1
|
Cassona CP, Ramalhete S, Amara K, Candela T, Kansau I, Denève-Larrazet C, Janoir-Jouveshomme C, Mota LJ, Dupuy B, Serrano M, Henriques AO. Spores of Clostridioides difficile are toxin delivery vehicles. Commun Biol 2024; 7:839. [PMID: 38987278 PMCID: PMC11237016 DOI: 10.1038/s42003-024-06521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Clostridioides difficile causes a wide range of intestinal diseases through the action of two main cytotoxins, TcdA and TcdB. Ingested spores germinate in the intestine establishing a population of cells that produce toxins and spores. The pathogenicity locus, PaLoc, comprises several genes, including those coding for TcdA/B, for the holin-like TcdE protein, and for TcdR, an auto-regulatory RNA polymerase sigma factor essential for tcdA/B and tcdE expression. Here we show that tcdR, tcdA, tcdB and tcdE are expressed in a fraction of the sporulating cells, in either the whole sporangium or in the forespore. The whole sporangium pattern is due to protracted expression initiated in vegetative cells by σD, which primes the TcdR auto-regulatory loop. In contrast, the forespore-specific regulatory proteins σG and SpoVT control TcdR production and tcdA/tcdB and tcdE expression in this cell. We detected TcdA at the spore surface, and we show that wild type and ΔtcdA or ΔtcdB spores but not ΔtcdR or ΔtcdA/ΔtcdB spores are cytopathic against HT29 and Vero cells, indicating that spores may serve as toxin-delivery vehicles. Since the addition of TcdA and TcdB enhance binding of spores to epithelial cells, this effect may occur independently of toxin production by vegetative cells.
Collapse
Affiliation(s)
- Carolina P Cassona
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Khira Amara
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Imad Kansau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | | | - Luís Jaime Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal.
| |
Collapse
|
2
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
3
|
Pavelić E, Glavaš Weinberger D, Čemerin M, Rod E, Primorac D. Diagnostic considerations in the clinical management of sudden swelling of the knee: a case report and review of the literature. J Med Case Rep 2024; 18:35. [PMID: 38281947 PMCID: PMC10823606 DOI: 10.1186/s13256-023-04336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/24/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Reactive arthritis and septic arthritis rarely present concomitantly in the same joint and patient. Reactive arthritis presenting after coronavirus disease 2019 is also exceedingly rare, with less than 30 cases reported thus far. Less common pathogens such as Clostridium difficile have been reported to cause reactive arthritis, especially in patients with a positive human leukocyte antigen B27, and therefore should be considered in diagnostic algorithms. The aim of this case report is to highlight the difficulties and precautions in discerning and diagnosing patients presenting with sudden swelling of the knee. CASE PRESENTATION We report the case of a 70-year-old Caucasian male with a recent history of coronavirus disease 2019 upper respiratory infection and diarrhea and negating trauma, who presented with a swollen and painful knee. Pain and swelling worsened and inflammatory parameters increased after an intraarticular corticosteroid injection. The patient was therefore treated with arthroscopic lavage and intravenous antibiotics for suspected septic arthritis. Synovial fluid and synovium samples were taken and sent for microbiological analysis. Synovial fluid cytology showed increased leukocytes at 10,980 × 106/L, while polymerase chain reaction and cultures came back sterile. Clostridium difficile toxin was later detected from a stool sample and the patient was treated with oral vancomycin. The patient was tested for the presence of human leukocyte antigen B27, which was positive. We present a review of the literature about the challenges of distinguishing septic from reactive arthritis, and about the mechanisms that predispose certain patients to this rheumatological disease. CONCLUSIONS It is still a challenge to differentiate between septic and reactive arthritis of the knee, and it is even more challenging to identify the exact cause of reactive arthritis. This case report of a human leukocyte antigen-B27-positive patient highlights the necessity of contemplating different, less common causes of a swollen knee joint as a differential diagnosis of an apparent septic infection, especially in the coronavirus disease 2019 era. Treating the patient for septic arthritis prevented any possible complications of such a condition, while treating the C. difficile infection contributed to the substantial relief of symptoms.
Collapse
Affiliation(s)
- Eduard Pavelić
- St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, Zagreb, Croatia.
