1
|
Liu Q, Wang N, Sun H, Dong H, Li X, Yu X, Huang Y. Up-regulation of MDSCs accumulation and Th2 biased response to co-stimulation of CsESP from Clonorchis sinensis and HBeAg in vitro. Acta Trop 2024:107405. [PMID: 39288888 DOI: 10.1016/j.actatropica.2024.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Co-infection with Clonorchis sinensis (C. sinensis) and Hepatitis B virus (HBV) are commonly observed in endemic areas of Clonorchiasis. Chronic infection of C. sinensis or HBV is more likely to happen. However, the immune mechanisms related to the pathogenesis of co-infection remain unknown. In the present study, Myeloid-derived suppressor cells (MDSCs) accumulation, bone marrow derived dendritic cells (BMDCs) reaction and the consequent effectors on Th1/Th2 polarization to co-incubation of excretory-secretory products from C. sinensis (CsESP) and Hepatitis B e antigen (HBeAg) in vitro were investigated for further understanding the immune response during co-infection. The results indicated that compared with CsESP or HBeAg alone, co-stimulation dominantly promoted MDSCs accumulation. Co-stimulation significantly downregulated the expression of CD80 and CD86, and reduced IL-12p70 release while augmented IL-10 levels of BMDCs. Higher transcription levels of mannose receptor (MR) while lower mRNA level of toll like receptor 4 (TLR-4) were detected among membrane receptors of BMDCs with co-treatment. In addition, after CD4 naïve T cells were stimulated by LPS-treated BMDCs with CsESP and HBeAg, the proportion of CD4+IL-4+ T cells and IL-4 increased, while CD4+INF-γ+ T cells percentage and INF-γ down-regulated. In conclusion, CsESP and HBeAg co-incubation more distinctly suppressed maturation of BMDCs resulting in increase of IL-10 and decrease of IL-12 highly possible by up-regulation of MR and down-regulation of TLR-4 of BMDCs, and successively induce Th2 immune skewing. These findings laid the cornerstone to further clarify immune responses during the co-infection contributing to the better precise treatment and progression assessment of co-infection patients.
Collapse
Affiliation(s)
- Qiannan Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China
| | - Nian Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Huimin Dong
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, People's Republic of China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangzhou 510080, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Shi Y, Wang Z, Ge S, Xia N, Yuan Q. Hepatitis B Core Antibody Level: A Surrogate Marker for Host Antiviral Immunity in Chronic Hepatitis B Virus Infections. Viruses 2023; 15:1111. [PMID: 37243197 PMCID: PMC10221631 DOI: 10.3390/v15051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
The hepatitis B virus core protein (HBcAg) is a highly immunogenic particulate antigen. Nearly all patients with persistent or resolved hepatitis B virus (HBV) infection show seropositivity for hepatitis B core antibody (anti-HBc), which appears in the early stage of infection and is mostly present for life. Traditionally, the anti-HBc is regarded as an evidential serological marker of HBV infections. In the last ten years, several studies revealed the predictive value of quantitative anti-HBc (qAnti-HBc) level in the treatment response and clinical outcome of chronic HBV infections, implying new insights into this classic marker. Overall, qAnti-HBc should be regarded as an indicator of the host's immune response specific to HBV, which correlates with HBV-related hepatitis activity and liver pathology. This review summarized the latest understanding of the clinical values of qAnti-HBc for differentiating the CHB phase, predicting treatment response, and providing disease prognosis. Moreover, we also discussed the possible mechanism of qAnti-HBc regulation during different courses of HBV infection.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.S.); (Z.W.); (S.G.); (N.X.)
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, National Institute of Diagnostics Vaccine Development in Infectious Diseases, School of Public Health, Xiamen 361102, China
| | - Zihan Wang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.S.); (Z.W.); (S.G.); (N.X.)
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, National Institute of Diagnostics Vaccine Development in Infectious Diseases, School of Public Health, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.S.); (Z.W.); (S.G.); (N.X.)
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, National Institute of Diagnostics Vaccine Development in Infectious Diseases, School of Public Health, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.S.); (Z.W.); (S.G.); (N.X.)
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, National Institute of Diagnostics Vaccine Development in Infectious Diseases, School of Public Health, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.S.); (Z.W.); (S.G.); (N.X.)
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, National Institute of Diagnostics Vaccine Development in Infectious Diseases, School of Public Health, Xiamen 361102, China
| |
Collapse
|
3
|
Ohlendorf V, Wübbolding M, Gineste P, Höner Zu Siederdissen C, Bremer B, Wedemeyer H, Cornberg M, Maasoumy B. Low anti-HBc levels are associated with lower risk of virological relapse after nucleos(t)ide analogue cessation in HBe antigen-negative patients. Liver Int 2022; 42:2674-2682. [PMID: 36152268 DOI: 10.1111/liv.15433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Low anti-HBc serum levels at the time of therapy cessation were linked to a higher relapse risk in predominantly HBeAg-positive cohorts. We investigated the association of anti-HBc levels with relapse in HBeAg-negative patients. METHODS Serum levels of anti-HBc, HBsAg and HBcrAg were determined in 136 HBeAg-negative patients, participating in a vaccination trial (ABX-203, NCT02249988), before treatment cessation or vaccination. Importantly, vaccination showed no impact on relapse. The correlation between the biomarkers and their predictive value for relapse (HBV DNA >2000 IU/ml ± ALT >2xULN) was investigated. RESULTS After therapy cessation 50% (N = 68) of patients relapsed. Median anti-HBc prior to treatment stop was significantly higher among relapsers compared to off-treatment responders (520 IU/ml vs. 330 IU/mL, p = .0098). The optimal anti-HBc cut-off to predict relapse was 325 IU/ml according to the Youden-Index. About 35% of patients with anti-HBc level < 325 IU/ml versus 60% of those with values ≥325 IU/mL relapsed (p = .0103; sensitivity 50%, specificity 75%). Combining the optimal cut-offs of HBsAg (>3008 IU/mL) or HBcrAg (≥1790 U/ml) with anti-HBc increased the proportion of patients with relapse to 80% (p < .0001) and 74% (p = .0006), respectively. CONCLUSION In contrast to predominantly HBeAg-positive cohorts, in our cohort of HBeAg-negative patients lower anti-HBc levels are associated with a significantly lower relapse risk after nucleos(t)ide analogue cessation. The vast majority of included patients were either genotype B or C and the applicability to other genotypes has to be further evaluated. However, anti-HBc level as an indicator of the host response might be prospectively further explored for prediction models.
