1
|
Kim K, Vieira M, Gouma S, Weirick M, Hensley S, Cobey S. Measures of Population Immunity Can Predict the Dominant Clade of Influenza A (H3N2) in the 2017-2018 Season and Reveal Age-Associated Differences in Susceptibility and Antibody-Binding Specificity. Influenza Other Respir Viruses 2024; 18:e70033. [PMID: 39501522 PMCID: PMC11538025 DOI: 10.1111/irv.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND For antigenically variable pathogens such as influenza, strain fitness is partly determined by the relative availability of hosts susceptible to infection with that strain compared with others. Antibodies to the hemagglutinin (HA) and neuraminidase (NA) confer substantial protection against influenza infection. We asked if a cross-sectional antibody-derived estimate of population susceptibility to different clades of influenza A (H3N2) could predict the success of clades in the following season. METHODS We collected sera from 483 healthy individuals aged 1 to 90 years in the summer of 2017 and analyzed neutralizing responses to the HA and NA of representative strains using focus reduction neutralization tests (FNRT) and enzyme-linked lectin assays (ELLA). We estimated relative population-average and age-specific susceptibilities to circulating viral clades and compared those estimates to changes in clade frequencies in the following 2017-2018 season. RESULTS The clade to which neutralizing antibody titers were lowest, indicating greater population susceptibility, dominated the next season. Titer correlations between viral strains varied by age, suggesting age-associated differences in epitope targeting driven by shared past exposures. Yet substantial unexplained variation remains within age groups. CONCLUSIONS This study indicates how representative measures of population immunity might improve evolutionary forecasts and inform selective pressures on influenza.
Collapse
MESH Headings
- Humans
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Child, Preschool
- Adolescent
- Influenza, Human/immunology
- Influenza, Human/virology
- Influenza, Human/epidemiology
- Adult
- Aged
- Child
- Middle Aged
- Young Adult
- Infant
- Aged, 80 and over
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Male
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Cross-Sectional Studies
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Neuraminidase/immunology
- Neuraminidase/genetics
- Age Factors
- Seasons
- Disease Susceptibility/immunology
Collapse
Affiliation(s)
- Kangchon Kim
- Department of Ecology and EvolutionThe University of ChicagoChicagoIllinoisUSA
| | - Marcos C. Vieira
- Department of Ecology and EvolutionThe University of ChicagoChicagoIllinoisUSA
| | - Sigrid Gouma
- Department of Microbiology, Perelman School of MedicineThe University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Madison E. Weirick
- Department of Microbiology, Perelman School of MedicineThe University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of MedicineThe University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sarah Cobey
- Department of Ecology and EvolutionThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Loes AN, Tarabi RAL, Huddleston J, Touyon L, Wong SS, Cheng SMS, Leung NHL, Hannon WW, Bedford T, Cobey S, Cowling BJ, Bloom JD. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. J Virol 2024; 98:e0068924. [PMID: 39315814 PMCID: PMC11494878 DOI: 10.1128/jvi.00689-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes using a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify the infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately 1 month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers 6 months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. We provide an experimental protocol (dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others. IMPORTANCE We describe a new approach that can rapidly measure how the antibodies in human serum inhibit infection by many different influenza strains. This new approach is useful for understanding how viral evolution affects antibody immunity. We apply the approach to study the effect of repeated influenza vaccination.
Collapse
MESH Headings
- Humans
- High-Throughput Nucleotide Sequencing/methods
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Neutralization Tests/methods
- Vaccination
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Adult
- Female
Collapse
Affiliation(s)
- Andrea N Loes
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rosario Araceli L Tarabi
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Huddleston
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lisa Touyon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Sook San Wong
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Samuel M S Cheng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Nancy H L Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - William W Hannon
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Jesse D Bloom
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
3
|
Kim K, Vieira MC, Gouma S, Weirick ME, Hensley SE, Cobey S. Measures of population immunity can predict the dominant clade of influenza A (H3N2) in the 2017-2018 season and reveal age-associated differences in susceptibility and antibody-binding specificity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.26.23297569. [PMID: 37961288 PMCID: PMC10635207 DOI: 10.1101/2023.10.26.23297569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background For antigenically variable pathogens such as influenza, strain fitness is partly determined by the relative availability of hosts susceptible to infection with that strain compared to others. Antibodies to the hemagglutinin (HA) and neuraminidase (NA) confer substantial protection against influenza infection. We asked if a cross-sectional antibody-derived estimate of population susceptibility to different clades of influenza A (H3N2) could predict the success of clades in the following season. Methods We collected sera from 483 healthy individuals aged 1 to 90 years in the summer of 2017 and analyzed neutralizing responses to the HA and NA of representative strains using Focus Reduction Neutralization Tests (FNRT) and Enzyme-Linked Lectin Assays (ELLA). We estimated relative population-average and age-specific susceptibilities to circulating viral clades and compared those estimates to changes in clade frequencies in the following 2017-18 season. Results The clade to which neutralizing antibody titers were lowest, indicating greater population susceptibility, dominated the next season. Titer correlations between viral strains varied by age, suggesting age-associated differences in epitope targeting driven by shared past exposures. Yet substantial unexplained variation remains within age groups. Conclusions This study indicates how representative measures of population immunity might improve evolutionary forecasts and inform selective pressures on influenza.
Collapse
Affiliation(s)
- Kangchon Kim
- Department of Ecology and Evolution, The University of Chicago, USA
| | - Marcos C. Vieira
- Department of Ecology and Evolution, The University of Chicago, USA
| | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, The University of Pennsylvania, USA
| | - Madison E. Weirick
- Department of Microbiology, Perelman School of Medicine, The University of Pennsylvania, USA
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, The University of Pennsylvania, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, The University of Chicago, USA
| |
Collapse
|
4
|
Wang Y, Ma Q, Li M, Mai Q, Ma L, Zhang H, Zhong H, Mai K, Cheng N, Feng P, Guan P, Wu S, Zhang L, Dai J, Zhang B, Pan W, Yang Z. A decavalent composite mRNA vaccine against both influenza and COVID-19. mBio 2024; 15:e0066824. [PMID: 39105586 PMCID: PMC11389412 DOI: 10.1128/mbio.00668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has had a persistent and significant impact on global public health for 4 years. Recently, there has been a resurgence of seasonal influenza transmission worldwide. The co-circulation of SARS-CoV-2 and seasonal influenza viruses results in a dual burden on communities. Additionally, the pandemic potential of zoonotic influenza viruses, such as avian Influenza A/H5N1 and A/H7N9, remains a concern. Therefore, a combined vaccine against all these respiratory diseases is in urgent need. mRNA vaccines, with their superior efficacy, speed in development, flexibility, and cost-effectiveness, offer a promising solution for such infectious diseases and potential future pandemics. In this study, we present FLUCOV-10, a novel 10-valent mRNA vaccine created from our proven platform. This vaccine encodes hemagglutinin (HA) proteins from four seasonal influenza viruses and two avian influenza viruses with pandemic potential, as well as spike proteins from four SARS-CoV-2 variants. A two-dose immunization with the FLUCOV-10 elicited robust immune responses in mice, producing IgG antibodies, neutralizing antibodies, and antigen-specific cellular immune responses against all the vaccine-matched viruses of influenza and SARS-CoV-2. Remarkably, the FLUCOV-10 immunization provided complete protection in mouse models against both homologous and heterologous strains of influenza and SARS-CoV-2. These results highlight the potential of FLUCOV-10 as an effective vaccine candidate for the prevention of influenza and COVID-19.IMPORTANCEAmidst the ongoing and emerging respiratory viral threats, particularly the concurrent and sequential spread of SARS-CoV-2 and influenza, our research introduces FLUCOV-10. This novel mRNA-based combination vaccine, designed to counteract both influenza and COVID-19, by incorporating genes for surface glycoproteins from various influenza viruses and SARS-CoV-2 variants. This combination vaccine was highly effective in preclinical trials, generating strong immune responses and ensuring protection against both matching and heterologous strains of influenza viruses and SARS-CoV-2. FLUCOV-10 represents a significant step forward in our ability to address respiratory viral threats, showcasing potential as a singular, adaptable vaccine solution for global health challenges.
Collapse
MESH Headings
- Animals
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- mRNA Vaccines
- Humans
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/administration & dosage
- Mice, Inbred BALB C
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A virus/immunology
- Influenza A virus/genetics
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Man Li
- Argorna Pharmaceuticals Co., Ltd., Guangzhou, China
| | - Qianyi Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Ma
- Guangzhou RiboBio Co., Ltd, Guangzhou, China
| | - Hong Zhang
- Argorna Pharmaceuticals Co., Ltd., Guangzhou, China
| | | | - Kailin Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nan Cheng
- Guangzhou RiboBio Co., Ltd, Guangzhou, China
| | - Pei Feng
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Peikun Guan
- Guangzhou National Laboratory, Guangzhou, China
| | - Shengzhen Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Zhang
- Technology Centre, Guangzhou Customs, Guangzhou, China
| | - Jun Dai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Technology Centre, Guangzhou Customs, Guangzhou, China
| | - Biliang Zhang
- Argorna Pharmaceuticals Co., Ltd., Guangzhou, China
- State Key Laboratory of Respiratory Disease, Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| |
Collapse
|
5
|
Morris SE, Nguyen HQ, Grijalva CG, Hanson KE, Zhu Y, Biddle JE, Meece JK, Halasa NB, Chappell JD, Mellis AM, Reed C, Biggerstaff M, Belongia EA, Talbot HK, Rolfes MA. Influenza virus shedding and symptoms: Dynamics and implications from a multiseason household transmission study. PNAS NEXUS 2024; 3:pgae338. [PMID: 39246667 PMCID: PMC11378077 DOI: 10.1093/pnasnexus/pgae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/07/2024] [Indexed: 09/10/2024]
Abstract
Isolation of symptomatic infectious persons can reduce influenza transmission. However, virus shedding that occurs without symptoms will be unaffected by such measures. Identifying effective isolation strategies for influenza requires understanding the interplay between individual virus shedding and symptom presentation. From 2017 to 2020, we conducted a case-ascertained household transmission study using influenza real-time RT-qPCR testing of nasal swabs and daily symptom diary reporting for up to 7 days after enrolment (≤14 days after index onset). We assumed real-time RT-qPCR cycle threshold (Ct) values were indicators of quantitative virus shedding and used symptom diaries to create a score that tracked influenza-like illness (ILI) symptoms (fever, cough, or sore throat). We fit phenomenological nonlinear mixed-effects models stratified by age and vaccination status and estimated two quantities influencing isolation effectiveness: shedding before symptom onset and shedding that might occur once isolation ends. We considered different isolation end points (including 24 h after fever resolution or 5 days after symptom onset) and assumptions about the infectiousness of Ct shedding trajectories. Of the 116 household contacts with ≥2 positive tests for longitudinal analyses, 105 (91%) experienced ≥1 ILI symptom. On average, children <5 years experienced greater peak shedding, longer durations of shedding, and elevated ILI symptom scores compared with other age groups. Most individuals (63/105) shed <10% of their total shed virus before symptom onset, and shedding after isolation varied substantially across individuals, isolation end points, and infectiousness assumptions. Our results can inform strategies to reduce transmission from symptomatic individuals infected with influenza.
