1
|
Roberds A, Bobrov AG, Rautemaa-Richardson R, Walsh TJ. Invasive Fungal Diseases of Combat Wounds: Burden, Epidemiology, and Mycology. Mycopathologia 2024; 189:102. [PMID: 39570484 PMCID: PMC11582137 DOI: 10.1007/s11046-024-00908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
During the last two decades, wound invasive fungal diseases (WIFDs) have reemerged as important causes of mortality and morbidity in military personnel and civilian casualties in war areas. Historically, mycotic infections acquired in combat operations during Vietnam War and were associated with burn wounds. Modern combat related WIFDs are almost exclusively associated with severe traumatic events which encompass blast exposure as the primary mechanism of injury and subsequent extremity amputation and extensive blood loss. Such infections often lead to deep tissue necrosis, long hospitalizations, extensive surgeries, and more severe amputation. Studies of combat related WIFDs among U.S. military personnel in Operation Enduring Freedom (Afghanistan) demonstrated incidence rates of approximately 7% and crude mortality of 8.5%. WIFDs were also seen in U.K. military personnel returning from Afghanistan and are common in the current Ukraine and Gaza conflicts. Mucorales, Aspergillus and Fusarium species are the predominant causes of WIFDs. These molds are opportunistic pathogens which thrive in patients with immune system imbalances following traumatic injury. They are ubiquitous environmental fungi found in a variety of soils but there are significant regional differences depending on the local soil type, vegetation, and climate. The management of WIFDs is complicated by the limited efficacy of current antifungals on many of these environmental species and by emerging antifungal resistance globally. This review provides an overview of the global burden, epidemiology, and clinical features of combat-related fungal infections with the aim to provide a better understanding of the threat posed for wounded Service Members and civilians.
Collapse
Affiliation(s)
- Ashleigh Roberds
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Riina Rautemaa-Richardson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Infectious Diseases, Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- National Health Services, Mycology Reference Centre Manchester, Manchester, UK
| | - Thomas J Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA, USA
- Departments of Medicine and Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Sarkar R, Adhikary K, Banerjee A, Ganguly K, Sarkar R, Mohanty S, Dhua R, Bhattacharya K, Ahuja D, Pal S, Maiti R. Novel targets and improved immunotherapeutic techniques with an emphasis on antimycosal drug resistance for the treatment and management of mycosis. Heliyon 2024; 10:e35835. [PMID: 39224344 PMCID: PMC11367498 DOI: 10.1016/j.heliyon.2024.e35835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Infections due to pathogenic fungi are endemic in particular area with increased morbidity and mortality. More than a thousand people are infected per year and the way of treatment is of high demand having a significant impact on the population health. Medical practitioners confront various troublesome analytic and therapeutical challenges in the administration of immunosuppressed sufferer at high danger of expanding fungal infections. An upgraded antimycosal treatment is fundamental for a fruitful result while treating intrusive mycoses. A collection of antimycosal drugs keeps on developing with their specific antifungal targets including cell membrane, mitochondria, cell wall, and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) or protein biosynthesis. Some fundamental classes of ordinarily directed medications are the polyenes, amphotericin B, syringomycin, allylamines, honokiol, azoles, flucytosine, echinocandins etc. However, few immunotherapy processes and vaccinations are being developed to mark this need, although one presently can't seem to arrive at the conclusion. In this review article, there has been a trial to give details upgradation about the current immune therapeutic techniques and vaccination strategies against prevention or treatment of mycosis as well as the difficulties related with their turn of events. There has been also a visualization in the mentioned review paper about the various assorted drugs and their specific target analysis along with therapeutic interventions.
Collapse
Affiliation(s)
- Riya Sarkar
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Krishnendu Adhikary
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Arundhati Banerjee
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, Dr. B. C. Roy Academy of Professional Courses, Durgapur, West Bengal, 713206, India
| | - Satyajit Mohanty
- Department of Advanced Pharmacology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Rumpa Dhua
- Department of Nutrition, Bankura Sammilani College, Kenduadihi, Bankura, West Bengal, 722102, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Suchandra Pal
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, 713209, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, 722101, India
| |
Collapse
|
3
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Sathiyamoorthy J, Rathore SS, Mohan S, Uma Maheshwari C, Ramakrishnan J. Elucidation of furanone as ergosterol pathway inhibitor in Cryptococcus neoformans. J Biomol Struct Dyn 2024; 42:6013-6026. [PMID: 37403490 DOI: 10.1080/07391102.2023.2230301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
In the era of antiretroviral therapy, the prevalence of Cryptococcal infection among HIV patients in developed countries has decreased considerably. However, C. neoformans ranks top among the critical priority pathogen that affects a wide range of immunocompromised individuals. The threat of C. neoformans is because of its incredibly multifaceted intracellular survival capabilities. Cell membrane sterols especially ergosterol and enzymes of its biosynthetic pathway are considered fascinating drug targets because of their structural stability. In this study, the ergosterol biosynthetic enzymes were modeled and docked with furanone derivatives. Among the tested ligands Compound 6 has shown a potential interaction with Lanosterol 14 α-demethylase. This best-docked protein-ligand complex was taken further to molecular dynamics simulation. In addition, Compound 6 was synthesized and an in vitro study was conducted to quantify the ergosterol in Compound 6 treated cells. Altogether the computational and in vitro study demonstrates that Compound 6 has anticryptococcal activity by targeting the biosynthetic pathway of ergosterol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jananishree Sathiyamoorthy
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Suma Mohan
- Computational Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - C Uma Maheshwari
- Organic Synthesis Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Jayapradha Ramakrishnan
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
5
|
Choi JY, Gihaz S, Munshi M, Singh P, Vydyam P, Hamel P, Adams EM, Sun X, Khalimonchuk O, Fuller K, Ben Mamoun C. Vitamin B5 metabolism is essential for vacuolar and mitochondrial functions and drug detoxification in fungi. Commun Biol 2024; 7:894. [PMID: 39043829 PMCID: PMC11266677 DOI: 10.1038/s42003-024-06595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Fungal infections, a leading cause of mortality among eukaryotic pathogens, pose a growing global health threat due to the rise of drug-resistant strains. New therapeutic strategies are urgently needed to combat this challenge. The PCA pathway for biosynthesis of Co-enzyme A (CoA) and Acetyl-CoA (AcCoA) from vitamin B5 (pantothenic acid) has been validated as an excellent target for the development of new antimicrobials against fungi and protozoa. The pathway regulates key cellular processes including metabolism of fatty acids, amino acids, sterols, and heme. In this study, we provide genetic evidence that disruption of the PCA pathway in Saccharomyces cerevisiae results in a significant alteration in the susceptibility of fungi to a wide range of xenobiotics, including clinically approved antifungal drugs through alteration of vacuolar morphology and drug detoxification. The drug potentiation mediated by genetic regulation of genes in the PCA pathway could be recapitulated using the pantazine analog PZ-2891 as well as the celecoxib derivative, AR-12 through inhibition of fungal AcCoA synthase activity. Collectively, the data validate the PCA pathway as a suitable target for enhancing the efficacy and safety of current antifungal therapies.
