1
|
Arconada Nuin E, Vilken T, Xavier BB, Doua J, Morrow B, Geurtsen J, Go O, Spiessens B, Sarnecki M, Poolman J, Bonten M, Ekkelenkamp M, Lammens C, Goossens H, Glupczynski Y, Van Puyvelde S. A microbiological and genomic perspective of globally collected Escherichia coli from adults hospitalized with invasive E. coli disease. J Antimicrob Chemother 2024; 79:2142-2151. [PMID: 39001716 PMCID: PMC11368426 DOI: 10.1093/jac/dkae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/14/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVES Escherichia coli can cause infections in the urinary tract and in normally sterile body sites leading to invasive E. coli disease (IED), including bacteraemia and sepsis, with older populations at increased risk. We aimed to estimate the theoretical coverage rate by the ExPEC4V and 9V vaccine candidates. In addition, we aimed at better understanding the diversity of E. coli isolates, including their genetic and phenotypic antimicrobial resistance (AMR), sequence types (STs), O-serotypes and the bacterial population structure. METHODS Blood and urine culture E. coli isolates (n = 304) were collected from hospitalized patients ≥60 years (n = 238) with IED during a multicentric, observational study across three continents. All isolates were tested for antimicrobial susceptibility, O-serotyped, whole-genome sequenced and bioinformatically analysed. RESULTS A large diversity of STs and of O-serotypes were identified across all centres, with O25b-ST131, O6-ST73 and O1-ST95 being the most prevalent types. A total of 45.4% and 64.7% of all isolates were found to have an O-serotype covered by the ExPEC4V and ExPEC9V vaccine candidates, respectively. The overall frequency of MDR was 37.4% and ST131 was predominant among MDR isolates. Low in-patient genetic variability was observed in cases where multiple isolates were collected from the same patient. CONCLUSIONS Our results highlight the predominance of MDR O25b-ST131 E. coli isolates across diverse geographic areas. These findings provide further baseline data on the theoretical coverage of novel vaccines targeting E. coli associated with IED in older adults and their associated AMR levels.
Collapse
Affiliation(s)
- Enya Arconada Nuin
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tuba Vilken
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Department of Medical Microbiology and Infection Control, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joachim Doua
- Janssen Research & Development, Infectious Diseases & Vaccines, Janssen Pharmaceutica, Beerse, Belgium
| | - Brian Morrow
- Janssen Research & Development, Raritan, NJ, USA
| | - Jeroen Geurtsen
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Oscar Go
- Janssen Research & Development, Raritan, NJ, USA
| | - Bart Spiessens
- Janssen Research & Development, Infectious Diseases & Vaccines, Janssen Pharmaceutica, Beerse, Belgium
| | - Michal Sarnecki
- Janssen Vaccines, Branch of Cilag GmbH International, Bern, Switzerland
| | - Jan Poolman
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Marc Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- ECRAID, Utrecht, The Netherlands
| | - Miquel Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Youri Glupczynski
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Sandra Van Puyvelde
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
2
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
3
|
Chorro L, Ndreu D, Patel A, Kodali S, Li Z, Keeney D, Dutta K, Sasmal A, Illenberger A, Torres CL, Pan R, Silmon de Monerri NC, Chu L, Simon R, Anderson AS, Donald RGK. Preclinical validation of an Escherichia coli O-antigen glycoconjugate for the prevention of serotype O1 invasive disease. Microbiol Spectr 2024; 12:e0421323. [PMID: 38700324 PMCID: PMC11237799 DOI: 10.1128/spectrum.04213-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
A US collection of invasive Escherichia coli serotype O1 bloodstream infection (BSI) isolates were assessed for genotypic and phenotypic diversity as the basis for designing a broadly protective O-antigen vaccine. Eighty percent of the BSI isolate serotype O1 strains were genotypically ST95 O1:K1:H7. The carbohydrate repeat unit structure of the O1a subtype was conserved in the three strains tested representing core genome multi-locus sequence types (MLST) sequence types ST95, ST38, and ST59. A long-chain O1a CRM197 lattice glycoconjugate antigen was generated using oxidized polysaccharide and reductive amination chemistry. Two ST95 strains were investigated for use in opsonophagocytic assays (OPA) with immune sera from vaccinated animals and in murine lethal challenge models. Both strains were susceptible to OPA killing with O1a glycoconjugate post-immune sera. One of these, a neonatal sepsis strain, was found to be highly lethal in the murine challenge model for which virulence was shown to be dependent on the presence of the K1 capsule. Mice immunized with the O1a glycoconjugate were protected from challenges with this strain or a second, genotypically related, and similarly virulent neonatal isolate. This long-chain O1a CRM197 lattice glycoconjugate shows promise as a component of a multi-valent vaccine to prevent invasive E. coli infections. IMPORTANCE The Escherichia coli serotype O1 O-antigen serogroup is a common cause of invasive bloodstream infections (BSI) in populations at risk such as newborns and the elderly. Sequencing of US BSI isolates and structural analysis of O polysaccharide antigens purified from strains that are representative of genotypic sub-groups confirmed the relevance of the O1a subtype as a vaccine antigen. O polysaccharide was purified from a strain engineered to produce long-chain O1a O-antigen and was chemically conjugated to CRM197 carrier protein. The resulting glycoconjugate elicited functional antibodies and was protective in mice against lethal challenges with virulent K1-encapsulated O1a isolates.
Collapse
Affiliation(s)
- Laurent Chorro
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Duston Ndreu
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Axay Patel
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Srinivas Kodali
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Zhenghui Li
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - David Keeney
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Kaushik Dutta
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Aniruddha Sasmal
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | - C. Lynn Torres
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Rosalind Pan
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | - Ling Chu
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Raphael Simon
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | | |
Collapse
|
4
|
Qiu L, Chirman D, Clark JR, Xing Y, Hernandez Santos H, Vaughan EE, Maresso AW. Vaccines against extraintestinal pathogenic Escherichia coli (ExPEC): progress and challenges. Gut Microbes 2024; 16:2359691. [PMID: 38825856 PMCID: PMC11152113 DOI: 10.1080/19490976.2024.2359691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Dylan Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Haroldo Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Cross AS. Hit 'em Where It Hurts: Gram-Negative Bacterial Lipopolysaccharide as a Vaccine Target. Microbiol Mol Biol Rev 2023; 87:e0004522. [PMID: 37432116 PMCID: PMC10521362 DOI: 10.1128/mmbr.00045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Infections with antimicrobial-resistant (AMR) bacteria pose an increasing threat to the ability to perform surgical procedures, organ transplantation, and treat cancer among many other medical conditions. There are few new antimicrobials in the development pipeline. Vaccines against AMR Gram-negative bacteria may reduce the use of antimicrobials and prevent bacterial transmission. This review traces the origins of lipopolysaccharide (LPS)-based vaccines against Gram-negative bacteria, the role of O polysaccharides and LPS core regions as potential vaccine targets, the development of new vaccine technologies, and their application to vaccines in current development.