Collapse
Affiliation(s)
- Sinead E Morris
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Goldbelt Professional Services, Chesapeake, VA 23320, USA
| | - Huong Q Nguyen
- Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | | | - Kayla E Hanson
- Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Yuwei Zhu
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jessica E Biddle
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | | | | | - Alexandra M Mellis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Carrie Reed
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Matthew Biggerstaff
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | - H Keipp Talbot
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melissa A Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
6
|
Hoy G, Cortier T, Maier HE, Kuan G, Lopez R, Sanchez N, Ojeda S, Plazaola M, Stadlbauer D, Shotwell A, Balmaseda A, Krammer F, Cauchemez S, Gordon A. Anti-Neuraminidase Antibodies Reduce the Susceptibility to and Infectivity of Influenza A/H3N2 Virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308936. [PMID: 38946969 PMCID: PMC11213101 DOI: 10.1101/2024.06.14.24308936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Immune responses against neuraminidase (NA) are of great interest for developing more robust influenza vaccines, but the role of anti-NA antibodies on influenza infectivity has not been established. We conducted household transmission studies in Managua, Nicaragua to examine the impact of anti-NA antibodies on influenza A/H3N2 susceptibility and infectivity. Analyzing these data with mathematical models capturing household transmission dynamics and their drivers, we estimated that having higher preexisting antibody levels against the hemagglutinin (HA) head, HA stalk, and NA was associated with reduced susceptibility to infection (relative susceptibility 0.67, 95% Credible Interval [CrI] 0.50-0.92 for HA head; 0.59, 95% CrI 0.42-0.82 for HA stalk; and 0.56, 95% CrI 0.40-0.77 for NA). Only anti-NA antibodies were associated with reduced infectivity (relative infectivity 0.36, 95% CrI 0.23-0.55). These benefits from anti-NA immunity were observed even among individuals with preexisting anti-HA immunity. These results suggest that influenza vaccines designed to elicit NA immunity in addition to hemagglutinin immunity may not only contribute to protection against infection but reduce infectivity of vaccinated individuals upon infection.
Collapse
|
7
|
Garg N, Tellier G, Vale N, Kluge J, Portman JL, Markowska A, Tussey L. Phase 1, randomized, rater and participant blinded placebo-controlled study of the safety, reactogenicity, tolerability and immunogenicity of H1N1 influenza vaccine delivered by VX-103 (a MIMIX microneedle patch [MAP] system) in healthy adults. PLoS One 2024; 19:e0303450. [PMID: 38843267 PMCID: PMC11156369 DOI: 10.1371/journal.pone.0303450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The MIMIX platform is a novel microneedle array patch (MAP) characterized by slowly dissolving microneedle tips that deploy into the dermis following patch application. We describe safety, reactogenicity, tolerability and immunogenicity for MIMIX MAP vaccination against influenza. METHODOLOGY The trial was a Phase 1, exploratory, first-in-human, parallel randomized, rater, participant, study analyst-blinded, placebo-controlled study in Canada. Forty-five healthy participants (18 to 39 years of age, inclusive) were randomized in a 1:1:1 ratio to receive either 15 μg or 7.5 μg of an H1N1 influenza vaccine, or placebo delivered via MIMIX MAP to the volar forearm. A statistician used a computer program to create a randomization scheme with a block size of 3. Post-treatment follow-up was approximately 180 days. Primary safety outcomes included the incidence of study product related serious adverse events and unsolicited events within 180 days, solicited application site and systemic reactogenicity through 7 days after administration and solicited application site erythema and/or pigmentation 14, 28, 56 and 180 days after administration. Immunogenicity outcomes included antibody titers and percentage of seroconversion (SCR) and seroprotection (SPR) rates determined by the hemagglutination inhibition (HAI) assay. Exploratory outcomes included virus microneutralization (MN) titers, durability and breadth of the immune response. The trial was registered with ClinicalTrials.gov, number NCT06125717. FINDINGS Between July 7, 2022 and March 13, 2023 45 participants were randomized to a treatment group. One participant was lost to follow up in the 15 μg group and 1 participant withdrew from the 7.5 μg dose group. Safety analyses included n = 15 per group, immunogenicity analyses included n = 14 for the 15 μg and 7.5 μg treatment groups and n = 15 for the placebo group. No SAEs were reported in any of the treatment groups. All treatment groups reported solicited local events within 7 days after vaccination, with mild (Grade 1) erythema being the most frequent symptom reported. Other local symptoms reported included mostly mild (Grade 1) induration/swelling, itching, pigmentation, skin flaking, and tenderness. Within 7 days after vaccination, 2 participants (4.4%) reported moderate (Grade 2) erythema, 1 participant (2.2%) reported moderate (Grade 2) induration/swelling, and 1 participant (2.2%) reported moderate (Grade 2) itching. There was an overall reduction in erythema and pigmentation reported on Days 15, 29, 57, and 180 among all treatment groups. Systemic symptoms reported within 7 days after vaccination, included mild (Grade 1) fatigue reported among all treatment groups, and mild (Grade 1) headache reported by 1 participant in the 7.5 μg treatment group. No study drug related severe symptoms were reported in the study. Group mean fold rises in HAI titers ranged between 8.7 and 12-fold, SCRs were >76% and SPRs were >92% for both VX-103 dose groups thereby fulfilling serological criteria established by the EMA and FDA for seasonal influenza vaccines. Longitudinal assessments demonstrate persistence of the immune response through at least Day 180. CONCLUSIONS The MIMIX MAP platform is safe, well tolerated and elicits robust antibody responses.
Collapse
Affiliation(s)
- Naveen Garg
- Centricity Research-Montreal, Point-Claire, Québec, Canada
| | - Guy Tellier
- Centricity Research-Mirabel, Mirabel, Québec, Canada
| | - Noah Vale
- Centricity Research-Toronto, Toronto, Ontario, Canada
| | - Jon Kluge
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Jonathan L. Portman
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Anna Markowska
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Lynda Tussey
- Development and MAP Production, Vaxess Technologies, Woburn, Massachusetts, United States of America
| |
Collapse
|
8
|
Hay JA, Zhu H, Jiang CQ, Kwok KO, Shen R, Kucharski A, Yang B, Read JM, Lessler J, Cummings DAT, Riley S. Reconstructed influenza A/H3N2 infection histories reveal variation in incidence and antibody dynamics over the life course. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304371. [PMID: 38562868 PMCID: PMC10984066 DOI: 10.1101/2024.03.18.24304371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Humans experience many influenza infections over their lives, resulting in complex and varied immunological histories. Although experimental and quantitative analyses have improved our understanding of the immunological processes defining an individual's antibody repertoire, how these within-host processes are linked to population-level influenza epidemiology remains unclear. Here, we used a multi-level mathematical model to jointly infer antibody dynamics and individual-level lifetime influenza A/H3N2 infection histories for 1,130 individuals in Guangzhou, China, using 67,683 haemagglutination inhibition (HI) assay measurements against 20 A/H3N2 strains from repeat serum samples collected between 2009 and 2015. These estimated infection histories allowed us to reconstruct historical seasonal influenza patterns and to investigate how influenza incidence varies over time, space and age in this population. We estimated median annual influenza infection rates to be approximately 18% from 1968 to 2015, but with substantial variation between years. 88% of individuals were estimated to have been infected at least once during the study period (2009-2015), and 20% were estimated to have three or more infections in that time. We inferred decreasing infection rates with increasing age, and found that annual attack rates were highly correlated across all locations, regardless of their distance, suggesting that age has a stronger impact than fine-scale spatial effects in determining an individual's antibody profile. Finally, we reconstructed each individual's expected antibody profile over their lifetime and inferred an age-stratified relationship between probability of infection and HI titre. Our analyses show how multi-strain serological panels provide rich information on long term, epidemiological trends, within-host processes and immunity when analyzed using appropriate inference methods, and adds to our understanding of the life course epidemiology of influenza A/H3N2.
Collapse
Affiliation(s)
- James A. Hay
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Imperial College London
| | - Huachen Zhu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/MOE Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University, Shantou, China
- State Key Laboratory of Emerging Infectious Diseases / World Health Organization Influenza Reference Laboratory, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- 5EKIH (Gewuzhikang) Pathogen Research Institute, Guangdong, China
| | | | - Kin On Kwok
- The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Hong Kong Institute of Asia-Pacific Studies, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ruiyin Shen
- Guangzhou No.12 Hospital, Guangzhou, Guangdong, China
| | - Adam Kucharski
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom
| | - Bingyi Yang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jonathan M. Read
- Centre for Health Informatics Computing and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
- Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, United States
- UNC Carolina Population Center, Chapel Hill, United States
| | - Derek A. T. Cummings
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Imperial College London
| |
Collapse
|
9
|
Loes AN, Tarabi RAL, Huddleston J, Touyon L, Wong SS, Cheng SMS, Leung NHL, Hannon WW, Bedford T, Cobey S, Cowling BJ, Bloom JD. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584176. [PMID: 38496577 PMCID: PMC10942427 DOI: 10.1101/2024.03.08.584176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we have developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes via a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately one month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals, and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers six months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. This study demonstrates the utility of high-throughput sequencing-based neutralization assays that enable titers to be simultaneously measured against many different viral strains. We provide a detailed experimental protocol (DOI: https://dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and a computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others.
Collapse
Affiliation(s)
- Andrea N Loes
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Rosario Araceli L Tarabi
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - John Huddleston
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lisa Touyon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Sook San Wong
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Samuel M S Cheng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Nancy H L Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - William W Hannon
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Jesse D Bloom
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
10
|
Yu J, Sreenivasan C, Sheng Z, Zhai SL, Wollman JW, Luo S, Huang C, Gao R, Wang Z, Kaushik RS, Christopher-Hennings J, Nelson E, Hause BM, Li F, Wang D. A recombinant chimeric influenza virus vaccine expressing the consensus H3 hemagglutinin elicits broad hemagglutination inhibition antibodies against divergent swine H3N2 influenza viruses. Vaccine 2023; 41:6318-6326. [PMID: 37689544 DOI: 10.1016/j.vaccine.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The global distribution and ongoing evolution of type A swine influenza virus (IAV-S) continue to pose significant challenges against developing broadly protective vaccines to control swine influenza. This study focuses on the hemagglutinin (HA) consensus-based approach towards developing a more broadly protective swine influenza vaccine against various H3 strains circulating in domestic pig populations. By computationally analyzing >1000 swine H3 full-length HA sequences, we generated a consensus H3 and expressed it in the context of influenza A WSN/33 reverse genetics system. The derived recombinant chimeric swine influenza virus with the consensus H3 was inactivated and further evaluated as a potential universal vaccine in pigs. The consensus H3 vaccine elicited broadly active hemagglutination inhibition (HI) antibodies against divergent swine H3N2 influenza viruses including human H3N2 variant of concern, and strains belong to genetic clusters IV, IV-A, IV-B, IV-C, IV-D and IV-F. Importantly, vaccinated pigs were completely protected against challenge with a clinical swine H3N2 isolate in that neither viral shedding nor replication in lungs of vaccinated pigs were observed. These findings warrant further study of the consensus H3 vaccine platform for broad protection against diverse swine influenza viruses.
Collapse
Affiliation(s)
- Jieshi Yu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Chithra Sreenivasan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Zhizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Shao-Lun Zhai
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Jared W Wollman
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Sisi Luo
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Chen Huang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Zhao Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Ben M Hause
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
11
|
de Greef PC, Lanfermeijer J, Hendriks M, Cevirgel A, Vos M, Borghans JAM, van Baarle D, de Boer RJ. On the feasibility of using TCR sequencing to follow a vaccination response - lessons learned. Front Immunol 2023; 14:1210168. [PMID: 37520553 PMCID: PMC10374308 DOI: 10.3389/fimmu.2023.1210168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
T cells recognize pathogens by their highly specific T-cell receptor (TCR), which can bind small fragments of an antigen presented on the Major Histocompatibility Complex (MHC). Antigens that are provided through vaccination cause specific T cells to respond by expanding and forming specific memory to combat a future infection. Quantification of this T-cell response could improve vaccine monitoring or identify individuals with a reduced ability to respond to a vaccination. In this proof-of-concept study we use longitudinal sequencing of the TCRβ repertoire to quantify the response in the CD4+ memory T-cell pool upon pneumococcal conjugate vaccination. This comes with several challenges owing to the enormous size and diversity of the T-cell pool, the limited frequency of vaccine-specific TCRs in the total repertoire, and the variation in sample size and quality. We defined quantitative requirements to classify T-cell expansions and identified critical parameters that aid in reliable analysis of the data. In the context of pneumococcal conjugate vaccination, we were able to detect robust T-cell expansions in a minority of the donors, which suggests that the T-cell response against the conjugate in the pneumococcal vaccine is small and/or very broad. These results indicate that there is still a long way to go before TCR sequencing can be reliably used as a personal biomarker for vaccine-induced protection. Nevertheless, this study highlights the importance of having multiple samples containing sufficient T-cell numbers, which will support future studies that characterize T-cell responses using longitudinal TCR sequencing.