Collapse
Affiliation(s)
- Jae-Yeon Choi
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Shalev Gihaz
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Muhammad Munshi
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Pallavi Singh
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Pratap Vydyam
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Patrice Hamel
- Departments of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Emily M Adams
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Redox Biology Center, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Kevin Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Gutierrez-Perez C, Puerner C, Jones JT, Vellanki S, Vesely EM, Xatse MA, Viera AFC, Olsen CP, Attiku KO, Cardinale S, Kwasny SM, G-Dayanandan N, Opperman TJ, Cramer RA. Unsaturated fatty acid perturbation combats emerging triazole antifungal resistance in the human fungal pathogen Aspergillus fumigatus. mBio 2024; 15:e0116624. [PMID: 38934618 PMCID: PMC11253624 DOI: 10.1128/mbio.01166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
Contemporary antifungal therapies utilized to treat filamentous fungal infections are inhibited by intrinsic and emerging drug resistance. Consequently, there is an urgent need to develop novel antifungal compounds that are effective against drug-resistant filamentous fungi. Here, we utilized an Aspergillus fumigatus cell-based high-throughput screen to identify small molecules with antifungal activity that also potentiated triazole activity. The screen identified 16 hits with promising activity against A. fumigatus. A nonspirocyclic piperidine, herein named MBX-7591, exhibited synergy with triazole antifungal drugs and activity against pan-azole-resistant A. fumigatus isolates. MBX-7591 has additional potent activity against Rhizopus species and CO2-dependent activity against Cryptococcus neoformans. Chemical, genetic, and biochemical mode of action analyses revealed that MBX-7591 increases cell membrane saturation by decreasing oleic acid content. MBX-7591 has low toxicity in vivo and shows good efficacy in decreasing fungal burden in a murine model of invasive pulmonary aspergillosis. Taken together, our results suggest MBX-7591 is a promising hit with a novel mode of action for further antifungal drug development to combat the rising incidence of triazole-resistant filamentous fungal infections.IMPORTANCEThe incidence of infections caused by fungi continues to increase with advances in medical therapies. Unfortunately, antifungal drug development has not kept pace with the incidence and importance of fungal infections, with only three major classes of antifungal drugs currently available for use in the clinic. Filamentous fungi, also called molds, are particularly recalcitrant to contemporary antifungal therapies. Here, a recently developed Aspergillus fumigatus cell reporter strain was utilized to conduct a high-throughput screen to identify small molecules with antifungal activity. An emphasis was placed on small molecules that potentiated the activity of contemporary triazole antifungals and led to the discovery of MBX-7591. MBX-7591 potentiates triazole activity against drug-resistant molds such as A. fumigatus and has activity against Mucorales fungi. MBX-7591's mode of action involves inhibiting the conversion of saturated to unsaturated fatty acids, thereby impacting fungal membrane integrity. MBX-7591 is a novel small molecule with antifungal activity poised for lead development.
Collapse
Affiliation(s)
- Cecilia Gutierrez-Perez
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Charles Puerner
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Jane T. Jones
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Sandeep Vellanki
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Elisa M. Vesely
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Mark A. Xatse
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre F. C. Viera
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Carissa P. Olsen
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Keren O. Attiku
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | | | - Robert A. Cramer
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
7
|
Walsh TJ. Meeting the Therapeutic Challenges of Emergent and Rare Invasive Fungal Diseases Through Novel Clinical Trial Designs. Open Forum Infect Dis 2024; 11:ofae257. [PMID: 38887484 PMCID: PMC11181194 DOI: 10.1093/ofid/ofae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 06/20/2024] Open
Abstract
Treatments for emerging and rare invasive fungal diseases (IFDs) represent a critical unmet medical need. For IFDs that occur less frequently than invasive aspergillosis, such as mucormycosis, hyalohyphomycosis, and phaeohyphomycosis, randomized controlled clinical trials are impractical and unlikely to meet urgent public health needs. Understanding regulatory approaches for approval of drugs for rare cancers and rare metabolic diseases could help meet the challenges of studying drugs for rare IFDs. A single-arm, controlled clinical trial with a high-quality external control(s), with confirmatory evidence from nonclinical studies, including pharmacokinetic/pharmacodynamic data in predictive animal models of the disease may support findings of effectiveness of new drugs and biologics. Control populations may include historical controls from published literature, patient registries, and/or contemporaneous external control groups. Continuous engagement among clinicians, industrial sponsors, and regulatory agencies to develop consensus on trial design and innovative development pathways for emergent and rare invasive fungal diseases is important.
