1
|
Heida A, Maal-Bared R, Veillette M, Duchaine C, Reynolds KA, Ashraf A, Ogunseye OO, Jung Y, Shulman L, Ikner L, Betancourt W, Hamilton KA, Wilson AM. Quantitative microbial risk assessment (QMRA) tool for modelling pathogen infection risk to wastewater treatment plant workers. WATER RESEARCH 2024; 260:121858. [PMID: 38936269 DOI: 10.1016/j.watres.2024.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Wastewater treatment plants (WWTPs) provide vital services to the public by removing contaminants from wastewater prior to environmental discharge or reuse for beneficial purposes. WWTP workers occupationally exposed to wastewater can be at risk of respiratory or gastrointestinal diseases. The study objectives were to: (1) quantify pathogens and pathogen indicators in wastewater aerosols near different WWTP processes/unit operations, (2) develop a QMRA model for multi-pathogen and multi-exposure pathway risks, and (3) create a web-based application to perform and communicate risk calculations for wastewater workers. Case studies for seven different WWTP job tasks were performed investigating infection risk across nine different enteric and respiratory pathogens. It was observed that the ingestion risk among job tasks was highest for "walking the WWTP," which involved exposure from splashing, bioaerosols, and hand-to-mouth contact from touching contaminated surfaces. There was also a notable difference in exposure risk during peak (5:00am-9:00am) and non-peak hours (9:00am- 5:00am), with risks during the peak flow hours of the early morning assumed to be 5 times greater than non-peak hours. N95 respirator usage reduced median respiratory risks by 77 %. The developed tool performs multiple QMRA calculations to estimate WWTP workers' infection risks from accidental ingestion or inhalation of wastewater from multiple pathogens and exposure scenarios, which can inform risk management strategies to protect occupational health. However, more data are needed to reduce uncertainty in model estimates, including comparative data for pathogen concentrations in wastewater during peak and non-peak hours. QMRA tools will increase accessibility of risk models for utilization in decision-making.
Collapse
Affiliation(s)
- Ashley Heida
- School for Engineering of Matter, Transport and Energy, Arizona State University, 502 E Tyler Mall, Tempe, AZ 85287, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Rasha Maal-Bared
- Bellevue Research and Testing Laboratory, CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | - Marc Veillette
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Caroline Duchaine
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Kelly A Reynolds
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ahamed Ashraf
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Olusola O Ogunseye
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Yoonhee Jung
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Lester Shulman
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Luisa Ikner
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Walter Betancourt
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Amanda M Wilson
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Tang L, Rhoads WJ, Eichelberg A, Hamilton KA, Julian TR. Applications of Quantitative Microbial Risk Assessment to Respiratory Pathogens and Implications for Uptake in Policy: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:56001. [PMID: 38728217 PMCID: PMC11086748 DOI: 10.1289/ehp12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n = 78 ) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.
Collapse
Affiliation(s)
- Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - William J. Rhoads
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Antonia Eichelberg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kerry A. Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Clements E, Crank K, Nerenberg R, Atkinson A, Gerrity D, Hannoun D. Quantitative Microbial Risk Assessment Framework Incorporating Water Ages with Legionella pneumophila Growth Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6540-6551. [PMID: 38574283 PMCID: PMC11025131 DOI: 10.1021/acs.est.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Water age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of Legionella pneumophila via a growth model. In turn, the L. pneumophila concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection (Pinf) and clinically severe illness (Pcsi) due to showering. Risk reductions achieved by purging devices, which reduce water age, were also quantified. The median annual Pinf exceeded the commonly used 1 in 10,000 (10-4) risk benchmark in all scenarios, but the median annual Pcsi was always 1-3 orders of magnitude below 10-4. The median annual Pcsi was lower in homes with two occupants (4.7 × 10-7) than with one occupant (7.5 × 10-7) due to more frequent use of water fixtures, which reduced water ages. The median annual Pcsi for homes with one occupant was reduced by 39-43% with scheduled purging 1-2 times per day. Smart purging devices, which purge only after a certain period of nonuse, maintained these lower annual Pcsi values while reducing additional water consumption by 45-62%.
Collapse
Affiliation(s)
- Emily Clements
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Katherine Crank
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Robert Nerenberg
- Department
of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, Indiana 46556, United States
| | - Ariel Atkinson
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Daniel Gerrity
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| | - Deena Hannoun
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193, United States
| |
Collapse
|
4
|
Wilson AM, Canter K, Abney SE, Gerba CP, Myers ER, Hanlin J, Reynolds KA. An application for relating Legionella shower water monitoring results to estimated health outcomes. WATER RESEARCH 2022; 221:118812. [PMID: 35816914 DOI: 10.1016/j.watres.2022.118812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure models are useful tools for relating environmental monitoring data to expected health outcomes. The objective of this study was to (1) compare two Legionella shower exposure models, and (2) develop a risk calculator tool for relating environmental monitoring data to estimated Legionella infection risks and Legionnaires' Disease (LD) illness risks. Legionella infection risks for a single shower event were compared using two shower Legionella exposure models. These models varied in their description of partitioning of Legionella in aerosols and aerosol deposition in the lung, where Model 1 had larger and fewer aerosol ranges than Model 2. Model 2 described conventional vs. water efficient showers separately, while Model 1 described exposure for an unspecified shower type (did not describe it as conventional or water efficient). A Monte Carlo approach was used to account for variability and uncertainty in these aerosolization and deposition parameters, Legionella concentrations, and the dose-response parameter. Methods for relating infection risks to illness risks accounting for demographic differences were used to inform the risk calculator web application ("app"). Model 2 consistently estimated higher infection risks than Model 1 for the same Legionella concentration in water and estimated deposited doses with less variability. For a 7.8-min shower with a Legionella concentration of 0.1 CFU/mL, the average infection risks estimated using Model 2 were 4.8 × 10-6 (SD=3.0 × 10-6) (conventional shower) and 2.3 × 10-6 (SD=1.7 × 10-6) (water efficient). Average infection risk estimated by Model 1 was 1.1 × 10-6 (SD=9.7 × 10-7). Model 2 was used for app development due to more conservative risk estimates and less variability in estimated dose. While multiple Legionella shower models are available for quantitative microbial risk assessments (QMRAs), they may yield notably different infection risks for the same environmental microbial concentration. Model comparisons will inform decisions regarding their integration with risk assessment tools. The development of risk calculator tools for relating environmental microbiology data to infection risks will increase the impact of exposure models for informing water treatment decisions and achieving risk targets.