Collapse
Affiliation(s)
- Alan S. Cross
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
van der Put RM, Metz B, Pieters RJ. Carriers and Antigens: New Developments in Glycoconjugate Vaccines. Vaccines (Basel) 2023; 11:vaccines11020219. [PMID: 36851097 PMCID: PMC9962112 DOI: 10.3390/vaccines11020219] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Glycoconjugate vaccines have proven their worth in the protection and prevention of infectious diseases. The introduction of the Haemophilus influenzae type b vaccine is the prime example, followed by other glycoconjugate vaccines. Glycoconjugate vaccines consist of two components: the carrier protein and the carbohydrate antigen. Current carrier proteins are tetanus toxoid, diphtheria toxoid, CRM197, Haemophilus protein D and the outer membrane protein complex of serogroup B meningococcus. Carbohydrate antigens have been produced mainly by extraction and purification from the original host. However, current efforts show great advances in the development of synthetically produced oligosaccharides and bioconjugation. This review evaluates the advances of glycoconjugate vaccines in the last five years. We focus on developments regarding both new carriers and antigens. Innovative developments regarding carriers are outer membrane vesicles, glycoengineered proteins, new carrier proteins, virus-like particles, protein nanocages and peptides. With regard to conjugated antigens, we describe recent developments in the field of antimicrobial resistance (AMR) and ESKAPE pathogens.
Collapse
Affiliation(s)
- Robert M.F. van der Put
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- Correspondence:
| | - Bernard Metz
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
7
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
8
|
Naini A, Bartetzko MP, Sanapala SR, Broecker F, Wirtz V, Lisboa MP, Parameswarappa SG, Knopp D, Przygodda J, Hakelberg M, Pan R, Patel A, Chorro L, Illenberger A, Ponce C, Kodali S, Lypowy J, Anderson AS, Donald RGK, von Bonin A, Pereira CL. Semisynthetic Glycoconjugate Vaccine Candidates against Escherichia coli O25B Induce Functional IgG Antibodies in Mice. JACS AU 2022; 2:2135-2151. [PMID: 36186572 PMCID: PMC9516715 DOI: 10.1021/jacsau.2c00401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a major health concern due to emerging antibiotic resistance. Along with O1A, O2, and O6A, E. coli O25B is a major serotype within the ExPEC group, which expresses a unique O-antigen. Clinical studies with a glycoconjugate vaccine of the above-mentioned O-types revealed O25B as the least immunogenic component, inducing relatively weak IgG titers. To evaluate the immunological properties of semisynthetic glycoconjugate vaccine candidates against E. coli O25B, we here report the chemical synthesis of an initial set of five O25B glycan antigens differing in length, from one to three repeat units, and frameshifts of the repeat unit. The oligosaccharide antigens were conjugated to the carrier protein CRM197. The resulting semisynthetic glycoconjugates induced functional IgG antibodies in mice with opsonophagocytic activity against E. coli O25B. Three of the oligosaccharide-CRM197 conjugates elicited functional IgGs in the same order of magnitude as a conventional CRM197 glycoconjugate prepared with native O25B O-antigen and therefore represent promising vaccine candidates for further investigation. Binding studies with two monoclonal antibodies (mAbs) revealed nanomolar anti-O25B IgG responses with nanomolar K D values and with varying binding epitopes. The immunogenicity and mAb binding data now allow for the rational design of additional synthetic antigens for future preclinical studies, with expected further improvements in the functional antibody responses. Moreover, acetylation of a rhamnose residue was shown to be likely dispensable for immunogenicity, as a deacylated antigen was able to elicit strong functional IgG responses. Our findings strongly support the feasibility of a semisynthetic glycoconjugate vaccine against E. coli O25B.
Collapse
Affiliation(s)
- Arun Naini
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Max Peter Bartetzko
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Someswara Rao Sanapala
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Felix Broecker
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Victoria Wirtz
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Marilda P. Lisboa
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | | | - Daniel Knopp
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Jessica Przygodda
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Matthias Hakelberg
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Rosalind Pan
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Axay Patel
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Laurent Chorro
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Arthur Illenberger
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Christopher Ponce
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Srinivas Kodali
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Jacqueline Lypowy
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | | | - Robert G. K. Donald
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Arne von Bonin
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Claney L. Pereira
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| |
Collapse
|
9
|
Nicolardi S, Danuser R, Dotz V, Domínguez-Vega E, Al Kaabi A, Beurret M, Anish C, Wuhrer M. Glycan and Protein Analysis of Glycoengineered Bacterial E. coli Vaccines by MALDI-in-Source Decay FT-ICR Mass Spectrometry. Anal Chem 2022; 94:4979-4987. [PMID: 35293727 PMCID: PMC8969423 DOI: 10.1021/acs.analchem.1c04690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 01/28/2023]
Abstract
Bacterial glycoconjugate vaccines have a major role in preventing microbial infections. Immunogenic bacterial glycans, such as O-antigen polysaccharides, can be recombinantly expressed and combined with specific carrier proteins to produce effective vaccines. O-Antigen polysaccharides are typically polydisperse, and carrier proteins can have multiple glycosylation sites. Consequently, recombinant glycoconjugate vaccines have a high structural heterogeneity, making their characterization challenging. Since development and quality control processes rely on such characterization, novel strategies are needed for faster and informative analysis. Here, we present a novel approach employing minimal sample preparation and ultrahigh-resolution mass spectrometry analysis for protein terminal sequencing and characterization of the oligosaccharide repeat units of bacterial glycoconjugate vaccines. Three glycoconjugate vaccine candidates, obtained from the bioconjugation of the O-antigen polysaccharides from E. coli serotypes O2, O6A, and O25B with the genetically detoxified exotoxin A from Pseudomonas aeruginosa, were analyzed by MALDI-in-source decay (ISD) FT-ICR MS. Protein and glycan ISD fragment ions were selectively detected using 1,5-diaminonaphtalene and a 2,5-dihydroxybenzoic acid/2-hydroxy-5-methoxybenzoic acid mixture (super-DHB) as a MALDI matrix, respectively. The analysis of protein fragments required the absence of salts in the samples, while the presence of salt was key for the detection of sodiated glycan fragments. MS/MS analysis of O-antigen ISD fragments allowed for the detection of specific repeat unit signatures. The developed strategy requires minute sample amounts, avoids the use of chemical derivatizations, and comes with minimal hands-on time allowing for fast corroboration of key structural features of bacterial glycoconjugate vaccines during early- and late-stage development.