Collapse
Affiliation(s)
- Thomas J Walsh
- Center for Innovative Therapeutics and Diagnostics, Office of the Director (citdx.org), Richmond, Virginia, USA
- Departments of Medicine and of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Argüelles JC, Sánchez-Fresneda R, Argüelles A, Solano F. Natural Substances as Valuable Alternative for Improving Conventional Antifungal Chemotherapy: Lights and Shadows. J Fungi (Basel) 2024; 10:334. [PMID: 38786689 PMCID: PMC11122340 DOI: 10.3390/jof10050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Fungi are eukaryotic organisms with relatively few pathogenic members dangerous for humans, usually acting as opportunistic infections. In the last decades, several life-threatening fungal infections have risen mostly associated with the worldwide extension of chronic diseases and immunosuppression. The available antifungal therapies cannot combat this challenge because the arsenal of compounds is scarce and displays low selective action, significant adverse effects, and increasing resistance. A growing isolation of outbreaks triggered by fungal species formerly considered innocuous is being recorded. From ancient times, natural substances harvested from plants have been applied to folk medicine and some of them recently emerged as promising antifungals. The most used are briefly revised herein. Combinations of chemotherapeutic drugs with natural products to obtain more efficient and gentle treatments are also revised. Nevertheless, considerable research work is still necessary before their clinical use can be generally accepted. Many natural products have a highly complex chemical composition, with the active principles still partially unknown. Here, we survey the field underlying lights and shadows of both groups. More studies involving clinical strains are necessary, but we illustrate this matter by discussing the potential clinical applications of combined carnosic acid plus propolis formulations.
Collapse
Affiliation(s)
- Juan Carlos Argüelles
- Área de Microbiología, Facultad Biología, University Murcia, Campus Espinardo, 30100 Murcia, Spain; (J.C.A.); (R.S.-F.); (A.A.)
| | - Ruth Sánchez-Fresneda
- Área de Microbiología, Facultad Biología, University Murcia, Campus Espinardo, 30100 Murcia, Spain; (J.C.A.); (R.S.-F.); (A.A.)
| | - Alejandra Argüelles
- Área de Microbiología, Facultad Biología, University Murcia, Campus Espinardo, 30100 Murcia, Spain; (J.C.A.); (R.S.-F.); (A.A.)
| | - Francisco Solano
- Departamento Bioquímica, Biología Molecular B & Inmunología, Facultad Medicina, University Murcia, Campus El Palmar, 30112 Murcia, Spain
| |
Collapse
|
9
|
Hodges MR, Hazel S, Kramer WG, van Hoogdalem EJ, van Marle S, Tawadrous M, Jakate A. Pharmacokinetics, safety, and tolerability of fosmanogepix IV to oral switch and multiple IV doses in healthy participants. Antimicrob Agents Chemother 2024; 68:e0145523. [PMID: 38551346 PMCID: PMC11064621 DOI: 10.1128/aac.01455-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Fosmanogepix [FMGX, APX001; active form: manogepix (MGX), APX001A] is a first-in-class, intravenous (IV)/oral antifungal currently being evaluated for invasive fungal disease treatment. Data from two phase 1, placebo-controlled studies [IV-oral switch (study 1) and multiple IV doses (study 2)] evaluating FMGX tolerability, and pharmacokinetics (PK) are presented. Healthy adults (study 1: 18-65 years; study 2: 18-55 years) were eligible (randomized 3:1 to FMGX: placebo). Eleven participants completed study 1. In study 2, 51 participants (48 planned + 3 replacement) were enrolled in six cohorts (8 participants each; 34 completed the study). In study 1, overall MGX systemic exposures were comparable from day 1 to day 42 of dosing; steady-state plasma concentrations were achieved in ≤24 h following two IV loading doses (1,000 mg) and exposures maintained after switching [IV (600 mg) to daily oral doses (800 mg)]. FMGX was safe and well-tolerated. In study 2, FMGX IV doses (loading doses twice daily/maintenance doses once daily; 3-h infusion) of 1,500/900 mg (cohort A), 900/900 mg (cohort B), and 1,000/900 mg (cohort C: with ondansetron) were not well-tolerated; most participants reported nausea and infrequent vomiting. FMGX IV doses of 1,000/750 mg (cohort D), 1,000/850 mg (cohort E), and 1,000/900 mg (cohort F: ondansetron prn) were relatively better tolerated. Steady-state systemic exposures were achieved between days 2 and 4. All cohorts had similar geometric mean (GM) concentrations during maintenance dosing and similar GM PK parameters. Dosing regimen evaluated in study 1 was safe, well-tolerated, and may be used for future clinical evaluations.
Collapse
Affiliation(s)
| | - Susan Hazel
- Amplyx Pharmaceuticals, Inc., San Diego, California, USA
- Pfizer Inc., New York, New York, USA
| | | | | | | | | | | |
Collapse
|
10
|
Babaei F, Mirzababaei M, Tavakkoli A, Nassiri-Asl M, Hosseinzadeh H. Can nonsteroidal anti-inflammatory drugs (NSAIDs) be repurposed for fungal infection? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:59-75. [PMID: 37589736 DOI: 10.1007/s00210-023-02651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are an important class of anti-inflammatory drugs widely used for the treatment of musculoskeletal disorders, mild-to-moderate pain, and fever. This review aimed to explain the functional role and possible mechanisms of the antifungal effects of NSAIDs alone or in combination with antifungal drugs in vitro and in vivo. Several studies reported that NSAIDs such as aspirin, ibuprofen, diclofenac, indomethacin, ketorolac, celecoxib, flurbiprofen, and nimesulide had antifungal activities in vitro, either fungistatic or fungicidal, against different strains of Candida, Aspergillus, Cryptococcus, Microsporum, and Trichophyton species. These drugs inhibited biofilm adhesion and development, and yeast-to-hypha conversion which may be related to a prostaglandin E2 (PGE2)/PGEx-dependent mechanism. Modulating PGE2 levels by NSAIDs during fungal infection can be introduced as a possible mechanism to overcome. In addition, some important mechanisms of the antifungal activities of NSAIDs and their new derivatives on fungi and host immune responses are summarized. Overall, we believe that using NSAIDs along with classical antifungal drugs has the potential to be investigated as a novel therapeutic strategy in clinical studies. Furthermore, combination therapy can help manage resistant strains, increase the efficacy of antifungal drugs, and reduce toxicity.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Tavakkoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran.