Collapse
Affiliation(s)
- Amanda M Wilson
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States; Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, United States
| | - Kelly Canter
- Ecolab Research, Development & Engineering, Eagan, MN, United States
| | - Sarah E Abney
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States; Department of Soil, Water, and Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Charles P Gerba
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States; Department of Soil, Water, and Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Eric R Myers
- Nalco Water, An Ecolab Company, Naperville, IL, United States
| | - John Hanlin
- Ecolab Research, Development & Engineering, Eagan, MN, United States
| | - Kelly A Reynolds
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States.
| |
Collapse
|
5
|
Atkinson AJ, Morrison CM, Frehner W, Gerrity D, Wert EC. Design and operational considerations in response to Legionella occurrence in Las Vegas Valley groundwater. WATER RESEARCH 2022; 220:118615. [PMID: 35617788 DOI: 10.1016/j.watres.2022.118615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Legionella occurrence monitoring is not required by United States Environmental Protection Agency (USEPA) drinking water regulations, and few occurrence studies exist for Legionella in source water or distribution systems. Legionella occurrence was monitored in Las Vegas Valley (Las Vegas, Nevada, USA) drinking water sources, including non-treated surface water, seasonal groundwater (61 wells, before and after chlorination), finished water (after treatment at water treatment facilities), and chlorinated distribution system water (at 9 reservoirs and 75 sample locations throughout the network). Legionella pneumophila was detected at least once at each of the wells sampled before chlorination, with an overall positivity rate of 38% (343/908). During well start-up (time<2 hours; turbidity>3 NTU), L. pneumophila concentrations averaged 2,792±353 MPN/100 mL, with a median of 105 MPN/100 mL, and range of <1 to 90,490 MPN/100 mL across 61 seasonally operated (typically April-October) groundwater wells. After initial flushing (turbidity<3 NTU), the average concentration decreased by more than two orders of magnitude to 24±3 MPN/100 mL but ranged from <1 to >2,273 MPN/100 mL. This trend indicates that stagnation (up to 391 days) contributed to greater initial concentrations, and flushing alone was incapable of complete L. pneumophila elimination. L. pneumophila concentration was significantly, positively correlated with total aqueous adenosine triphosphate (ATP) (p<0.00001, r=0.41-0.71), turbidity (p<0.00001, r=0.27-0.51), orthophosphate (p=0.35-0.076, r=0.51-0.59), and pump depth (p=0.032, r=0.40). During a full-scale assessment of chlorination (Ct=0.7 to 10.5 mg-min/L; T=26.6-28.1°C), substantial reduction of Legionella spp. (up to 2.5 logs) was observed; although, detectable concentrations were still measured. Extrapolating from a Chick-Watson model (log inactivation=0.28*(Ct); R2=0.87) constructed from the full-scale chlorination results, 3- and 4-log inactivation in Las Vegas Valley groundwater would require 10.8 and 14.3 mg-min/L, respectively; at least 3-log inactivation was required to bring Legionella spp. to below detection at the studied well. Chlorine exposure (Ct=0.1 to 10.9 mg-min/L) at most wells discharging directly to the distribution system was insufficient to fully inactivate Legionella spp. After discussing these findings with the state regulatory agency, direct-to-distribution wells (38 of 61 wells) remained out of operation; the distribution system, wells, and reservoirs were monitored for Legionella and chlorine residual, and additional treatment scenarios were identified for further evaluation. Legionella was either not detected or was well controlled in surface water, finished effluent from the drinking water treatment plant, chlorinated reservoirs, and the chlorinated distribution system. This study emphasizes the importance of utility-driven, non-regulatory research in order to protect public health and also identifies the need for greater occurrence monitoring and guidance for Legionella in groundwater supplies.
Collapse
Affiliation(s)
- Ariel J Atkinson
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States.
| | - Christina M Morrison
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States
| | - Wilbur Frehner
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States
| | - Daniel Gerrity
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States
| | - Eric C Wert
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States
| |
Collapse
|
6
|
Hamilton KA, Kuppravalli A, Heida A, Joshi S, Haas CN, Verhougstraete M, Gerrity D. Legionnaires' disease in dental offices: Quantifying aerosol risks to dental workers and patients. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2021; 18:378-393. [PMID: 34161202 DOI: 10.1080/15459624.2021.1939878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Legionella pneumophila is an opportunistic bacterial respiratory pathogen that is one of the leading causes of drinking water outbreaks in the United States. Dental offices pose a potential risk for inhalation or aspiration of L. pneumophila due to the high surface area to volume ratio of dental unit water lines-a feature that is conducive to biofilm growth. This is coupled with the use of high-pressure water devices (e.g., ultrasonic scalers) that produce fine aerosols within the breathing zone. Prior research confirms that L. pneumophila occurs in dental unit water lines, but the associated human health risks have not been assessed. We aimed to: (1) synthesize the evidence for transmission and management of Legionnaires' disease in dental offices; (2) create a quantitative modeling framework for predicting associated L. pneumophila infection risk; and (3) highlight influential parameters and research gaps requiring further study. We reviewed outbreaks, management guidance, and exposure studies and used these data to parameterize a quantitative microbial risk assessment (QMRA) model for L. pneumophila in dental applications. Probabilities of infection for dental hygienists and patients were assessed on a per-exposure and annual basis. We also assessed the impact of varying ventilation rates and the use of personal protective equipment (PPE). Following an instrument purge (i.e., flush) and with a ventilation rate of 1.2 air changes per hour, the median per-exposure probability of infection for dental hygienists and patients exceeded a 1-in-10,000 infection risk benchmark. Per-exposure risks for workers during a purge and annual risks for workers wearing N95 masks did not exceed the benchmark. Increasing air change rates in the treatment room from 1.2 to 10 would achieve an ∼85% risk reduction, while utilization of N95 respirators would reduce risks by ∼95%. The concentration of L. pneumophila in dental unit water lines was a dominant parameter in the model and driver of risk. Future risk assessment efforts and refinement of microbiological control protocols would benefit from expanded occurrence datasets for L. pneumophila in dental applications.