Collapse
Affiliation(s)
- Simone Nicolardi
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Renzo Danuser
- Janssen
Vaccines AG (Branch of Cilag GmbH International), Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | - Viktoria Dotz
- Bacterial
Vaccine Discovery & Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ali Al Kaabi
- Janssen
Vaccines AG (Branch of Cilag GmbH International), Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | - Michel Beurret
- Bacterial
Vaccine Discovery & Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Chakkumkal Anish
- Bacterial
Vaccine Discovery & Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
10
|
Preclinical Immunogenicity and Efficacy of Optimized O25b O-Antigen Glycoconjugates To Prevent MDR ST131 E. coli Infections. Infect Immun 2022; 90:e0002222. [PMID: 35311580 PMCID: PMC9022517 DOI: 10.1128/iai.00022-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Multivalent O-antigen polysaccharide glycoconjugate vaccines are under development to prevent invasive infections caused by pathogenic Enterobacteriaceae. Sequence type 131 (ST131) Escherichia coli of serotype O25b has emerged as the predominant lineage causing invasive multidrug-resistant extraintestinal pathogenic E. coli (ExPEC) infections. We observed the prevalence of E. coli O25b ST131 among a contemporary collection of isolates from U.S. bloodstream infections from 2013 to 2016 (n = 444) and global urinary tract infections from 2014 to 2017 (n = 102) to be 25% and 24%, respectively. To maximize immunogenicity of the serotype O25b O antigen, we investigated glycoconjugate properties, including CRM197 carrier protein cross-linking (single-end versus cross-linked “lattice”) and conjugation chemistry (reductive amination chemistry in dimethyl sulfoxide [RAC/DMSO] versus ((2-((2-oxoethyl)thio)ethyl)carbamate [eTEC] linker). Using opsonophagocytic assays (OPAs) to measure serum functional antibody responses to vaccination, we observed that higher-molecular-mass O25b long-chain lattice conjugates showed improved immunogenicity in mice compared with long- or short-chain O antigens conjugated via single-end attachment. The lattice conjugates protected mice from lethal challenge with acapsular O25b ST131 strains as well as against hypervirulent O25b isolates expressing K5 or K100 capsular polysaccharides. A single 1-μg dose of long-chain O25b lattice conjugate constructed with both chemistries also elicited robust serum IgG and OPA responses in cynomolgus macaques. Our findings show that key properties of the O-antigen carrier protein conjugate such as saccharide epitope density and degree of intermolecular cross-linking can significantly enhance functional immunogenicity.
Collapse
|
11
|
Jansen KU, Gruber WC, Simon R, Wassil J, Anderson AS. The impact of human vaccines on bacterial antimicrobial resistance. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4031-4062. [PMID: 34602924 PMCID: PMC8479502 DOI: 10.1007/s10311-021-01274-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 05/07/2023]
Abstract
At present, the dramatic rise in antimicrobial resistance (AMR) among important human bacterial pathogens is reaching a state of global crisis threatening a return to the pre-antibiotic era. AMR, already a significant burden on public health and economies, is anticipated to grow even more severe in the coming decades. Several licensed vaccines, targeting both bacterial (Haemophilus influenzae type b, Streptococcus pneumoniae, Salmonella enterica serovar Typhi) and viral (influenza virus, rotavirus) human pathogens, have already proven their anti-AMR benefits by reducing unwarranted antibiotic consumption and antibiotic-resistant bacterial strains and by promoting herd immunity. A number of new investigational vaccines, with a potential to reduce the spread of multidrug-resistant bacterial pathogens, are also in various stages of clinical development. Nevertheless, vaccines as a tool to combat AMR remain underappreciated and unfortunately underutilized. Global mobilization of public health and industry resources is key to maximizing the use of licensed vaccines, and the development of new prophylactic vaccines could have a profound impact on reducing AMR.
Collapse
Affiliation(s)
| | | | - Raphael Simon
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| | - James Wassil
- Pfizer Patient and Health Impact, Collegeville, PA USA
- Present Address: Vaxcyte, 353 Hatch Drive, Foster City, CA 94404 USA
| | | |
Collapse
|
12
|
Kowarik M, Wetter M, Haeuptle MA, Braun M, Steffen M, Kemmler S, Ravenscroft N, De Benedetto G, Zuppiger M, Sirena D, Cescutti P, Wacker M. The development and characterization of an E. coli O25B bioconjugate vaccine. Glycoconj J 2021; 38:421-435. [PMID: 33730261 PMCID: PMC8260533 DOI: 10.1007/s10719-021-09985-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/03/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) cause a wide range of clinical diseases such as bacteremia and urinary tract infections. The increase of multidrug resistant ExPEC strains is becoming a major concern for the treatment of these infections and E. coli has been identified as a critical priority pathogen by the WHO. Therefore, the development of vaccines has become increasingly important, with the surface lipopolysaccharide constituting a promising vaccine target. This study presents genetic and structural analysis of clinical urine isolates from Switzerland belonging to the serotype O25. Approximately 75% of these isolates were shown to correspond to the substructure O25B only recently described in an emerging clone of E. coli sequence type 131. To address the high occurrence of O25B in clinical isolates, an O25B glycoconjugate vaccine was prepared using an E. coli glycosylation system. The O antigen cluster was integrated into the genome of E. coli W3110, thereby generating an E. coli strain able to synthesize the O25B polysaccharide on a carrier lipid. The polysaccharide was enzymatically conjugated to specific asparagine side chains of the carrier protein exotoxin A (EPA) of Pseudomonas aeruginosa by the PglB oligosaccharyltransferase from Campylobacter jejuni. Detailed characterization of the O25B-EPA conjugate by use of physicochemical methods including NMR and GC-MS confirmed the O25B polysaccharide structure in the conjugate, opening up the possibility to develop a multivalent E. coli conjugate vaccine containing O25B-EPA.
Collapse
Affiliation(s)
- Michael Kowarik
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland.
- LimmaTech Biologics AG, Grabenstrasse 3, 8952, Schlieren, Switzerland.
| | - Michael Wetter
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Micha A Haeuptle
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
- Molecular Partners AG, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Martin Braun
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
- LimmaTech Biologics AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
| | - Michael Steffen
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
- LimmaTech Biologics AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
| | - Stefan Kemmler
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
- Numab Therapeutics AG, Einsiedlerstrasse 34, 8820, Wädenswil, Switzerland
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Gianluigi De Benedetto
- Dip. di Scienze della Vita, University di Trieste, 34127, Trieste, Italy
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Matthias Zuppiger
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
- LimmaTech Biologics AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
| | - Dominique Sirena
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
- LimmaTech Biologics AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
- GlycoEra AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
| | - Paola Cescutti
- Dip. di Scienze della Vita, University di Trieste, 34127, Trieste, Italy
| | - Michael Wacker
- GlycoVaxyn AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
- Wacker Biotech Consulting AG, Heuelstrasse 22, 8800, Thalwil, Switzerland
| |
Collapse
|
13
|
The current state of immunization against Gram-negative bacteria in children: a review of the literature. Curr Opin Infect Dis 2021; 33:517-529. [PMID: 33044242 DOI: 10.1097/qco.0000000000000687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Gram-negative bacteria (GNB) are a major cause of infection worldwide and multidrug resistance in infants and children. The major pathogens include Klebsiella pneumoniae, Escherichia coli, Enterobacter spp., Pseudomonas aeruginosa and Acinetobacter baumannii. With new antibiotic options limited, immunization is likely to play a critical role in prevention. This review discusses their epidemiology, the current state of vaccine research and potential immunization strategies to protect children. A comprehensive review of the literature, conference abstracts along with web searches was performed to identify current and investigational vaccines against the major GNB in children. RECENT FINDINGS Phase I--III vaccine trials have been undertaken for the major Gram-negative bacteria but not in infants or children. E. coli is a common infection in immune-competent children, including neonatal sepsis. Several vaccines are in late-phase clinical trials, with some already licensed for recurrent urinary tract infections in women. Klebsiella spp. causes community-acquired and hospital-acquired infections, including sepsis in neonates and immunocompromised children although no vaccine trials have extended beyond early phase 2 trials. P. aeruginosa is a common pathogen in patients with cystic fibrosis. Phase 1--3 vaccine and monoclonal antibody trials are in progress, although candidates provide limited coverage against pathogenic strains. Enterobacter spp. and A. baumannii largely cause hospital-acquired infections with experimental vaccines limited to phase 1 research. SUMMARY The current immunization pipelines for the most prevalent GNB are years away from licensure. Similar to incentives for new antibiotics, global efforts are warranted to expedite the development of effective vaccines.