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box 9177948954, Mashhad, Iran.
| |
Collapse
|
11
|
Zhang R, Wang Y, Wu A, Wang J, Zhang J. Strategies of targeting CYP51 for IFIs therapy: Emerging prospects, opportunities and challenges. Eur J Med Chem 2023; 259:115658. [PMID: 37480712 DOI: 10.1016/j.ejmech.2023.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
CYP51, a monooxygenase associated with the sterol synthesis pathway, is responsible for the catalysis of the 14-methyl hydroxylation reaction of lanosterol precursors. This enzyme is widely present in microorganisms, plants, and mammals. In mammals, CYP51 plays a role in cholesterol production, oligodendrocyte formation, oocyte maturation, and spermatogenesis. In fungal cells, CYP51 is an enzyme that synthesizes membrane sterols. By inhibiting fungal CYP51, ergosterol synthesis can be inhibited and ergosterol membrane fluidity is altered, resulting in fungal cell apoptosis. Thus, targeting CYP51 is a reliable antifungal strategy with important implications for the treatment of invasive fungal infections (IFIs). Many CYP51 inhibitors have been approved by the FDA for clinical treatment. However, several limitations of CYP51 inhibitors remain to be resolved, including fungal resistance, hepatotoxicity, and drug-drug interactions. New broad-spectrum, anti-resistant, highly selective CYP51 inhibitors are expected to be developed to enhance clinical efficacy and minimize adverse effects. Herein, we summarize the structural features and biological functions of CYP51 and emphatically analyze the structure-activity relationship (SAR) and therapeutic potential of different chemical types of small-molecule CYP51 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CYP51 for clinical practice.
Collapse
Affiliation(s)
- Ruofei Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aijia Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Marcos CM, de Oliveira HC, Assato PA, de Oliveira LT, Fregonezi N, dos Santos KS, Costa-Orlandi CB, Fusco-Almeida AM, Mendes-Giannini MJS. Polypeptides Targeting Paracoccidioides brasiliensis Drk1. J Fungi (Basel) 2023; 9:980. [PMID: 37888236 PMCID: PMC10607314 DOI: 10.3390/jof9100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Considering the toxicity of conventional therapeutic approaches and the importance of precise mechanistic targets, it is important to explore signaling pathways implicated in fungal pathobiology. Moreover, treatment of paracoccidioidomycosis, a systemic mycosis caused by a dimorphic fungus, requires prolonged therapeutic regimens. Among the numerous factors underpinning the establishment of Paracoccidioides spp. infection, the capacity to transition from the mycelial to the yeast form is of pivotal importance. The Drk1 protein of Paracoccidioides brasiliensis likely plays a decisive role in this morphological shift and subsequent virulence. We identified peptides with affinity for the PbDrk1 protein using the phage-display method and assessed the effects of these peptides on P. brasiliensis. The peptides were found to inhibit the phase transition of P. brasiliensis. Furthermore, a substantial proportion of these peptides prevented adhesion to pneumocytes. Although these peptides may not possess inherent antifungal properties, they can augment the effects of certain antifungal agents. Notably, the cell wall architecture of P. brasiliensis appears to be modulated by peptide intervention, resulting in a reduced abundance of glycosylated proteins and lipids. These peptides were also evaluated for their efficacy in a Galleria mellonella model and shown to contribute to enhanced larval survival rates. The role of PbDrk1, which is notably absent in mammals, should be further investigated to improve the understanding of its functional role in P. brasiliensis, which may be helpful for designing novel therapeutic modalities.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81350-010, Brazil
| | - Patricia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
- Laboratório Central de Multiusuários, Faculdade de Ciências Agronômicas, Campus Botucatu, UNESP—Universidade Estadual Paulista, São Paulo 18610-034, Brazil
| | - Lariane Teodoro de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Nathália Fregonezi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Kelvin Sousa dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Caroline Barcelos Costa-Orlandi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.M.M.); (H.C.d.O.); (P.A.A.); (L.T.d.O.); (N.F.); (K.S.d.S.); (C.B.C.-O.); (A.M.F.-A.)