Collapse
Affiliation(s)
- Peter C. de Greef
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Josien Lanfermeijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marion Hendriks
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Alper Cevirgel
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Martijn Vos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Rob J. de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Tsang TK, Huang X, Wang C, Chen S, Yang B, Cauchemez S, Cowling BJ. The effect of variation of individual infectiousness on SARS-CoV-2 transmission in households. eLife 2023; 12:82611. [PMID: 36880191 PMCID: PMC9991055 DOI: 10.7554/elife.82611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Quantifying variation of individual infectiousness is critical to inform disease control. Previous studies reported substantial heterogeneity in transmission of many infectious diseases including SARS-CoV-2. However, those results are difficult to interpret since the number of contacts is rarely considered in such approaches. Here, we analyze data from 17 SARS-CoV-2 household transmission studies conducted in periods dominated by ancestral strains, in which the number of contacts was known. By fitting individual-based household transmission models to these data, accounting for number of contacts and baseline transmission probabilities, the pooled estimate suggests that the 20% most infectious cases have 3.1-fold (95% confidence interval: 2.2- to 4.2-fold) higher infectiousness than average cases, which is consistent with the observed heterogeneity in viral shedding. Household data can inform the estimation of transmission heterogeneity, which is important for epidemic management.
Collapse
Affiliation(s)
- Tim K Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
- Laboratory of Data Discovery for HealthHong KongChina
| | - Xiaotong Huang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Can Wang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Sijie Chen
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Bingyi Yang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut PasteurParisFrance
| | | |
Collapse
|
13
|
Okuda M, Sakai-Tagawa Y, Koga M, Koibuchi T, Kikuchi T, Adachi E, Ahyoung Lim L, Yamamoto S, Yotsuyanagi H, Negishi K, Jubishi D, Yamayoshi S, Kawaoka Y. Immunological Correlates of Prevention of the Onset of Seasonal H3N2 Influenza. J Infect Dis 2022; 226:1800-1808. [PMID: 35478039 PMCID: PMC10205605 DOI: 10.1093/infdis/jiac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
On influenza virus infection or vaccination, immune responses occur, including the production of antibodies with various functions that contribute to protection from seasonal influenza virus infection. In the current study, we attempted to identify the antibody functions that play a central role in preventing the onset of seasonal influenza by comparing the levels of several antibody titers for different antibody functions between 5 subclinically infected individuals and 16 patients infected with seasonal H3N2 virus. For antibody titers before influenza virus exposure, we found that the nAb titers and enzyme-linked immunosorbent assay titers against hemagglutinin and neuraminidase (NA) proteins in the subclinically infected individuals were significantly higher than those in the patients, whereas the NA inhibition titers and antibody-dependent cellular cytotoxicity activities did not significantly differ between subclinically infected individuals and infected patients. These results suggest that nAb and enzyme-linked immunosorbent assay titers against hemagglutinin and NA serve as correlates of symptomatic influenza infection.
Collapse
Affiliation(s)
- Moe Okuda
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuko Sakai-Tagawa
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomohiko Koibuchi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Tadashi Kikuchi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Lay Ahyoung Lim
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Shinya Yamamoto
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Kyota Negishi
- Tokyo Health Cooperative Association, Nezu Clinic, Tokyo, Japan
| | - Daisuke Jubishi
- Tokyo Health Cooperative Association, Nezu Clinic, Tokyo, Japan
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Seiya Yamayoshi
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Levine MZ, Holiday C, Bai Y, Zhong W, Liu F, Jefferson S, Gross FL, Tzeng WP, Fries L, Smith G, Boutet P, Friel D, Innis BL, Mallett CP, Davis CT, Wentworth DE, York IA, Stevens J, Katz JM, Tumpey T. Influenza A(H7N9) Pandemic Preparedness: Assessment of the Breadth of Heterologous Antibody Responses to Emerging Viruses from Multiple Pre-Pandemic Vaccines and Population Immunity. Vaccines (Basel) 2022; 10:1856. [PMID: 36366364 PMCID: PMC9694415 DOI: 10.3390/vaccines10111856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 05/07/2024] Open
Abstract
Influenza A(H7N9) viruses remain as a high pandemic threat. The continued evolution of the A(H7N9) viruses poses major challenges in pandemic preparedness strategies through vaccination. We assessed the breadth of the heterologous neutralizing antibody responses against the 3rd and 5th wave A(H7N9) viruses using the 1st wave vaccine sera from 4 vaccine groups: 1. inactivated vaccine with 2.8 μg hemagglutinin (HA)/dose + AS03A; 2. inactivated vaccine with 5.75 μg HA/dose + AS03A; 3. inactivated vaccine with 11.5 μg HA/dose + MF59; and 4. recombinant virus like particle (VLP) vaccine with 15 μg HA/dose + ISCOMATRIX™. Vaccine group 1 had the highest antibody responses to the vaccine virus and the 3rd/5th wave drifted viruses. Notably, the relative levels of cross-reactivity to the drifted viruses as measured by the antibody GMT ratios to the 5th wave viruses were similar across all 4 vaccine groups. The 1st wave vaccines induced robust responses to the 3rd and Pearl River Delta lineage 5th wave viruses but lower cross-reactivity to the highly pathogenic 5th wave A(H7N9) virus. The population in the United States was largely immunologically naive to the A(H7N9) HA. Seasonal vaccination induced cross-reactive neuraminidase inhibition and binding antibodies to N9, but minimal cross-reactive antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies to A(H7N9).
Collapse
Affiliation(s)
- Min Z. Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Crystal Holiday
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Yaohui Bai
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Weimin Zhong
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Stacie Jefferson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - F. Liaini Gross
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Wen-pin Tzeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | - Gale Smith
- Novavax, Inc., Gaithersburg, MD 20878, USA
| | | | | | | | | | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - David E. Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ian A. York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jacqueline M. Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Terrence Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
15
|
Serial Passaging of Seasonal H3N2 Influenza A/Singapore/G2-31.1/2014 Virus in MDCK-SIAT1 Cells and Primary Chick Embryo Cells Generates HA D457G Mutation and Other Variants in HA, NA, PB1, PB1-F2, and NS1. Int J Mol Sci 2022; 23:ijms232012408. [PMID: 36293269 PMCID: PMC9604028 DOI: 10.3390/ijms232012408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza remains one of the most prevalent viruses circulating amongst humans and has resulted in several pandemics. The prevention and control of H3N2 influenza is complicated by its propensity for evolution, which leads to vaccine mismatch and reduced vaccine efficacies. This study employed the strategy of serial passaging to compare the evolution of the human seasonal influenza strain A/Singapore/G2-31.1/2014(H3N2) in MDCK-SIAT1 versus primary chick embryo fibroblast (CEF) cells. Genetic analysis of the HA, NS1, NA, and PB1 gene segments by Sanger sequencing revealed the presence of specific mutations and a repertoire of viral quasispecies following serial passaging. Most quasispecies were also found in PB1, which exhibited consistently high transversion-to-transition ratios in all five MDCK-SIAT1 passages. Most notably, passage 5 virus harbored the D457G substitution in the HA2 subunit, while passage 3 virus acquired K53Q and Q69H mutations in PB1-F2. An A971 variant leading to a non-synonymous R316Q substitution in PB1 was also identified in MDCK-SIAT1 passages 2 and 4. With an increasing number of passages, the proportion of D457G mutations progressively increased and was associated with larger virus plaque sizes. However, microneutralization assays revealed no significant differences in the neutralizing antibody profiles of human-influenza-immune serum samples against pre-passaged virus and passage 5 virus. In contrast, viable virus was only detected in passage 1 of CEF cells, which gave rise to multiple viral RNA quasispecies. Our findings highlight that serial passaging is able to drive differential adaptation of H3N2 influenza in different host species and may alter viral virulence. More studies are warranted to elucidate the complex relationships between H3N2 virus evolution, viral virulence changes, and low vaccine efficacy.
Collapse
|
16
|
Indirect Protection from Vaccinating Children against Influenza A Virus Infection in Households. Viruses 2022; 14:v14102097. [PMID: 36298653 PMCID: PMC9610389 DOI: 10.3390/v14102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza vaccination is an important intervention to prevent influenza virus infection. Our previous analysis suggested that indirect protection is limited in an influenza B epidemic in Hong Kong. We further analyzed six influenza A epidemics to determine such potential. We applied a statistical model to estimate household transmission dynamics in the 3 influenza A(H3N2) and 3 pandemic influenza A(H1N1) epidemics. Then, we estimated the reduction in infection risk among unvaccinated household members when all children in households are vaccinated, with different assumptions on vaccine efficacy (VE). In the optimal scenario that VE was 70%, the reduction to the total probability of infection was only marginal, with relative probabilities ranged from 0.91–0.94 when all children in households were vaccinated because community was by far the main source of infection during the six epidemics in our study. The proportion of cases attributed to household transmission was 10% (95% CrI: 7%, 13%). Individual influenza vaccination is important even when other household members are vaccinated, given the degree of indirect protection is small.
Collapse
|
17
|
Chen K, Wu X, Wang Q, Wang Y, Zhang H, Zhao S, Li C, Hu Z, Yang Z, Li L. The protective effects of a D-tetra-peptide hydrogel adjuvant vaccine against H7N9 influenza virus in mice. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Reconstructing antibody dynamics to estimate the risk of influenza virus infection. Nat Commun 2022; 13:1557. [PMID: 35322048 PMCID: PMC8943152 DOI: 10.1038/s41467-022-29310-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
For >70 years, a 4-fold or greater rise in antibody titer has been used to confirm influenza virus infections in paired sera, despite recognition that this heuristic can lack sensitivity. Here we analyze with a novel Bayesian model a large cohort of 2353 individuals followed for up to 5 years in Hong Kong to characterize influenza antibody dynamics and develop an algorithm to improve the identification of influenza virus infections. After infection, we estimate that hemagglutination-inhibiting (HAI) titers were boosted by 16-fold on average and subsequently decrease by 14% per year. In six epidemics, the infection risks for adults were 3%-19% while the infection risks for children were 1.6-4.4 times higher than that of younger adults. Every two-fold increase in pre-epidemic HAI titer was associated with 19%-58% protection against infection. Our inferential framework clarifies the contributions of age and pre-epidemic HAI titers to characterize individual infection risk.
