA-12 (0.5 mg/kg) significantly blocked the rapid and long-lasting antidepressant-like effects of (R)-ketamine in Nrf2 KO mice. Furthermore, ANA-12 significantly antagonized the beneficial effects of (R)-ketamine on decreased expression of synaptic proteins in the mPFC of Nrf2 KO mice. These findings suggest that (R)-ketamine can produce rapid and long-lasting antidepressant-like actions in Nrf2 KO mice via TrkB signaling.
Collapse
Affiliation(s)
- Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Masayuki Yamamoto
- Departments of Medical Biochemistry and Respiratory Medicine, Tohoku University Graduate School of Medicine, SendaiMiyagi, Miyagi, 980-8575, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
34
|
Herrera-Melendez A, Stippl A, Aust S, Scheidegger M, Seifritz E, Heuser-Collier I, Otte C, Bajbouj M, Grimm S, Gärtner M. Gray matter volume of rostral anterior cingulate cortex predicts rapid antidepressant response to ketamine. Eur Neuropsychopharmacol 2021; 43:63-70. [PMID: 33309459 DOI: 10.1016/j.euroneuro.2020.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022]
Abstract
Ketamine was recently approved for treatment resistant depression. However, despite its therapeutic potential, about 50% of patients do not show improvement under this therapy. In this prospective two-site study, we investigated baseline brain structural predictors for rapid symptom improvement after a single subanesthetic ketamine infusion. Furthermore, given the preclinical evidence and findings from a pilot study in a clinical population that ketamine induces rapid neuroplasticity, we performed an exploratory investigation of macroscopic changes 24 h post-treatment. T1-weighted MRI brain images from 33 depressed patients were acquired before and 24 h after a single ketamine infusion and analyzed using voxel-based morphometry (VBM). Additionally, we performed a region of interest (ROI)-based analysis of structures that have previously been shown to play a role in the antidepressant effects of ketamine: bilateral hippocampus, nucleus accumbens, anterior cingulate cortex, and thalamus. A whole-brain regression analysis showed that greater baseline volume of the bilateral rostral anterior cingulate cortex (rACC) significantly predicts rapid symptom reduction. The right ACC showed the same association in the ROI analysis, while the other regions yielded no significant results. Exploratory follow-up analyses revealed no volumetric changes 24 h after treatment. This is the first study reporting an association between pretreatment gray matter volume of the bilateral rACC and the rapid antidepressant effects of ketamine. Results are in line with previous investigations, which highlighted the potential of the rACC as a biomarker for response prediction to different antidepressant treatments. Ketamine-induced volumetric changes may be seen at later time points.
Collapse
Affiliation(s)
- Ana Herrera-Melendez
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Anna Stippl
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Isabella Heuser-Collier
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Christian Otte
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Simone Grimm
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; MSB -Medical School Berlin, Calandrellistraße 1-9, 12247 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Matti Gärtner
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; MSB -Medical School Berlin, Calandrellistraße 1-9, 12247 Berlin, Germany
| |
Collapse
|
35
|
Muscat SA, Hartelius G, Crouch CR, Morin KW. An Integrative Approach to Ketamine Therapy May Enhance Multiple Dimensions of Efficacy: Improving Therapeutic Outcomes With Treatment Resistant Depression. Front Psychiatry 2021; 12:710338. [PMID: 34899408 PMCID: PMC8653702 DOI: 10.3389/fpsyt.2021.710338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Research over the last two decades has established ketamine as a safe, effective, fast-acting, and sustained antidepressant that significantly reduces adverse symptoms associated with depression, even in patients who are treatment resistant. Much of this research has evolved within the framework of several independent branches of scientific inquiry: in addition to the study of ketamine is a non-selective NMDAR antagonist with rapid antidepressant effects, it has also been found effective as a psychoplastogen that stimulates synaptogenesis and increases neuroplasticity, as a powerful anti-inflammatory that may improve inflammation-related depressive symptoms, as a substance that induces beneficial high entropy brain states, and as a subjectively impactful psychedelic agent. Each branch of inquiry has generated independent evidence of ketamine's efficacy but has advanced without substantive coordination or communication with other lines of inquiry. Integrative research that considers these branches of research together may lead toward a better understanding of ketamine's effects and improved treatment protocols and clinical outcomes. Such an overview can inform more comprehensive patient care through: (a) informed patient psychoeducation that encompasses all of ketamine's mechanisms of action; (b) calibration of optimal dosage to ensure induction and maintenance of high entropy brain states during each ketamine session utilizing EEG measurement; (c) Improved management of emergence side effects through proper care for set and setting; (d) inclusion of pre-selected appropriate music to enhance the emotional experience; (e) increased monitoring of ketamine effects on cortical activity, inter-hemispheric imbalance, and inflammation-related levels of cytokines to further improvements in ketamine protocols; and (f) appropriate timing of any adjunctive psychotherapy sessions to coincide with peak neurogenesis at 24-48 h post ketamine treatment.
Collapse
Affiliation(s)
- Sherry-Anne Muscat
- Youth Forensic Psychiatry, Alberta Hospital, Alberta Health Services, Edmonton, AB, Canada.,Integral and Transpersonal Psychology, California Institute of Integral Studies, San Francisco, CA, United States
| | - Glenn Hartelius
- Integral and Transpersonal Psychology, California Institute of Integral Studies, San Francisco, CA, United States
| | - Courtenay Richards Crouch
- Integral and Transpersonal Psychology, California Institute of Integral Studies, San Francisco, CA, United States
| | - Kevin W Morin
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Acute Adult Psychiatry, Alberta Hospital, Alberta Health Services, Edmonton, AB, Canada
| |
Collapse
|
36
|
Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites. Transl Psychiatry 2019; 9:280. [PMID: 31699965 PMCID: PMC6838457 DOI: 10.1038/s41398-019-0624-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 12/14/2022] Open
Abstract
Although the robust antidepressant effects of the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine in patients with treatment-resistant depression are beyond doubt, the precise molecular and cellular mechanisms underlying its antidepressant effects remain unknown. NMDAR inhibition and the subsequent α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activation are suggested to play a role in the antidepressant effects of ketamine. Although (R)-ketamine is a less potent NMDAR antagonist than (S)-ketamine, (R)-ketamine has shown more marked and longer-lasting antidepressant-like effects than (S)-ketamine in several animal models of depression. Furthermore, non-ketamine NMDAR antagonists do not exhibit robust ketamine-like antidepressant effects in patients with depression. These findings suggest that mechanisms other than NMDAR inhibition play a key role in the antidepressant effects of ketamine. Duman's group demonstrated that the activation of mammalian target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex is reportedly involved in the antidepressant effects of ketamine. However, we reported that mTORC1 serves a role in the antidepressant effects of (S)-ketamine, but not of (R)-ketamine, and that extracellular signal-regulated kinase possibly underlie the antidepressant effects of (R)-ketamine. Several lines of evidence have demonstrated that brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), are crucial in the antidepressant effects of ketamine and its two enantiomers, (R)-ketamine and (S)-ketamine, in rodents. In addition, (2R,6R)-hydroxynormetamine [a metabolite of (R)-ketamine] and (S)-norketamine [a metabolite of (S)-ketamine] have been shown to exhibit antidepressant-like effects on rodents through the BDNF-TrkB cascade. In this review, we discuss recent findings on the molecular and cellular mechanisms underlying the antidepressant effects of enantiomers of ketamine and its metabolites. It may be time to reconsider the hypothesis of NMDAR inhibition and the subsequent AMPAR activation in the antidepressant effects of ketamine.
Collapse
|