| |
Collapse
|
13
|
Alqarihi A, Kontoyiannis DP, Ibrahim AS. Mucormycosis in 2023: an update on pathogenesis and management. Front Cell Infect Microbiol 2023; 13:1254919. [PMID: 37808914 PMCID: PMC10552646 DOI: 10.3389/fcimb.2023.1254919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Mucormycosis (MCR) is an emerging and frequently lethal fungal infection caused by the Mucorales family, with Rhizopus, Mucor, and Lichtheimia, accounting for > 90% of all cases. MCR is seen in patients with severe immunosuppression such as those with hematologic malignancy or transplantation, Diabetes Mellitus (DM) and diabetic ketoacidosis (DKA) and immunocompetent patients with severe wounds. The recent SARS COV2 epidemy in India has resulted in a tremendous increase in MCR cases, typically seen in the setting of uncontrolled DM and corticosteroid use. In addition to the diversity of affected hosts, MCR has pleiotropic clinical presentations, with rhino-orbital/rhino-cerebral, sino-pulmonary and necrotizing cutaneous forms being the predominant manifestations. Major insights in MCR pathogenesis have brought into focus the host receptors (GRP78) and signaling pathways (EGFR activation cascade) as well as the adhesins used by Mucorales for invasion. Furthermore, studies have expanded on the importance of iron availability and the complex regulation of iron homeostasis, as well as the pivotal role of mycotoxins as key factors for tissue invasion. The molecular toolbox to study Mucorales pathogenesis remains underdeveloped, but promise is brought by RNAi and CRISPR/Cas9 approaches. Important recent advancements have been made in early, culture-independent molecular diagnosis of MCR. However, development of new potent antifungals against Mucorales remains an unmet need. Therapy of MCR is multidisciplinary and requires a high index of suspicion for initiation of early Mucorales-active antifungals. Reversal of underlying immunosuppression, if feasible, rapid DKA correction and in selected patients, surgical debulking are crucial for improved outcomes.
Collapse
Affiliation(s)
- Abdullah Alqarihi
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
14
|
Singh U, Singh P, Singh AK, Singh S, Kumar D, Shrivastava SK, Asthana RK. In silico and in vitro evaluation of extract derived from Dunaliella salina, a halotolerant microalga for its antifungal and antibacterial activity. J Biomol Struct Dyn 2023; 41:7069-7083. [PMID: 36017823 DOI: 10.1080/07391102.2022.2115556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
In the present study little explored halotolerant wall-less green alga Dunaliella salina was found to be a potent source of antibacterial and antifungal biomolecules. Both the target pathogens, bacteria (Escherischia coli, Klebsiella pneumoniae, and Acinetobacter baumannii) and fungi (Candida albicans, C. tropicalis, and Cryptococus sp.) were WHO prioritized. The bioassay guided approach led us to evaluate antibacterial and antifungal lead molecule(s) from an array of compounds using spectroscopic and in silico studies. The methanol derived crude extract was purified via thin layer chromatography (TLC) using solvent system methanol: chloroform (1:19). Maximum antimicrobial activity was observed in fractions D5, D6 and D7, the components of which were then recognized using high resolution-liquid chromatography/mass spectroscopy (Orbitrap) (HR-LC/MS). The screened compounds were then docked with target enzymes sterol-14-alpha demethylase and OmpF porin protein. The energy scores revealed that amongst all, lariciresinol-4-O-glucoside showed better binding affinity, in silico, using the Schrödinger Maestro 2018-1 platform. The 3-dimensional crystal structures of both the proteins were retrieved from the protein data bank (PDB), and showed binding energies of -14.35 kcal/mol, and -11.0 kcal/mol against respective drug targets. The molecular dynamics (MD) simulations were performed for 100 ns, using Desmond package, Schrödinger to evaluate the conformational stability and alteration of protein-ligand complexes during the simulation. Thus, our findings confirmed that lariciresinol-4-O-glucoside, a lignan derivative and known strong antioxidant, may be used as an important "lead" molecule to be developed as antibacterial and antifungal drugs in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Urmilesh Singh
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prabhakar Singh
- Biochemistry Department, North Eastern Hill University, Shillong, Meghalaya, India
| | - Ankit Kumar Singh
- Department of Botany, Marwari College (a constituent unit of Lalit Narayan Mithila University), Darbhanga, Bihar, India
| | - Sweksha Singh
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ravi Kumar Asthana
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
15
|
Cascaes MM, Marques da Silva SH, de Oliveira MS, Cruz JN, de Moraes ÂAB, do Nascimento LD, Ferreira OO, Guilhon GMSP, Andrade EHDA. Exploring the chemical composition, in vitro and in silico study of the anticandidal properties of annonaceae species essential oils from the Amazon. PLoS One 2023; 18:e0289991. [PMID: 37616214 PMCID: PMC10449155 DOI: 10.1371/journal.pone.0289991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Chemical composition of the essential oils (EOs) from the leaves of five Annonaceae species found in the amazon region was analyzed by Gas chromatography coupled to mass spectrometry. The antifungal activity of theses EOs was tested against Candida albicans, Candida auris, Candida famata, Candida krusei and Candida tropicalis. In addition, an in silico study of the molecular interactions was performed using molecular modeling approaches. Spathulenol (29.88%), α-pinene (15.73%), germacra-4(15),5,10(14)-trien-1-α-ol (6.65%), and caryophylene oxide (6.28%) where the major constitents from the EO of Anaxagorea dolichocarpa. The EO of Duguetia echinophora was characterized by β-phellanderene (24.55%), cryptone (12.43%), spathulenol (12.30%), and sabinene (7.54%). The major compounds of the EO of Guatteria scandens where β-pinene (46.71%), α-pinene (9.14%), bicyclogermacrene (9.33%), and E-caryophyllene (8.98%). The EO of Xylopia frutescens was characterized by α-pinene (40.12%) and β-pinene (36.46%). Spathulenol (13.8%), allo-aromadendrene epoxide (8.99%), thujopsan-2-α-ol (7.74%), and muurola-4,10(14)-dien-1-β-ol (7.14%) were the main chemical constituents reported in Xylopia emarginata EO. All EOs were active against the strains tested and the lowest inhibitory concentrations were observed for the EOs of D. echinophora, X. emarginata, and X. frutescens against C. famata the Minimum Inhibitory Concentration values of 0.07, 0.019 and 0.62 μL.mL-1, respectively. The fungicidal action was based on results of minimum fungicidal concentration and showed that the EOs showed fungicide activity against C. tropicalis (2.5 μL.mL-1), C. krusei (2.5 μL.mL-1) and C. auris (5 μL.mL-1), respectively. The computer simulation results indicated that the major compounds of the EOs can interact with molecular targets of Candida spp.
