1
|
Walker EC, Javati S, Todd EM, Matlam JP, Lin X, Bryant M, Krone E, Ramani R, Chandra P, Green TP, Anaya EP, Zhou JY, Alexander KA, Tong RS, Yuasi L, Boluarte S, Yang F, Greenberg L, Nerbonne JM, Greenberg MJ, Clemens RA, Philips JA, Wilson LD, Halabi CM, DeBosch BJ, Blyth CC, Druley TE, Kazura JW, Pomat WS, Morley SC. Novel coenzyme Q6 genetic variant increases susceptibility to pneumococcal disease. Nat Immunol 2024:10.1038/s41590-024-01998-4. [PMID: 39496954 DOI: 10.1038/s41590-024-01998-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024]
Abstract
Acute lower respiratory tract infection (ALRI) remains a major worldwide cause of childhood mortality, compelling innovation in prevention and treatment. Children in Papua New Guinea (PNG) experience profound morbidity from ALRI caused by Streptococcus pneumoniae. As a result of evolutionary divergence, the human PNG population exhibits profound genetic variation and diversity. To address unmet health needs of children in PNG, we tested whether genetic variants increased ALRI morbidity. Whole-exome sequencing of a pilot child cohort identified homozygosity for a novel single-nucleotide variant (SNV) in coenzyme Q6 (COQ6) in cases with ALRI. COQ6 encodes a mitochondrial enzyme essential for biosynthesis of ubiquinone, an electron acceptor in the electron transport chain. A significant association of SNV homozygosity with ALRI was replicated in an independent ALRI cohort (P = 0.036). Mice homozygous for homologous mouse variant Coq6 exhibited increased mortality after pneumococcal lung infection, confirming causality. Bone marrow chimeric mice further revealed that expression of variant Coq6 in recipient (that is, nonhematopoietic) tissues conferred increased mortality. Variant Coq6 maintained ubiquinone biosynthesis, while accelerating metabolic remodeling after pneumococcal challenge. Identification of this COQ6 variant provides a genetic basis for increased pneumonia susceptibility in PNG and establishes a previously unrecognized role for the enzyme COQ6 in regulating inflammatory-mediated metabolic remodeling.
Collapse
Affiliation(s)
- Emma C Walker
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Program in Immunology, Division of Biological and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah Javati
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Elizabeth M Todd
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - John-Paul Matlam
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Xue Lin
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Bryant
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily Krone
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Rashmi Ramani
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Pallavi Chandra
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Taylor P Green
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Edgar P Anaya
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie Y Zhou
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine A Alexander
- Department of Pediatrics, Division of Hematology-Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - R Spencer Tong
- Department of Pediatrics, Division of Hematology-Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lapule Yuasi
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Sebastian Boluarte
- Department. of Pediatrics, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Fan Yang
- Department. of Pediatrics, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Regina A Clemens
- Department. of Pediatrics, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A Philips
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leslie D Wilson
- Division of Comparative Medicine, Research Animal Diagnostic Laboratory, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen M Halabi
- Department of Pediatrics, Division of Nephrology and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian J DeBosch
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher C Blyth
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute and School of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Todd E Druley
- Department of Pediatrics, Division of Hematology-Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - William S Pomat
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute and School of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Sharon Celeste Morley
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Program in Immunology, Division of Biological and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Dept. of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Xiang Q, Geng ZX, Yi X, Wei X, Zhu XH, Jiang DS. PANoptosis: a novel target for cardiovascular diseases. Trends Pharmacol Sci 2024; 45:739-756. [PMID: 39003157 DOI: 10.1016/j.tips.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. As a distinct pathway, the execution of PANoptosis cannot be hindered by targeting other cell death pathways, such as pyroptosis, apoptosis, or necroptosis. Instead, targeting key PANoptosome components can serve as a strategy to prevent this form of cell death. Given the physiological relevance in several diseases, PANoptosis is a pivotal therapeutic target. Notably, previous research has primarily focused on the role of PANoptosis in cancer and infectious and inflammatory diseases. By contrast, its role in cardiovascular diseases has not been comprehensively discussed. Here, we review the available evidence on PANoptosis in cardiovascular diseases, including cardiomyopathy, atherosclerosis, myocardial infarction, myocarditis, and aortic aneurysm and dissection, and explore a variety of agents that target PANoptosis, with the overarching goal of providing a novel complementary approach to combatting cardiovascular diseases.