Collapse
|
19
|
Gorse GJ, Grimes S, Buck H, Mulla H, White P, Hill H, May J, Frey SE, Blackburn P. A phase 1 dose-sparing, randomized clinical trial of seasonal trivalent inactivated influenza vaccine combined with MAS-1, a novel water-in-oil adjuvant/delivery system. Vaccine 2022; 40:1271-1281. [PMID: 35125219 DOI: 10.1016/j.vaccine.2022.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND New influenza vaccines are needed to increase vaccine efficacy. Adjuvants may allow hemagglutinin (HA) dose-sparing with enhanced immunogenicity. MAS-1 is an investigational low viscosity, free-flowing, water-in-oil emulsion-based adjuvant/delivery system comprised of stable nanoglobular aqueous droplets. METHODS A phase 1, double-blind, safety and immunogenicity, HA dose escalation, randomized clinical trial was conducted. MAS-1 adjuvant with 1, 3, 5 or 9 µg per HA derived from licensed seasonal trivalent high dose inactivated influenza vaccine (IIV, Fluzone HD 60 µg per HA) in a 0.3 mL dose were compared to standard dose IIV (Fluzone SD, 15 µg per HA). Safety was measured by reactogenicity, adverse events, and clinical laboratory tests. Serum hemagglutination inhibition (HAI) antibody titers were measured for immunogenicity. RESULTS Seventy-two subjects, aged 18-47 years, received one dose of either 0.3 mL adjuvanted vaccine or SD IIV intramuscularly. Common injection site and systemic reactions post-vaccination were mild tenderness, induration, pain, headache, myalgia, malaise and fatigue. All reactions resolved within 14 days post-vaccination. Safety laboratory measures were not different between groups. Geometric mean antibody titers, geometric mean fold increases in antibody titer, seroconversion rates and seroprotection rates against vaccine strains were in general higher and of longer duration (day 85 and 169 visits) with MAS-1-adjuvanted IIV at all doses of HA compared with SD IIV. Adjuvanted vaccine induced higher antibody responses against a limited number of non-study vaccine influenza B and A/H3N2 viruses including ones from subsequent years. CONCLUSION MAS-1 adjuvant in a 0.3 mL dose volume provided HA dose-sparing effects without safety concerns and induced higher HAI antibody and seroconversion responses through at least 6 months, demonstrating potential to provide greater vaccine efficacy throughout an influenza season in younger adults. In summary, MAS-1 may provide enhanced, more durable and broader protective immunity compared with non-adjuvanted SD IIV. Clinical Trial Registry: ClinicalTrials.gov # NCT02500680.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sharon E Frey
- Saint Louis University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
20
|
MAS-1, a novel water-in-oil adjuvant/delivery system, with reduced seasonal influenza vaccine hemagglutinin dose may enhance potency, durability and cross-reactivity of antibody responses in the elderly. Vaccine 2022; 40:1472-1482. [PMID: 35125224 DOI: 10.1016/j.vaccine.2022.01.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Increased influenza vaccine efficacy is needed in the elderly at high-risk for morbidity and mortality due to influenza infection. Adjuvants may allow hemagglutinin (HA) dose-sparing with enhanced immunogenicity. MAS-1 is an investigational water-in-oil emulsion-based adjuvant/delivery system comprised of stable nanoglobular aqueous droplets. METHODS A phase 1, randomized, double-blind, safety and immunogenicity, adjuvant dose escalation trial was conducted in persons aged 65 years and older. MAS-1 adjuvant dose volumes at 0.3 mL or 0.5 mL containing 9 µg per HA derived from licensed seasonal trivalent influenza vaccine (IIV, Fluzone HD 60 µg per HA, Sanofi Pasteur) were compared to high dose (HD) IIV (Fluzone HD). Safety was measured by reactogenicity, adverse events, and safety laboratory measures. Immunogenicity was assessed by serum hemagglutination inhibition (HAI) antibody titers. RESULTS Forty-five subjects, aged 65-83 years, were randomly assigned to receive 9 µg per HA in 0.3 mL MAS-1 (15 subjects) or HD IIV (15 subjects) followed by groups randomly assigned to receive 9 µg per HA in 0.5 mL MAS-1 (10 subjects) or HD IIV (5 subjects). Injection site tenderness, induration, and pain, and headache, myalgia, malaise and fatigue were common, resolving before day 14 post-vaccination. Clinically significant late-onset injection site reactions occurred in four of ten subjects at the 0.5 mL adjuvant dose. Safety laboratory measures were within acceptable limits. MAS-1-adjuvanted IIV enhanced mean antibody titers, mean-fold increases in antibody titer, and seroconversion rates against vaccine strains for at least 168 days post-vaccination and enhanced cross-reactive antibodies against some non-study vaccine influenza viruses. CONCLUSION MAS-1 adjuvant provided HA dose-sparing without safety concerns at the 0.3 mL dose, but the 0.5 mL dose caused late injection site reactions. MAS-1-adjuvanted IIV induced higher HAI antibody responses with prolonged durability including against historical strains, thereby providing greater potential vaccine efficacy in the elderly throughout an influenza season. Clinical Trial Registry: ClinicalTrials.gov # NCT02500680.
Collapse
|
21
|
Dahlgren FS, Foppa IM, Stockwell MS, Vargas CY, LaRussa P, Reed C. Household transmission of influenza A and B within a prospective cohort during the 2013-2014 and 2014-2015 seasons. Stat Med 2021; 40:6260-6276. [PMID: 34580901 PMCID: PMC9293304 DOI: 10.1002/sim.9181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/22/2021] [Accepted: 08/15/2021] [Indexed: 01/01/2023]
Abstract
People living within the same household as someone ill with influenza are at increased risk of infection. Here, we use Markov chain Monte Carlo methods to partition the hazard of influenza illness within a cohort into the hazard from the community and the hazard from the household. During the 2013‐2014 influenza season, 49 (4.7%) of the 1044 people enrolled in a community surveillance cohort had an acute respiratory illness (ARI) attributable to influenza. During the 2014‐2015 influenza season, 50 (4.7%) of the 1063 people in the cohort had an ARI attributable to influenza. The secondary attack rate from a household member was 2.3% for influenza A (H1) during 2013‐2014, 5.3% for influenza B during 2013‐2014, and 7.6% for influenza A (H3) during 2014‐2015. Living in a household with a person ill with influenza increased the risk of an ARI attributable to influenza up to 350%, depending on the season and the influenza virus circulating within the household.
Collapse
Affiliation(s)
- F Scott Dahlgren
- Influenza Division, Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ivo M Foppa
- Influenza Division, Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Battelle Memorial Institute, Atlanta, Georgia, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Celibell Y Vargas
- Division of Child and Adolescent Health, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Philip LaRussa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Carrie Reed
- Influenza Division, Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Oidtman RJ, Arevalo P, Bi Q, McGough L, Russo CJ, Vera Cruz D, Costa Vieira M, Gostic KM. Influenza immune escape under heterogeneous host immune histories. Trends Microbiol 2021; 29:1072-1082. [PMID: 34218981 PMCID: PMC8578193 DOI: 10.1016/j.tim.2021.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
In a pattern called immune imprinting, individuals gain the strongest immune protection against the influenza strains encountered earliest in life. In many recent examples, differences in early infection history can explain birth year-associated differences in susceptibility (cohort effects). Susceptibility shapes strain fitness, but without a clear conceptual model linking host susceptibility to the identity and order of past infections general conclusions on the evolutionary and epidemic implications of cohort effects are not possible. Failure to differentiate between cohort effects caused by differences in the set, rather than the order (path), of past infections is a current source of confusion. We review and refine hypotheses for path-dependent cohort effects, which include imprinting. We highlight strategies to measure their underlying causes and emergent consequences.
Collapse
Affiliation(s)
- Rachel J Oidtman
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Philip Arevalo
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Qifang Bi
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Lauren McGough
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | | | - Diana Vera Cruz
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Marcos Costa Vieira
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Katelyn M Gostic
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
23
|
Vien Chinh C, Phu Quoc V, Huynh Tan L, Nguyen Van D, Pham Quang T, Le Van B. Persistence of vaccine-induced antibody to A/H5N1 influenza after 30 and 36 months of vaccination. Epidemiol Health 2021; 43:e2021076. [PMID: 34645208 PMCID: PMC8854785 DOI: 10.4178/epih.e2021076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Objectives An A/H5N1 vaccine named IVACFLU-A/ H5N1 was accepted to use in Vietnam, however, antibody persistence after vaccination has not been well characterized yet. We examined the persistence of antibodies after vaccination and related risk factors in individuals enrolled in phase II with 15 mcg dose, 2 injections 21 days apart, IVACFLU-A/ H5N1 vaccine trials in Ninh Hoa, Vietnam. Methods We used a longitudinal study to follow 86 participants without control groups. They were tested anti-A/H5N1 IgG seronegative at baseline and received all two doses of the vaccine. Blood was drawn at 30 and 36 months after the full vaccination to assess antibody status. Antibody persistence status is compared by demographics and exposure risk factors using a univariate logistic regression. Results Overall incidence of persisting at least 1/10 of A/H5N1 antibodies was 84.9% and 52.3% after 30 months and 36 months of IVACFLU-A/H5N1 vaccination. The odds of antibody persistence were more significant in older people but lower in people who experienced flu-like symptoms in the past 18 months or between two visits. We recorded no differences between A/H5N1 antibodies persistence and exposure risk factors including having poultry farms, contacting with poultry, and slaughtering and processing poultry. Conclusion This study demonstrated noteworthy antibody persistence, indicated by seroconversion rate and geometric mean titer at 30 and 36-month post-vaccination, of the IVACFLU-A/H5N1 vaccine. There is a need for further studies on older people, and those who experienced flu-like symptoms to decide the suitable time for the booster shot.
Collapse
Affiliation(s)
- Chien Vien Chinh
- Institute of Vaccines and Medical Biologicals (IVAC), Nha Trang, Viet Nam.,TAY NGUYEN Institute of Hygiene and Epidemiology, Buon Me Thuot, Viet Nam
| | | | - Loc Huynh Tan
- Ninh Hoa District Medical Center, Khanh Hoa, Viet Nam
| | - Duoc Nguyen Van
- Institute of Vaccines and Medical Biologicals (IVAC), Nha Trang, Viet Nam
| | - Thai Pham Quang
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam.,Institute of Preventive medicine and Public health, Hanoi medical University, Hanoi, Viet Nam
| | - Be Le Van
- Institute of Vaccines and Medical Biologicals (IVAC), Nha Trang, Viet Nam
| |
Collapse
|
24
|
Gorse GJ, Rattigan SM, Kirpich A, Simberkoff MS, Bessesen MT, Gibert C, Nyquist AC, Price CS, Gaydos CA, Radonovich LJ, Perl TM, Rodriguez-Barradas MC, Cummings DAT. Influence of Pre-Season Antibodies against Influenza Virus on Risk of Influenza Infection among Health Care Personnel. J Infect Dis 2021; 225:891-902. [PMID: 34534319 DOI: 10.1093/infdis/jiab468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The association of hemagglutination inhibition (HAI) antibodies with protection from influenza among healthcare personnel (HCP) with occupational exposure to influenza viruses has not been well-described. METHODS The Respiratory Protection Effectiveness Clinical Trial was a cluster-randomized, multi-site study that compared medical masks to N95 respirators in preventing viral respiratory infections among HCP in outpatient healthcare settings for 5,180 participant-seasons. Serum HAI antibody titers before each influenza season and influenza virus infection confirmed by polymerase chain reaction were studied over four study years. RESULTS In univariate models, the risk of influenza A(H3N2) and B virus infections was associated with HAI titers to each virus, study year, and site. HAI titers were strongly associated with vaccination. Within multivariate models, each log base 2 increase in titer was associated with 15%, 26% and 33-35% reductions in the hazard of influenza A(H3N2), A(H1N1) and B infections, respectively. Best models included pre-season antibody titers and study year, but not other variables. CONCLUSIONS HAI titers were associated with protection from influenza among HCP with routine exposure to patients with respiratory illness and influenza season contributed to risk. HCP can be reassured about receiving influenza vaccination to stimulate immunity.
Collapse
Affiliation(s)
- Geoffrey J Gorse
- Section of Infectious Diseases, Veterans Affairs St. Louis Health Care System, St. Louis, MO, 63106 USA.,Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, MO, 63104 USA
| | - Susan M Rattigan
- Department of Biology and the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Alexander Kirpich
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA USA
| | - Michael S Simberkoff
- Department of Medicine, Veterans Affairs New York Harbor Healthcare System, New York, NY, USA.,Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Mary T Bessesen
- Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, 80045 USA.,Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cynthia Gibert
- Medical Service, Washington D.C. Veterans Affairs Medical Center, Washington, DC, USA
| | - Ann-Christine Nyquist
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Pediatrics, Section of Pediatric Infectious Disease and Epidemiology Children's Hospital Colorado, Aurora, CO, USA
| | - Connie Savor Price
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA.,Infectious Diseases, Denver Health, Denver, CO, USA
| | - Charlotte A Gaydos
- Department of Medicine and Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lewis J Radonovich
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV USA
| | - Trish M Perl
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Maria C Rodriguez-Barradas
- Infectious Diseases Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Derek A T Cummings
- Department of Biology and the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA.,Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
25
|
Prevalence of antibodies against seasonal influenza A and B viruses among older adults in rural Thailand: A cross-sectional study. PLoS One 2021; 16:e0256475. [PMID: 34460848 PMCID: PMC8404998 DOI: 10.1371/journal.pone.0256475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/08/2021] [Indexed: 11/19/2022] Open
Abstract
Assessing the seroprevalence of the high-risk individuals against the influenza virus is essential to evaluate the progress of vaccine implementation programs and establish influenza virus interventions. Herein, we identified the pre-existing cross-protection of the circulating seasonal influenza viruses among the older-aged population. A cross-sectional study was performed base on the 176 residual sera samples collected from older adults aged 60 to 95 years without a history of vaccination in rural Thailand in 2015. Sera antibody titers against influenza A and B viruses circulating between 2016 and 2019 were determined by hemagglutination inhibition assay. These findings indicated the low titers of pre-existing antibodies to circulating influenza subtypes and showed age-independent antibody titers among the old adults. Moderate seropositive rates (HAI ≥ 1:40) were observed in influenza A viruses (65.9%A(H3N2), 50.0% for A(H1N1) pdm09), and found comparatively lower rates in influenza B viruses (14% B/Yam2, 21% B/Yam3 and 25% B/Vic). Only 5% of individuals possessed broadly protective antibodies against both seasonal influenza A and B virus in this region. Our findings highlighted the low pre-existing antibodies to circulating influenza strains in the following season observed in older adults. The serological study will help inform policy-makers for health care planning and guide control measures concerning vaccination programs.