Collapse
Affiliation(s)
- Valerie Ohlendorf
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Maximilian Wübbolding
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine (CiiM), a joint venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| | | | | | - Birgit Bremer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine (CiiM), a joint venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine (CiiM), a joint venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
4
|
Chen ZN, Liu FW, Bai LP, Jin CX, Li XT, Yang WX, Zhang SH, Zhang L, Wei J, Zhou TC. Mitochondrial DNA haplogroup F confers genetic susceptibility to chronic HBV infection for the Yi nationality in Lijiang, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105293. [PMID: 35504588 DOI: 10.1016/j.meegid.2022.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Mitochondria are essential for hepatitis B virus (HBV) infection. Moreover, the findings of our previous study indicate that host mitochondrial genetic factors are associated with chronic hepatitis B (CHB) for the Han Chinese. However, in terms of genetic heterogeneity, the impact of mitochondria on host susceptibility to HBV infection in ethnic minorities in China remains unclear. Here, a total of 7070 subjects who had visited the hospital between June 1, 2019, and April 31, 2020, were enrolled for seroprevalence of HBV infection investigation. A total of 220 individuals with CHB (CHBs) and 223 individuals with a trace of HBV infection (spontaneously recovered subjects, SRs) were analyzed for mitochondrial DNA (mtDNA) sequence variations and classified into respective haplogroups. Haplogroup frequencies were compared between CHBs and SRs. Among eight nationalities, Yi nationality patients had the highest HBsAg prevalence rate (27.9% [95% CI: 25.3%-30.5%]) and the lowest vaccination rate (4.9% [95% CI: 3.7%-6.2%]). After adjustment for age and gender, haplogroup F was a risk factor for CHB infection (P = 0.049, OR = 2.079, 95% CI = 1.002-4.31), while D4 had a significant negative correlation with the HBeAg-positive rate (P = 0.024, OR = 0.215, 95% CI = 0.057-0.816). Together with our previous study, the findings indicate that different nationalities have different genetic susceptibility to HBV infection.
Collapse
Affiliation(s)
- Zong-Ning Chen
- Lijiang People's Hospital, Lijiang City, Yunnan Province, China
| | - Feng-Wei Liu
- Central Lab, Liver Disease Research Center, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, China
| | - Li-Ping Bai
- Central Lab, Liver Disease Research Center, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, China
| | - Chao-Xian Jin
- People's Hospital of Gucheng District, Lijiang City, Yunnan Province, China
| | - Xing-Tong Li
- Central Lab, Liver Disease Research Center, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, China
| | - Wen-Xiu Yang
- Central Lab, Liver Disease Research Center, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, China
| | - Si-Hang Zhang
- Central Lab, Liver Disease Research Center, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, China
| | - Liang Zhang
- Central Lab, Liver Disease Research Center, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, China
| | - Jia Wei
- Central Lab, Liver Disease Research Center, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, China.
| | - Tai-Cheng Zhou
- Central Lab, Liver Disease Research Center, The Affiliated Hospital of Yunnan University, Kunming City, Yunnan Province, China.
| |
Collapse
|
5
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
6
|
Kanda T, Sasaki R, Masuzaki R, Takahashi H, Fujisawa M, Matsumoto N, Okamoto H, Moriyama M. Additive Effects of Zinc Chloride on the Suppression of Hepatitis A Virus Replication by Interferon in Human Hepatoma Huh7 Cells. In Vivo 2021; 34:3301-3308. [PMID: 33144437 DOI: 10.21873/invivo.12168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND/AIM Hepatitis A virus (HAV) infection is still one of the serious health problems worldwide, despite the existence of effective vaccines for HAV. Zinc compounds have antiviral activities against various DNA and RNA viruses. Therefore, we investigated the effects of zinc compounds on the antiviral activity of interferon against HAV. MATERIALS AND METHODS The effects of zinc compounds with or without interferon on HAV genotype IIIA HA11-1299 replication were examined in human hepatoma Huh7 cells. Cell viability was examined by the MTS assay. Inflammasome associated gene expression was examined by real-time reverse transcription-polymerase chain reaction. RESULTS Both zinc sulfate and zinc chloride had an inhibitory effect on HAV replication. Zinc sulfate tended to enhance while zinc chloride significantly enhanced the anti-HAV effect induced by interferon-alpha-2a. Zinc chloride significantly up-regulated mitogen-activated protein kinase 12 (MAPK12) and down-regulated 6 related genes [baculoviral IAP repeat containing 3 (BIRC3), interleukin 1 beta (IL1B), proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1), prostaglandin-endoperoxide synthase 2 (PTGS2), PYD and CARD domain containing (PYCARD), and tumor necrosis factor (TNF)]. CONCLUSION Zinc chloride inhibits HAV replication and has additive effects on the anti-HAV activities of interferon.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Reina Sasaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Takahashi
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mariko Fujisawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Naoki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi-ken, Japan
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Vaillant A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect Dis 2021; 7:1351-1368. [PMID: 33302622 DOI: 10.1021/acsinfecdis.0c00638] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In diverse viral infections, the production of excess viral particles containing only viral glycoproteins (subviral particles or SVP) is commonly observed and is a commonly evolved mechanism for immune evasion. In hepatitis B virus (HBV) infection, spherical particles contain the hepatitis B surface antigen, outnumber infectious virus 10 000-100 000 to 1, and have diverse inhibitory effects on the innate and adaptive immune response, playing a major role in the chronic nature of HBV infection. The current goal of therapies in development for HBV infection is a clinical outcome called functional cure, which signals a persistent and effective immune control of the infection. Although removal of spherical SVP (and the HBsAg they carry) is an important milestone in achieving functional cure, this outcome is rarely achieved with current therapies due to distinct mechanisms for assembly, secretion, and persistence of SVP, which are poorly targeted by direct acting antivirals or immunotherapies. In this Review, the current understanding of the distinct mechanisms involved in the production and persistence of spherical SVP in chronic HBV infection and their immunoinhibitory activity will be reviewed as well as current therapies in development with the goal of clearing spherical SVP and achieving functional cure.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H8Y 3E6, Canada