Collapse
Affiliation(s)
- Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona
| | - Aditya Kuppravalli
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona
- BASIS Scottsdale High School, Scottsdale, Arizona
| | - Ashley Heida
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona
| | - Sayalee Joshi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona
| | - Charles N Haas
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania
| | - Marc Verhougstraete
- Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona
| | | |
Collapse
|
7
|
Huang C, Shen Y, Smith RL, Dong S, Nguyen TH. Effect of disinfectant residuals on infection risks from Legionella pneumophila released by biofilms grown under simulated premise plumbing conditions. ENVIRONMENT INTERNATIONAL 2020; 137:105561. [PMID: 32088542 DOI: 10.1016/j.envint.2020.105561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
The ubiquitous presence of biofilms in premise plumbing and stagnation, which commonly occurs in premise plumbing, can exacerbate the decay of chlorine residual in drinking water. Using biofilms grown in a simulated premise plumbing setup fed directly with freshly treated water at two full-scale water treatment plants, we previously determined the mass transfer coefficients for chlorine decay in premise plumbing. These coefficients coupled with inactivation kinetics of L. pneumophila released from biofilms reported previously were integrated into a Monte Carlo framework to estimate the infection risk of biofilm-derived L. pneumophila from 1 to 48 h of stagnation. The annual infection risk was significantly higher when water stayed stagnant for up to 48 h in pipes covered internally with biofilms, compared to clean pipes without biofilms. The decay of residual chlorine due to biofilms during 48-hour stagnation led to up to 6 times increase in the annual infection risk compared to the case where biofilms was absent. Global sensitivity analysis revealed that the rate of L. pneumophila detachment from biofilms and the decay of chlorine residual during stagnation are the two most important factors influencing the infection risks. Stagnation caused by water use patterns and water-saving devices in the premise plumbing can lead to increased infection risk by biofilm-derived L. pneumophila. Overall, this study's findings suggested that biofilms could induce chlorine decay and consequently increase L. pneumophila infection risk. Thus, reducing stagnation, maintaining residual chlorine, and suppressing biofilm growth could contribute to better management of L. pneumophila infection risk.
Collapse
Affiliation(s)
- Conghui Huang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Yun Shen
- Department of Chemical and Environmental Engineering, The University of California, Riverside, Riverside, CA 92521, United States
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Shengkun Dong
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
8
|
Madera-García V, Mraz AL, López-Gálvez N, Weir MH, Werner J, Beamer PI, Verhougstraete MP. Legionella pneumophila as a Health Hazard to Miners: A Pilot Study of Water Quality and QMRA. WATER 2019; 11:1528. [PMID: 31583125 PMCID: PMC6776080 DOI: 10.3390/w11081528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Legionella pneumophila (L. pneumophila), the causative agent of legionellosis, is an aquatic bacterium that grows in warm water. Humans are only presented with a health risk when aerosolized water containing L. pneumophila is inhaled. In mining operations, aerosolized water is used as dust control and as part of the drilling operations, a currently ignored exposure route. This study characterized L. pneumophila concentrations in the mine's non-potable water and the relationship between L. pneumophila and chlorine concentrations. These concentrations informed a quantitative microbial risk assessment (QMRA) model to estimate the infection risk to miners exposed to aerosolized water containing L. pneumophila. Fourteen water samples were collected from seven locations at a mine and analyzed for temperature, pH, chlorine, and L. pneumophila serogroup. Most samples (93%) tested positive for L. pneumophila cells. The faucet from the sprinkler system on the adit level (entrance to the underground mine levels) showed the highest concentration of L. pneumophila (8.35 × 104 MPN/L). Disability adjusted life years (DALYs) were estimated in the QMRA model and showed that the risk for all miners was significantly lower (p < 0.0001) with the ventilation system on than when the system was off. Our study showed that the use of a ventilation system at the adit level of the mine reduced the risk of infection with aerosolized L. pneumophila.
Collapse
Affiliation(s)
- Valerie Madera-García
- Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ 85724, USA
| | - Alexis L. Mraz
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19122, USA
| | - Nicolás López-Gálvez
- Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ 85724, USA
| | - Mark H. Weir
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - James Werner
- Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ 85724, USA
| | - Paloma I. Beamer
- Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ 85724, USA
| | - Marc P. Verhougstraete
- Department of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
9
|
Sharaby Y, Rodríguez-Martínez S, Höfle MG, Brettar I, Halpern M. Quantitative microbial risk assessment of Legionella pneumophila in a drinking water supply system in Israel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:404-410. [PMID: 30933796 DOI: 10.1016/j.scitotenv.2019.03.287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Legionella pneumophila cause human infections via inhalation of contaminated water aerosols, resulting in severe pneumonia. Legionella spp. prevalence was monitored in a drinking-water distribution system (DWDS) in Northern Israel. Five points (toilet faucets and showers) were sampled seasonally along a three years period. Toilet faucets and shower use, both generating aerosols, are known transmission routes for this pathogen and thus, present a potential health risk. Quantitative Microbial Risk Assessment (QMRA) was applied in order to assess the health risks posed by Legionella for these two exposure scenarios, while considering Legionella seasonality. The obtained results were compared with estimated tolerable risk levels of infection and of disease set by the USEPA and WHO. Both limits were expressed as Disability-Adjusted Life Years index (DALY) being 1 × 10-4 and 1 × 10-6, respectively. The QMRA revealed that the annual risk levels for both faucets and showers use exceeded the acceptable risk of infection with an average of 5.52 × 10-4 and 2.37 × 10-3 DALY'S per person per year, respectively. Annual risk levels were stable with no significant differences between the three years. Risk levels varied significantly between seasons by up to three orders of magnitude. Risk levels were highest during summer, autumn, and lowest during winter. The highest seasonal infection risk values were found in summer for both faucets and showers, which corresponded to 8.09 × 10-4 and 2.75 × 10-3 DALY'S per person per year, respectively. In conclusion, during summer and autumn there is a significant increase of the infection risk associated with exposure to Legionella-contaminated aerosols, in the studied water system. Public health assessment and prevention measures should focus on these seasons.