- Department of Orthopedics and Traumatology, St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, 10000, Zagreb, Croatia.
| | | | - Martin Čemerin
- St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, Zagreb, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, Zagreb, Croatia
- Department of Orthopedics and Traumatology, St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, 10000, Zagreb, Croatia
| | - Dragan Primorac
- St. Catherine Specialty Hospital, Ulica Kneza Branimira 71E, Zagreb, Croatia
- Medical School, University of Split, Šoltanska Ulica 2, Split, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Ulica Josipa Huttlera 4, Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena Ulica 21, Osijek, Croatia
- Medical School, University of Rijeka, Ulica braće Branchetta 20/1, Rijeka, Croatia
- Medical School REGIOMED, Gustav-Hirschfeld-Ring 3, Coburg, Germany
- Eberly College of Science, The Pennsylvania State University, 517 Thomas Building, University Park, PA, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, 300 Boston Post Road, West Haven, CT, USA
| |
Collapse
|
4
|
Ghorbaninejad M, Asadzadeh-Aghdaei H, Baharvand H, Meyfour A. Intestinal organoids: A versatile platform for modeling gastrointestinal diseases and monitoring epigenetic alterations. Life Sci 2023; 319:121506. [PMID: 36858311 DOI: 10.1016/j.lfs.2023.121506] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
Considering the significant limitations of conventional 2D cell cultures and tissue in vitro models, creating intestinal organoids has burgeoned as an ideal option to recapitulate the heterogeneity of the native intestinal epithelium. Intestinal organoids can be developed from either tissue-resident adult stem cells (ADSs) or pluripotent stem cells (PSCs) in both forms induced PSCs and embryonic stem cells. Here, we review current advances in the development of intestinal organoids that have led to a better recapitulation of the complexity, physiology, morphology, function, and microenvironment of the intestine. We discuss current applications of intestinal organoids with an emphasis on disease modeling. In particular, we point out recent studies on SARS-CoV-2 infection in human intestinal organoids. We also discuss the less explored application of intestinal organoids in epigenetics by highlighting the role of epigenetic modifications in intestinal development, homeostasis, and diseases, and subsequently the power of organoids in mirroring the regulatory role of epigenetic mechanisms in these conditions and introducing novel predictive/diagnostic biomarkers. Finally, we propose 3D organoid models to evaluate the effects of novel epigenetic drugs (epi-drugs) on the treatment of GI diseases where epigenetic mechanisms play a key role in disease development and progression, particularly in colorectal cancer treatment and epigenetically acquired drug resistance.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
6
|
Redistribution of the Novel Clostridioides difficile Spore Adherence Receptor E-Cadherin by TcdA and TcdB Increases Spore Binding to Adherens Junctions. Infect Immun 2023; 91:e0047622. [PMID: 36448839 PMCID: PMC9872679 DOI: 10.1128/iai.00476-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Clostridioides difficile causes antibiotic-associated diseases in humans, ranging from mild diarrhea to severe pseudomembranous colitis and death. A major clinical challenge is the prevention of disease recurrence, which affects nearly ~20 to 30% of the patients with a primary C. difficile infection (CDI). During CDI, C. difficile forms metabolically dormant spores that are essential for recurrence of CDI (R-CDI). In prior studies, we have shown that C. difficile spores interact with intestinal epithelial cells (IECs), which contribute to R-CDI. However, this interaction remains poorly understood. Here, we provide evidence that C. difficile spores interact with E-cadherin, contributing to spore adherence and internalization into IECs. C. difficile toxins TcdA and TcdB lead to adherens junctions opening and increase spore adherence to IECs. Confocal micrographs demonstrate that C. difficile spores associate with accessible E-cadherin; spore-E-cadherin association increases upon TcdA and TcdB intoxication. The presence of anti-E-cadherin antibodies decreased spore adherence and entry into IECs. By enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and immunogold labeling, we observed that E-cadherin binds to C. difficile spores, specifically to the hairlike projections of the spore, reducing spore adherence to IECs. Overall, these results expand our knowledge of how C. difficile spores bind to IECs by providing evidence that E-cadherin acts as a spore adherence receptor to IECs and by revealing how toxin-mediated damage affects spore interactions with IECs.