Collapse
|
26
|
Walti CS, Loes AN, Shuey K, Krantz EM, Boonyaratanakornkit J, Keane-Candib J, Loeffelholz T, Wolf CR, Taylor JJ, Gardner RA, Green DJ, Cowan AJ, Maloney DG, Turtle CJ, Pergam SA, Chu HY, Bloom JD, Hill JA. Humoral immunogenicity of the seasonal influenza vaccine before and after CAR-T-cell therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34013294 PMCID: PMC8132269 DOI: 10.1101/2021.05.10.21256634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recipients of chimeric antigen receptor-modified T (CAR-T) cell therapies for B-cell malignancies are immunocompromised and at risk for serious infections. Vaccine immunogenicity is unknown in this population. We conducted a prospective observational study of the humoral immunogenicity of 2019-2020 inactivated influenza vaccines (IIV) in children and adults immediately prior to (n=7) or 13-57 months after (n=15) CD19-, CD20-, or BCMA-targeted CAR-T-cell therapy, as well as controls (n=8). Individuals post-CAR-T-cell therapy were in remission. We tested for antibodies to 4 vaccine strains at baseline and ≥1 time point after IIV using neutralization and hemagglutination inhibition assays. An antibody response was defined as a ≥4-fold titer increase from baseline at the first post-vaccine time point. Baseline A(H1N1) titers in the CAR-T cohorts were significantly lower compared to controls. Antibody responses to ≥1 vaccine strain occurred in 2 (29%) individuals before CAR-T-cell therapy; one individual maintained a response for >3 months post-CAR-T-cell therapy. Antibody responses to ≥1 vaccine strain occurred in 6 (40%) individuals vaccinated after CAR-T-cell therapy. An additional 2 (29%) and 6 (40%) individuals had ≥2-fold increases (at any time) in the pre- and post-CAR-T cohorts, respectively. There were no identified clinical or immunologic predictors of antibody responses. Neither severe hypogammaglobulinemia nor B-cell aplasia precluded antibody responses. These data support consideration for vaccination before and after CAR-T-cell therapy for influenza and other relevant pathogens such as SARS-CoV-2, irrespective of hypogammaglobulinemia or B-cell aplasia. Larger studies are needed to determine correlates of vaccine immunogenicity and durability in CAR-T-cell therapy recipients. Key Points Influenza vaccination was immunogenic pre- and post-CAR-T-cell therapy, despite hypogammaglobulinemia and B-cell aplasia.Vaccination with inactivated vaccines can be considered before CAR-T-cell therapy and in individuals with remission after therapy.
Collapse
|
27
|
Liu F, Levine MZ. Heterologous Antibody Responses Conferred by A(H3N2) Variant and Seasonal Influenza Vaccination Against Newly Emerged 2016-2018 A(H3N2) Variant Viruses in Healthy Persons. Clin Infect Dis 2021; 71:3061-3070. [PMID: 31858129 DOI: 10.1093/cid/ciz1203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Swine origin A(H3N2) variant [A(H3N2)v] viruses continue to evolve and remain a public health threat. Recent outbreaks in humans in 2016-2018 were caused by a newly emerged A(H3N2)v cluster 2010.1, which are genetically and antigenically distinct from the previously predominant cluster IV. To address the public health risk, we evaluated the levels of heterologous cross-reactive antibodies to A(H3N2)v cluster 2010.1 viruses induced from an existing cluster IV A(H3N2)v vaccine and several seasonal inactivated influenza vaccines (IIVs) in adults, elderly individuals, and children. METHODS Human vaccine sera and ferret antisera were analyzed by hemagglutination inhibition (HI) and neutralization assays against representative A(H3N2)v viruses from clusters IV and 2010.1 and seasonal A(H3N2) viruses. RESULTS Ferret antisera detected no or little cross-reactivity between the 2 A(H3N2)v clusters or between A(H3N2)v and seasonal A(H3N2) viruses. In humans, cluster IV A(H3N2)v vaccine induced antibodies cross-reactive to cluster 2010.1 viruses in approximately one-third of the 89 adult and elderly vaccinees. Seasonal IIVs did not induce seroprotective antibodies (≥40) to A(H3N2)v viruses in young children, but induced higher antibodies to A(H3N2)v viruses in cluster 2010.1 than those in cluster IV in adults. CONCLUSIONS Cluster IV A(H3N2)v vaccine did not provide sufficient heterologous antibody responses against the new 2010.1 cluster A(H3N2)v viruses. Seasonal IIV could not induce seroprotective antibodies to 2010.1 cluster A(H3N2)v viruses in young children, suggesting that young children are still at high risk to the newly emerged A(H3N2)v viruses. Continued surveillance on A(H3N2)v viruses is critical for risk assessment and pandemic preparedness.
Collapse
Affiliation(s)
- Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Transmission Modeling with Regression Adjustment for Analyzing Household-based Studies of Infectious Disease: Application to Tuberculosis. Epidemiology 2021; 31:238-247. [PMID: 31764276 DOI: 10.1097/ede.0000000000001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Household contacts of people infected with a transmissible disease may be at risk due to this proximate exposure, or from other unobserved sources. Understanding variation in infection risk is essential for targeting interventions. METHODS We develop an analytical approach to estimate household and exogenous forces of infection, while accounting for individual-level characteristics that affect susceptibility to disease and transmissibility. We apply this approach to a cohort study conducted in Lima, Peru, of 18,544 subjects in 4,500 households with at least one active tuberculosis (TB) case and compare the results to those obtained by Poisson and logistic regression. RESULTS HIV-coinfected (susceptibility hazard ratio [SHR] = 3.80, 1.56-9.29), child (SHR = 1.72, 1.32-2.23), and teenage (SHR = 2.00, 1.49-2.68) household contacts of TB cases experience a higher hazard of TB than do adult contacts. Isoniazid preventive therapy (SHR = 0.30, 0.21-0.42) and Bacillus Calmette-Guérin (BCG) vaccination (SHR = 0.66, 0.51-0.86) reduce the risk of disease among household contacts. TB cases without microbiological confirmation exert a smaller hazard of TB among their close contacts compared with smear- or culture-positive cases (excess hazard ratio = 0.88, 0.82-0.93 for HIV- cases and 0.82, 0.57-0.94 for HIV+ cases). The extra household force of infection results in 0.01 (95% confidence interval [CI] = 0.004, 0.028) TB cases per susceptible household contact per year and the rate of transmission between a microbiologically confirmed TB case and susceptible household contact at 0.08 (95% CI = 0.045, 0.129) TB cases per pair per year. CONCLUSIONS Accounting for exposure to infected household contacts permits estimation of risk factors for disease susceptibility and transmissibility and comparison of within-household and exogenous forces of infection.
Collapse
|
29
|
Sharker Y, Kenah E. Estimating and interpreting secondary attack risk: Binomial considered biased. PLoS Comput Biol 2021; 17:e1008601. [PMID: 33471806 PMCID: PMC7850487 DOI: 10.1371/journal.pcbi.1008601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/01/2021] [Accepted: 12/02/2020] [Indexed: 11/18/2022] Open
Abstract
The household secondary attack risk (SAR), often called the secondary attack rate or secondary infection risk, is the probability of infectious contact from an infectious household member A to a given household member B, where we define infectious contact to be a contact sufficient to infect B if he or she is susceptible. Estimation of the SAR is an important part of understanding and controlling the transmission of infectious diseases. In practice, it is most often estimated using binomial models such as logistic regression, which implicitly attribute all secondary infections in a household to the primary case. In the simplest case, the number of secondary infections in a household with m susceptibles and a single primary case is modeled as a binomial(m, p) random variable where p is the SAR. Although it has long been understood that transmission within households is not binomial, it is thought that multiple generations of transmission can be neglected safely when p is small. We use probability generating functions and simulations to show that this is a mistake. The proportion of susceptible household members infected can be substantially larger than the SAR even when p is small. As a result, binomial estimates of the SAR are biased upward and their confidence intervals have poor coverage probabilities even if adjusted for clustering. Accurate point and interval estimates of the SAR can be obtained using longitudinal chain binomial models or pairwise survival analysis, which account for multiple generations of transmission within households, the ongoing risk of infection from outside the household, and incomplete follow-up. We illustrate the practical implications of these results in an analysis of household surveillance data collected by the Los Angeles County Department of Public Health during the 2009 influenza A (H1N1) pandemic. The household secondary attack risk (SAR), often called the secondary attack rate or secondary infection risk, is the probability of infectious contact from an infectious household member A to a given household member B, where we define infectious contact to be a contact sufficient to infect B if he or she is susceptible. The most common statistical models used to estimate the SAR are binomial models such as logistic regression, which implicitly assume that all secondary infections in a household are infected by the primary case. Here, we use analytical calculations and simulations to show that estimation of the SAR must account for multiple generations of transmission within households. As an example, we show that binomial models and statistical models that account for multiple generations of within-household transmission reach different conclusions about the household SAR for 2009 influenza A (H1N1) in Los Angeles County, with the latter models fitting the data better. In an epidemic, accurate estimation of the SAR allows rigorous evaluation of the effectiveness of public health interventions such as social distancing, prophylaxis or treatment, and vaccination.
Collapse
Affiliation(s)
- Yushuf Sharker
- Division of Biometrics, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Eben Kenah
- Biostatistics Division, College of Public Health, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Hitchings MDT, Cummings DAT, Grais RF, Isanaka S. A mixture model to assess the the immunogenicity of an oral rotavirus vaccine among healthy infants in Niger. Vaccine 2020; 38:8161-8166. [PMID: 33162202 DOI: 10.1016/j.vaccine.2020.10.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/18/2022]
Abstract
Analysis of immunogenicity data is a critical component of vaccine development, providing a biological basis to support any observed protection from vaccination. Conventional methods for analyzing immunogenicity data use either post-vaccination titer or change in titer, often defined as a binary variable using a threshold. These methods are simple to implement but can be limited especially in populations experiencing natural exposure to the pathogen. A mixture model can overcome the limitations of the conventional approaches by jointly modeling the probability of an immune response and the level of the immune marker among those who respond. We apply a mixture model to analyze the immunogenicity of an oral, pentavalent rotavirus vaccine in a cohort of children enrolled into a placebo-controlled vaccine efficacy trial in Niger. Among children with undetectable immunoglobulin A (IgA) at baseline, vaccinated children had 5.2-fold (95% credible interval (CrI) 3.7, 8.3) higher odds of having an IgA response than placebo children, but the mean log IgA among vaccinated responders was 0.9-log lower (95% CrI 0.6, 1.3) than among placebo responders. This result implies that the IgA response generated by vaccination is weaker than that generated by natural infection. Multivariate logistic regression of seroconversion defined by ≥ 3-fold rise in IgA similarly found increased seroconversion among vaccinated children, but could not demonstrate lower IgA among those who seroresponded. In addition, we found that the vaccine was less immunogenic among children with detectable IgA pre-vaccination, and that pre-vaccination infant serum IgG and mother's breast milk IgA modified the vaccine immunogenicity. Increased maternal antibodies were associated with weaker IgA response in placebo and vaccinated children, with the association being stronger among vaccinated children. The mixture model is a powerful and flexible method for analyzing immunogenicity data and identifying modifiers of vaccine response and independent predictors of immune response.