Collapse
Affiliation(s)
- Y Sharaby
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - S Rodríguez-Martínez
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - M G Höfle
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - I Brettar
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - M Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel; Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, Israel
| |
Collapse
|
10
|
Hamilton KA, Hamilton MT, Johnson W, Jjemba P, Bukhari Z, LeChevallier M, Haas CN, Gurian PL. Risk-Based Critical Concentrations of Legionella pneumophila for Indoor Residential Water Uses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4528-4541. [PMID: 30629886 DOI: 10.1021/acs.est.8b03000] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Legionella spp. is a key contributor to the United States waterborne disease burden. Despite potentially widespread exposure, human disease is relatively uncommon, except under circumstances where pathogen concentrations are high, host immunity is low, or exposure to small-diameter aerosols occurs. Water quality guidance values for Legionella are available for building managers but are generally not based on technical criteria. To address this gap, a quantitative microbial risk assessment (QMRA) was conducted using target risk values in order to calculate corresponding critical concentrations on a per-fixture and aggregate (multiple fixture exposure) basis. Showers were the driving indoor exposure risk compared to sinks and toilets. Critical concentrations depended on the dose response model (infection vs clinical severity infection, CSI), risk target used (infection risk vs disability adjusted life years [DALY] on a per-exposure or annual basis), and fixture type (conventional vs water efficient or "green"). Median critical concentrations based on exposure to a combination of toilet, faucet, and shower aerosols ranged from ∼10-2 to ∼100 CFU per L and ∼101 to ∼103 CFU per L for infection and CSI dose response models, respectively. As infection model results for critical L. pneumophila concentrations were often below a feasible detection limit for culture-based assays, the use of CSI model results for nonhealthcare water systems with a 10-6 DALY pppy target (the more conservative target) would result in an estimate of 12.3 CFU per L (arithmetic mean of samples across multiple fixtures and/or over time). Single sample critical concentrations with a per-exposure-corrected DALY target at each conventional fixture would be 1.06 × 103 CFU per L (faucets), 8.84 × 103 CFU per L (toilets), and 14.4 CFU per L (showers). Using a 10-4 annual infection risk target would give a 1.20 × 103 CFU per L mean for multiple fixtures and single sample critical concentrations of 1.02 × 105, 8.59 × 105, and 1.40 × 103 CFU per L for faucets, toilets, and showers, respectively. Annual infection risk-based target estimates are in line with most current guidance documents of less than 1000 CFU per L, while DALY-based guidance suggests lower critical concentrations might be warranted in some cases. Furthermore, approximately <10 CFU per mL L. pneumophila may be appropriate for healthcare or susceptible population settings. This analysis underscores the importance of the choice of risk target as well as sampling program considerations when choosing the most appropriate critical concentration for use in public health guidance.
Collapse
Affiliation(s)
- Kerry A Hamilton
- School for Sustainable Engineering and the Built Environment , Arizona State University , Tempe , Arizona 85281 , United States
- The Biodesign Institute Center for Environmental Health Engineering , Arizona State University , Tempe , Arizona 85281 , United States
| | - Mark T Hamilton
- Microsoft Applied Artificial Intelligence Group , 1 Memorial Drive , Cambridge , Massachusetts 02142 , United States
| | - William Johnson
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Patrick Jjemba
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Zia Bukhari
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Mark LeChevallier
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Charles N Haas
- Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - P L Gurian
- Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
11
|
Pepper IL, Gerba CP. Risk of infection from Legionella associated with spray irrigation of reclaimed water. WATER RESEARCH 2018; 139:101-107. [PMID: 29631185 DOI: 10.1016/j.watres.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 03/16/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Legionella pneumophila has been detected in reclaimed water used for spray irrigation of turfgrass in public parks and golf courses. This study determined the risks of infection from exposure to various levels of Legionella in reclaimed waters considering: the method of spray application; and the duration and frequency of exposure. Evaluation of these factors resulted in a risk of infection greater than 1:10,000 for several scenarios when the number of Legionella in the reclaimed water exceeded 1000 colony-forming units (CFU) per ml. Most current guidelines for control of Legionella in distribution systems recommend that increased monitoring or remedial action be taken when Legionella levels exceed 1000 to 10,000 CFU/ml. Based upon our risk assessment, these guidelines seem appropriate for reclaimed water systems where spray irrigation is practiced.
Collapse
Affiliation(s)
- Ian L Pepper
- Department of Soil, Water and Environmental Science, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ, 85745, USA
| | - Charles P Gerba
- Department of Soil, Water and Environmental Science, University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ, 85745, USA.
| |
Collapse
|
12
|
Hamilton KA, Hamilton MT, Johnson W, Jjemba P, Bukhari Z, LeChevallier M, Haas CN. Health risks from exposure to Legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers. WATER RESEARCH 2018; 134:261-279. [PMID: 29428779 DOI: 10.1016/j.watres.2017.12.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 05/05/2023]
Abstract
The use of reclaimed water brings new challenges for the water industry in terms of maintaining water quality while increasing sustainability. Increased attention has been devoted to opportunistic pathogens, especially Legionella pneumophila, due to its growing importance as a portion of the waterborne disease burden in the United States. Infection occurs when a person inhales a mist containing Legionella bacteria. The top three uses for reclaimed water (cooling towers, spray irrigation, and toilet flushing) that generate aerosols were evaluated for Legionella health risks in reclaimed water using quantitative microbial risk assessment (QMRA). Risks are compared using data from nineteen United States reclaimed water utilities measured with culture-based methods, quantitative PCR (qPCR), and ethidium-monoazide-qPCR. Median toilet flushing annual infection risks exceeded 10-4 considering multiple toilet types, while median clinical severity infection risks did not exceed this value. Sprinkler and cooling tower risks varied depending on meteorological conditions and operational characteristics such as drift eliminator performance. However, the greatest differences between risk scenarios were due to 1) the dose response model used (infection or clinical severity infection) 2) population at risk considered (residential or occupational) and 3) differences in laboratory analytical method. Theoretical setback distances necessary to achieve a median annual infection risk level of 10-4 are proposed for spray irrigation and cooling towers. In both cooling tower and sprinkler cases, Legionella infection risks were non-trivial at potentially large setback distances, and indicate other simultaneous management practices could be needed to manage risks. The sensitivity analysis indicated that the most influential factors for variability in risks were the concentration of Legionella and aerosol partitioning and/or efficiency across all models, highlighting the importance of strategies to manage Legionella occurrence in reclaimed water.