Collapse
|
7
|
Doan THD, Bernet-Camard MF, Hoÿs S, Janoir C, Péchiné S. Impact of Subinhibitory Concentrations of Metronidazole on Morphology, Motility, Biofilm Formation and Colonization of Clostridioides difficile. Antibiotics (Basel) 2022; 11:624. [PMID: 35625268 PMCID: PMC9137534 DOI: 10.3390/antibiotics11050624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Clostridioides difficile infection (CDI) is the primary cause of health-care-associated infectious diarrhea. Treatment requires mostly specific antibiotics such as metronidazole (MTZ), vancomycin or fidaxomicin. However, approximately 20% of treated patients experience recurrences. Treatment with MTZ is complicated by reduced susceptibility to this molecule, which could result in high failure and recurrence rates. However, the mechanism remains unclear. In this study, we investigated the impact of subinhibitory concentrations of MTZ on morphology, motility, biofilm formation, bacterial adherence to the intestinal Caco-2/TC7 differentiated monolayers, and colonization in monoxenic and conventional mouse models of two C. difficile strains (VPI 10463 and CD17-146), showing different susceptibility profiles to MTZ. Our results revealed that in addition to the inhibition of motility and the downregulation of flagellar genes for both strains, sub-inhibitory concentrations of MTZ induced various in vitro phenotypes for the strain CD17-146 exhibiting a reduced susceptibility to this antibiotic: elongated morphology, enhanced biofilm production and increased adherence to Caco-2/TC7 cells. Weak doses of MTZ induced higher level of colonization in the conventional mouse model and a trend to thicker 3-D structures entrapping bacteria in monoxenic mouse model. Thus, sub-inhibitory concentrations of MTZ can have a wide range of physiological effects on bacteria, which may contribute to their persistence after treatment.
Collapse
Affiliation(s)
| | - Marie-Françoise Bernet-Camard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (M.-F.B.-C.); (S.H.); (C.J.)
| | - Sandra Hoÿs
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (M.-F.B.-C.); (S.H.); (C.J.)
| | - Claire Janoir
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (M.-F.B.-C.); (S.H.); (C.J.)
| | - Séverine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (M.-F.B.-C.); (S.H.); (C.J.)
| |
Collapse
|
8
|
Marquardt I, Jakob J, Scheibel J, Hofmann JD, Klawonn F, Neumann-Schaal M, Gerhard R, Bruder D, Jänsch L. Clostridioides difficile Toxin CDT Induces Cytotoxic Responses in Human Mucosal-Associated Invariant T (MAIT) Cells. Front Microbiol 2022; 12:752549. [PMID: 34992584 PMCID: PMC8727052 DOI: 10.3389/fmicb.2021.752549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridioides difficile is the major cause of antibiotic-associated colitis (CDAC) with increasing prevalence in morbidity and mortality. Severity of CDAC has been attributed to hypervirulent C. difficile strains, which in addition to toxin A and B (TcdA, TcdB) produce the binary toxin C. difficile transferase (CDT). However, the link between these toxins and host immune responses as potential drivers of immunopathology are still incompletely understood. Here, we provide first experimental evidence that C. difficile toxins efficiently activate human mucosal-associated invariant T (MAIT) cells. Among the tested toxins, CDT and more specifically, the substrate binding and pore-forming subunit CDTb provoked significant MAIT cell activation resulting in selective MAIT cell degranulation of the lytic granule components perforin and granzyme B. CDT-induced MAIT cell responses required accessory immune cells, and we suggest monocytes as a potential CDT target cell population. Within the peripheral blood mononuclear cell fraction, we found increased IL-18 levels following CDT stimulation and MAIT cell response was indeed partly dependent on this cytokine. Surprisingly, CDT-induced MAIT cell activation was found to be partially MR1-dependent, although bacterial-derived metabolite antigens were absent. However, the role of antigen presentation in this process was not analyzed here and needs to be validated in future studies. Thus, MR1-dependent induction of MAIT cell cytotoxicity might be instrumental for hypervirulent C. difficile to overcome cellular barriers and may contribute to pathophysiology of CDAC.