Collapse
Affiliation(s)
- Matt D T Hitchings
- Department of Biology, University of Florida, United States; Emerging Pathogens Institute, University of Florida, United States.
| | - Derek A T Cummings
- Department of Biology, University of Florida, United States; Emerging Pathogens Institute, University of Florida, United States
| | | | - Sheila Isanaka
- Department of Research, Epicentre, Paris, France; Departments of Nutrition and Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, United States
| |
Collapse
|
31
|
Niang M, Deming ME, Goudiaby D, Diop OM, Dia N, Diallo A, Ortiz JR, Diop D, Lewis KDC, Lafond KE, Widdowson MA, Victor JC, Neuzil KM. Immunogenicity of seasonal inactivated influenza and inactivated polio vaccines among children in Senegal: Results from a cluster-randomized trial. Vaccine 2020; 38:7526-7532. [PMID: 33012603 PMCID: PMC7936169 DOI: 10.1016/j.vaccine.2020.09.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/25/2020] [Accepted: 09/20/2020] [Indexed: 01/22/2023]
Abstract
Data on influenza vaccine immunogenicity in children are limited from tropical developing countries. We recently reported significant, moderate effectiveness of a trivalent inactivated influenza vaccine (IIV) in a controlled, cluster-randomized trial in children in rural Senegal during 2009, a year of H3N2 vaccine mismatch (NCT00893906). We report immunogenicity of IIV3 and inactivated polio vaccine (IPV) from that trial. We evaluated hemagglutination inhibition (HAI) and polio antibody titers in response to vaccination of three age groups (6 through 35 months, 3 through 5 years, and 6 through 8 years). As all children were IIV naïve, each received two vaccine doses, although titers were assessed after only the first dose for subjects aged 6 through 8 years. Seroconversion rates (4-fold titer rise or increase from <1:10 to ≥1:40) were 74-87% for A/H1N1, 76-87% for A/H3N2, and 54-79% for B/Yamagata. Seroprotection rates (HAI titer ≥ 1:40) were 79-88% for A/H1N1, 88-96% for A/H3N2, and 52-74% for B/Yamagata. IIV responses were lowest in the youngest age group, and they were comparable between ages 3 through 5 years after two doses and 6 through 8 years after one dose. We found that baseline seropositivity (HAI titer ≥ 1:10) was an effect modifier of IIV response. Using a seroprotective titer (HAI titer ≥ 1:160) recommended for IIV evaluation in children, we found that among subjects who were seropositive at baseline, 69% achieved seroprotection for both A/H1N1 and A/H3N2, while among those who were seronegative at baseline, seroprotection was achieved in 11% for A/H1N1 and 22% for A/H3N2. The IPV group had high baseline polio antibody seropositivity and appropriate responses to vaccination. Our data emphasize the importance of a two-dose IIV3 series in vaccine naïve children. IIV and IPV vaccines were immunogenic in Senegalese children.
Collapse
Affiliation(s)
- Mbayame Niang
- National Influenza and Other Respiratory Viruses Center, Institut Pasteur de Dakar, Senegal
| | - Meagan E Deming
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Deborah Goudiaby
- National Influenza and Other Respiratory Viruses Center, Institut Pasteur de Dakar, Senegal
| | | | - Ndongo Dia
- National Influenza and Other Respiratory Viruses Center, Institut Pasteur de Dakar, Senegal
| | - Aldiouma Diallo
- UMR VITROME, Institut de Recherche Pour le Développement, Dakar, Senegal
| | - Justin R Ortiz
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| | | | | | - Kathryn E Lafond
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marc-Alain Widdowson
- Institute of Tropical Medicine, Antwerp, Belgium; Division Global Health Protection, Centers for Disease Control and Prevention, Nairobi, Kenya
| | | | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|
32
|
Xu C, Liu L, Ren B, Dong L, Zou S, Huang W, Wei H, Cheng Y, Tang J, Gao R, Feng L, Zhang R, Yuan C, Wang D, Chen J. Incidence of influenza virus infections confirmed by serology in children and adult in a suburb community, northern China, 2018-2019 influenza season. Influenza Other Respir Viruses 2020; 15:262-269. [PMID: 32978902 PMCID: PMC7902260 DOI: 10.1111/irv.12805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/30/2023] Open
Abstract
Background In mainland China, seasonal influenza disease burden at community level is unknown. The incidence rate of influenza virus infections in the community is difficult to determine due to the lack of well‐defined catchment populations of influenza‐like illness surveillance sentinel hospitals. Objectives We established a community‐based cohort to estimate incidence of seasonal influenza infections indicated by serology and protection conferred by antibody titers against influenza infections during 2018‐2019 influenza season in northern China. Methods We recruited participants in November 2018 and conducted follow‐up in May 2019 with collection of sera every survey. Seasonal influenza infections were indicated by a 4‐fold or greater increase of hemagglutination inhibition (HI) antibody between paired sera. Results Two hundred and three children 5‐17 years of age and 413 adults 18‐59 years of age were followed up and provided paired sera. The overall incidence of seasonal influenza infection and incidence of A(H3N2) infection in children (31% and 17%, respectively) were significantly higher than those in adults (21% and 10%, respectively). The incidences of A(H1N1)pdm09 infection in children and adults were both about 10%, while the incidences of B/Victoria and/Yamagata infection in children and adults were from 2% to 4%. HI titers of 1:40 against A(H1N1)pdm09 and A(H3N2) viruses were associated with 63% and 75% protection against infections with the two subtypes, respectively. Conclusions In the community, we identified considerable incidence of seasonal influenza infections. A HI titer of 1:40 could be sufficient to provide 50% protection against influenza A virus infections indicated by serology.
Collapse
Affiliation(s)
- Cuiling Xu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Ling Liu
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Binzhi Ren
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Libo Dong
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Shumei Zou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Weijuan Huang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Hejiang Wei
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Yanhui Cheng
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Jing Tang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Rongbao Gao
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Lizhong Feng
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Ruifu Zhang
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Chaopu Yuan
- Changzhi City Center for Disease Control and Prevention in Shanxi Province, Changzhi, China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Jing Chen
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| |
Collapse
|
33
|
Chepkwony S, Parys A, Vandoorn E, Chiers K, Van Reeth K. Efficacy of Heterologous Prime-Boost Vaccination with H3N2 Influenza Viruses in Pre-Immune Individuals: Studies in the Pig Model. Viruses 2020; 12:v12090968. [PMID: 32882956 PMCID: PMC7552030 DOI: 10.3390/v12090968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022] Open
Abstract
In a previous study in influenza-naïve pigs, heterologous prime-boost vaccination with monovalent, adjuvanted whole inactivated vaccines (WIV) based on the European swine influenza A virus (SwIAV) strain, A/swine/Gent/172/2008 (G08), followed by the US SwIAV strain, A/swine/Pennsylvania/A01076777/2010 (PA10), was shown to induce broadly cross-reactive hemagglutination inhibition (HI) antibodies against 12 out of 15 antigenically distinct H3N2 influenza strains. Here, we used the pig model to examine the efficacy of that particular heterologous prime-boost vaccination regimen, in individuals with pre-existing infection-immunity. Pigs were first inoculated intranasally with the human H3N2 strain, A/Nanchang/933/1995. Seven weeks later, they were vaccinated intramuscularly with G08 followed by PA10 or vice versa. We examined serum antibody responses against the hemagglutinin and neuraminidase, and antibody-secreting cell (ASC) responses in peripheral blood, draining lymph nodes, and nasal mucosa (NMC), in ELISPOT assays. Vaccination induced up to 10-fold higher HI antibody titers than in naïve pigs, with broader cross-reactivity, and protection against challenge with an antigenically distant H3N2 strain. It also boosted ASC responses in lymph nodes and NMC. Our results show that intramuscular administration of WIV can lead to enhanced antibody responses and cross-reactivity in pre-immune subjects, and recall of ASC responses in lymph nodes and NMC.
Collapse
Affiliation(s)
- Sharon Chepkwony
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
- Correspondence: ; Tel.: +32-92647369
| |
Collapse
|
34
|
Tsang TK, Lee KH, Foxman B, Balmaseda A, Gresh L, Sanchez N, Ojeda S, Lopez R, Yang Y, Kuan G, Gordon A. Association Between the Respiratory Microbiome and Susceptibility to Influenza Virus Infection. Clin Infect Dis 2020; 71:1195-1203. [PMID: 31562814 PMCID: PMC7442850 DOI: 10.1093/cid/ciz968] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previous studies suggest that the nose/throat microbiome may play an important role in shaping host immunity and modifying the risk of respiratory infection. Our aim is to quantify the association between the nose/throat microbiome and susceptibility to influenza virus infection. METHODS In this household transmission study, index cases with confirmed influenza virus infection and their household contacts were followed for 9-12 days to identify secondary influenza infections. Respiratory swabs were collected at enrollment to identify and quantify bacterial species via high-performance sequencing. Data were analyzed by an individual hazard-based transmission model that was adjusted for age, vaccination, and household size. RESULTS We recruited 115 index cases with influenza A(H3N2) or B infection and 436 household contacts. We estimated that a 10-fold increase in the abundance in Streptococcus spp. and Prevotella salivae was associated with 48% (95% credible interval [CrI], 9-69%) and 25% (95% CrI, 0.5-42%) lower susceptibility to influenza A(H3N2) infection, respectively. In contrast, for influenza B infection, a 10-fold increase in the abundance in Streptococcus vestibularis and Prevotella spp. was associated with 63% (95% CrI, 17-83%) lower and 83% (95% CrI, 15-210%) higher susceptibility, respectively. CONCLUSIONS Susceptibility to influenza infection is associated with the nose/throat microbiome at the time of exposure. The effects of oligotypes on susceptibility differ between influenza A(H3N2) and B viruses. Our results suggest that microbiome may be a useful predictor of susceptibility, with the implication that microbiome could be modulated to reduce influenza infection risk, should these associations be causal.
Collapse
Affiliation(s)
- Tim K Tsang
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Kyu Han Lee
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Betsy Foxman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Roger Lopez
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Yang Yang
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Yang B, Lessler J, Zhu H, Jiang CQ, Read JM, Hay JA, Kwok KO, Shen R, Guan Y, Riley S, Cummings DAT. Life course exposures continually shape antibody profiles and risk of seroconversion to influenza. PLoS Pathog 2020; 16:e1008635. [PMID: 32702069 PMCID: PMC7377380 DOI: 10.1371/journal.ppat.1008635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 12/05/2022] Open
Abstract
Complex exposure histories and immune mediated interactions between influenza strains contribute to the life course of human immunity to influenza. Antibody profiles can be generated by characterizing immune responses to multiple antigenically variant strains, but how these profiles vary across individuals and determine future responses is unclear. We used hemagglutination inhibition titers from 21 H3N2 strains to construct 777 paired antibody profiles from people aged 2 to 86, and developed novel metrics to capture features of these profiles. Total antibody titer per potential influenza exposure increases in early life, then decreases in middle age. Increased titers to one or more strains were seen in 97.8% of participants during a roughly four-year interval, suggesting widespread influenza exposure. While titer changes were seen to all strains, recently circulating strains exhibited the greatest titer rise. Higher pre-existing, homologous titers at baseline reduced the risk of seroconversion to recent strains. After adjusting for homologous titer, we also found an increased frequency of seroconversion against recent strains among those with higher immunity to older previously exposed strains. Including immunity to previously exposures also improved the deviance explained by the models. Our results suggest that a comprehensive quantitative description of immunity encompassing past exposures could lead to improved correlates of risk of influenza infection.