Collapse
Affiliation(s)
- Kerry A Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | - William Johnson
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Patrick Jjemba
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Zia Bukhari
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Mark LeChevallier
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Charles N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Rohilla A, Khare G, Tyagi AK. Virtual Screening, pharmacophore development and structure based similarity search to identify inhibitors against IdeR, a transcription factor of Mycobacterium tuberculosis. Sci Rep 2017; 7:4653. [PMID: 28680150 PMCID: PMC5498548 DOI: 10.1038/s41598-017-04748-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/18/2017] [Indexed: 11/09/2022] Open
Abstract
ideR, an essential gene of Mycobacterium tuberculosis, is an attractive drug target as its conditional knockout displayed attenuated growth phenotype in vitro and in vivo. To the best of our knowledge, no inhibitors of IdeR are identified. We carried out virtual screening of NCI database against the IdeR DNA binding domain followed by inhibition studies using EMSA. Nine compounds exhibited potent inhibition with NSC 281033 (I-20) and NSC 12453 (I-42) exhibiting IC50 values of 2 µg/ml and 1 µg/ml, respectively. We then attempted to optimize the leads firstly by structure based similarity search resulting in a class of inhibitors based on I-42 containing benzene sulfonic acid, 4-hydroxy-3-[(2-hydroxy-1-naphthalenyl) azo] scaffold with 4 molecules exhibiting IC50 ≤ 10 µg/ml. Secondly, optimization included development of energy based pharmacophore and screening of ZINC database followed by docking studies, yielding a molecule with IC50 of 60 µg/ml. More importantly, a five-point pharmacophore model provided insight into the features essential for IdeR inhibition. Five molecules with promising IC50 values also inhibited M. tuberculosis growth in broth culture with MIC90 ranging from 17.5 µg/ml to 100 µg/ml and negligible cytotoxicity in various cell lines. We believe our work opens up avenues for further optimization studies.
Collapse
Affiliation(s)
- Akshay Rohilla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez road, New Delhi, 110021, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez road, New Delhi, 110021, India.
| | - Anil K Tyagi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez road, New Delhi, 110021, India. .,Vice Chancellor, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, India.
| |
Collapse
|
14
|
Azuma K, Uchiyama I, Okumura J. Assessing the risk of Legionnaires' disease: the inhalation exposure model and the estimated risk in residential bathrooms. Regul Toxicol Pharmacol 2012. [PMID: 23195792 DOI: 10.1016/j.yrtph.2012.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Legionella are widely found in the built environment. Patients with Legionnaires' disease have been increasing in Japan; however, health risks from Legionella bacteria in the environment are not appropriately assessed. We performed a quantitative health risk assessment modeled on residential bathrooms in the Adachi outbreak area and estimated risk levels. The estimated risks in the Adachi outbreak approximately corresponded to the risk levels exponentially extrapolated into lower levels on the basis of infection and mortality rates calculated from actual outbreaks, suggesting that the model of Legionnaires' disease in residential bathrooms was adequate to predict disease risk for the evaluated outbreaks. Based on this model, the infection and mortality risk levels per year in 10 CFU/100 ml (100 CFU/L) of the Japanese water quality guideline value were approximately 10(-2) and 10(-5), respectively. However, acceptable risk levels of infection and mortality from Legionnaires' disease should be adjusted to approximately 10(-4) and 10(-7), respectively, per year. Therefore, a reference value of 0.1 CFU/100 ml (1 CFU/L) as a water quality guideline for Legionella bacteria is recommended. This value is occasionally less than the actual detection limit. Legionella levels in water system should be maintained as low as reasonably achievable (<1 CFU/L).
Collapse
Affiliation(s)
- Kenichi Azuma
- Department of Environmental Medicine and Behavioral Science, Kinki University, Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| | | | | |
Collapse
|
15
|
Buse HY, Schoen ME, Ashbolt NJ. Legionellae in engineered systems and use of quantitative microbial risk assessment to predict exposure. WATER RESEARCH 2012; 46:921-33. [PMID: 22209280 DOI: 10.1016/j.watres.2011.12.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/07/2011] [Accepted: 12/08/2011] [Indexed: 05/22/2023]
Abstract
While it is well-established that Legionella are able to colonize engineered water systems, the number of interacting factors contributing to their occurrence, proliferation, and persistence are unclear. This review summarizes current methods used to detect and quantify legionellae as well as the current knowledge of engineered water system characteristics that both favour and promote legionellae growth. Furthermore, the use of quantitative microbial risk assessment (QMRA) models to predict potentially critical human exposures to legionellae are also discussed. Understanding the conditions favouring Legionella occurrence in engineered systems and their overall ecology (growth in these systems/biofilms, biotic interactions and release) will aid in developing new treatment technologies and/or systems that minimize or eliminate human exposure to potentially pathogenic legionellae.