Collapse
Affiliation(s)
- Isabel Marquardt
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Josefine Jakob
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jessica Scheibel
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Braunschweig Integrated Centre of Systems Biology (BRICS), Department of Bioinformatics and Biochemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS), Department of Bioinformatics and Biochemistry, Technical University Braunschweig, Braunschweig, Germany.,Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
9
|
Ranftler C, Nagl D, Sparer A, Röhrich A, Freissmuth M, El-Kasaby A, Nasrollahi Shirazi S, Koban F, Tschegg C, Nizet S. Binding and neutralization of C. difficile toxins A and B by purified clinoptilolite-tuff. PLoS One 2021; 16:e0252211. [PMID: 34043688 PMCID: PMC8158989 DOI: 10.1371/journal.pone.0252211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridioides difficile (C. difficile) infection is a major public health problem worldwide. The current treatment of C. difficile-associated diarrhea relies on the use of antibacterial agents. However, recurrences are frequent. The main virulence factors of C. difficile are two secreted cytotoxic proteins toxin A and toxin B. Alternative research exploring toxin binding by resins found a reduced rate of recurrence by administration of tolevamer. Hence, binding of exotoxins may be useful in preventing a relapse provided that the adsorbent is innocuous. Here, we examined the toxin binding capacity of G-PUR®, a purified version of natural clinoptilolite-tuff. Our observations showed that the purified clinoptilolite-tuff adsorbed clinically relevant amounts of C. difficile toxins A and B in vitro and neutralized their action in a Caco-2 intestinal model. This conclusion is based on four independent sets of findings: G-PUR® abrogated toxin-induced (i) RAC1 glucosylation, (ii) redistribution of occludin, (iii) rarefaction of the brush border as visualized by scanning electron microscopy and (iv) breakdown of the epithelial barrier recorded by transepithelial electrical resistance monitoring. Finally, we confirmed that the epithelial monolayer tolerated G-PUR® over a wide range of particle densities. Our findings justify the further exploration of purified clinoptilolite-tuff as a safe agent in the treatment and/or prevention of C. difficile-associated diarrhea.
Collapse
Affiliation(s)
- Carmen Ranftler
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Dietmar Nagl
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Andreas Sparer
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Andreas Röhrich
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Michael Freissmuth
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Shahrooz Nasrollahi Shirazi
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian Koban
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cornelius Tschegg
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Stephane Nizet
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
- * E-mail:
| |
Collapse
|
10
|
Trzilova D, Anjuwon-Foster BR, Torres Rivera D, Tamayo R. Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile. PLoS Pathog 2020; 16:e1008708. [PMID: 32785266 PMCID: PMC7446863 DOI: 10.1371/journal.ppat.1008708] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/24/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
The intestinal pathogen Clostridioides difficile exhibits heterogeneity in motility and toxin production. This phenotypic heterogeneity is achieved through phase variation by site-specific recombination via the DNA recombinase RecV, which reversibly inverts the "flagellar switch" upstream of the flgB operon. A recV mutation prevents flagellar switch inversion and results in phenotypically locked strains. The orientation of the flagellar switch influences expression of the flgB operon post-transcription initiation, but the specific molecular mechanism is unknown. Here, we report the isolation and characterization of spontaneous suppressor mutants in the non-motile, non-toxigenic recV flg OFF background that regained motility and toxin production. The restored phenotypes corresponded with increased expression of flagellum and toxin genes. The motile suppressor mutants contained single-nucleotide polymorphisms (SNPs) in rho, which encodes the bacterial transcription terminator Rho factor. Analyses using transcriptional reporters indicate that Rho contributes to heterogeneity in flagellar gene expression by preferentially terminating transcription of flg OFF mRNA within the 5' leader sequence. Additionally, Rho is important for initial colonization of the intestine in a mouse model of infection, which may in part be due to the sporulation and growth defects observed in the rho mutants. Together these data implicate Rho factor as a regulator of gene expression affecting phase variation of important virulence factors of C. difficile.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Brandon R. Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Dariana Torres Rivera