Collapse
Affiliation(s)
- Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen-Xi Geng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Yu X, Yuan J, Shi L, Dai S, Yue L, Yan M. Necroptosis in bacterial infections. Front Immunol 2024; 15:1394857. [PMID: 38933265 PMCID: PMC11199740 DOI: 10.3389/fimmu.2024.1394857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Necroptosis, a recently discovered form of cell-programmed death that is distinct from apoptosis, has been confirmed to play a significant role in the pathogenesis of bacterial infections in various animal models. Necroptosis is advantageous to the host, but in some cases, it can be detrimental. To understand the impact of necroptosis on the pathogenesis of bacterial infections, we described the roles and molecular mechanisms of necroptosis caused by different bacterial infections in this review.
Collapse
Affiliation(s)
- Xing Yu
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jin Yuan
- Clinical Laboratory, Puer Hospital of Traditional Chinese Medicine, Puer, China
| | - Linxi Shi
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Shuying Dai
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Min Yan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Liu H, Fan W, Fan B. Necroptosis in apical periodontitis: A programmed cell death with multiple roles. J Cell Physiol 2023; 238:1964-1981. [PMID: 37431828 DOI: 10.1002/jcp.31073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Programmed cell death (PCD) has been a research focus for decades and different mechanisms of cell death, such as necroptosis, pyroptosis, ferroptosis, and cuproptosis have been discovered. Necroptosis, a form of inflammatory PCD, has gained increasing attention in recent years due to its critical role in disease progression and development. Unlike apoptosis, which is mediated by caspases and characterized by cell shrinkage and membrane blebbing, necroptosis is mediated by mixed lineage kinase domain-like protein (MLKL) and characterized by cell enlargement and plasma membrane rupture. Necroptosis can be triggered by bacterial infection, which on the one hand represents a host defense mechanism against the infection, but on the other hand can facilitate bacterial escape and worsen inflammation. Despite its importance in various diseases, a comprehensive review on the involvement and roles of necroptosis in apical periodontitis is still lacking. In this review, we tried to provide an overview of recent progresses in necroptosis research, summarized the pathways involved in apical periodontitis (AP) activation, and discussed how bacterial pathogens induce and regulated necroptosis and how necroptosis would inhibit bacteria. Furthermore, the interplay between various types of cell death in AP and the potential treatment strategy for AP by targeting necroptosis were also discussed.
Collapse
Affiliation(s)
- Hui Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Sheng SY, Li JM, Hu XY, Wang Y. Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin 2023; 44:1521-1535. [PMID: 36914852 PMCID: PMC10374591 DOI: 10.1038/s41401-023-01068-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Heart disease is a worldwide health menace. Both intractable primary and secondary cardiomyopathies contribute to malignant cardiac dysfunction and mortality. One of the key cellular processes associated with cardiomyopathy is cardiomyocyte death. Cardiomyocytes are terminally differentiated cells with very limited regenerative capacity. Various insults can lead to irreversible damage of cardiomyocytes, contributing to progression of cardiac dysfunction. Accumulating evidence indicates that majority of cardiomyocyte death is executed by regulating molecular pathways, including apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Importantly, these forms of regulated cell death (RCD) are cardinal features in the pathogenesis of various cardiomyopathies, including dilated cardiomyopathy, diabetic cardiomyopathy, sepsis-induced cardiomyopathy, and drug-induced cardiomyopathy. The relevance between abnormity of RCD with adverse outcome of cardiomyopathy has been unequivocally evident. Therefore, there is an urgent need to uncover the molecular and cellular mechanisms for RCD in order to better understand the pathogenesis of cardiomyopathies. In this review, we summarize the latest progress from studies on RCD pathways in cardiomyocytes in context of the pathogenesis of cardiomyopathies, with particular emphasis on apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. We also elaborate the crosstalk among various forms of RCD in pathologically stressed myocardium and the prospects of therapeutic applications targeted to various cell death pathways.
Collapse
Affiliation(s)
- Shu-Yuan Sheng
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Jia-Min Li
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Xin-Yang Hu
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Yibin Wang
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China.