Collapse
Affiliation(s)
- Helen Y Buse
- National Exposure Research Laboratory, US Environmental Protection Agency, 26 W Martin Luther King Dr, MS 579, Cincinnati, OH 45268, USA.
| | | | | |
Collapse
|
16
|
Schoen ME, Ashbolt NJ. An in-premise model for Legionella exposure during showering events. WATER RESEARCH 2011; 45:5826-36. [PMID: 21924754 DOI: 10.1016/j.watres.2011.08.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 07/06/2011] [Accepted: 08/18/2011] [Indexed: 05/08/2023]
Abstract
An exposure model was constructed to predict the critical Legionella densities in an engineered water system that result in infection from inhalation of aerosols containing the pathogen while showering. The model predicted the Legionella densities in the shower air, water and in-premise plumbing biofilm that might result in a deposited dose of Legionella in the alveolar region of the lungs associated with infection for a routine showering event. Processes modeled included the detachment of biofilm-associated Legionella from the in-premise plumbing biofilm during a showering event, the partitioning of the pathogen from the shower water to the air, and the inhalation and deposition of particles in the lungs. The range of predicted critical Legionella densities in the air and water was compared to the available literature. The predictions were generally within the limited set of observations for air and water, with the exception of Legionella density within in-premise plumbing biofilms, for which there remains a lack of observations for comparison. Sensitivity analysis of the predicted results to possible changes in the uncertain input parameters identified the target deposited dose associated with infections, the pathogen air-water partitioning coefficient, and the quantity of detached biofilm from in-premise pluming surfaces as important parameters for additional data collection. In addition, the critical density of free-living protozoan hosts in the biofilm required to propagate the infectious Legionella was estimated. Together, this evidence can help to identify critical conditions that might lead to infection derived from pathogens within the biofilms of any plumbing system from which humans may be exposed to aerosols.
Collapse
Affiliation(s)
- Mary E Schoen
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | | |
Collapse
|
17
|
|
18
|
Armstrong TW, Haas CN. A quantitative microbial risk assessment model for Legionnaires' disease: animal model selection and dose-response modeling. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2007; 27:1581-96. [PMID: 18093054 DOI: 10.1111/j.1539-6924.2007.00990.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Legionnaires' disease (LD), first reported in 1976, is an atypical pneumonia caused by bacteria of the genus Legionella, and most frequently by L. pneumophila (Lp). Subsequent research on exposure to the organism employed various animal models, and with quantitative microbial risk assessment (QMRA) techniques, the animal model data may provide insights on human dose-response for LD. This article focuses on the rationale for selection of the guinea pig model, comparison of the dose-response model results, comparison of projected low-dose responses for guinea pigs, and risk estimates for humans. Based on both in vivo and in vitro comparisons, the guinea pig (Cavia porcellus) dose-response data were selected for modeling human risk. We completed dose-response modeling for the beta-Poisson (approximate and exact), exponential, probit, logistic, and Weibull models for Lp inhalation, mortality, and infection (end point elevated body temperature) in guinea pigs. For mechanistic reasons, including low-dose exposure probability, further work on human risk estimates for LD employed the exponential and beta-Poisson models. With an exposure of 10 colony-forming units (CFU) (retained dose), the QMRA model predicted a mild infection risk of 0.4 (as evaluated by seroprevalence) and a clinical severity LD case (e.g., hospitalization and supportive care) risk of 0.0009. The calculated rates based on estimated human exposures for outbreaks used for the QMRA model validation are within an order of magnitude of the reported LD rates. These validation results suggest the LD QMRA animal model selection, dose-response modeling, and extension to human risk projections were appropriate.
Collapse
Affiliation(s)
- T W Armstrong
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA.
| | | |
Collapse
|
19
|
Dias-Melicio LA, Calvi SA, Peraçoli MTS, Soares AMVDC. Inhibitory effect of deferoxamine on Paracoccidioides brasiliensis survival in human monocytes: reversal by holotransferrin not by apotransferrin. Rev Inst Med Trop Sao Paulo 2005; 47:263-6. [PMID: 16302109 DOI: 10.1590/s0036-46652005000500005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms used by Paracoccidioides brasiliensis to survive into phagocytic cells are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Thus, the objective of this paper was to investigate the role of intracellular iron in regulating the capacity of P. brasiliensis yeast cells to survive within human monocytes. Treatment of monocytes with deferoxamine, an iron chelator, suppressed the survival of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by nonsaturated transferrin (apotransferrin). These results strongly suggest that P. brasiliensis survival in human monocytes is iron dependent.
Collapse
Affiliation(s)
- Luciane Alarcão Dias-Melicio
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University, Botucatu, SP, Brazil.
| | | | | | | |
Collapse
|
20
|
Gold B, Rodriguez GM, Marras SA, Pentecost M, Smith I. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 2001; 42:851-65. [PMID: 11722747 DOI: 10.1046/j.1365-2958.2001.02684.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this work, we characterize genes in Mycobacterium tuberculosis that are regulated by IdeR (iron-dependent regulator), an iron-responsive DNA-binding protein of the DtxR family that has been shown to regulate iron acquisition in Mycobacterium smegmatis. To identify some of the genes that constitute the IdeR regulon, we searched the M. tuberculosis genome for promoter regions containing the consensus IdeR/DxR binding sequence. Genes preceded by IdeR boxes included a set encoding proteins necessary for iron acquisition, such as the biosynthesis of siderophores (mbtA, mbtB, mbtI), aromatic amino acids (pheA, hisE, hisB-like) and others annotated to be involved in the synthesis of iron-storage proteins (bfrA, bfrB). Some putative IdeR-regulated genes identified in this search encoded proteins predicted to be engaged in the biosynthesis of lipopolysaccharide (LPS)-like molecules (rv3402c), lipids (acpP) and peptidoglycan (murB). We analysed four promoter regions containing putative IdeR boxes, mbtA-mbtB, mbI, rv3402c and bfrA-bfd, for interaction with IdeR and for iron-dependent expression. Gel retardation experiments and DNase footprinting analyses with purified IdeR showed that IdeR binds to these IdeR boxes in vitro. Analysis of the promoters by primer extension indicated that the IdeR boxes are located near the -10 position of each promoter, suggesting that IdeR acts as a transcriptional repressor by blocking RNA polymerase binding. Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) coupled to molecular beacons, we showed that mRNA levels of mbtA, mbtB, mbtI, rv3402c and bfd are induced 14- to 49-fold in cultures of M. tuberculosis starved for iron, whereas mRNA levels of bfrA decreased about threefold. We present evidence that IdeR not only acts as a transcriptional repressor but also functions as an activator of bfrA. Three of the IdeR- and iron-repressed genes, mbtB, mbtI and rv3402c, were induced during M. tuberculosis infection of human THP-1 macrophages.