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
11
|
Haptoglobin genotype and gut barrier-related complications of allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2019; 55:464-466. [PMID: 31068658 DOI: 10.1038/s41409-019-0540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 11/08/2022]
|
12
|
Anonye BO, Hassall J, Patient J, Detamornrat U, Aladdad AM, Schüller S, Rose FRAJ, Unnikrishnan M. Probing Clostridium difficile Infection in Complex Human Gut Cellular Models. Front Microbiol 2019; 10:879. [PMID: 31114553 PMCID: PMC6503005 DOI: 10.3389/fmicb.2019.00879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Interactions of anaerobic gut bacteria, such as Clostridium difficile, with the intestinal mucosa have been poorly studied due to challenges in culturing anaerobes with the oxygen-requiring gut epithelium. Although gut colonization by C. difficile is a key determinant of disease outcome, precise mechanisms of mucosal attachment and spread remain unclear. Here, using human gut epithelial monolayers co-cultured within dual environment chambers, we demonstrate that C. difficile adhesion to gut epithelial cells is accompanied by a gradual increase in bacterial numbers. Prolonged infection causes redistribution of actin and loss of epithelial integrity, accompanied by production of C. difficile spores, toxins, and bacterial filaments. This system was used to examine C. difficile interactions with the commensal Bacteroides dorei, and interestingly, C. difficile growth is significantly reduced in the presence of B. dorei. Subsequently, we have developed novel models containing a myofibroblast layer, in addition to the epithelium, grown on polycarbonate or three-dimensional (3D) electrospun scaffolds. In these more complex models, C. difficile adheres more efficiently to epithelial cells, as compared to the single epithelial monolayers, leading to a quicker destruction of the epithelium. Our study describes new controlled environment human gut models that enable host-anaerobe and pathogen-commensal interaction studies in vitro.
Collapse
Affiliation(s)
- Blessing O. Anonye
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jack Hassall
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jamie Patient
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Usanee Detamornrat
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Afnan M. Aladdad
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie Schüller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Felicity R. A. J. Rose
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Meera Unnikrishnan
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
13
|
Shaban L, Chen Y, Fasciano AC, Lin Y, Kaplan DL, Kumamoto CA, Mecsas J. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage. Anaerobe 2018; 50:85-92. [PMID: 29462695 PMCID: PMC5866244 DOI: 10.1016/j.anaerobe.2018.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/18/2022]
Abstract
Endospore-forming Clostridioides difficile is a causative agent of antibiotic-induced diarrhea, a major nosocomial infection. Studies of its interactions with mammalian tissues have been hampered by the fact that C. difficile requires anaerobic conditions to survive after spore germination. We recently developed a bioengineered 3D human intestinal tissue model and found that low O2 conditions are produced in the lumen of these tissues. Here, we compared the ability of C. difficile spores to germinate, produce toxin and cause tissue damage in our bioengineered 3D tissue model versus in a 2D transwell model in which human cells form a polarized monolayer. 3D tissue models or 2D polarized monolayers on transwell filters were challenged with the non-toxin producing C. difficile CCUG 37787 serotype X (ATCC 43603) and the toxin producing UK1 C. difficile spores in the presence of the germinant, taurocholate. Spores germinated in both the 3D tissue model as well as the 2D transwell system, however toxin activity was significantly higher in the 3D tissue models compared to the 2D transwells. Moreover, the epithelium damage in the 3D tissue model was significantly more severe than in 2D transwells and damage correlated significantly with the level of toxin activity detected but not with the amount of germinated spores. Combined, these results show that the bioengineered 3D tissue model provides a powerful system with which to study early events leading to toxin production and tissue damage of C. difficile with mammalian cells under anaerobic conditions. Furthermore, these systems may be useful for examining the effects of microbiota, novel drugs and other potential therapeutics directed towards C. difficile infections.