Collapse
|
14
|
A step further in a vaccine for Escherichia coli. THE LANCET. INFECTIOUS DISEASES 2019; 19:565-567. [PMID: 31079948 DOI: 10.1016/s1473-3099(19)30069-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022]
|
15
|
Huttner A, Gambillara V. The development and early clinical testing of the ExPEC4V conjugate vaccine against uropathogenic Escherichia coli. Clin Microbiol Infect 2018; 24:1046-1050. [PMID: 29803843 DOI: 10.1016/j.cmi.2018.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
OBJECTIVES In this 'how it was done' narrative review, we provide a description of, and context for, the early development of a conjugate vaccine targeting extra-intestinal, pathogenic Escherichia coli (ExPEC), from its creation in the laboratory to its testing in a large, first-in-human phase Ib trial. SOURCES We searched the Pubmed database for previous attempts to develop vaccines against ExPEC, and we provide data from laboratory and trial databases established during the development of ExPEC4V, the tetravalent conjugate vaccine candidate. CONTENT Earlier attempts at ExPEC vaccines had mixed success: whole-cell or cell-lysate preparations have limited effectiveness, and though an early conjugate vaccine was immunogenic in animal models, its development stalled before extensive clinical testing could occur. The development of the current conjugate vaccine candidate, ExPEC4V, began at a population level, with an epidemiological survey to determine the most common E. coli serotypes causing urinary tract infections (UTI) in Switzerland, Germany and the USA. The O antigens of the four most prevalent serotypes were selected for inclusion in ExPEC4V. After its creation in the laboratory by means of an in vivo bioconjugation process engineered to occur within E. coli cells, ExPEC4V underwent toxicity and immunogenicity testing in animal models. It then underwent safety and immunogenicity testing in a first-in-human, phase Ib multicentre trial, whose population of healthy women with a history of recurrent UTI allowed for an additional, preliminary assessment of the candidate's clinical efficacy. IMPLICATIONS Laboratory development and early phase I testing were successful, as the vaccine candidate emerged with strong safety and immunogenicity profiles. The clinical trial was ultimately underpowered to detect a significant reduction in vaccine-specific E. coli UTI, though it showed a significant decrease in the incidence of UTI caused by E. coli of any serotype. We discuss the findings, including the lessons learned.
Collapse
Affiliation(s)
- A Huttner
- Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - V Gambillara
- LimmaTech Biologics AG, Schlieren ZH, Switzerland
| |
Collapse
|
16
|
Abstract
Escherichia coli has a complex and versatile nature and continuously evolves from non-virulent isolates to highly pathogenic strains causing severe diseases and outbreaks. Broadly protective vaccines against pathogenic E. coli are not available and the rising in both, multi-drug resistant and hypervirulent isolates, raise concern for healthcare and require continuous efforts in epidemiologic surveillance and disease monitoring. The evolving knowledge on E. coli pathogenesis mechanisms and on the mediated immune response following infection or vaccination, together with advances in the "omics" technologies, is opening new perspectives toward the design and development of effective and innovative E. coli vaccines.
Collapse
|
17
|
Abbanat D, Davies TA, Amsler K, He W, Fae K, Janssen S, Poolman JT, van den Dobbelsteen GPJM. Development and Qualification of an Opsonophagocytic Killing Assay To Assess Immunogenicity of a Bioconjugated Escherichia coli Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00123-17. [PMID: 28971965 PMCID: PMC5717180 DOI: 10.1128/cvi.00123-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022]
Abstract
The global burden of disease caused by extraintestinal pathogenic Escherichia coli (ExPEC) is increasing as the prevalence of multidrug-resistant strains rises. A multivalent ExPEC O-antigen bioconjugate vaccine could have a substantial impact in preventing bacteremia and urinary tract infections. Development of an ExPEC vaccine requires a readout to assess the functionality of antibodies. We developed an opsonophagocytic killing assay (OPA) for four ExPEC serotypes (serotypes O1A, O2, O6A, and O25B) based on methods established for pneumococcal conjugate vaccines. The performance of the assay was assessed with human serum by computing the precision, linearity, trueness, total error, working range, and specificity. Serotypes O1A and O6A met the acceptance criteria for precision (coefficient of variation for repeatability and intermediate precision, ≤50%), linearity (90% confidence interval of the slope of each strain, 0.80, 1.25), trueness (relative bias range, -30% to 30%), and total error (total error range, -65% to 183%) at five serum concentrations and serotypes O2 and O25B met the acceptance criteria at four concentrations (the lowest concentration for serotypes O2 and O25B did not meet the system suitability test of maximum killing of ≥85% of E. coli cells). All serotypes met the acceptance criteria for specificity (opsonization index value reductions of ≤20% for heterologous serum preadsorption and ≥70% for homologous serum preadsorption). The assay working range was defined on the basis of the lowest and highest concentrations at which the assay jointly fulfilled the target acceptance criteria for linearity, precision, and accuracy. An OPA suitable for multiple E. coli serotypes has been developed, qualified, and used to assess the immunogenicity of a 4-valent E. coli bioconjugate vaccine (ExPEC4V) administered to humans.
Collapse
Affiliation(s)
- Darren Abbanat
- Janssen Research & Development, Raritan, New Jersey, USA
| | - Todd A Davies
- Janssen Research & Development, Raritan, New Jersey, USA
| | - Karen Amsler
- Janssen Research & Development, Raritan, New Jersey, USA
| | - Wenping He
- Janssen Research & Development, Raritan, New Jersey, USA
| | - Kellen Fae
- Janssen Vaccines & Prevention B.V., Bacterial Vaccines Discovery & Early Development, Leiden, The Netherlands
| | - Sarah Janssen
- Janssen Vaccines & Prevention B.V., Statistics & Decision Sciences, Leiden, The Netherlands
| | - Jan T Poolman
- Janssen Vaccines & Prevention B.V., Bacterial Vaccines Discovery & Early Development, Leiden, The Netherlands
| | | |
Collapse
|
18
|
Abstract
Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essential step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis.