- Signature Program in Cardiovascular and Metabolic Diseases, DukeNUS Medical School and National Heart Center of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Anderson R, Feldman C. The Global Burden of Community-Acquired Pneumonia in Adults, Encompassing Invasive Pneumococcal Disease and the Prevalence of Its Associated Cardiovascular Events, with a Focus on Pneumolysin and Macrolide Antibiotics in Pathogenesis and Therapy. Int J Mol Sci 2023; 24:11038. [PMID: 37446214 DOI: 10.3390/ijms241311038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Despite innovative advances in anti-infective therapies and vaccine development technologies, community-acquired pneumonia (CAP) remains the most persistent cause of infection-related mortality globally. Confronting the ongoing threat posed by Streptococcus pneumoniae (the pneumococcus), the most common bacterial cause of CAP, particularly to the non-immune elderly, remains challenging due to the propensity of the elderly to develop invasive pneumococcal disease (IPD), together with the predilection of the pathogen for the heart. The resultant development of often fatal cardiovascular events (CVEs), particularly during the first seven days of acute infection, is now recognized as a relatively common complication of IPD. The current review represents an update on the prevalence and types of CVEs associated with acute bacterial CAP, particularly IPD. In addition, it is focused on recent insights into the involvement of the pneumococcal pore-forming toxin, pneumolysin (Ply), in subverting host immune defenses, particularly the protective functions of the alveolar macrophage during early-stage disease. This, in turn, enables extra-pulmonary dissemination of the pathogen, leading to cardiac invasion, cardiotoxicity and myocardial dysfunction. The review concludes with an overview of the current status of macrolide antibiotics in the treatment of bacterial CAP in general, as well as severe pneumococcal CAP, including a consideration of the mechanisms by which these agents inhibit the production of Ply by macrolide-resistant strains of the pathogen.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Johannesburg 2193, South Africa
| |
Collapse
|
7
|
Wiscovitch-Russo R, Ibáñez-Prada ED, Serrano-Mayorga CC, Sievers BL, Engelbride MA, Padmanabhan S, Tan GS, Vashee S, Bustos IG, Pachecho C, Mendez L, Dube PH, Singh H, Reyes LF, Gonzalez-Juarbe N. Major adverse cardiovascular events are associated with necroptosis during severe COVID-19. Crit Care 2023; 27:155. [PMID: 37081485 PMCID: PMC10116454 DOI: 10.1186/s13054-023-04423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The mechanisms used by SARS-CoV-2 to induce major adverse cardiac events (MACE) are unknown. Thus, we aimed to determine if SARS-CoV-2 can induce necrotic cell death to promote MACE in patients with severe COVID-19. METHODS This observational prospective cohort study includes experiments with hamsters and human samples from patients with severe COVID-19. Cytokines and serum biomarkers were analysed in human serum. Cardiac transcriptome analyses were performed in hamsters' hearts. RESULTS From a cohort of 70 patients, MACE was documented in 26% (18/70). Those who developed MACE had higher Log copies/mL of SARS-CoV-2, troponin-I, and pro-BNP in serum. Also, the elevation of IP-10 and a major decrease in levels of IL-17ɑ, IL-6, and IL-1rɑ were observed. No differences were found in the ability of serum antibodies to neutralise viral spike proteins in pseudoviruses from variants of concern. In hamster models, we found a stark increase in viral titters in the hearts 4 days post-infection. The cardiac transcriptome evaluation resulted in the differential expression of ~ 9% of the total transcripts. Analysis of transcriptional changes in the effectors of necroptosis (mixed lineage kinase domain-like, MLKL) and pyroptosis (gasdermin D) showed necroptosis, but not pyroptosis, to be elevated. An active form of MLKL (phosphorylated MLKL, pMLKL) was elevated in hamster hearts and, most importantly, in the serum of MACE patients. CONCLUSION SARS-CoV-2 identification in the systemic circulation is associated with MACE and necroptosis activity. The increased pMLKL and Troponin-I indicated the occurrence of necroptosis in the heart and suggested necroptosis effectors could serve as biomarkers and/or therapeutic targets. Trial registration Not applicable.
Collapse
Affiliation(s)
- Rosana Wiscovitch-Russo
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Elsa D Ibáñez-Prada
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clinica Universidad de La Sabana, Chía, Colombia
| | - Cristian C Serrano-Mayorga
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clinica Universidad de La Sabana, Chía, Colombia
| | - Benjamin L Sievers
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Maeve A Engelbride
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Surya Padmanabhan
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Gene S Tan
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Sanjay Vashee
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Ingrid G Bustos
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Carlos Pachecho
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Clinica Universidad de La Sabana, Chía, Colombia
| | - Lina Mendez
- Clinica Universidad de La Sabana, Chía, Colombia
| | - Peter H Dube
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Boehringer Ingelheim, Ames, IA, USA
| | - Harinder Singh
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia.