Collapse
Affiliation(s)
- Lamyaa Shaban
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Alyssa C Fasciano
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Yinan Lin
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Carol A Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave, Boston, MA 02111, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave, Boston, MA 02111, USA.
| |
Collapse
|
14
|
Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clin Microbiol Rev 2017; 30:191-231. [PMID: 27856521 DOI: 10.1128/cmr.00049-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microorganisms hold promise for the treatment of numerous gastrointestinal diseases. The transfer of whole microbiota via fecal transplantation has already been shown to ameliorate the severity of diseases such as Clostridium difficile infection, inflammatory bowel disease, and others. However, the exact mechanisms of fecal microbiota transplant efficacy and the particular strains conferring this benefit are still unclear. Rationally designed combinations of microbial preparations may enable more efficient and effective treatment approaches tailored to particular diseases. Here we use an infectious disease, C. difficile infection, and an inflammatory disorder, the inflammatory bowel disease ulcerative colitis, as examples to facilitate the discussion of how microbial therapy might be rationally designed for specific gastrointestinal diseases. Fecal microbiota transplantation has already shown some efficacy in the treatment of both these disorders; detailed comparisons of studies evaluating commensal and probiotic organisms in the context of these disparate gastrointestinal diseases may shed light on potential protective mechanisms and elucidate how future microbial therapies can be tailored to particular diseases.
Collapse
|
15
|
Clostridium difficile flagella induce a pro-inflammatory response in intestinal epithelium of mice in cooperation with toxins. Sci Rep 2017; 7:3256. [PMID: 28607468 PMCID: PMC5468286 DOI: 10.1038/s41598-017-03621-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/02/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is the most important enteropathogen involved in gut nosocomial post-antibiotic infections. The emergence of hypervirulent strains has contributed to increased mortality and morbidity of CDI. The C. difficile toxins contribute directly to CDI-associated lesions of the gut, but other bacterial factors are needed for the bacteria to adhere and colonize the intestinal epithelium. The C. difficile flagella, which confer motility and chemotaxis for successful intestinal colonization, could play an additional role in bacterial pathogenesis by contributing to the inflammatory response of the host and mucosal injury. Indeed, by activating the TLR5, flagella can elicit activation of the MAPK and NF-κB cascades of cell signaling, leading to the secretion of pro-inflammatory cytokines. In the current study, we demonstrate, by using an animal model of CDI, a synergic effect of flagella and toxins in eliciting an inflammatory mucosal response. In this model, the absence of flagella dramatically decreases the degree of mucosal inflammation in mice and the sole presence of toxins without flagella was not enough to elicit epithelial lesions. These results highlight the important role of C. difficile flagella in eliciting mucosal lesions as long as the toxins exert their action on the epithelium.
Collapse
|
16
|
Bauer MP, Kuijper J. Clostridium difficile Infections in Hospitals and Community. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
17
|
Disease Progression and Resolution in Rodent Models of Clostridium difficile Infection and Impact of Antitoxin Antibodies and Vancomycin. Antimicrob Agents Chemother 2016; 60:6471-6482. [PMID: 27527088 DOI: 10.1128/aac.00974-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile causes infections of the colon in susceptible patients. Specifically, gut dysbiosis induced by treatment with broad-spectrum antibiotics facilitates germination of ingested C. difficile spores, expansion of vegetative cells, and production of symptom-causing toxins TcdA and TcdB. The current standard of care for C. difficile infections (CDI) consists of administration of antibiotics such as vancomycin that target the bacterium but also perpetuate gut dysbiosis, often leading to disease recurrence. The monoclonal antitoxin antibodies actoxumab (anti-TcdA) and bezlotoxumab (anti-TcdB) are currently in development for the prevention of recurrent CDI. In this study, the effects of vancomycin or actoxumab/bezlotoxumab treatment on progression and resolution of CDI were assessed in mice and hamsters. Rodent models of CDI are characterized by an early severe phase of symptomatic disease, associated with high rates of morbidity and mortality; high intestinal C. difficile burden; and a disrupted intestinal microbiota. This is followed in surviving animals by gradual recovery of the gut microbiota, associated with clearance of C. difficile and resolution of disease symptoms over time. Treatment with vancomycin prevents disease initially by inhibiting outgrowth of C. difficile but also delays microbiota recovery, leading to disease relapse following discontinuation of therapy. In contrast, actoxumab/bezlotoxumab treatment does not impact the C. difficile burden but rather prevents the appearance of toxin-dependent symptoms during the early severe phase of disease, effectively preventing disease until the microbiota (the body's natural defense against C. difficile) has fully recovered. These data provide insight into the mechanism of recurrence following vancomycin administration and into the mechanism of recurrence prevention observed clinically with actoxumab/bezlotoxumab.