Collapse
|
19
|
van den Biggelaar AHJ, Richmond PC, Fuery A, Anderson D, Opa C, Saleu G, Lai M, Francis JP, Alpers MP, Pomat WS, Lehmann D. Pneumococcal responses are similar in Papua New Guinean children aged 3-5 years vaccinated in infancy with pneumococcal polysaccharide vaccine with or without prior pneumococcal conjugate vaccine, or without pneumococcal vaccination. PLoS One 2017; 12:e0185877. [PMID: 29028802 PMCID: PMC5640225 DOI: 10.1371/journal.pone.0185877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
Trial design In an earlier trial, Papua New Guinean (PNG) children at high risk of pneumococcal disease were randomized to receive 0 or 3 doses of 7-valent pneumococcal conjugate vaccine (PCV7), followed by a single dose of 23-valent pneumococcal polysaccharide vaccine (PPV23) at 9 months of age. We here studied in a non-randomized follow-up trial the persistence of pneumococcal immunity in these children at 3–5 years of age (n = 132), and in 121 community controls of a similar age with no prior pneumococcal vaccination. Methods Circulating IgG antibody titers to all PCV7 and PPV23-only serotypes 2, 5 and 7F were measured before and after challenge with 1/5th of a normal PPV23 dose. Serotype-specific memory B-cells were enumerated at 10 months and 3–5 years of age for a subgroup of study children. Results Serotype-specific IgG antibody titers before and after challenge were similar for children who received PCV7/PPV23, PPV23 only, or no pneumococcal vaccines. Before challenge, at least 89% and 59% of children in all groups had serotype-specific titers ≥ 0.35μg/ml and ≥ 1.0 μg/ml, respectively. Post-challenge antibody titers were higher or similar to pre-challenge titers for most children independent of pneumococcal vaccination history. The rise in antibody titers was significantly lower when pre-challenge titers were higher. Overall the relative number of serotype-specific memory B-cells remained the same or increased between 10 months and 3–5 years of age, and there were no differences in serotype-specific memory B-cell numbers at 3–5 years of age between the three groups. Conclusions Immunity induced by PCV7 and/or PPV23 immunization in infancy does not exceed that of naturally acquired immunity in 3-5-year-old children living in a highly endemic area. Also, there was no evidence that PPV23 immunization in the first year of life following PCV7 priming induces longer-term hypo-responsiveness. Trial registration Clinicaltrials.gov NCT01414504 and NCT00219401.
Collapse
Affiliation(s)
| | - Peter C. Richmond
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
- * E-mail: (AvdB); (PR)
| | - Angela Fuery
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Christine Opa
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Gerard Saleu
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Mildred Lai
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Jacinta P. Francis
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Michael P. Alpers
- International Health, School of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - William S. Pomat
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Deborah Lehmann
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Bröker M, Berti F, Schneider J, Vojtek I. Polysaccharide conjugate vaccine protein carriers as a "neglected valency" - Potential and limitations. Vaccine 2017; 35:3286-3294. [PMID: 28487056 DOI: 10.1016/j.vaccine.2017.04.078] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/01/2022]
Abstract
The development of vaccines against polysaccharide-encapsulated pathogens (e.g. Haemophilus influenzae type b, pneumococci, meningococci) is challenging because polysaccharides do not elicit a strong and long-lasting immune response (i.e. T-cell independent). This can be overcome by conjugating the polysaccharide to a protein carrier (e.g. tetanus toxoid, cross-reacting material 197 [CRM]), which vastly improves the immune response and induces memory to the polysaccharide (T-cell dependent). Although it is well documented that protein carriers additionally induce an immune response against themselves, this potential "additional valency" has so far not been recognized. The only exception is for the protein D carrier (derived from non-typeable Haemophilus influenzae [NTHi]) used in a pneumococcal conjugate vaccine, which may have a beneficial impact on NTHi acute otitis media. In this review, we describe the immunogenicity of various protein carriers and discuss their potential dual function: as providers of T-cell helper epitopes and as protective antigens. If this "additional valency" could be proven to be protective, it may be possible to consider its potential effect on the number of required immunizations. We also describe the potential for positive or negative interference between conjugate vaccines using the same protein carriers, the resulting desire for novel carriers, and information on potential new carriers. The range of conjugate vaccines is ever expanding, with different carriers and methods of conjugation. We propose that new conjugate vaccine trials should assess immunogenicity to both the polysaccharide and carrier. Ultimately, this so-far "neglected valency" could be an exploitable characteristic of polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Michael Bröker
- GSK Vaccines GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany.
| | | | - Joerg Schneider
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | - Ivo Vojtek
- GSK Vaccines, Avenue Fleming 20, 1300 Wavre, Belgium.
| |
Collapse
|
21
|
Huttner A, Hatz C, van den Dobbelsteen G, Abbanat D, Hornacek A, Frölich R, Dreyer AM, Martin P, Davies T, Fae K, van den Nieuwenhof I, Thoelen S, de Vallière S, Kuhn A, Bernasconi E, Viereck V, Kavvadias T, Kling K, Ryu G, Hülder T, Gröger S, Scheiner D, Alaimo C, Harbarth S, Poolman J, Fonck VG. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. THE LANCET. INFECTIOUS DISEASES 2017; 17:528-537. [PMID: 28238601 DOI: 10.1016/s1473-3099(17)30108-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 01/27/2023]
Abstract
BACKGROUND Escherichia coli infections are increasing worldwide in community and hospital settings. The E coli O-antigen is a promising vaccine target. We aimed to assess the safety and immunogenicity of a bioconjugate vaccine containing the O-antigens of four E coli serotypes (ExPEC4V). METHODS In this multicentre phase 1b, first-in-human, single-blind, placebo-controlled trial, we randomly assigned (1:1) healthy adult women with a history of recurrent urinary tract infection (UTI) to receive a single injection of either intramuscular ExPEC4V or placebo. The primary outcome was the incidence of adverse events among vaccine and placebo recipients throughout the study. Secondary outcomes included immunogenicity and antibody functionality, and the incidence of UTIs caused by E coli vaccine serotypes in each group. This study is registered with ClinicalTrials.gov, number NCT02289794. FINDINGS Between Jan 20, 2014, and Aug 27, 2014, 93 women received target-dose ExPEC4V and 95 received placebo. The vaccine was well tolerated: no vaccine-related serious adverse events occurred. Overall, 56 (60%) target-dose vaccines and 47 (49%) placebo recipients experienced at least one adverse event that was possibly, probably, or certainly related to injection. Vaccination induced significant IgG responses for all serotypes: at day 30 compared with baseline, O1A titres were 4·6 times higher, O2 titres were 9·4 times higher, O6A titres were 4·9 times higher, and O25B titres were 5·9 times higher (overall p<0·0001). Immune responses persisted at 270 days but were lower than those at 30 days. Opsonophagocytic killing activity showed antibody functionality. No reduction in the incidence of UTIs with 103 or more colony-forming units per mL of vaccine-serotype E coli was noted in the vaccine compared with the placebo group (0·149 mean episodes vs 0·146 mean episodes; p=0·522). In post-hoc exploratory analyses of UTIs with higher bacterial counts (≥105 colony-forming units per mL), the number of vaccine serotype UTIs did not differ significantly between groups (0·046 mean episodes in the vaccine group vs 0·110 mean episodes in the placebo group; p=0·074). However, significantly fewer UTIs caused by E coli of any serotype were noted in the vaccine group compared with the placebo group (0·207 mean episodes vs 0·463 mean episodes; p=0·002). INTERPRETATION This tetravalent E coli bioconjugate vaccine candidate was well tolerated and elicited functional antibody responses against all vaccine serotypes. Phase 2 studies have been initiated to confirm these findings. FUNDING GlycoVaxyn, Janssen Vaccines.