Collapse
Affiliation(s)
- Bingyi Yang
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Joint Institute of Virology (Shantou University–The University of Hong Kong), Shantou University, Shantou, Guangdong, China
| | | | - Jonathan M. Read
- Centre for Health Informatics Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - James A. Hay
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Kin On Kwok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Ruiyin Shen
- Guangzhou No.12 Hospital, Guangzhou, Guangdong, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Joint Institute of Virology (Shantou University–The University of Hong Kong), Shantou University, Shantou, Guangdong, China
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Derek A. T. Cummings
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
36
|
Hoa LNM, Sullivan SG, Mai LQ, Khvorov A, Phuong HVM, Hang NLK, Thai PQ, Thanh LT, Carolan L, Anh DD, Duong TN, Bryant JE, van Doorn HR, Wertheim HFL, Horby P, Fox A. Influenza A(H1N1)pdm09 but not A(H3N2) virus infection induces durable sero-protection: results from the Ha Nam Cohort. J Infect Dis 2020; 226:59-69. [PMID: 32484513 PMCID: PMC9373157 DOI: 10.1093/infdis/jiaa293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/25/2020] [Indexed: 12/02/2022] Open
Abstract
Background The extent to which influenza recurrence depends upon waning immunity from prior infection is undefined. We used antibody titers of Ha-Nam cohort participants to estimate protection curves and decay trajectories. Methods Households (270) participated in influenza-like–illness (ILI) surveillance and provided blood at intervals spanning laboratory–confirmed virus transmission. Sera were tested in hemagglutination inhibition assay. Infection was defined as influenza virus-positive ILI and/or seroconversion. Median protective titers were estimated using scaled-logistic regression to model pretransmission titer against infection status in that season, limiting analysis to households with infection(s). Titers were modelled against month since infection using mixed-effects linear regression to estimate decay and when titers fell below protection thresholds. Results From December 2008–2012, 295 and 314 participants were infected with H1N1pdm09-like and A/Perth/16/09-like (H3N2Pe09) viruses, respectively. The proportion protected rose more steeply with titer for H1N1pdm09 than for H3N2Pe09, and estimated 50% protection titers were 19.6 and 37.3, respectively. Postinfection titers started higher against H3N2Pe09 but decayed more steeply than against H1N1pdm09. Seroprotection was estimated to be sustained against H1N1pdm09 but to wane by 8-months for H3N2Pe09. Conclusions Estimates indicate that infection induces durable seroprotection against H1N1pdm09 but not H3N2Pe09, which could in part account for the younger age of A(H1N1) versus A(H3N2) cases.
Collapse
Affiliation(s)
- Le Nguyen Minh Hoa
- Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Viet Nam
| | - Sheena G Sullivan
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Doherty Department, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Fielding School of Public Health, University of California, Los Angeles, USA
| | - Le Quynh Mai
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Arseniy Khvorov
- Doherty Department, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Le Thi Thanh
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Louise Carolan
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Juliet E Bryant
- Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Viet Nam.,Center for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Viet Nam.,Center for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Heiman F L Wertheim
- Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Viet Nam.,Department of Medical Microbiology, Radboudumc, Nijmegen, Netherlands
| | - Peter Horby
- Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Viet Nam.,Center for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Annette Fox
- Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Viet Nam.,The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Abstract
The adaptive immune response to influenza virus infection is multifaceted and complex, involving antibody and cellular responses at both systemic and mucosal levels. Immune responses to natural infection with influenza virus in humans are relatively broad and long-lived, but influenza viruses can escape from these responses over time owing to their high mutation rates and antigenic flexibility. Vaccines are the best available countermeasure against infection, but vaccine effectiveness is low compared with other viral vaccines, and the induced immune response is narrow and short-lived. Furthermore, inactivated influenza virus vaccines focus on the induction of systemic IgG responses but do not effectively induce mucosal IgA responses. Here, I review the differences between natural infection and vaccination in terms of the antibody responses they induce and how these responses protect against future infection. A better understanding of how natural infection induces broad and long-lived immune responses will be key to developing next-generation influenza virus vaccines.
Collapse
|
38
|
Fine-scale family structure shapes influenza transmission risk in households: Insights from primary schools in Matsumoto city, 2014/15. PLoS Comput Biol 2019; 15:e1007589. [PMID: 31877122 PMCID: PMC6959609 DOI: 10.1371/journal.pcbi.1007589] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/14/2020] [Accepted: 12/08/2019] [Indexed: 12/19/2022] Open
Abstract
Households are important settings for the transmission of seasonal influenza. Previous studies found that the per-person risk of within-household transmission decreases with household size. However, more detailed heterogeneities driven by household composition and contact patterns have not been studied. We employed a mathematical model that accounts for infections both from outside and within the household. The model was applied to citywide primary school seasonal influenza surveillance and household surveys from 10,486 students during the 2014/15 season in Matsumoto city, Japan. We compared a range of models to estimate the structure of household transmission and found that familial relationship and household composition strongly influenced the transmission patterns of seasonal influenza in households. Children had a substantially high risk of infection from outside the household (up to 20%) compared with adults (1–3%). Intense transmission was observed within-generation (between children/parents/grandparents) and also between mother and child, with transmission risks typically ranging from 5–20% depending on the transmission route and household composition. Children were identified as the largest source of secondary transmission, with family structure influencing infection risk. We characterised detailed heterogeneity in household transmission patterns of influenza by applying a mathematical model to citywide primary school influenza survey data from 10,486 students in Matsumoto city, Japan, one of the largest-scale household surveys on seasonal influenza. Children were identified as the largest source of secondary transmission, with family structure influencing infection risk. This suggests that vaccinating children would have stronger secondary effects on transmission than would be assumed without taking into account transmission patterns within the household.
Collapse
|
39
|
Krammer F, Weir JP, Engelhardt O, Katz JM, Cox RJ. Meeting report and review: Immunological assays and correlates of protection for next-generation influenza vaccines. Influenza Other Respir Viruses 2019; 14:237-243. [PMID: 31837101 PMCID: PMC7040967 DOI: 10.1111/irv.12706] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This report summarizes the discussions and conclusions from the "Immunological Assays and Correlates of Protection for Next-Generation Influenza Vaccines" meeting which took place in Siena, Italy, from March 31, 2019, to April 2, 2019. CONCLUSIONS Furthermore, we review current correlates of protection against influenza virus infection and disease and their usefulness for the development of next generation broadly protective and universal influenza virus vaccines.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jerry P Weir
- Division of Viral Products, Food and Drug Administration, Bethesda, MD, USA
| | - Othmar Engelhardt
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Jacqueline M Katz
- Formerly Influenza Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Rebecca Jane Cox
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
40
|
Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2019; 38:2250-2257. [PMID: 31767462 DOI: 10.1016/j.vaccine.2019.10.046] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Correlates of protection (CoPs) are increasingly important in the development and licensure of vaccines. Although the study of CoPs was initially directed at identifying a single immune function that could explain vaccine efficacy, it has become increasingly clear that there are often multiple functions responsible for efficacy. This review is meant to supplement prior articles on the subject, illustrating both simple and complex CoPs.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, United States.
| |
Collapse
|
41
|
Gordon A, Tsang TK, Cowling BJ, Kuan G, Ojeda S, Sanchez N, Gresh L, Lopez R, Balmaseda A, Harris E. Influenza Transmission Dynamics in Urban Households, Managua, Nicaragua, 2012-2014. Emerg Infect Dis 2019; 24:1882-1888. [PMID: 30226161 PMCID: PMC6154158 DOI: 10.3201/eid2410.161258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this low-income country setting, ≈16% of household contacts acquired infections from index patients, despite high oseltamivir use. During August 2012–November 2014, we conducted a case ascertainment study to investigate household transmission of influenza virus in Managua, Nicaragua. We collected up to 5 respiratory swab samples from each of 536 household contacts of 133 influenza virus–infected persons and assessed for evidence of influenza virus transmission. The overall risk for influenza virus infection of household contacts was 15.7% (95% CI 12.7%–19.0%). Oseltamivir treatment of index patients did not appear to reduce household transmission. The mean serial interval for within-household transmission was 3.1 (95% CI 1.6–8.4) days. We found the transmissibility of influenza B virus to be higher than that of influenza A virus among children. Compared with households with <4 household contacts, those with >4 household contacts appeared to have a reduced risk for infection. Further research is needed to model household influenza virus transmission and design interventions for these settings.
Collapse
|
42
|
Gianchecchi E, Torelli A, Montomoli E. The use of cell-mediated immunity for the evaluation of influenza vaccines: an upcoming necessity. Hum Vaccin Immunother 2019; 15:1021-1030. [PMID: 30614754 PMCID: PMC6605831 DOI: 10.1080/21645515.2019.1565269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza vaccines are a fundamental tool for preventing the disease and reducing its consequences, particularly in specific high-risk groups. In order to be licensed, influenza vaccines have to meet strict criteria established by European Medicines Agency. Although the licensure of influenza vaccines started 65 years ago, Hemagglutination Inhibition and Single Radial Hemolysis are the only serological assays that can ascertain correlates of protection. However, they present evident limitations. The present review focuses on the evaluation of cell-mediated immunity (CMI), which plays an important role in the host immune response in protecting against virus-related illness and in the establishment of long-term immunological memory. Although correlates of protection are not currently available for CMI, it would be advisable to investigate this kind of immunological response for the evaluation of next-generation vaccines.
Collapse
Affiliation(s)
| | - A Torelli
- a VisMederi srl , Siena , Italy.,b Department of Life Sciences , University of Siena , Siena , Italy
| | - E Montomoli
- a VisMederi srl , Siena , Italy.,c Department of Molecular and Developmental Medicine , University of Siena , Siena , Italy
| |
Collapse
|
43
|
Cauchemez S, Hoze N, Cousien A, Nikolay B, Ten Bosch Q. How Modelling Can Enhance the Analysis of Imperfect Epidemic Data. Trends Parasitol 2019; 35:369-379. [PMID: 30738632 PMCID: PMC7106457 DOI: 10.1016/j.pt.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
Mathematical models play an increasingly important role in our understanding of the transmission and control of infectious diseases. Here, we present concrete examples illustrating how mathematical models, paired with rigorous statistical methods, are used to parse data of different levels of detail and breadth and estimate key epidemiological parameters (e.g., transmission and its determinants, severity, impact of interventions, drivers of epidemic dynamics) even when these parameters are not directly measurable, when data are limited, and when the epidemic process is only partially observed. Finally, we assess the hurdles to be taken to increase availability and applicability of these approaches in an effort to ultimately enhance their public health impact. Many data can be used to estimate the transmission potential of a pathogen, including descriptions of the transmission chains, human cluster sizes, sources of infection, and epidemic curves. An important agenda in public health is understanding the impact of control methods. However, the dynamic nature of epidemics makes this task challenging. Models can disentangle the natural course of outbreaks from the effect of external factors. In the absence of reliable surveillance data, models can reconstruct epidemic history by combining age-specific seroprevalence data with an understanding of the natural history of infection. Mechanisms of immunity are hard to observe at an individual level, yet they affect population-level dynamics. Models can tease out such signatures. Morbidity and mortality can be difficult to estimate when many infections are unobserved and severe infections are reported more often. Models can be used to correct for under-reporting and selection bias.
Collapse
Affiliation(s)
- Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France; All the authors made equal contributions.
| | - Nathanaël Hoze
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France; All the authors made equal contributions
| | - Anthony Cousien
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France; All the authors made equal contributions
| | - Birgit Nikolay
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France; All the authors made equal contributions
| | - Quirine Ten Bosch
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France; All the authors made equal contributions
| |
Collapse
|
44
|
Indirect protection from vaccinating children against influenza in households. Nat Commun 2019; 10:106. [PMID: 30631062 PMCID: PMC6328591 DOI: 10.1038/s41467-018-08036-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/13/2018] [Indexed: 01/26/2023] Open
Abstract
Vaccination is an important intervention to prevent influenza virus infection, but indirect protection of household members of vaccinees is not fully known. Here, we analyze a cluster household randomized controlled trial, with one child in each household randomized to receive influenza vaccine or placebo, for an influenza B epidemic in Hong Kong. We apply statistical models to estimate household transmission dynamics and quantify the direct and indirect protection of vaccination. Direct vaccine efficacy was 71%. The infection probability of unvaccinated household members in vaccinated households was only 5% lower than in control households, because only 10% of infections are attributed to household transmission. Even when that proportion rises to 30% and all children are vaccinated, we predict that the infection probability for unvaccinated household members would only be reduced by 20%. This suggests that benefits of individual vaccination remain important even when other household members are vaccinated. Relevance of indirect protection of household members of vaccinees is unclear. Here, Tsang et al. quantify the direct and indirect protection of vaccination in a randomized controlled trial and show that benefits of individual vaccination remain important even when other household members are vaccinated.