| |
Collapse
|
8
|
Dawood RM, El-Meguid MA, Salum GM, El Awady MK. Key Players of Hepatic Fibrosis. J Interferon Cytokine Res 2020; 40:472-489. [DOI: 10.1089/jir.2020.0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Reham M. Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A. El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K. El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
9
|
The diverse roles of RIP kinases in host-pathogen interactions. Semin Cell Dev Biol 2020; 109:125-143. [PMID: 32859501 PMCID: PMC7448748 DOI: 10.1016/j.semcdb.2020.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Receptor Interacting Protein Kinases (RIPKs) are cellular signaling molecules that are critical for homeostatic signaling in both communicable and non-communicable disease processes. In particular, RIPK1, RIPK2, RIPK3 and RIPK7 have emerged as key mediators of intracellular signal transduction including inflammation, autophagy and programmed cell death, and are thus essential for the early control of many diverse pathogenic organisms. In this review, we discuss the role of each RIPK in host responses to bacterial and viral pathogens, with a focus on studies that have used pathogen infection models rather than artificial stimulation with purified pathogen associated molecular patterns. We also discuss the intricate mechanisms of host evasion by pathogens that specifically target RIPKs for inactivation, and finally, we will touch on the controversial issue of drug development for kinase inhibitors to treat chronic inflammatory and neurological disorders, and the implications this may have on the outcome of pathogen infections.
Collapse
|
10
|
Chang ML, Cheng JS, Chien RN, Liaw YF. Hepatitis Flares Are Associated With Better Outcomes Than No Flare in Patients With Decompensated Cirrhosis and Chronic Hepatitis B Virus Infection. Clin Gastroenterol Hepatol 2020; 18:2064-2072.e2. [PMID: 31982607 DOI: 10.1016/j.cgh.2020.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/27/2019] [Accepted: 01/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Little is known about the effects of baseline hepatitis flares (level of alanine aminotransferase ≥5-fold above the upper limit of normal) on the outcomes of patients with chronic hepatitis B virus (HBV) infection with decompensated cirrhosis treated with nucleos(t)ide analogues. We aimed to investigate these effects. METHODS We performed a cohort study of 511 consecutive patients (78.1% men; 58.7% with flares at baseline) with chronic HBV infection and decompensated cirrhosis who were treated with nucleos(t)ide analogues as soon as decompensation was noted. Patients were enrolled from January 2002 to March 2018 at a tertiary care center in Taiwan and followed up for 16 years. RESULTS Patients with hepatitis flares had higher mean baseline levels of HBV DNA (6.44 ± 1.52 vs 6.08 ± 1.46 log10 IU/mL; P = .003), hepatitis B surface antigen, and total bilirubin; prolonged prothrombin time; higher platelet counts (108.0 ± 42.9 vs 83.6 ± 44.7 103/μL; P < .001); and a higher proportion were infected with HBV genotype B, compared with patients without flares. Patients with flares had lower ratios of neutrophils to lymphocytes than patients with flares (6.14 ± 9.18 vs 9.12 ± 1.36; P = .019); were less likely than patients without flares to be positive for hepatitis B e antigen, ascites, esophageal varices, or splenomegaly; and a lower proportion died or underwent liver transplantation (46.5% vs 73.2% of patients without flares; P < .001), even though the patients without flares had similar short-term (<3 mo) outcomes. Factors associated independently with baseline flares were esophageal varices (odds ratio [OR], 0.165; 95% CI, 0.067-0.406), ascites (OR, 0.415; 95% CI, 0.178-0.969), levels of total bilirubin (OR, 1.158; 95% CI, 1.041-1.269), prolonged prothrombin time (OR, 1.095; 95% CI, 1.033-1.168), and higher platelet counts (OR, 1.009; 95% CI, 1.00-1.018). After we used propensity score matching to match patients with and without baseline flares, factors associated with the cumulative incidence of death or liver transplantation were flares (hazard ratio [HR], 0.491; 95% CI, 0.317-0.76), ratio of neutrophils to lymphocytes (HR, 1.278; 95% CI, 1.027-1.591), and prolonged prothrombin time (HR, 1.223; 95% CI, 1.052-1.423). CONCLUSIONS In a 16-year study of patients with chronic HBV infection and decompensated cirrhosis treated with nucleos(t)ide analogues, a baseline flare of hepatitis was associated independently with better long-term (≥3 mo) outcomes than no flare.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Liver Research Center, Division of Hepatology, Department of Gastroenterology and Hepatology, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Jur-Shan Cheng
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Rong-Nan Chien
- Liver Research Center, Division of Hepatology, Department of Gastroenterology and Hepatology, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Fan Liaw
- Liver Research Center, Division of Hepatology, Department of Gastroenterology and Hepatology, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Milich DR. Is the function of the HBeAg really unknown? Hum Vaccin Immunother 2019; 15:2187-2191. [PMID: 31063442 PMCID: PMC6773382 DOI: 10.1080/21645515.2019.1607132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
The immune response to the hepatitis B virus (HBV) vaccine in newborns of hepatitis B e antigen (HBeAg)-positive or HBeAg-negative mothers is the subject of Huang et al. The authors report no correlation between the HBeAg status of the mothers/cord blood and the newborns immune response to the vaccine, but, unfortunately, draw unfounded conclusions regarding the tolerogenic potential of in utero exposure to HBeAg. In this reply, I address the possible influence of in utero exposure to the HBeAg, and briefly review other characteristics of the HBeAg, that may promote HBV chronicity. I argue that the function of HBeAg should no longer be considered "unknown" and that immunotolerance/immunomodulation represent the dominant functions of the HBeAg in viral-host interactions.