Collapse
Affiliation(s)
- Angela Huttner
- Infection Control Program, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - Christoph Hatz
- Epidemiology, Biostatistics and Prevention Institute, Zurich University, Zurich, Switzerland; Swiss Tropical and Public Health Institute, Basel University, Basel, Switzerland
| | | | | | | | | | | | | | - Todd Davies
- Janssen Research and Development, Raritan, NJ, USA
| | - Kellen Fae
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention, Leiden, Netherlands
| | - Ingrid van den Nieuwenhof
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention, Leiden, Netherlands
| | - Stefan Thoelen
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention, Leiden, Netherlands
| | - Serge de Vallière
- Policlinique Médicale Universitaire and Service of Infectious Diseases, University Hospital Lausanne, Lausanne, Switzerland
| | - Anette Kuhn
- Universitätsklinik für Frauenheilkunde, University Hospital Bern, Bern, Switzerland
| | | | - Volker Viereck
- Blasen-und Beckenbodenzentrum, Kantonsspital Frauenfeld, Frauenfeld, Switzerland
| | | | - Kerstin Kling
- Swiss Tropical and Public Health Institute, Basel University, Basel, Switzerland
| | - Gloria Ryu
- Frauenklinik, Kantonsspital Aarau, Aarau, Switzerland
| | - Tanja Hülder
- Frauenklinik, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Sabine Gröger
- Neue Frauenklinik, Luzerner Kantonsspital, Lucerne, Switzerland
| | - David Scheiner
- Department of Gynecology, University Hospital Zurich, Zurich, Switzerland
| | | | - Stephan Harbarth
- Infection Control Program, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Jan Poolman
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention, Leiden, Netherlands
| | | |
Collapse
|
22
|
van den Dobbelsteen GPJM, Faé KC, Serroyen J, van den Nieuwenhof IM, Braun M, Haeuptle MA, Sirena D, Schneider J, Alaimo C, Lipowsky G, Gambillara-Fonck V, Wacker M, Poolman JT. Immunogenicity and safety of a tetravalent E. coli O-antigen bioconjugate vaccine in animal models. Vaccine 2016; 34:4152-4160. [PMID: 27395567 DOI: 10.1016/j.vaccine.2016.06.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/10/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Extra-intestinal pathogenic Escherichia coli (ExPEC) are major human pathogens; however, no protective vaccine is currently available. We assessed in animal models the immunogenicity and safety of a 4-valent E. coli conjugate vaccine (ExPEC-4V, serotypes O1, O2, O6 and O25 conjugated to Exotoxin A from Pseudomonas aeruginosa (EPA)) produced using a novel in vivo bioconjugation method. METHODS Three doses of ExPEC-4V (with or without aluminum hydroxide) were administered to rabbits (2μg or 20μg per O-antigen, subcutaneously), mice (0.2μg or 2μg per O-antigen, subcutaneously) and rats (0.4μg or 4μg per O-antigen, intramuscularly). Antibody persistence and boostability were evaluated in rats using O6-EPA monovalent conjugate (0.4μg O-antigen/dose, intramuscularly). Toxicity was assessed in rats (16μg total polysaccharide, intramuscularly). Serum IgG and IgM antibodies were measured by ELISA. RESULTS Robust antigen-specific IgG responses were observed in all animal models, with increased responses in rabbits when administered with adjuvant. O antigen-specific antibody responses persisted up to 168days post-priming. Booster immunization induced a rapid recall response. Toxicity of ExPEC-4V when administered to rats was considered to be at the no observed adverse effect level. CONCLUSIONS ExPEC-4V conjugate vaccine showed good immunogenicity and tolerability in animal models supporting progression to clinical evaluation.
Collapse
Affiliation(s)
- Germie P J M van den Dobbelsteen
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention B.V. (former Crucell Holland B.V.), Part of the Janssen Pharmaceutical Companies of Johnson and Johnson, Archimedesweg 4-6, 2333CN Leiden, The Netherlands.
| | - Kellen C Faé
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention B.V. (former Crucell Holland B.V.), Part of the Janssen Pharmaceutical Companies of Johnson and Johnson, Archimedesweg 4-6, 2333CN Leiden, The Netherlands.
| | - Jan Serroyen
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention B.V. (former Crucell Holland B.V.), Part of the Janssen Pharmaceutical Companies of Johnson and Johnson, Archimedesweg 4-6, 2333CN Leiden, The Netherlands.
| | - Ingrid M van den Nieuwenhof
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention B.V. (former Crucell Holland B.V.), Part of the Janssen Pharmaceutical Companies of Johnson and Johnson, Archimedesweg 4-6, 2333CN Leiden, The Netherlands.
| | - Martin Braun
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | - Micha A Haeuptle
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland; Current address: Molecular Partners AG, Wagistrasse 14, 8952 Zürich-Schlieren, Switzerland.
| | - Dominique Sirena
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | - Joerg Schneider
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | - Cristina Alaimo
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | - Gerd Lipowsky
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland.
| | | | - Michael Wacker
- LimmaTech Biologics (former GlycoVaxyn AG), Grabenstrasse 3, 8952 Schlieren, Switzerland; Current address: Wacker Biotech Consulting, Obere Hönggerstrasse 9a, 8103 Unterengstringen, Switzerland.
| | - Jan T Poolman
- Bacterial Vaccines Discovery & Early Development, Janssen Vaccines and Prevention B.V. (former Crucell Holland B.V.), Part of the Janssen Pharmaceutical Companies of Johnson and Johnson, Archimedesweg 4-6, 2333CN Leiden, The Netherlands.
| |
Collapse
|
23
|
Zacchè MM, Giarenis I. Therapies in early development for the treatment of urinary tract inflammation. Expert Opin Investig Drugs 2016; 25:531-40. [DOI: 10.1517/13543784.2016.1161024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Poolman JT, Wacker M. Extraintestinal Pathogenic Escherichia coli, a Common Human Pathogen: Challenges for Vaccine Development and Progress in the Field. J Infect Dis 2015; 213:6-13. [PMID: 26333944 PMCID: PMC4676548 DOI: 10.1093/infdis/jiv429] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/17/2015] [Indexed: 01/15/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is the most common gram-negative bacterial pathogen in humans. ExPEC causes the vast majority of urinary tract infections (UTIs), is a leading cause of adult bacteremia, and is the second most common cause of neonatal meningitis. Increasing multidrug resistance among ExPEC strains constitutes a major obstacle to treatment and is implicated in increasing numbers of hospitalizations and deaths and increasing healthcare costs associated with ExPEC infections. An effective vaccine against ExPEC infection is urgently needed. The O antigen, a component of the surface lipopolysaccharide, has been identified as a promising vaccine target. With the availability of a novel bioconjugation technology it is expected that multivalent O antigen conjugate vaccines can be produced at industrial scale. Clinical proof of concept of a 4-valent O antigen conjugate vaccine is ongoing. An ExPEC vaccine effective against strains that are associated with major diseases and resistant to multiple drugs could be routinely delivered to individuals at risk of developing severe E. coli infection, such as elderly people, individuals undergoing abdominal surgery and prostatic biopsy procedures, and persons at risk of recurrent and/or complicated UTI.