Collapse
Affiliation(s)
- Márcia Moraes Cascaes
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, PA, Brazil
| | - Silvia Helena Marques da Silva
- Seção de Bacteriologia e Micologia LabMicol—SABMI Laboratório de Micologia, Instituto Evandro Chagas—IEC/SVS/MS, Ananindeua, Brazil
| | - Mozaniel Santana de Oliveira
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém, Brazil
- Programa de Pós-Graduação em Ciências Biológicas—Botânica Tropical, Universidade Federal Rural da Amazônia and Museu Paraense Emílio Goeldi, Belém, PA, Brazil
| | - Jorddy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Universidade Federal do Pará, Belém, PA, Brazil
| | - Ângelo Antônio Barbosa de Moraes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Universidade Federal do Pará, Belém, PA, Brazil
| | | | | | | | - Eloisa Helena de Aguiar Andrade
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, PA, Brazil
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém, Brazil
| |
Collapse
|
16
|
Kumar R, Srivastava V. Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1241539. [PMID: 37746132 PMCID: PMC10512234 DOI: 10.3389/ffunb.2023.1241539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023]
Abstract
After viruses and bacteria, fungal infections remain a serious threat to the survival and well-being of society. The continuous emergence of resistance against commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of fungal cells makes the identification of novel anti-fungal agents slow and difficult. Increasing global temperature and a humid environment conducive to fungal growth may lead to a fungal endemic or a pandemic. The continuous increase in the population of immunocompromised individuals and falling immunity forced pharmaceutical companies to look for alternative strategies for better managing the global fungal burden. Prevention of infectious diseases by vaccines can be the right choice. Recent success and safe application of mRNA-based vaccines can play a crucial role in our quest to overcome anti-fungal resistance. Expressing fungal cell surface proteins in human subjects using mRNA technology may be sufficient to raise immune response to protect against future fungal infection. The success of mRNA-based anti-fungal vaccines will heavily depend on the identification of fungal surface proteins which are highly immunogenic and have no or least side effects in human subjects. The present review discusses why it is essential to look for anti-fungal vaccines and how vaccines, in general, and mRNA-based vaccines, in particular, can be the right choice in tackling the problem of rising anti-fungal resistance.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Pathology, Collage of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
17
|
Grizante Barião PH, Cayún Y, Sepúlveda M, Tonani L, Gonçalves de Almeida OG, Cornejo P, Dias N, Santos C, von Zeska Kress MR. MALDI-TOF MS: A Quick Method to Detect the Susceptibility of Fusarium spp. Clinical Isolates to Amphotericin B. Microorganisms 2023; 11:1834. [PMID: 37513006 PMCID: PMC10383446 DOI: 10.3390/microorganisms11071834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Disseminated fusariosis is treated with amphotericin B and voriconazole. To determine adequate therapy, the minimal inhibitory concentration (MIC) is used. However, MIC analysis is based on visual observation and requires a long period of fungal incubation. The measure of the minimal profile change concentration (MPCC) using MALDI-TOF MS is a quick spectral method that has presented good results in determining the antimicrobial resistance of yeasts. However, there is a lack of information on filamentous fungi. In the present work, 13 Fusarium spp. clinical isolates and two reference strains were used. MIC was obtained according to the M38-A2 protocol of the Clinical Laboratory Standards Institute, while MPPC was obtained following the initial steps of the M38-A2 protocol. Both Biotyper and the Rstudio environment were used to analyze mass spectra. For some fungal strains, the data obtained from the software MALDI Biotyper Compass 4.1 led to fuzzy heatmaps resulting in difficult interpretation, while heatmaps obtained using Rstudio tools generated better MPCC resolutions. Herein, 86.6% of the AMB MPCC values were highly correlated with the gold-standard AMB MIC. MALDI-TOF MS is a prominent tool used to determine MPCCs quicker, cost-effectively, and more accurately for Fusarium spp. strains. However, better statistical analyses could help measure the technique's limit detection.
Collapse
Affiliation(s)
- Patrícia Helena Grizante Barião
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão, Ribeirão Preto 14040-903, SP, Brazil
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Yasna Cayún
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Marcela Sepúlveda
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Ludmilla Tonani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão, Ribeirão Preto 14040-903, SP, Brazil
| | - Otavio Guilherme Gonçalves de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão, Ribeirão Preto 14040-903, SP, Brazil
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260-000, Chile
| | - Nathalia Dias
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811-230, Chile
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Marcia Regina von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão, Ribeirão Preto 14040-903, SP, Brazil
| |
Collapse
|
18
|
de-la-Fuente I, Guridi A, Jauregizar N, Eraso E, Quindós G, Sevillano E. In Vitro and In Vivo Activity of Citral in Combination with Amphotericin B, Anidulafungin and Fluconazole against Candida auris Isolates. J Fungi (Basel) 2023; 9:648. [PMID: 37367584 DOI: 10.3390/jof9060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Candida auris is an emerging fungal pathogen responsible for hospital outbreaks of invasive candidiasis associated with high mortality. The treatment of these mycoses is a clinical challenge due to the high resistance levels of this species to current antifungal drugs, and alternative therapeutic strategies are needed. In this study, we evaluated the in vitro and in vivo activities of combinations of citral with anidulafungin, amphotericin B or fluconazole against 19 C. auris isolates. The antifungal effect of citral was in most cases similar to the effect of the antifungal drugs in monotherapy. The best combination results were obtained with anidulafungin, with synergistic and additive interactions against 7 and 11 of the 19 isolates, respectively. The combination of 0.06 μg/mL anidulafungin and 64 μg/mL citral showed the best results, with a survival rate of 63.2% in Caenorhabditis elegans infected with C. auris UPV 17-279. The combination of fluconazole with citral reduced the MIC of fluconazole from > 64 to 1-4 μg/mL against 12 isolates, and a combination of 2 μg/mL fluconazole and 64 μg/mL citral was also effective in reducing mortality in C. elegans. Amphotericin B combined with citral, although effective in vitro, did not improve the activity of each compound in vivo.