Collapse
|
18
|
Maldarelli GA, Matz H, Gao S, Chen K, Hamza T, Yfantis HG, Feng H, Donnenberg MS. Pilin Vaccination Stimulates Weak Antibody Responses and Provides No Protection in a C57Bl/6 Murine Model of Acute Clostridium difficile Infection. JOURNAL OF VACCINES & VACCINATION 2016; 7:321. [PMID: 27375958 PMCID: PMC4927082 DOI: 10.4172/2157-7560.1000321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile is the leading cause of nosocomial infections in the United States, adding billions of dollars per year to health care costs. A vaccine targeted against the bacterium would be extremely beneficial in decreasing the morbidity and mortality caused by C. difficile-associated disease; a vaccine directed against a colonization factor would hinder the spread of the bacterium as well as prevent disease. Type IV pili (T4Ps) are extracellular appendages composed of protein monomers called pilins. They are involved in adhesion and colonization in a wide variety of bacteria and archaea, and are putative colonization factors in C. difficile. We hypothesized that vaccinating mice with pilins would lead to generation of anti-pilin antibodies, and would protect against C. difficile challenge. We found that immunizing C57Bl/6 mice with various pilins, whether combined or as individual proteins, led to low anti-pilin antibody titers and no protection upon C. difficile challenge. Passive transfer of anti-pilin antibodies led to high serum anti-pilin IgG titers, but to undetectable fecal anti-pilin IgG titers and did not protect against challenge. The low antibody titers observed in these experiments may be due to the particular strain of mice used. Further experiments, possibly with a different animal model of C. difficile infection, are needed to determine if an anti-T4P vaccine would be protective against C. difficile infection.
Collapse
Affiliation(s)
- Grace A Maldarelli
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hanover Matz
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Si Gao
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Kevin Chen
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Harris G Yfantis
- Department of Pathology and Laboratory Medicine, VAMHCS, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Michael S Donnenberg
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Janoir C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 2016; 37:13-24. [DOI: 10.1016/j.anaerobe.2015.10.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 02/08/2023]
|
20
|
Leber A, Viladomiu M, Hontecillas R, Abedi V, Philipson C, Hoops S, Howard B, Bassaganya-Riera J. Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile Infection. PLoS One 2015; 10:e0134849. [PMID: 26230099 PMCID: PMC4521955 DOI: 10.1371/journal.pone.0134849] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile infections are associated with the use of broad-spectrum antibiotics and result in an exuberant inflammatory response, leading to nosocomial diarrhea, colitis and even death. To better understand the dynamics of mucosal immunity during C. difficile infection from initiation through expansion to resolution, we built a computational model of the mucosal immune response to the bacterium. The model was calibrated using data from a mouse model of C. difficile infection. The model demonstrates a crucial role of T helper 17 (Th17) effector responses in the colonic lamina propria and luminal commensal bacteria populations in the clearance of C. difficile and colonic pathology, whereas regulatory T (Treg) cells responses are associated with the recovery phase. In addition, the production of anti-microbial peptides by inflamed epithelial cells and activated neutrophils in response to C. difficile infection inhibit the re-growth of beneficial commensal bacterial species. Computational simulations suggest that the removal of neutrophil and epithelial cell derived anti-microbial inhibitions, separately and together, on commensal bacterial regrowth promote recovery and minimize colonic inflammatory pathology. Simulation results predict a decrease in colonic inflammatory markers, such as neutrophilic influx and Th17 cells in the colonic lamina propria, and length of infection with accelerated commensal bacteria re-growth through altered anti-microbial inhibition. Computational modeling provides novel insights on the therapeutic value of repopulating the colonic microbiome and inducing regulatory mucosal immune responses during C. difficile infection. Thus, modeling mucosal immunity-gut microbiota interactions has the potential to guide the development of targeted fecal transplantation therapies in the context of precision medicine interventions.