Collapse
Affiliation(s)
- David R. Milich
- Department of Immunology, Vaccine Research Institute of San Diego, San Diego, CA, USA
- VLP Biotech, Inc., La Jolla, CA, USA
| |
Collapse
|
12
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019. [PMID: 30889843 DOI: 10.3390/ijms] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
13
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019; 20:ijms20061358. [PMID: 30889843 PMCID: PMC6470669 DOI: 10.3390/ijms20061358] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/23/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
14
|
Zhang QL, Zhang GL, Xiong Y, Li HW, Guo J, Wang F, Deng XY, Chen JY, Wang YJ, Lin LB. Genome-wide gene expression analysis reveals novel insights into the response to nitrite stress in gills of Branchiostoma belcheri. CHEMOSPHERE 2019; 218:609-615. [PMID: 30502699 DOI: 10.1016/j.chemosphere.2018.11.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Amphioxus has been widely used as a model for the comparative immunology of vertebrates. Studies have reported that gene expression changes in the amphioxus gill in response to biotic stress, such as microbial and their mimic challenge, but little is known about how gene expression is affected by abiotic stress in the marine environment, such as nitrite. A lack of information regarding gene expression response to abiotic stress hinders a comprehensive understanding of gill defense response in amphioxus. Here, RNA sequencing was used to carry out gene expression profiling analyses of Branchiostoma belcheri gills under nitrite stress. Six libraries were created for the control and treatment groups, including three biological replicates. In total, 2416 differently expressed genes (DEGs) were detected in response to nitrite stress, of which 1522 DEGs were up-regulated in the treatment group in comparison to the control, while the remaining 894 DEGs were down-regulated genes. Functional enrichment revealed that these DEGs are primarily involved in disease, innate immunity, xenobiotic biodegradation and metabolism, and biomolecular processes and apoptosis. We screened 11 key nitrite-responsive DEGs to detect their expression responses to nitrite stress at different time points, and validate the sequencing data using real time quantitative PCR. The results indicated that the expression of gene encoding CYP3A, POD, CASPR1, GST, MAO, DDH, and XDH/XO were induced, while those encoding MRC, GT, DNASE1L, and RIPK5 were reduced, to participate in the anti-nitrite response. This study provides a useful resource for research of molecular toxicology in amphioxus under environmental stress.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500 China.
| | - Guan-Ling Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500 China
| | - Yan Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500 China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500 China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500 China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500 China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500 China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008 China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023 China
| | - Yu-Jun Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Qinzhou University, Qinzhou 535011 China.
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500 China.
| |
Collapse
|
15
|
Yang K, Guan S, Zhang H, Chen Z. Induction of interleukin 6 impairs the anti-HBV efficiency of IFN-α in human hepatocytes through upregulation of SOCS3. J Med Virol 2019; 91:803-812. [PMID: 30570770 DOI: 10.1002/jmv.25382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Yang
- Department of Pharmacology; Anhui Medical University; Hefei China
- Department of Clinical Laboratory; The Second Hospital of Anhui Medical University; Hefei China
| | - Shihe Guan
- Department of Clinical Laboratory; The Second Hospital of Anhui Medical University; Hefei China
| | - Hao Zhang
- Department of Clinical Laboratory; The Second Hospital of Anhui Medical University; Hefei China
| | - Zhiwu Chen
- Department of Pharmacology; Anhui Medical University; Hefei China
| |
Collapse
|
16
|
Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism. Viruses 2018; 10:v10080409. [PMID: 30081579 PMCID: PMC6115930 DOI: 10.3390/v10080409] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is an important transcription factor that induces the expression of antiviral genes and viral genes. NF-κB activation needs the activation of NF-κB upstream molecules, which include receptors, adaptor proteins, NF-κB (IκB) kinases (IKKs), IκBα, and NF-κB dimer p50/p65. To survive, viruses have evolved the capacity to utilize various strategies that inhibit NF-κB activity, including targeting receptors, adaptor proteins, IKKs, IκBα, and p50/p65. To inhibit NF-κB activation, viruses encode several specific NF-κB inhibitors, including NS3/4, 3C and 3C-like proteases, viral deubiquitinating enzymes (DUBs), phosphodegron-like (PDL) motifs, viral protein phosphatase (PPase)-binding proteins, and small hydrophobic (SH) proteins. Finally, we briefly describe the immune evasion mechanism of human immunodeficiency virus 1 (HIV-1) by inhibiting NF-κB activity in productive and latent infections. This paper reviews a viral mechanism of immune evasion that involves the suppression of NF-κB activation to provide new insights into and references for the control and prevention of viral diseases.
Collapse
|
17
|
Li X, Zhou TC, Wu CH, Tao LL, Bi R, Chen LJ, Deng DY, Liu C, Otecko NO, Tang Y, Lai X, Zhang L, Wei J. Correlations between mitochondrial DNA haplogroup D5 and chronic hepatitis B virus infection in Yunnan, China. Sci Rep 2018; 8:869. [PMID: 29343698 PMCID: PMC5772044 DOI: 10.1038/s41598-018-19184-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial abnormality is frequently reported in individuals with hepatitis B virus (HBV) infection, but the associated hosts’ mitochondrial genetic factors remain obscure. We hypothesized that mitochondria may affect host susceptibility to HBV infection. In this study, we aimed to detect the association between chronic HBV infection and mitochondrial DNA in Chinese from Yunnan, Southwest China. A total of 272 individuals with chronic HBV infection (CHB), 310 who had never been infected by HBV (healthy controls, HC) and 278 with a trace of HBV infection (spontaneously recovered, SR) were analysed for mtDNA sequence variations and classified into respective haplogroups. Haplogroup frequencies were compared between HBV infected patients, HCs and SRs. Haplogroup D5 presented a higher frequency in CHBs than in HCs (P = 0.017, OR = 2.87, 95% confidence interval [CI] = (1.21–6.81)) and SRs (P = 0.049, OR = 2.90, 95% CI = 1.01–8.35). The network of haplogroup D5 revealed a distinct distribution pattern between CHBs and non-CHBs. A trend of higher viral load among CHBs with haplogroup D5 was observed. Our results indicate the risk potential of mtDNA haplogroup D5 in chronic HBV infection in Yunnan, China.