Collapse
|
45
|
Nunes MC, Weinberg A, Cutland CL, Jones S, Wang D, Dighero-Kemp B, Levine MZ, Wairagkar N, Madhi SA. Neutralization and hemagglutination-inhibition antibodies following influenza vaccination of HIV-infected and HIV-uninfected pregnant women. PLoS One 2018; 13:e0210124. [PMID: 30596775 PMCID: PMC6312282 DOI: 10.1371/journal.pone.0210124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
Background We previously reported that despite HIV-infected pregnant women had modest humoral immune responses to inactivated influenza vaccine (IIV) measured by hemagglutination-inhibition (HAI) assay, the observed vaccine efficacy against influenza disease was higher than predicted by HAI; suggesting that IIV may confer protection to HIV-infected individuals by additional mechanisms. We evaluated the response to IIV by microneutralization (MN) and HAI assays and correlated both methods in HIV-infected and HIV-uninfected pregnant women. Methods MN and HAI antibodies were measured pre-vaccination and approximately one-month post-vaccination in 80 HIV-infected and 75 HIV-uninfected women who received IIV. Geometric mean titers (GMTs), fold-change in titers and seroconversion rates were determined for the three influenza stains in the vaccine. Results After vaccination there were significant increases in MN and HAI GMTs for the three vaccine strains in both HIV-infected and HIV-uninfected women. HIV-infected women had, however, a lower immune response compared to HIV-uninfected. Fold-increases were 2 to 3-times higher for MN assay compared to HAI assay for the influenza-A strains. Also a higher percentage of women seroconverted by MN than by HAI assay for the influenza-A strains. There was high positive correlation between MN and HAI assays, except for the B/Victoria strain at pre-vaccination. Conclusions In general, the MN assay was more sensitive than the HAI assay. Microneutralization antibodies might correlate better with protection against influenza infection.
Collapse
Affiliation(s)
- Marta C. Nunes
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases and Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Adriana Weinberg
- Department of Pediatrics, Medicine and Pathology, University of Colorado, Aurora, Colorado, United States of America
| | - Clare L. Cutland
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases and Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie Jones
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases and Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Wang
- Influenza division, centre for Diseases Control and Prevention, Atlanta, Georgia, United States of America
| | - Bonnie Dighero-Kemp
- Influenza division, centre for Diseases Control and Prevention, Atlanta, Georgia, United States of America
| | - Min Z. Levine
- Influenza division, centre for Diseases Control and Prevention, Atlanta, Georgia, United States of America
| | - Niteen Wairagkar
- The Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Shabir A. Madhi
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases and Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
46
|
Kraemer MUG, Cummings DAT, Funk S, Reiner RC, Faria NR, Pybus OG, Cauchemez S. Reconstruction and prediction of viral disease epidemics. Epidemiol Infect 2018; 147:e34. [PMID: 30394230 PMCID: PMC6398585 DOI: 10.1017/s0950268818002881] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/24/2018] [Accepted: 09/21/2018] [Indexed: 01/29/2023] Open
Abstract
A growing number of infectious pathogens are spreading among geographic regions. Some pathogens that were previously not considered to pose a general threat to human health have emerged at regional and global scales, such as Zika and Ebola Virus Disease. Other pathogens, such as yellow fever virus, were previously thought to be under control but have recently re-emerged, causing new challenges to public health organisations. A wide array of new modelling techniques, aided by increased computing capabilities, novel diagnostic tools, and the increased speed and availability of genomic sequencing allow researchers to identify new pathogens more rapidly, assess the likelihood of geographic spread, and quantify the speed of human-to-human transmission. Despite some initial successes in predicting the spread of acute viral infections, the practicalities and sustainability of such approaches will need to be evaluated in the context of public health responses.
Collapse
Affiliation(s)
- M. U. G. Kraemer
- Harvard Medical School, Harvard University, Boston, MA, USA
- Computational Epidemiology Lab, Boston Children's Hospital, Boston, MA, USA
- Department of Zoology, University of Oxford, Oxford, UK
| | - D. A. T. Cummings
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - S. Funk
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - R. C. Reiner
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
| | - N. R. Faria
- Department of Zoology, University of Oxford, Oxford, UK
| | - O. G. Pybus
- Department of Zoology, University of Oxford, Oxford, UK
| | - S. Cauchemez
- Mathematical Modelling of Infectious Diseases and Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
- CNRS UMR2000: Génomique évolutive, modélisation et santé, Paris, France
| |
Collapse
|
47
|
Wei VWI, Wong JYT, Perera RAPM, Kwok KO, Fang VJ, Barr IG, Peiris JSM, Riley S, Cowling BJ. Incidence of influenza A(H3N2) virus infections in Hong Kong in a longitudinal sero-epidemiological study, 2009-2015. PLoS One 2018; 13:e0197504. [PMID: 29795587 PMCID: PMC5967746 DOI: 10.1371/journal.pone.0197504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
Background Many serologic studies were done during and after the 2009 influenza pandemic, to estimate the cumulative incidence of influenza A(H1N1)pdm09 virus infections, but there are few comparative estimates of the incidence of influenza A(H3N2) virus infections during epidemics. Methods We conducted a longitudinal serologic study in Hong Kong. We collected sera annually and tested samples from 2009–13 by HAI against the A/Perth/16/2009(H3N2) virus, and samples from 2013–15 against the A/Victoria/361/2011(H3N2) virus using the hemagglutination inhibition (HAI) assay. We estimated the cumulative incidence of infections based on 4-fold or greater rises in HAI titers in consecutive sera. Results There were four major H3N2 epidemics: (1) Aug-Oct 2010; (2) Mar-Jun 2012; (3) Jul-Oct 2013; and (4) Jun-Jul 2014. Between 516 and 619 relevant pairs of sera were available for each epidemic. We estimated that 9%, 19%, 7% and 7% of the population were infected in each epidemic, respectively, with higher incidence in children in epidemics 1 and 4. Conclusions We found that re-infections in each of the four H3N2 epidemics that occurred from 2010 through 2014 were rare. The largest H3N2 epidemic occurred with the lowest level of pre-epidemic immunity.
Collapse
Affiliation(s)
- Vivian W. I. Wei
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Jessica Y. T. Wong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Ranawaka A. P. M. Perera
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
- Centre of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Kin On Kwok
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Vicky J. Fang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - J. S. Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
- Centre of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, Department for Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
- * E-mail:
| |
Collapse
|
48
|
Soedjatmiko S, Medise BE, Gunardi H, Sekartini R, Satari HI, Hadinegoro SR, Bachtiar NS, Sari RM. Immunogenicity and safety of a Trivalent Influenza HA vaccine in Indonesian infants and children. Vaccine 2018; 36:2126-2132. [PMID: 29551225 DOI: 10.1016/j.vaccine.2018.02.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION High rate of influenza infection in children made influenza vaccination strongly recommended for all person aged >6 months in Indonesia. Bio Farma Trivalent Influenza HA (Flubio®) vaccine has been used in adolescents and adults, resulted in increased seroconversion, seroprotection rates and geometric mean titer (GMT). However, no data is available regarding its efficacy and safety in children. This study aimed to assess the immunogenicity and safety of Flubio® vaccine in infants and children. MATERIALS AND METHODS This was a phase II, open-labeled, clinical trial conducted on healthy children aged 6 month-11 years, vaccinated with 1 or 2 doses of Influenza HA vaccine, with a 28-day interval. Flubio® vaccine composed of A/California/7/2009 (H1N1) pandemic 09, A/Texas/50/2012 (H3N2), and B/Massachusetts/2/2012 strain. This study was held at East Jakarta, Indonesia from May until July 2014. A Total of 405 subjects were included and divided into three groups: A(6-35 months), B(3-8 years), and C(9-11 years). Antibody titer was measured at visit V1 (Day 0), V2 (28 days/+7days after the first dose) and V3 (28 days/+7days after second dose). The seroprotection and seroconversion rates were assessed. Safety was assessed up to 28 days following each dose. RESULTS A total of 404 subjects completed the study. After vaccination, all subjects achieved seroprotection and increased seroconversion rates, with post-vaccination antibody titer of ≥1:40 HI for all strains. The GMT also increased significantly. Within 30 min after vaccination, 14.6% and 2% had local and systemic reactions; meanwhile, between 30 min to 72 h after vaccination, 35.1% and 13.6% subjects had local and systemic reactions, respectively. Most reactions were mild. No serious adverse event (SAE) was reported related to vaccine. CONCLUSION Flubio® (Influenza HA Trivalent) vaccine is immunogenic and safe for children aged 6 months-11 years. TRIAL REGISTRATION The trial is registered at the US National Institutes of Health (ClinicalTrials.gov) #NCT02093260.
Collapse
Affiliation(s)
- Soedjatmiko Soedjatmiko
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jalan Salemba 6, Jakarta 10340, Indonesia
| | - Bernie Endyarni Medise
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jalan Salemba 6, Jakarta 10340, Indonesia.
| | - Hartono Gunardi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jalan Salemba 6, Jakarta 10340, Indonesia
| | - Rini Sekartini
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jalan Salemba 6, Jakarta 10340, Indonesia
| | - Hindra Irawan Satari
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jalan Salemba 6, Jakarta 10340, Indonesia
| | - Sri Rezeki Hadinegoro
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jalan Salemba 6, Jakarta 10340, Indonesia
| | | | | |
Collapse
|
49
|
Trombetta CM, Gianchecchi E, Montomoli E. Influenza vaccines: Evaluation of the safety profile. Hum Vaccin Immunother 2018; 14:657-670. [PMID: 29297746 PMCID: PMC5861790 DOI: 10.1080/21645515.2017.1423153] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/30/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022] Open
Abstract
The safety of vaccines is a critical factor in maintaining public trust in national vaccination programs. Vaccines are recommended for children, adults and elderly subjects and have to meet higher safety standards, since they are administered to healthy subjects, mainly healthy children. Although vaccines are strictly monitored before authorization, the possibility of adverse events and/or rare adverse events cannot be totally eliminated. Two main types of influenza vaccines are currently available: parenteral inactivated influenza vaccines and intranasal live attenuated vaccines. Both display a good safety profile in adults and children. However, they can cause adverse events and/or rare adverse events, some of which are more prevalent in children, while others with a higher prevalence in adults. The aim of this review is to provide an overview of influenza vaccine safety according to target groups, vaccine types and production methods.
Collapse
Affiliation(s)
| | | | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
50
|
Ward BJ, Pillet S, Charland N, Trepanier S, Couillard J, Landry N. The establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines? Hum Vaccin Immunother 2018; 14:647-656. [PMID: 29252098 PMCID: PMC5861778 DOI: 10.1080/21645515.2017.1413518] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The search for a test that can predict vaccine efficacy is an important part of any vaccine development program. Although regulators hesitate to acknowledge any test as a true ‘correlate of protection’, there are many precedents for defining ‘surrogate’ assays. Surrogates can be powerful tools for vaccine optimization, licensure, comparisons between products and development of improved products. When such tests achieve ‘reference’ status however, they can inadvertently become barriers to new technologies that do not work the same way as existing vaccines. This is particularly true when these tests are based upon circularly-defined ‘reference’ or, even worse, proprietary reagents. The situation with inactivated influenza vaccines is a good example of this phenomenon. The most frequently used tests to define vaccine-induced immunity are all serologic assays: hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization (MN). The first two, and particularly the HI assay, have achieved reference status and criteria have been established in many jurisdictions for their use in licensing new vaccines and to compare the performance of different vaccines. However, all of these assays are based on biological reagents that are notoriously difficult to standardize and can vary substantially by geography, by chance (i.e. developing reagents in eggs that may not antigenitically match wild-type viruses) and by intention (ie: choosing reagents that yield the most favorable results). This review describes attempts to standardize these assays to improve their performance as surrogates, the dangers of over-reliance on ‘reference’ serologic assays, the ways that manufacturers can exploit the existing regulatory framework to make their products ‘look good’ and the implications of this long-established system for the introduction of novel influenza vaccines.
Collapse
Affiliation(s)
- Brian J Ward
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | - Stephane Pillet
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | | | | | | | | |
Collapse
|