Collapse
Affiliation(s)
- Iñigo de-la-Fuente
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Andrea Guridi
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Jauregizar
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Elena Sevillano
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
19
|
Argüelles A, Sánchez-Fresneda R, Guirao-Abad JP, Lozano JA, Solano F, Argüelles JC. Insight into the Antifungal Effects of Propolis and Carnosic Acid—Extension to the Pathogenic Yeast Candida glabrata: New Propolis Fractionation and Potential Synergistic Applications. J Fungi (Basel) 2023; 9:jof9040442. [PMID: 37108897 PMCID: PMC10143237 DOI: 10.3390/jof9040442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Fungi have traditionally been considered opportunistic pathogens in primary infections caused by virulent bacteria, protozoan, or viruses. Consequently, antimycotic chemotherapy is clearly less developed in comparison to its bacterial counterpart. Currently, the three main families of antifungals (polyenes, echinocandins, and azoles) are not sufficient to control the enormous increase in life-threatening fungal infections recorded in recent decades. Natural substances harvested from plants have traditionally been utilized as a successful alternative. After a wide screening of natural agents, we have recently obtained promising results with distinct formulations of carnosic acid and propolis on the prevalent fungal pathogens Candida albicans and Cryptococcus neoformans. Here, we extended their use to the treatment against the emerging pathogenic yeast Candida glabrata, which displayed lower susceptibility in comparison to the fungi mentioned above. Taking into account the moderate antifungal activity of both natural agents, the antifungal value of these combinations has been improved through the obtention of the hydroethanolic fractions of propolis. In addition, we have demonstrated the potential clinical application of new therapeutical designs based on sequential pre-treatments with carnosic/propolis mixtures, followed by exposure to amphotericin B. This approach increased the toxic effect induced by this polyene.
Collapse
Affiliation(s)
| | - Ruth Sánchez-Fresneda
- Vitalgaia España S.L., 30005 Murcia, Spain
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - José P. Guirao-Abad
- Vitalgaia España S.L., 30005 Murcia, Spain
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| | - José Antonio Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia, 30120 Murcia, Spain
| | - Francisco Solano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia, 30120 Murcia, Spain
| | - Juan-Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
20
|
Rabaan AA, Sulaiman T, Al-Ahmed SH, Buhaliqah ZA, Buhaliqah AA, AlYuosof B, Alfaresi M, Al Fares MA, Alwarthan S, Alkathlan MS, Almaghrabi RS, Abuzaid AA, Altowaileb JA, Al Ibrahim M, AlSalman EM, Alsalman F, Alghounaim M, Bueid AS, Al-Omari A, Mohapatra RK. Potential Strategies to Control the Risk of Antifungal Resistance in Humans: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12030608. [PMID: 36978475 PMCID: PMC10045400 DOI: 10.3390/antibiotics12030608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
Fungal infections are becoming one of the main causes of morbidity and mortality in people with weakened immune systems. Mycoses are becoming more common, despite greater knowledge and better treatment methods, due to the regular emergence of resistance to the antifungal medications used in clinical settings. Antifungal therapy is the mainstay of patient management for acute and chronic mycoses. However, the limited availability of antifungal drug classes limits the range of available treatments. Additionally, several drawbacks to treating mycoses include unfavourable side effects, a limited activity spectrum, a paucity of targets, and fungal resistance, all of which continue to be significant issues in developing antifungal drugs. The emergence of antifungal drug resistance has eliminated accessible drug classes as treatment choices, which significantly compromises the clinical management of fungal illnesses. In some situations, the emergence of strains resistant to many antifungal medications is a major concern. Although new medications have been developed to address this issue, antifungal drug resistance has grown more pronounced, particularly in patients who need long-term care or are undergoing antifungal prophylaxis. Moreover, the mechanisms that cause resistance must be well understood, including modifications in drug target affinities and abundances, along with biofilms and efflux pumps that diminish intracellular drug levels, to find novel antifungal drugs and drug targets. In this review, different classes of antifungal agents, and their resistance mechanisms, have been discussed. The latter part of the review focuses on the strategies by which we can overcome this serious issue of antifungal resistance in humans.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Zainab A Buhaliqah
- Department of Family Medicine, Primary Healthcare Center, Dammam 32433, Saudi Arabia
| | - Ali A Buhaliqah
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohammed S Alkathlan
- Infectious Diseases Department, King Fahad Specialist Hospital, Buraydah 52382, Saudi Arabia
| | - Reem S Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Jaffar A Altowaileb
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Maha Al Ibrahim
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Eman M AlSalman
- Department of Family Medicine, Primary Health Care Centers, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Fatimah Alsalman
- Department of Emergency Medicine, Oyun City Hospital, Al-Ahsa 36312, Saudi Arabia
| | | | - Ahmed S Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| | - Awad Al-Omari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Research Center, Dr. Sulaiman Al Habib Medical Group, Riyadh 11372, Saudi Arabia
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
21
|
Lamoth F. Novel Therapeutic Approaches to Invasive Candidiasis: Considerations for the Clinician. Infect Drug Resist 2023; 16:1087-1097. [PMID: 36855391 PMCID: PMC9968438 DOI: 10.2147/idr.s375625] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Invasive candidiasis (IC), due to the yeast pathogen Candida, is still a major cause of in-hospital morbidity and mortality. The limited number of antifungal drug classes and the emergence of multi-resistant Candida species, such as Candida auris and some Candida glabrata isolates, is concerning. However, recent advances in antifungal drug development provide promising perspectives for the therapeutic approach of IC. Notably, three novel antifungal agents, currently in Phase II/III clinical trials, are expected to have an important place for the treatment of IC in the future. Rezafungin is a novel echinocandin with prolonged half-life. Ibrexafungerp and fosmanogepix are two first-in-class antifungal drugs with broad spectrum activity against Candida spp., including C. auris and echinocandin-resistant species. These novel antifungal agents also represent interesting alternative options because of their acceptable oral bioavailability (ibrexafungerp and fosmanogepix) or their large interdose interval (once weekly intravenous administration for rezafungin) for prolonged and/or outpatient treatment of complicated IC. This review discusses the potential place of these novel antifungal drugs for the treatment of IC considering their pharmacologic properties and their preclinical and clinical data.