- Clinica Universidad de La Sabana, Chía, Colombia.
- Pandemic Science Institute, University of Oxford, Oxford, UK.
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA.
| |
Collapse
|
8
|
Kruckow KL, Zhao K, Bowdish DME, Orihuela CJ. Acute organ injury and long-term sequelae of severe pneumococcal infections. Pneumonia (Nathan) 2023; 15:5. [PMID: 36870980 PMCID: PMC9985869 DOI: 10.1186/s41479-023-00110-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a major public health problem, as it is a main cause of otitis media, community-acquired pneumonia, bacteremia, sepsis, and meningitis. Acute episodes of pneumococcal disease have been demonstrated to cause organ damage with lingering negative consequences. Cytotoxic products released by the bacterium, biomechanical and physiological stress resulting from infection, and the corresponding inflammatory response together contribute to organ damage accrued during infection. The collective result of this damage can be acutely life-threatening, but among survivors, it also contributes to the long-lasting sequelae of pneumococcal disease. These include the development of new morbidities or exacerbation of pre-existing conditions such as COPD, heart disease, and neurological impairments. Currently, pneumonia is ranked as the 9th leading cause of death, but this estimate only considers short-term mortality and likely underestimates the true long-term impact of disease. Herein, we review the data that indicates damage incurred during acute pneumococcal infection can result in long-term sequelae which reduces quality of life and life expectancy among pneumococcal disease survivors.
Collapse
Affiliation(s)
- Katherine L Kruckow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Zhao
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Zhang G, Dong D, Wan X, Zhang Y. Cardiomyocyte death in sepsis: Mechanisms and regulation (Review). Mol Med Rep 2022; 26:257. [PMID: 35703348 PMCID: PMC9218731 DOI: 10.3892/mmr.2022.12773] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis‑induced cardiac dysfunction is one of the most common types of organ dysfunction in sepsis; its pathogenesis is highly complex and not yet fully understood. Cardiomyocytes serve a key role in the pathophysiology of cardiac function; due to the limited ability of cardiomyocytes to regenerate, their loss contributes to decreased cardiac function. The activation of inflammatory signalling pathways affects cardiomyocyte function and modes of cardiomyocyte death in sepsis. Prevention of cardiomyocyte death is an important therapeutic strategy for sepsis‑induced cardiac dysfunction. Thus, understanding the signalling pathways that activate cardiomyocyte death and cross‑regulation between death modes are key to finding therapeutic targets. The present review focused on advances in understanding of sepsis‑induced cardiomyocyte death pathways, including apoptosis, necroptosis, mitochondria‑mediated necrosis, pyroptosis, ferroptosis and autophagy. The present review summarizes the effect of inflammatory activation on cardiomyocyte death mechanisms, the diversity of regulatory mechanisms and cross‑regulation between death modes and the effect on cardiac function in sepsis to provide a theoretical basis for treatment of sepsis‑induced cardiac dysfunction.
Collapse
Affiliation(s)
- Geping Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dan Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yongli Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
10
|
The Regulatory Mechanism and Effect of RIPK3 on PE-induced Cardiomyocyte Hypertrophy. J Cardiovasc Pharmacol 2022; 80:236-250. [PMID: 35561290 DOI: 10.1097/fjc.0000000000001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/26/2022] [Indexed: 12/07/2022]
Abstract
ABSTRACT As a critical regulatory molecule, receptor-interacting protein kinase 3 (RIPK3) can mediate the signaling pathway of programmed necrosis. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been proved as a new substrate for RIPK3-induced necroptosis. In the present study, we aimed to investigate the regulatory mechanism of RIPK3 on phenylephrine (PE)-induced cardiomyocyte hypertrophy. Cardiomyocyte hypertrophy was induced by exposure to PE (100 μM) for 48 h. Primary cardiomyocytes were pretreated with RIPK3 inhibitor GSK'872 (10 μM), and RIPK3 siRNA was used to deplete the intracellular expression of RIPK3. The indexes related to myocardial hypertrophy, cell injury, necroptosis, CaMKII activation, gene expression, oxidative stress, and mitochondrial membrane potential were measured. We found that after cardiomyocytes were stimulated by PE, the expressions of hypertrophy markers, atrial and brain natriuretic peptides (ANP and BNP), were increased, the release of lactate dehydrogenase (LDH) was increased, the level of adenosine triphosphate (ATP)was decreased, the oxidation and phosphorylation levels of CaMKII were increased, and CaMKIIδ alternative splicing was disturbed. However, both GSK'872 and depletion of RIPK3 could reduce myocardial dysfunction, inhibit CaMKII activation and necroptosis, and finally alleviate myocardial hypertrophy. In addition, the pretreatment of RIPK3 could also lessen the accumulation of reactive oxygen species (ROS) induced by PE and stabilize the membrane potential of mitochondria. These results indicated that targeted inhibition of RIPK3 could suppress the activation of CaMKII and reduce necroptosis and oxidative stress, leading to alleviated myocardial hypertrophy. Collectively, our findings provided valuable insights into the clinical treatment of hypertrophic cardiomyopathy.