Collapse
Affiliation(s)
- Jan T Poolman
- Bacterial Vaccine Discovery and Early Development, Janssen, Leiden, The Netherlands
| | | |
Collapse
|
25
|
Abstract
Gram-negative bacterial (GNB) infections are a leading cause of serious infections both in hospitals and the community. The mortality remains high despite potent antimicrobials and modern supportive care. In the last decade invasive GNB have become increasingly resistant to commonly used antibiotics, and attempts to intervene with novel biological therapies have been unsuccessful. Earlier studies with antibodies directed against a highly conserved core region in the GNB lipopolysaccharide (LPS, or endotoxin) suggested that this approach may have therapeutic benefit, and led to the development of a subunit vaccine that has progressed to phase 1 clinical testing. Since only a few serogroups of GNB cause bacteremia, O-specific vaccines had been developed, but these were not deployed because of the availability of other therapeutic options at the time. Given the likelihood that new antibiotics will not be soon available, the development of vaccines and antibodies directed against endotoxin, both O and core antigens, deserves a “second look”.
Collapse
Affiliation(s)
- Alan S Cross
- Center for Vaccine Development; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
26
|
Abstract
Escherichia coliis the most common Gram-negative organism causing neonatal meningitis. Neonatal E. colimeningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis and pathophysiology contributes to such mortality and morbidity. Recent reports of neonatal meningitis caused by E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. E. colipenetration into the brain, the essential step in the development of E. coli meningitis, requires a high-degree of bacteremia and penetration of the blood-brain barrier as live bacteria, but the underlying mechanisms remain incompletely understood. Recent functional genomic approaches of meningitis-causing E. coli in both in vitro and in vivo models of the blood-brain barrier (e.g., human brain microvascular endothelial cells and animal models of experimental hematogenousE. colimeningitis, respectively) have identified several E. coli factors contributing to a high-degree of bacteremia, as well as specific microbial factors contributing to E. coli invasion of the blood-brain barrier. In addition, E. coli penetration of the blood-brain barrier involves specific host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors and host cell signaling molecules is efficient in preventing E. coli penetration into the brain. Continued investigation of the microbial and host factors contributing to E. colibacteremia andinvasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis, thereby limiting the exposure to emerging antimicrobial-resistant E. coli.
Collapse
|
27
|
Abstract
Twelve years ago an annotation was published in Archives of Disease in Childhood regarding the antibiotic treatment of suspected neonatal meningitis. The authors recommended the use of cephalosporins rather than chloramphenicol and advocated intraventricular aminoglycoside treatment in selected cases. They noted the absence of clinical trials with third generation cephalosporins that showed an improvement in mortality or neurological outcome.
Collapse
Affiliation(s)
- P T Heath
- Paediatric Infectious Diseases Unit, St George's Hospital, Tooting, London SW17 0RE, UK.
| | | | | |
Collapse
|
28
|
Ragupathi G, Coltart DM, Williams LJ, Koide F, Kagan E, Allen J, Harris C, Glunz PW, Livingston PO, Danishefsky SJ. On the power of chemical synthesis: immunological evaluation of models for multiantigenic carbohydrate-based cancer vaccines. Proc Natl Acad Sci U S A 2002; 99:13699-704. [PMID: 12359877 PMCID: PMC129747 DOI: 10.1073/pnas.202427599] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2002] [Indexed: 11/18/2022] Open
Abstract
Synthetic carbohydrate cancer vaccines have been shown to stimulate antibody-based immune responses in both preclinical and clinical settings. The antibodies have been observed to react in vitro with the corresponding natural carbohydrate antigens expressed on the surface of tumor cells, and are able to mediate complement-dependent and/or antibody-dependent cell-mediated cytotoxicity. Furthermore, these vaccines have proven to be safe when administered to cancer patients. Until recently, only monovalent antigen constructs had been prepared and evaluated. Advances in total synthesis have now enabled the preparation of multivalent vaccine constructs, which contain several different tumor-associated carbohydrate antigens. Such constructs could, in principle, serve as superior mimics of cell surface antigens and, hence, as potent cancer vaccines. Here we report preclinical ELISA-based evaluation of a TF-Le(y)-Tn bearing construct (compound 3) with native mucin glycopeptide architecture and a Globo-H-Le(y)-Tn glycopeptide (compound 4) with a nonnative structure. Mice were immunized with one or the other of these constructs as free glycopeptides or as keyhole lymphet hemocyanin conjugates. Either QS-21 or the related GPI-0100 were coadministered as adjuvants. Both keyhole lymphet hemocyanin conjugates induced IgM and IgG antibodies against each carbohydrate antigen, however, the mucin-based TF-Le(y)-Tn construct was shown to be less antigenic than the unnatural Globo-H-Le(y)-Tn construct. The adjuvants, although related, proved significantly different, in that GPI-0100 consistently induced higher titers of antibodies than QS-21. The presence of multiple glycans in these constructs did not appear to suppress the response against any of the constituent antigens. Compound 4, the more antigenic of the two constructs, was also examined by fluorescence activated cell sorter analysis. Significantly, from these studies it was shown that antibodies stimulated in response to compound 4 reacted with tumor cells known to selectively express the individual antigens. The results demonstrate that single vaccine constructs bearing several different carbohydrate antigens have the potential to stimulate a multifaceted immune response.
Collapse
Affiliation(s)
- Govindaswami Ragupathi
- Laboratory of Tumor Vaccinology, Clinical Immunology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ragupathi G, Cappello S, Yi SS, Canter D, Spassova M, Bornmann WG, Danishefsky SJ, Livingston PO. Comparison of antibody titers after immunization with monovalent or tetravalent KLH conjugate vaccines. Vaccine 2002; 20:1030-8. [PMID: 11803062 DOI: 10.1016/s0264-410x(01)00451-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antigens such as ganglioside GD3, neutral glycolipid Lewis(y) (Le(y)) and mucins MUC1 and MUC2 are over-expressed on the cell surface of many tumors. We have shown previously that conjugation of antigens such as these to keyhole limpet hemocyanin (KLH) and the use of immunological adjuvant QS-21 is the optimal approach for inducing high titer IgM and IgG antibodies. These antibodies are able to bind with natural antigens on the tumor cell surface and mediate complement dependent cytotoxicity and/or antibody dependent cell mediated cytotoxicity. Immunization of patients with monovalent vaccines containing these and a variety of other antigens have demonstrated both the consistent immunogenicity and the safety of these vaccines. Now, in preparation for the use of polyvalent conjugate vaccines in the clinic, we have addressed for the first time with conjugate vaccines against cancer antigens several questions in the pre-clinical setting, including whether immunogenicity of the individual components is decreased in the polyvalent vaccine and issues relating to vaccine formulation and administration. We have immunized groups of mice with GD3-KLH, Le(y)-KLH, MUC1-KLH and MUC2-KLH conjugates and QS-21 separately or mixed and administered at one or four sites. High titer IgM and IgG antibodies were induced against each of the four antigens whether administered singly in separate mice, at separate sites in the same mice, or mixed and administered at a single site or at four sites, or administered subcutaneously (s.c.) or intraperitoneally (i.p.). These antibodies reacted specifically with the respective antigens and tumor cells expressing these antigens. There was no evidence of suppression of the antibody response against any one of the antigens by the presence of the other conjugates in the vaccine. Immunogenicity of the four individual antigens conjugated to KLH and QS-21 is not affected by mixing the four together and administering them at a single subcutaneous site.