Collapse
Affiliation(s)
- Xiao Li
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Tai-Cheng Zhou
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Chang-Hui Wu
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Li-Lin Tao
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Li-Jun Chen
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - De-Yao Deng
- Clinical Laboratory of the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Chang Liu
- Clinical Laboratory of the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yang Tang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650000, China
| | - Xin Lai
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China
| | - Liang Zhang
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China.
| | - Jia Wei
- Central Lab, Liver Disease Research Center, the Second People's Hospital of Yunnan Province, Kunming, 650203, Yunnan, China.
| |
Collapse
|
18
|
Jiang X, Kanda T, Haga Y, Sasaki R, Nakamura M, Wu S, Nakamoto S, Shirasawa H, Okamoto H, Yokosuka O. Glucose-regulated protein 78 is an antiviral against hepatitis A virus replication. Exp Ther Med 2017; 13:3305-3308. [PMID: 28587404 PMCID: PMC5450597 DOI: 10.3892/etm.2017.4407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
Infection with hepatitis A virus (HAV) is a major cause of acute hepatitis globally and it is important to identify the mechanisms of HAV replication. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum (ER) chaperone and serves a role in unfolded protein response pathways. Previous studies have demonstrated that GRP78 functions as an endogenous antiviral factor. In the present study, two loss-of-function studies using GRP78 were completed to elucidate the role of GRP78 in HAV infection. HAV replication was observed to be enhanced by deficient GRP78 although GRP78-deficiency also led to lower expression of ER stress molecules downstream of GRP78. Therefore, GRP78 appears to be a potential novel defensive molecule against HAV in hepatocytes.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yuki Haga
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Reina Sasaki
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiroshi Shirasawa
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
19
|
Zou ZQ, Wang L, Wang K, Yu JG. Innate immune targets of hepatitis B virus infection. World J Hepatol 2016; 8:716-725. [PMID: 27330680 PMCID: PMC4911505 DOI: 10.4254/wjh.v8.i17.716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/29/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection.
Collapse
|
20
|
Wu S, Kanda T, Nakamoto S, Jiang X, Nakamura M, Sasaki R, Haga Y, Shirasawa H, Yokosuka O. Cooperative effects of hepatitis B virus and TNF may play important roles in the activation of metabolic pathways through the activation of NF-κB. Int J Mol Med 2016; 38:475-81. [PMID: 27315566 PMCID: PMC4935457 DOI: 10.3892/ijmm.2016.2643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Elevated levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β are often observed in the sera of hepatitis B virus (HBV)-infected patients. It is well known that these cytokines activate nuclear factor-κB (NF-κB)-signaling, and are associated with endoplasmic reticulum (ER) stress. We investigated whether HBV or HBV X protein (HBx) enhanced the activation of NF-κB in the presence of TNF and/or IL-1β, and their effects on the expression of metabolic pathway-associated genes. We examined whether HBV or HBx enhanced cytokine-induced activation of NF-κB in hepatocytes, using a reporter assay, in the presence or absence of TNF and/or IL-1β. The expression of insulin-like growth factor binding protein 1 (IGFBP1), one of the NF-κB target genes was also examined. The expression of metabolic pathway-associated genes in HepG2 and HepG2.2.15 cells in the presence or absence of TNF was evaluated by RT-qPCR. Human hepatocytes expressed TNF receptors and IL-1 receptors. NF-κB was activated by cooperation between HBx and TNF in human hepatocytes. We observed IGFBP1 expression in HBV infection and that a number of metabolic pathway-associated genes were upregulated in HepG2.2.15 cells, compared with HepG2 cells with or without TNF treatment. We observed the cooperative effects of HBV and TNF which enhanced the activation of NF-κB as well as upregulated the expression of metabolic pathway-associated genes in hepatocytes. These effects may be important in the development of HBV-associated metabolic syndrome.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Shingo Nakamoto
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Xia Jiang
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Masato Nakamura
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Reina Sasaki
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Yuki Haga
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Hiroshi Shirasawa
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| |
Collapse
|
21
|
Abstract
PURPOSE The aim of this study is to investigate the T-lymphocyte subpopulation and expression of programmed cell death-1 (PD-1), toll-like receptor (TLR)3, TLR4, and interferon (INF)-γ to illustrate the relationship between hepatitis B e antigen (HBeAg) and persistent hepatitis B virus (HBV) infection. METHODS Blood was taken from normal subjects into anticoagulation tubes to separate peripheral blood mononuclear cells (PBMCs). The PBMCs were divided into four groups and cultured with various concentrations of HBeAg for 72 h. Changes in the T-cell subset were analyzed through cell counting by flow cytometry, and expression of TLR3, TLR4, and PD-1 was assessed by flow cytometry and Western blot. The concentration of IFN-γ was analyzed using enzyme-linked immunospot (ELISPOT) experiments. RESULTS PBMCs were stimulated with various concentrations of HBeAg for 72 h and assayed by flow cytometry to determine CD4+ and CD8+ cell counts. The relative frequencies of CD4+ and CD8+ subpopulations and the CD4+/CD8+ ratio decreased compared with the control group, and T-cell impairment was significantly associated with higher HBeAg load. TLR3, TLR4, and PD-1 protein expression was assessed using flow cytometry and Western blotting. Expression of TLR3, TLR4, and PD-1 increased with increasing concentration of HBeAg. ELISPOT experiments were used to determine the concentration of IFN-γ. IFN-γ production in treatment groups was lower than in the control group. Comparing IFN-γ production in treatment groups, IFN-γ production in PBMCs stimulated with high dose of HBeAg was lower than for those stimulated with low-dose HBeAg. CONCLUSIONS HBeAg can inhibit proliferation of lymphocytes, increase TLR3, TLR4, and PD-1 expression, and decrease IFN-γ production. This may be one of the molecular mechanisms of HBV immune tolerance.