Collapse
Affiliation(s)
- B Gold
- Department of Microbiology, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
21
|
Liles MR, Scheel TA, Cianciotto NP. Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 2000; 182:749-57. [PMID: 10633110 PMCID: PMC94339 DOI: 10.1128/jb.182.3.749-757.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which Legionella pneumophila, a facultative intracellular parasite and the agent of Legionnaires' disease, acquires iron are largely unexplained. Several earlier studies indicated that L. pneumophila does not elaborate siderophores. However, we now present evidence that supernatants from L. pneumophila cultures can contain a nonproteinaceous, high-affinity iron chelator. More specifically, when aerobically grown in a low-iron, chemically defined medium (CDM), L. pneumophila secretes a substance that is reactive in the chrome azurol S (CAS) assay. Importantly, the siderophore-like activity was only observed when the CDM cultures were inoculated to relatively high density with bacteria that had been grown overnight to log or early stationary phase in CDM or buffered yeast extract. Inocula derived from late-stationary-phase cultures, despite ultimately growing, consistently failed to result in the elaboration of siderophore-like activity. The Legionella CAS reactivity was detected in the culture supernatants of the serogroup 1 strains 130b and Philadelphia-1, as well as those from representatives of other serogroups and other Legionella species. The CAS-reactive substance was resistant to boiling and protease treatment and was associated with the <1-kDa supernatant fraction. As would also be expected for a siderophore, the addition of 0.5 or 2.0 microM iron to the cultures repressed the expression of the CAS-reactive substance. Interestingly, the supernatants were negative in the Arnow, Csáky, and Rioux assays, indicating that the Legionella siderophore was not a classic catecholate or hydroxamate and, hence, might have a novel structure. We have designated the L. pneumophila siderophore legiobactin.
Collapse
Affiliation(s)
- M R Liles
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
22
|
Newman SL, Gootee L, Stroobant V, van der Goot H, Boelaert JR. Inhibition of growth of Histoplasma capsulatum yeast cells in human macrophages by the iron chelator VUF 8514 and comparison of VUF 8514 with deferoxamine. Antimicrob Agents Chemother 1995; 39:1824-9. [PMID: 7486926 PMCID: PMC162833 DOI: 10.1128/aac.39.8.1824] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Histoplasma capsulatum requires intracellular iron to survive and multiply within human and murine macrophages (M phi). Thus, iron chelators may be useful compounds in the treatment of histoplasmosis. In the present study we compared the efficacies of five different iron chelators with deferoxamine (DEF) for their capacity to inhibit the growth of H. capsulatum yeast cells in culture medium and within human M phi. Of the agents tested, only one, VUF 8514, a 2,2'-bipyridyl analog, was found to be effective. VUF 8514 inhibited the growth of yeast cells in tissue culture medium and within M phi in a dose-response fashion. In tissue culture medium, the 50% effective dose (ED50) of VUF 8514 was 30 nM and the ED50 of DEF was 1 mM. In human M phi, the ED50 of VUF 8514 was 520 nM and the ED50 of DEF was 4 mM. Thus, VUF 8514 was effective at a concentration 7.7 x 10(3)-fold lower than DEF in inhibiting the growth of yeast cells in M phi. Inhibition of the intracellular growth of yeast cells by VUF 8514 was reversed by holotransferrin and iron nitriloacetate, an iron compound that is soluble at neutral to alkaline pH. Thus, VUF 8514 inhibits the intracellular growth of yeast cells by acting as an iron chelator rather than through its capacity as a weak base. These data suggest that the hydroxamic acid siderophore of H. capsulatum yeast cells competes successfully for iron against some iron chelators but not others and that VUF 8514 may be a potential therapeutic agent for the treatment of histoplasmosis.
Collapse
Affiliation(s)
- S L Newman
- Department of Medicine, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
23
|
Newman SL, Gootee L, Brunner G, Deepe GS. Chloroquine induces human macrophage killing of Histoplasma capsulatum by limiting the availability of intracellular iron and is therapeutic in a murine model of histoplasmosis. J Clin Invest 1994; 93:1422-9. [PMID: 8163646 PMCID: PMC294155 DOI: 10.1172/jci117119] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We investigated the role of intracellular iron on the capacity of Histoplasma capsulatum (Hc) yeasts to multiply within human macrophages (Mphi). Coculture of Hc-infected Mphi with the iron chelator deferoxamine suppressed the growth of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by iron-free transferrin (apotransferrin). Chloroquine, which prevents release of iron from transferrin by raising endocytic and lysosomal pH, induced human Mphi to kill Hc. The effect of chloroquine was reversed by iron nitriloacetate, an iron compound that is soluble at neutral to alkaline pH, but not by holotransferrin, which releases iron only in an acidic environment. Chloroquine (40-120 mg/kg) given intraperitoneally for 6 d to Hc-infected C57BL/6 mice significantly reduced the growth of Hc in a dose-dependent manner. At 120 mg/kg there was a 17- and 15-fold reduction (P < 0.01) in CFU in spleens and livers, respectively. The therapeutic effect of chloroquine also correlated with the length of treatment. As little as 2 d of chloroquine therapy (120 mg/kg), when started at day 5 after infection, reduced CFU in the spleen by 50%. Treatment with chloroquine for 10 d after a lethal inoculum of Hc protected six of nine mice; all control mice were dead by day 11 (P = 0.009). This study demonstrates that: (a) iron is of critical importance to the survival and multiplication of Hc yeasts in human Mphi; (b) in vitro, chloroquine induces Mphi killing of Hc yeasts by restricting the availability of intracellular iron; and (c) in vivo, chloroquine significantly reduces the number of organisms in the spleens and livers of Hc-infected mice and can protect mice from a lethal inoculum of Hc yeasts. Thus, chloroquine may be effective in the treatment of active histoplasmosis and also may be useful in preventing relapse of histoplasmosis in patients with acquired immunodeficiency syndromes.