Collapse
Affiliation(s)
- Govindaswami Ragupathi
- Laboratory of Tumor Vaccinology, Clinical Immunology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fattom A, Cho YH, Chu C, Fuller S, Fries L, Naso R. Epitopic overload at the site of injection may result in suppression of the immune response to combined capsular polysaccharide conjugate vaccines. Vaccine 1999; 17:126-33. [PMID: 9987146 DOI: 10.1016/s0264-410x(98)00162-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Capsular polysaccharide (CP) conjugate vaccines targeting a variety of bacterial infections are currently under development and clinical evaluation. The inclusion of multiple CP serotypes combined in a single injection is an important maneuver being evaluated. The combination of CP conjugate vaccines into a single multivalent injection may result in competition among the different components and adversely affect the immunogenicity of any individual conjugate. We observed a reduction of 30-90% in antibody responses to several serotypes in mice when immunogenicity of a 12-valent Escherichia coli (E. coli) lipopolysaccharide (LPS) conjugate vaccine was compared to the immunogenicity of each monovalent vaccine evaluated separately. A reduction of 30% was observed in the Staphylococcus aureus (S. aureus) type 8 CP antibodies when a type 8-rEPA conjugate was combined with a type 5-rEPA conjugate. S. aureus types 5 and 8-rEPA conjugates were combined with 100 micrograms of either rEPA (homologous) or diphtheria toxoid (DT) (heterologous) carrier proteins, and evaluated in rEPA or DT primed mice. The addition of the homologous protein resulted in a 64% reduction in type 5 CP antibodies. The heterologous protein did not affect the immunogenicity of the type 5. We postulate that the free protein competed with the conjugate and recruited most of the rEPA primed T cells. In the case of the DT conjugates, the DT targeted different populations of the T cells, thus interference was not observed. These data suggested that the epitopic load rather than the antigenic load at the site of injection caused reduced immunogenicity of the conjugates. We theorize that individual components of multivalent CP vaccines conjugated to the same carrier proteins would compete for a limited number of specific carrier protein primed T cells. This would result in one or more components being unavailable in eliciting a sufficient immune response. The use of multiple carrier proteins should be considered as an approach to reduce interference when multivalent conjugate vaccines are to be formulated into a single injection.
Collapse
Affiliation(s)
- A Fattom
- Walter Karakawa Microbial Pathogenesis Laboratory, NABI, Rockville, MD 20852, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Trautmann M, Held TK, Susa M, Karajan MA, Wulf A, Cross AS, Marre R. Bacterial lipopolysaccharide (LPS)-specific antibodies in commercial human immunoglobulin preparations: superior antibody content of an IgM-enriched product. Clin Exp Immunol 1998; 111:81-90. [PMID: 9472665 PMCID: PMC1904862 DOI: 10.1046/j.1365-2249.1998.00445.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The anti-LPS antibody content of commercial intravenous immunoglobulins was examined by quantitative ELISA using LPS preparations from Escherichia coli, Klebsiella and Pseudomonas aeruginosa O serotypes occurring most frequently in gram-negative septicaemia. Three IgG products from different manufacturers and one IgM-enriched product were tested. Mean antibody levels were significantly higher in the IgM fraction of the IgM-enriched product compared with 'pure' IgG products, indicating that natural antibodies against bacterial LPS belong primarily to the IgM class. Immunoblotting studies showed that antibody specificities were directed mainly against O side chain epitopes. Antibodies against rough mutant LPS representing various chemotypes were detected in IgG but not in IgM products. The virtual absence of antibodies against Vibrio cholerae LPS indicated that human anti-LPS antibodies result from continuous environmental exposure to gram-negative pathogens. These data support the further development of IgM-enriched preparations for prophylaxis and treatment of gram-negative nosocomial infections.
Collapse
Affiliation(s)
- M Trautmann
- Department of Medical Microbiology and Hygiene, University of Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Rukavina T, Tícac B, Susa M, Jendrike N, Jonjíc S, Lucin P, Marre R, Doríc M, Trautmann M. Protective effect of antilipopolysaccharide monoclonal antibody in experimental Klebsiella infection. Infect Immun 1997; 65:1754-60. [PMID: 9125558 PMCID: PMC175211 DOI: 10.1128/iai.65.5.1754-1760.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An O-antigen-specific murine monoclonal antibody (MAb) directed against an immunodominant epitope expressed on Klebsiella O1, O6, and O8 lipopolysaccharides (LPS) was examined with respect to its binding to nonencapsulated and encapsulated bacterial cells and its ability to protect against lethal murine Klebsiella sepsis. While the MAb (clone Ru-O1, mouse immunoglobulin G2b) bound well to nonencapsulated organisms of the O1 serogroup, binding was significantly, but not completely, abolished by the presence of the K2 capsule. In a model of experimental Klebsiella peritonitis and sepsis induced by a virulent O1:K2 serogroup strain, higher doses of anti-LPS MAb Ru-O1 than of a previously described anticapsular MAb specific for the K2 capsular polysaccharide were needed to provide protection. However, high-dose (40 microg/g of body weight) pretreatment with anti-LPS MAb Ru-O1 significantly reduced bacterial dissemination to various organs as well as macroscopic and histologic pulmonary alterations. Thus, since the number of Klebsiella capsular antigens occurring in clinical material is too large to be completely "covered" by a K-antigen-specific hyperimmunoglobulin preparation, O-antigen-specific antibodies may supplement K-antigen-specific immunoprophylaxis and -therapy of clinical Klebsiella infection.
Collapse
Affiliation(s)
- T Rukavina
- Department of Microbiology and Parasitology, University of Rijeka, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fattom A. Qualitative and quantitative immune response to bacterial capsular polysaccharides and their conjugates in mouse and man. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 383:131-9. [PMID: 8644498 DOI: 10.1007/978-1-4615-1891-4_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- A Fattom
- W. W. Karakawa Microbial Pathogenesis Laboratory, Univax Biologics Inc., Rockville, Maryland 20852, USA
| |
Collapse
|