Collapse
|
11
|
Pereira JM, Xu S, Leong JM, Sousa S. The Yin and Yang of Pneumolysin During Pneumococcal Infection. Front Immunol 2022; 13:878244. [PMID: 35529870 PMCID: PMC9074694 DOI: 10.3389/fimmu.2022.878244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations, PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival pathways that cooperate to reseal the damaged plasma membrane and restore cell homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae colonization and survival, it is also a powerful trigger of the innate and adaptive host immune response against bacterial infection. The dichotomy of PLY as both a key bacterial virulence factor and a trigger for host immune modulation allows the toxin to display both "Yin" and "Yang" properties during infection, promoting disease by membrane perforation and activating inflammatory pathways, while also mitigating damage by triggering host cell repair and initiating anti-inflammatory responses. Due to its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every stage of S. pneumoniae pathogenesis and may tip the balance towards either the pathogen or the host depending on the context of infection.
Collapse
Affiliation(s)
- Joana M. Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS - Instituto de Ciência Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, United States
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Pandemic Influenza Infection Promotes Streptococcus pneumoniae Infiltration, Necrotic Damage, and Proteomic Remodeling in the Heart. mBio 2022; 13:e0325721. [PMID: 35089061 PMCID: PMC8725598 DOI: 10.1128/mbio.03257-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For over a century, it has been reported that primary influenza infection promotes the development of a lethal form of bacterial pulmonary disease. More recently, pneumonia events caused by both viruses and bacteria have been directly associated with cardiac damage. Importantly, it is not known whether viral-bacterial synergy extends to extrapulmonary organs such as the heart. Using label-free quantitative proteomics and molecular approaches, we report that primary infection with pandemic influenza A virus leads to increased Streptococcus pneumoniae translocation to the myocardium, leading to general biological alterations. We also observed that each infection alone led to proteomic changes in the heart, and these were exacerbated in the secondary bacterial infection (SBI) model. Gene ontology analysis of significantly upregulated proteins showed increased innate immune activity, oxidative processes, and changes to ion homeostasis during SBI. Immunoblots confirmed increased complement and antioxidant activity in addition to increased expression of angiotensin-converting enzyme 2. Using an in vitro model of sequential infection in human cardiomyocytes, we observed that influenza enhances S. pneumoniae cytotoxicity by promoting oxidative stress enhancing bacterial toxin-induced necrotic cell death. Influenza infection was found to increase receptors that promote bacterial adhesion, such as polymeric immunoglobulin receptor and fibronectin leucine-rich transmembrane protein 1 in cardiomyocytes. Finally, mice deficient in programmed necrosis (i.e., necroptosis) showed enhanced innate immune responses, decreased virus-associated pathways, and promotion of mitochondrial function upon SBI. The presented results provide the first in vivo evidence that influenza infection promotes S. pneumoniae infiltration, necrotic damage, and proteomic remodeling of the heart. IMPORTANCE Adverse cardiac events are a common complication of viral and bacterial pneumonia. For over a century, it has been recognized that influenza infection promotes severe forms of pulmonary disease mainly caused by the bacterium Streptococcus pneumoniae. The extrapulmonary effects of secondary bacterial infections to influenza virus are not known. In the present study, we used a combination of quantitative proteomics and molecular approaches to assess the underlying mechanisms of how influenza infection promotes bacteria-driven cardiac damage and proteome remodeling. We further observed that programmed necrosis (i.e., necroptosis) inhibition leads to reduced damage and proteome changes associated with health.