Collapse
Affiliation(s)
- S L Newman
- Department of Medicine, University of Cincinnati College of Medicine, Ohio 45267
| | | | | | | |
Collapse
|
24
|
Abstract
The abilities of bacterial pathogens to adapt to the environment within the host are essential to their virulence. Microorganisms have adapted to the iron limitation present in mammalian hosts by evolving diverse mechanisms for the assimilation of iron sufficient for growth. In addition, many bacterial pathogens have used the low concentration of iron present in the host as an important signal to enhance the expression of a wide variety of bacterial toxins and other virulence determinants. The molecular basis of coordinate regulation by iron has been most thoroughly studied in Escherichia coli. In this organism, coordinate regulation of gene expression by iron depends on the regulatory gene, fur. Regulation of gene expression by iron in a number of pathogenic organisms is coordinated by proteins homologous to the Fur protein of E. coli. Additional regulatory proteins may be superimposed on the Fur repressor to provide the fine-tuning necessary for the precise regulation of individual virulence genes in response to iron and other environmental signals. Studies of the mechanisms of regulation of iron acquisition systems and virulence determinants by iron should lead to a better understanding of the adaptive response of bacteria to the low-iron environment of the host and its importance in virulence.
Collapse
Affiliation(s)
- C M Litwin
- Infectious Disease Unit, Massachusetts General Hospital, Boston 02114
| | | |
Collapse
|
25
|
Morrill WE, Barbaree JM, Fields BS, Sanden GN, Martin WT. Increased recovery of Legionella micdadei and Legionella bozemanii on buffered charcoal yeast extract agar supplemented with albumin. J Clin Microbiol 1990; 28:616-8. [PMID: 2324282 PMCID: PMC269677 DOI: 10.1128/jcm.28.3.616-618.1990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The recovery of Legionella micdadei and L. bozemanii serogroups 1 and 2 from infected guinea pig spleens was evaluated by using two culture media: buffered charcoal yeast extract agar with 0.1% alpha-ketoglutarate (BCYE alpha) and the same medium supplemented with 1% bovine serum albumin (ABCYE alpha). At the lowest dilution of spleen tissue (10(-1)), recovery of all strains of L. micdadei and L. bozemanii was more efficient on ABCYE alpha than on BCYE alpha. L. micdadei strains had higher recovery rates on ABCYE alpha after another 10-fold dilution, but recoveries of L. bozemanii were similar on both media. Recovery rates for most test strains were comparable on BCYE alpha and ABCYE alpha at the highest dilution (10(-3)) of tissue tested. The presence of albumin in BCYE alpha increased the recovery rate of L. micdadei more than that of L. bozemanii. The use of ABCYE alpha medium in place of BCYE alpha may improve the recovery of L. micdadei and L. bozemanii from clinical specimens. Preliminary studies indicate that this medium also enhances recovery of certain Legionella spp. from environmental samples.
Collapse
Affiliation(s)
- W E Morrill
- Division of Bacterial Diseases, Centers for Disease Control, Atlanta, Georgia 30333
| | | | | | | | | |
Collapse
|
26
|
Abstract
The ability of bacterial pathogens to acquire iron in the host is an essential component of the disease process. Pathogenic Enterobacteriaceae spp. may either scavenge host iron sources such as heme or induce high-affinity iron-transport systems to remove iron from host proteins. The ease with which iron is acquired from the host will be at least partially determined by the iron status of the host at the time of infection. In response to infection, mammalian hosts reduce serum iron levels and withhold iron from the invading microorganisms. Thus the competition for iron is an active process which influences the outcome of a host-bacterial interaction.
Collapse
Affiliation(s)
- S M Payne
- Department of Microbiology, University of Texas, Austin
| |
Collapse
|
27
|
Twisk-Meijssen MJ, Meenhorst PL, van Cronenburg BJ, Mulder JD, Scheffer E, van Furth R. The course of Legionella pneumonia in guinea pigs after inhalation of various quantities of L. pneumophila. Immunobiology 1987; 176:108-24. [PMID: 3447980 DOI: 10.1016/s0171-2985(87)80104-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The course of legionella pneumonia in guinea pigs after infection with various quantities of virulent L. pneumophila serogroup 1 organisms by aerosol exposure was investigated. The clinical course, histopathological characteristics, manifestations in the lungs and clearance of the legionella organisms from the lungs and spleen were followed. Four groups were exposed to 4.3 X 10(4), 4.7 X 10(5), 5.0 X 10(6) and 1.0 X 10(8) aerosolized legionellae, respectively. The most striking clinical symptoms were fever and weight loss, which were found in 67-94% and 33-100% of the animals, depending on the dose of L. pneumophila organisms administered. Spontaneous death occurred only in animals receiving the highest dose and always within 10 days. All animals exhibited exponential growth of legionella organisms in the lungs. Maximal growth occurred 5 to 7 days after exposure and varied from 9.3 X 10(7) to 7.4 X 10(8) organisms/both lungs. Twenty-two days after exposure, legionellae could still be cultured from lung tissue. Between 2 and 7 days after exposure, the spleen cultures were positive for legionellae in 41% of the animals receiving the lowest dose and in 83% of all other animals; legionellae could no longer be cultured from spleen tissue after day 7. Depending on the dose, peripherally localized areas of bronchopneumonia increased in size with time, tending to become confluent lobar pneumonia. The microscopic changes were not related to the number of inhaled organisms. In the cellular infiltrate, PMN predominated until day 7 and macrophages thereafter. Seroconversion was found in all animals that survived greater than 7 days. The present animal model closely mimics the course of events in human legionella pneumonia, thus enabling us to further study the factors involved in host resistance against legionella as well as the efficacy of various antimicrobial agents in normal and immunosuppressed animals.
Collapse
Affiliation(s)
- M J Twisk-Meijssen
- Department of Infectious Diseases, University Hospital, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Cowart R. Iron regulation of growth and haemolysin production by Listeria monocytogenes. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0769-2609(87)90201-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|