Collapse
|
22
|
Sasaki R, Kanda T, Nakamura M, Nakamoto S, Haga Y, Wu S, Shirasawa H, Yokosuka O. Possible Involvement of Hepatitis B Virus Infection of Hepatocytes in the Attenuation of Apoptosis in Hepatic Stellate Cells. PLoS One 2016; 11:e0146314. [PMID: 26731332 PMCID: PMC4701422 DOI: 10.1371/journal.pone.0146314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/15/2015] [Indexed: 01/05/2023] Open
Abstract
Background The induction of apoptosis in hepatic stellate cells (HSCs) is a promising therapeutic strategy against hepatitis B virus (HBV)-related hepatic fibrosis. The underlying mechanisms of apoptosis in HSCs, however, are unknown under consideration of HBV infection. In this study, the effects of HBV on apoptosis and endoplasmic reticulum (ER) stress signaling in HSCs were examined. Methods The effects of conditioned media (CM) from HepG2.2.15 on apoptosis induced by the proteasome inhibitor MG132 in LX-2 and HHSteC were studied in regard to c-Jun. In combination with c-Fos, c-Jun forms the AP-1 early response transcription factor, leading to AP-1 activation, signal transduction, endoplasmic reticulum (ER) stress and apoptosis. Results In LX-2 cells, MG132 treatment was associated with the phosphorylation of c-Jun, activation of AP-1 and apoptosis. However, in the presence of CM from HepG2.2.15, these phenomena were attenuated. In HHSteC cells, similar results were observed. HBV genomic DNA is not involved in the process of HSC apoptosis. It is possible that HBeAg has an inhibitory effect on MG132-induced apoptosis in LX-2. We also observed the upregulation of several ER stress-associated genes, such as cAMP responsive element binding protein 3-like 3, inhibin-beta A and solute carrier family 17-member 2, in the presence of CM from HepG2.2.15, or CM from PXB cells infected with HBV. Conclusions HBV inhibits the activation of c-Jun/AP-1 in HSCs, contributing to the attenuation of apoptosis and resulting in hepatic fibrosis. HBV also up-regulated several ER stress genes associated with cell growth and fibrosis. These mechanistic insights might shed new light on a treatment strategy for HBV-associated hepatic fibrosis.
Collapse
Affiliation(s)
- Reina Sasaki
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8670, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8670, Japan
- * E-mail:
| | - Masato Nakamura
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8670, Japan
- Department of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, 260–8670, Japan
| | - Yuki Haga
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8670, Japan
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8670, Japan
| | - Hiroshi Shirasawa
- Department of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, 260–8670, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, 260–8670, Japan
| |
Collapse
|
23
|
HBV Core Protein Enhances Cytokine Production. Diseases 2015; 3:213-220. [PMID: 28943621 PMCID: PMC5548245 DOI: 10.3390/diseases3030213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection, a cause of hepatocellular carcinoma (HCC), remains a serious global health concern. HCC development and human hepatocarcinogenesis are associated with hepatic inflammation caused by host interferons and cytokines. This article focused on the association between the HBV core protein, which is one of the HBV-encoding proteins, and cytokine production. The HBV core protein induced the production of interferons and cytokines in human hepatoma cells and in a mouse model. These factors may be responsible for persistent HBV infection and hepatocarcinogenesis. Inhibitors of programmed death (PD)-1 and HBV core and therapeutic vaccines including HBV core might be useful for the treatment of patients with chronic HBV infection. Inhibitors of HBV core, which is important for hepatic inflammation, could be helpful in preventing the progression of liver diseases in HBV-infected patients.
Collapse
|
24
|
Sasaki R, Kanda T, Wu S, Nakamoto S, Haga Y, Jiang X, Nakamura M, Shirasawa H, Yokosuka O. Association between hepatitis B virus and MHC class I polypeptide-related chain A in human hepatocytes derived from human-mouse chimeric mouse liver. Biochem Biophys Res Commun 2015. [PMID: 26212443 DOI: 10.1016/j.bbrc.2015.07.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Due to the lack of efficient hepatitis B virus (HBV) infection systems, progress in understanding the role of innate immunity in HBV infection has remained challenging. Here we used human hepatocytes from a humanized severe combined immunodeficiency albumin promoter/enhancer driven-urokinase-type plasminogen activator mouse model for HBV infection. HBV DNA levels in culture medium from these human hepatocytes were 4.8-5.7 log IU/mL between day 16 and day 66 post-infection by HBV genotype C inoculum. HBV surface antigen (HBsAg) was also detected by chemiluminescent immunoassay from day 7 to day 66 post-infection. Western blot analysis revealed that major histocompatibility complex class I-related chain A (MICA), which plays a role in the innate immune system, was induced in HBV-infected human hepatocytes 27 days after infection compared with the uninfected control. MICA was reduced at day 62 and undetectable at day 90. Of interest, MICA expression by human hepatocytes increased after HBV infection and decreased before HBsAg loss. Human hepatocytes derived from chimeric mice with hepatocyte-humanized liver could support HBV genome replication. Further studies of the association between HBV replication and MICA induction should be conducted.