Collapse
Affiliation(s)
- Andrew Leber
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Monica Viladomiu
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Raquel Hontecillas
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vida Abedi
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Casandra Philipson
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stefan Hoops
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brad Howard
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Josep Bassaganya-Riera
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Barrile R, Kasendra M, Rossi-Paccani S, Merola M, Pizza M, Baldari C, Soriani M, Aricò B. Neisseria meningitidis subverts the polarized organization and intracellular trafficking of host cells to cross the epithelial barrier. Cell Microbiol 2015; 17:1365-75. [PMID: 25801707 DOI: 10.1111/cmi.12439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/19/2022]
Abstract
Translocation of the nasopharyngeal barrier by Neisseria meningitidis occurs via an intracellular microtubule-dependent pathway and represents a crucial step in its pathogenesis. Despite this fact, the interaction of invasive meningococci with host subcellular compartments and the resulting impact on their organization and function have not been investigated. The influence of serogroup B strain MC58 on host cell polarity and intracellular trafficking system was assessed by confocal microscopy visualization of different plasma membrane-associated components (such as E-cadherin, ZO-1 and transferrin receptor) and evaluation of the transferrin uptake and recycling in infected Calu-3 monolayers. Additionally, the association of N. meningitidis with different endosomal compartments was evaluated through the concomitant staining of bacteria and markers specific for Rab11, Rab22a, Rab25 and Rab3 followed by confocal microscopy imaging. Subversion of the host cell architecture and intracellular trafficking system, denoted by mis-targeting of cell plasma membrane components and perturbations of transferrin transport, was shown to occur in response to N. meningitidis infection. Notably, the appearance of all of these events seems to positively correlate with the efficiency of N. meningitidis to cross the epithelial barrier. Our data reveal for the first time that N. meningitidis is able to modulate the host cell architecture and function, which might serve as a strategy of this pathogen for overcoming the nasopharyngeal barrier without affecting the monolayer integrity.
Collapse
Affiliation(s)
- Riccardo Barrile
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy.,Biomimetic Microsystems platform, Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Magdalena Kasendra
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Silvia Rossi-Paccani
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Marcello Merola
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy.,Department of Biology, University of Naples 'Federico II', Napoli, Italy
| | - Mariagrazia Pizza
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Cosima Baldari
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Soriani
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Beatrice Aricò
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| |
Collapse
|
22
|
Abstract
Clostridium difficile is a spore-forming anaerobic gram-positive organism that is the leading cause of antibiotic-associated nosocomial infectious diarrhea in the Western world. This article describes the evolving epidemiology of C difficile infection (CDI) in the twenty-first century, evaluates the importance of vaccines against the disease, and defines the roles of both innate and adaptive host immune responses in CDI. The effects of passive immunotherapy and active vaccination against CDI in both humans and animals are also discussed.
Collapse
Affiliation(s)
- Chandrabali Ghose
- Aaron Diamond AIDS Research Center, 455 First Avenue, 7th Floor, New York, NY 10016, USA.
| | - Ciarán P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
23
|
Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 2014; 83:138-45. [PMID: 25312952 DOI: 10.1128/iai.02561-14] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is the leading cause of infectious nosocomial diarrhea. The pathogenesis of C. difficile infection (CDI) results from the interactions between the pathogen, intestinal epithelium, host immune system, and gastrointestinal microbiota. Previous studies of the host-pathogen interaction in CDI have utilized either simple cell monolayers or in vivo models. While much has been learned by utilizing these approaches, little is known about the direct interaction of the bacterium with a complex host epithelium. Here, we asked if human intestinal organoids (HIOs), which are derived from pluripotent stem cells and demonstrate small intestinal morphology and physiology, could be used to study the pathogenesis of the obligate anaerobe C. difficile. Vegetative C. difficile, microinjected into the lumen of HIOs, persisted in a viable state for up to 12 h. Upon colonization with C. difficile VPI 10463, the HIO epithelium is markedly disrupted, resulting in the loss of paracellular barrier function. Since similar effects were not observed when HIOs were colonized with the nontoxigenic C. difficile strain F200, we directly tested the role of toxin using TcdA and TcdB purified from VPI 10463. We show that the injection of TcdA replicates the disruption of the epithelial barrier function and structure observed in HIOs colonized with viable C. difficile.
Collapse
|