Collapse
|
13
|
Abstract
Severe pneumonia is associated with high mortality (short and long term), as well as pulmonary and extrapulmonary complications. Appropriate diagnosis and early initiation of adequate antimicrobial treatment for severe pneumonia are crucial in improving survival among critically ill patients. Identifying the underlying causative pathogen is also critical for antimicrobial stewardship. However, establishing an etiological diagnosis is challenging in most patients, especially in those with chronic underlying disease; those who received previous antibiotic treatment; and those treated with mechanical ventilation. Furthermore, as antimicrobial therapy must be empiric, national and international guidelines recommend initial antimicrobial treatment according to the location's epidemiology; for patients admitted to the intensive care unit, specific recommendations on disease management are available. Adherence to pneumonia guidelines is associated with better outcomes in severe pneumonia. Yet, the continuing and necessary research on severe pneumonia is expansive, inviting different perspectives on host immunological responses, assessment of illness severity, microbial causes, risk factors for multidrug resistant pathogens, diagnostic tests, and therapeutic options.
Collapse
Affiliation(s)
- Catia Cillóniz
- Department of pneumology, Hospital Clinic of Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centers in Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Antoni Torres
- Department of pneumology, Hospital Clinic of Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centers in Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Michael S Niederman
- Weill Cornell Medical College, Department of Pulmonary Critical Care Medicine, New York, NY, USA
| |
Collapse
|
14
|
Scott NR, Mann B, Tuomanen EI, Orihuela CJ. Multi-Valent Protein Hybrid Pneumococcal Vaccines: A Strategy for the Next Generation of Vaccines. Vaccines (Basel) 2021; 9:209. [PMID: 33801372 PMCID: PMC8002124 DOI: 10.3390/vaccines9030209] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is a bacterial pathogen known to colonize the upper respiratory tract and cause serious opportunistic diseases such as pneumonia, bacteremia, sepsis and meningitis. As a consequence, millions of attributable deaths occur annually, especially among infants, the elderly and immunocompromised individuals. Although current vaccines, composed of purified pneumococcal polysaccharide in free form or conjugated to a protein carrier, are widely used and have been demonstrated to be effective in target groups, Spn has continued to colonize and cause life-threatening disease in susceptible populations. This lack of broad protection highlights the necessity of improving upon the current "gold standard" pneumococcal vaccines to increase protection both by decreasing colonization and reducing the incidence of sterile-site infections. Over the past century, most of the pneumococcal proteins that play an essential role in colonization and pathogenesis have been identified and characterized. Some of these proteins have the potential to serve as antigens in a multi-valent protein vaccine that confers capsule independent protection. This review seeks to summarize the benefits and limitations of the currently employed vaccine strategies, describes how leading candidate proteins contribute to pneumococcal disease development, and discusses the potential of these proteins as protective antigens-including as a hybrid construct.
Collapse
Affiliation(s)
- Ninecia R. Scott
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Beth Mann
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.); (E.I.T.)
| | - Elaine I. Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.); (E.I.T.)
| | - Carlos J. Orihuela
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
15
|
Feldman C, Anderson R. Platelets and Their Role in the Pathogenesis of Cardiovascular Events in Patients With Community-Acquired Pneumonia. Front Immunol 2020; 11:577303. [PMID: 33042161 PMCID: PMC7527494 DOI: 10.3389/fimmu.2020.577303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Community-acquired pneumonia (CAP) remains an important cause of morbidity and mortality throughout the world with much recent and ongoing research focused on the occurrence of cardiovascular events (CVEs) during the infection, which are associated with adverse short-term and long-term survival. Much of the research directed at unraveling the pathogenesis of these events has been undertaken in the settings of experimental and clinical CAP caused by the dangerous, bacterial respiratory pathogen, Streptococcus pneumoniae (pneumococcus), which remains the most common bacterial cause of CAP. Studies of this type have revealed that although platelets play an important role in host defense against infection, there is also increasing recognition that hyperactivation of these cells contributes to a pro-inflammatory, prothrombotic systemic milieu that contributes to the etiology of CVEs. In the case of the pneumococcus, platelet-driven myocardial damage and dysfunction is exacerbated by the direct cardiotoxic actions of pneumolysin, a major pore-forming toxin of this pathogen, which also acts as potent activator of platelets. This review is focused on the role of platelets in host defense against infection, including pneumococcal infection in particular, and reviews the current literature describing the potential mechanisms by which platelet activation contributes to cardiovascular complications in CAP. This is preceded by an evaluation of the burden of pneumococcal infection in CAP, the clinical features and putative pathogenic mechanisms of the CVE, and concludes with an evaluation of the potential utility of the anti-platelet activity of macrolides and various adjunctive therapies.
Collapse
Affiliation(s)
- Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, Institute of Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|