Collapse
Affiliation(s)
- Reina Sasaki
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Molecular Virology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yuki Haga
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Xia Jiang
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroshi Shirasawa
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
25
|
Akamatsu S, Hayes CN, Tsuge M, Miki D, Akiyama R, Abe H, Ochi H, Hiraga N, Imamura M, Takahashi S, Aikata H, Kawaoka T, Kawakami Y, Ohishi W, Chayama K. Differences in serum microRNA profiles in hepatitis B and C virus infection. J Infect 2014; 70:273-87. [PMID: 25452043 DOI: 10.1016/j.jinf.2014.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/18/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Patients infected with chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) are at greater risk of cirrhosis and hepatocellular carcinoma. The objective of this study was to identify virus-specific serum microRNA profiles associated with liver function and disease progression. Microarray analysis of serum microRNAs was performed using the Toray 3D array system in 22 healthy subjects, 42 HBV patients, and 30 HCV patients. Selected microRNAs were then validated by qRT-PCR in 186 HBV patients, 107 HCV patients, and 22 healthy subjects. RESULTS Microarray analysis showed up-regulation of a number of microRNAs in serum of both HBV and HCV patients. In qRT-PCR analysis, miR-122, miR-99a, miR-125b, miR-720, miR-22, and miR-1275 were up-regulated both in HBV patients relative to healthy subjects, and all except miR-1275 were up-regulated in HBeAg-positive patients relative to HBeAg-negative patients. Specific microRNAs were independently associated with different aspects of HBV infection. MiR-122 was independently associated with HBV DNA level, whereas miR-125b was independently associated with levels of HBV DNA, HBsAg, and HBeAg. MiR-22 and miR-1275 were independently associated with serum γ-glutamyl transpeptidase levels. CONCLUSIONS Serum microRNA levels reflect differences in the etiology and stage of viral hepatitis.
Collapse
Affiliation(s)
- Sakura Akamatsu
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Rie Akiyama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hidenori Ochi
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | | | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yoshiiku Kawakami
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
26
|
Jiang X, Kanda T, Wu S, Nakamura M, Miyamura T, Nakamoto S, Banerjee A, Yokosuka O. Regulation of microRNA by hepatitis B virus infection and their possible association with control of innate immunity. World J Gastroenterol 2014; 20:7197-206. [PMID: 24966589 PMCID: PMC4064064 DOI: 10.3748/wjg.v20.i23.7197] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/11/2013] [Accepted: 01/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects more than 350 million people worldwide. HBV causes acute and chronic hepatitis, and is one of the major causes of cirrhosis and hepatocellular carcinoma. There exist complex interactions between HBV and the immune system including adaptive and innate immunity. Toll-like receptors (TLRs) and TLR-signaling pathways are important parts of the innate immune response in HBV infections. It is well known that TLR-ligands could suppress HBV replication and that TLRs play important roles in anti-viral defense. Previous immunological studies demonstrated that HBV e antigen (HBeAg) is more efficient at eliciting T-cell tolerance, including production of specific cytokines IL-2 and interferon gamma, than HBV core antigen. HBeAg downregulates cytokine production in hepatocytes by the inhibition of MAPK or NF-κB activation through the interaction with receptor-interacting serine/threonine protein kinase. MicroRNAs (miRNAs) are also able to regulate various biological processes such as the innate immune response. When the expressions of approximately 1000 miRNAs were compared between human hepatoma cells HepG2 and HepG2.2.15, which could produce HBV virion that infects chimpanzees, using real-time RT-PCR, we observed several different expression levels in miRNAs related to TLRs. Although we and others have shown that HBV modulates the host immune response, several of the miRNAs seem to be involved in the TLR signaling pathways. The possibility that alteration of these miRNAs during HBV infection might play a critical role in innate immunity against HBV infection should be considered. This article is intended to comprehensively review the association between HBV and innate immunity, and to discuss the role of miRNAs in the innate immune response to HBV infection.
Collapse
|
27
|
Ebrahim M, Bagheri V, Arababadi MK. Potential roles played by IL-6 in hepatitis B infection. Future Virol 2014. [DOI: 10.2217/fvl.14.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT: Hepatitis B is a main disorder of the liver, which is induced by HBV. Hepatitis B can induce liver diseases, such as inflammation, cirrhosis and hepatocellular carcinoma (HCC). Recent studies demonstrated that several patients are unable to eradicate the virus from hepatocytes and develop chronic hepatitis B infections. The main mechanisms responsible for development of chronic hepatitis B and its related cirrhosis as well as HCC are yet to be identified. IL-6 is a proinflammatory cytokine that participates in stimulation of immune responses against viral infections. In addition, it has been documented that IL-6 can play key roles in induction of fibrosis and cancers. Therefore, the aim of this article is to clarify the main roles of IL-6 in stimulation of appropriate immune responses against hepatitis B virus and induction of hepatitis B-dependent cirrhosis as well as HCC.
Collapse
Affiliation(s)
- Maryam Ebrahim
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Bagheri
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
28
|
Involvement of androgen receptor and glucose-regulated protein 78 kDa in human hepatocarcinogenesis. Exp Cell Res 2014; 323:326-36. [PMID: 24583399 DOI: 10.1016/j.yexcr.2014.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 02/07/2023]
Abstract
Previous studies demonstrated that androgen receptor (AR) is expressed in human hepatocellular carcinoma (HCC), one of the male-dominant diseases. Glucose-regulated protein 78 kDa (GRP78/Bip), which has a role in cancer development, is one of the androgen response genes in prostate cell lines. The aim of this study was to investigate the impact of AR on endoplasmic reticulum (ER)-stress signaling in human hepatoma. AR and GRP78 expressions were examined in human liver tissue panels. Human hepatoma cells stably expressing short hairpin RNA targeting AR and cells over-expressing AR were generated. The expressions of ER-stress molecules and AR were measured by real-time RT-PCR and Western blotting. The effect of AR on ER-stress responsive gene expression was examined by reporter assay. Strong positive correlation between AR mRNA and GRP78 mRNA was observed in stage I/II-HCCs. AR enhanced ER-stress responsive element activities and GRP78 expression, and regulated ER-stress response in hepatocytes. Sorafenib strongly induced significant apoptosis in HepG2 cells by the inhibition of AR and inhibition of the downstream GRP78. AR seems a co-regulator of GRP78 especially in earlier-stage HCC. AR plays a critical role in controlling ER-stress, providing new therapeutic options against HCC.
Collapse
|
29
|
Kanda T, Jiang X, Nakamoto S, Nakamura M, Miyamura T, Wu S, Yokosuka O. Different effects of three interferons L on Toll-like receptor-related gene expression in HepG2 cells. Cytokine 2013; 64:577-83. [PMID: 24041672 DOI: 10.1016/j.cyto.2013.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/07/2013] [Accepted: 08/16/2013] [Indexed: 02/07/2023]
Abstract
IFNL1 (IL29), IFNL2 (IL28A) and IFNL3 (IL28B) might play important roles in anti-viral defense. IFNL3 genotypes have been shown to be associated with hepatitis C spontaneous and treatment-induced viral clearance. The effects of IFNL1, IFNL2 and IFNL3 on innate immunity including Toll-like receptor (TLR)-related pathway in human hepatocytes were examined. After G418 screening, we established the human hepatoma stable cell lines HepG2-IL28A, HepG2-IL28B, and HepG2-IL29, expressing IFNL2, IFNL3, and IFNL1 in conditioned medium, respectively, and a control cell line, HepG2-pcDNA3.1. We performed real-time RT-PCR to investigate 84 Toll-like receptor-related gene expressions in triplicate and, using ddCt methods, compared these gene expressions in each cell line. IFNL2, IFNL3 and IFNL1 were respectively detected by ELISA in HepG2-IL28A, HepG2-IL28B and HepG2-IL29. Compared to HepG2-pcDNA3.1 cells, 17 (20.2%), 11 (13.0%) and 16 genes (19.0%) were up-regulated 1.5-fold or more (p<0.05); 10 (11.9%), 2 (2.3%) and 10 genes (11.9%) were 1.5-fold or more down-regulated (p<0.05) in HepG2-IL28A, HepG2-IL28B and HepG2-IL29, respectively. EIF2AK2 and SARM1 were up-regulated among all cells. Of interest, TLR3, TLR4 and related molecules CXCL10 (IP10), IL6, EIF2K2, IFNB1, and IRF1, important genes in the progression of HCV-related pathogenesis and antiviral activities against HCV, in HepG2-IL28B, presented different profiles from those of HepG2-IL28A and HepG2-IL29. IFNL3 induces interferon-stimulated genes (ISGs) that are reportedly associated with the progression of HCV-related pathogenesis and antiviral activities against HCV. IFNL is a powerful modulator of innate immune response and it is supposed that the 3 IFNLs may play different roles in the antiviral activity against HBV and HCV.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Jiang X, Kanda T, Tanaka T, Wu S, Nakamoto S, Imazeki F, Yokosuka O. Lipopolysaccharide blocks induction of unfolded protein response in human hepatoma cell lines. Immunol Lett 2013; 152:8-15. [PMID: 23578665 DOI: 10.1016/j.imlet.2013.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/29/2013] [Accepted: 03/29/2013] [Indexed: 01/15/2023]
Abstract
In the present study, we examined whether unfolded protein response (UPR) determined the hepatic cell damage induced by an innate immune response including TLR signaling pathways. We observed that lipopolysaccharide (LPS) transcriptionally downregulates 78-kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein (GRP78/Bip), known to confer resistance to apoptosis. We also observed that LPS blocked the induction of UPR and led to poly(ADP-ribose) polymerase (PARP) cleavage in hepatocytes. We also demonstrated that overexpression of GRP78 rescued HepG2 cells treated with LPS from PARP cleavage. These data suggest that UPR downregulation could be a collateral effect of the LPS treatment. We speculate that UPR is an important factor of hepatic cell damage induced by an innate immune response.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
A Metabolomics Profiling Study in Hand-Foot-and-Mouth Disease and Modulated Pathways of Clinical Intervention Using Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:647452. [PMID: 23533509 PMCID: PMC3590494 DOI: 10.1155/2013/647452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/23/2012] [Accepted: 12/28/2012] [Indexed: 12/16/2022]
Abstract
Hand-foot-and-mouth disease (HFMD), with poorly understood pathogenesis, has become a major public health threat across Asia Pacific. In order to characterize the metabolic changes of HFMD and to unravel the regulatory role of clinical intervention, we have performed a metabolomics approach in a clinical trial. In this study, metabolites profiling was performed by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) platform from the HFMD clinical patient samples. The outcome of this study suggested that 31 endogenous metabolites were mainly involved and showed marked perturbation in HFMD patients. In addition, combination therapy intervention showed normalized tendency in HFMD patients in differential pathway. Taken together, these results indicate that metabolomics approach can be used as a complementary tool for the detection and the study of the etiology of HFMD.
Collapse
|
32
|
Miyauchi T, Kanda T, Shinozaki M, Kamezaki H, Wu S, Nakamoto S, Kato K, Arai M, Mikami S, Sugiura N, Kimura M, Goto N, Imazeki F, Yokosuka O. Efficacy of lamivudine or entecavir against virological rebound after achieving HBV DNA negativity in chronic hepatitis B patients. Int J Med Sci 2013; 10:647-52. [PMID: 23569428 PMCID: PMC3619113 DOI: 10.7150/ijms.5904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/27/2013] [Indexed: 12/20/2022] Open
Abstract
Nucleos(t)ide analogues (NAs) lead to viral suppression and undetectable hepatitis B virus (HBV) DNA in some individuals infected with HBV, but the rate of virological rebound has been unknown in such patients. We examined the prevalence of virological rebound of HBV DNA among NA-treated patients with undetectable HBV DNA. We retrospectively analyzed 303 consecutive patients [158 entecavir (ETV)- and 145 lamivudine (LAM)-treated] who achieved HBV DNA negativity, defined as HBV DNA < 3.7 log IU/mL for at least 3 months. They were followed up and their features, including their rates of viral breakthrough, were determined. Viral rebound after HBV DNA negativity was not observed in the ETV-group. Viral rebound after HBV DNA negativity occurred in 38.7% of 62 HBe antigen-positive patients in the LAM-group. On multivariate analysis, age was an independent factor for viral breakthrough among these patients (P = 0.035). Viral rebound after HBV DNA negativity occurred in 29.1% of 79 HBe antigen-negative patients in the LAM-group. Differently from LAM, ETV could inhibit HBV replication once HBV DNA negativity was achieved. In contrast, LAM could not inhibit HBV replication even if HBV negativity was achieved in the early phase. Attention should be paid to these features in clinical practice.
Collapse
Affiliation(s)
- Tomoo Miyauchi
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8677, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|