Collapse
Affiliation(s)
- Frederic Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Correspondence: Frederic Lamoth, Service of Infectious Diseases and Institute of Microbiology, CHUV | Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 48, Lausanne, 1011, Switzerland, Tel +41 21 314 10 10, Email
| |
Collapse
|
22
|
Synthetic Cinnamides and Cinnamates: Antimicrobial Activity, Mechanism of Action, and In Silico Study. Molecules 2023; 28:molecules28041918. [PMID: 36838906 PMCID: PMC9967511 DOI: 10.3390/molecules28041918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
The severity of infectious diseases associated with the resistance of microorganisms to drugs highlights the importance of investigating bioactive compounds with antimicrobial potential. Therefore, nineteen synthetic cinnamides and cinnamates having a cinnamoyl nucleus were prepared and submitted for the evaluation of antimicrobial activity against pathogenic fungi and bacteria in this study. To determine the minimum inhibitory concentration (MIC) of the compounds, possible mechanisms of antifungal action, and synergistic effects, microdilution testing in broth was used. The structures of the synthesized products were characterized with FTIR spectroscopy, 1 H-NMR, 13 C-NMR, and HRMS. Derivative 6 presented the best antifungal profile, suggesting that the presence of the butyl substituent potentiates its biological response (MIC = 626.62 μM), followed by compound 4 (672.83 μM) and compound 3 (726.36 μM). All three compounds were fungicidal, with MFC/MIC ≤ 4. For mechanism of action, compounds 4 and 6 directly interacted with the ergosterol present in the fungal plasmatic membrane and with the cell wall. Compound 18 presented the best antibacterial profile (MIC = 458.15 μM), followed by compound 9 (550.96 μM) and compound 6 (626.62 μM), which suggested that the presence of an isopropyl group is important for antibacterial activity. The compounds were bactericidal, with MBC/MIC ≤ 4. Association tests were performed using the Checkerboard method to evaluate potential synergistic effects with nystatin (fungi) and amoxicillin (bacteria). Derivatives 6 and 18 presented additive effects. Molecular docking simulations suggested that the most likely targets of compound 6 in C. albicans were caHOS2 and caRPD3, while the most likely target of compound 18 in S. aureus was saFABH. Our results suggest that these compounds could be used as prototypes to obtain new antimicrobial drugs.
Collapse
|
23
|
Alves-Silva JM, Cocco E, Piras A, Gonçalves MJ, Silva A, Falconieri D, Porcedda S, Cruz MT, Maxia A, Salgueiro L. Unveiling the Chemical Composition and Biological Properties of Salvia cacaliifolia Benth. Essential Oil. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020359. [PMID: 36679072 PMCID: PMC9867359 DOI: 10.3390/plants12020359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 05/14/2023]
Abstract
Salvia is widely recognized for its therapeutic potential. However, the biological relevance of some species remains unknown, namely Salvia cacaliifolia Benth. Therefore, the aim of this study is to unveil the chemical composition and relevant properties to its essential oil (EO). The EO was characterized by GC and GC-MS and its antifungal effect was evaluated according to the CLSI guidelines on dermatophytes and yeasts. The anti-inflammatory potential was assessed on lipopolysaccharide-stimulated macrophages, by assessing the production of nitric oxide (NO) and the effect on the protein levels of two key pro-inflammatory enzymes, iNOS and COX-2 by western blot analysis. Wound healing capacity was determined using the scratch wound healing assay, and the anti-aging potential was assessed by evaluating the senescence marker β-galactosidase. The EO was mainly characterized by γ-curcumene, β-bisabolene, bicyclogermacrene and curzerenone. It is effective in inhibiting the growth of dermatophytes and C. neoformans. The EO significantly decreased iNOS and COX-2 protein levels and concomitantly reduced NO release. Additionally, it demonstrated anti-senescence potential and promoted wound healing. Overall, this study highlights relevant pharmacological properties of the EO of Salvia cacaliifolia, which should be further explored envisaging the development of sustainable, innovative, and environmentally friendly skin products.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Institute for Clinical and Biomedical Research, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Emma Cocco
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio, 09123 Cagliari, Italy
| | - Alessandra Piras
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Maria José Gonçalves
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Danilo Falconieri
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio, 09123 Cagliari, Italy
| | - Silvia Porcedda
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Maria Teresa Cruz
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Andrea Maxia
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio, 09123 Cagliari, Italy
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
24
|
Gamaletsou MN, Rammaert B, Brause B, Bueno MA, Dadwal SS, Henry MW, Katragkou A, Kontoyiannis DP, McCarthy MW, Miller AO, Moriyama B, Pana ZD, Petraitiene R, Petraitis V, Roilides E, Sarkis JP, Simitsopoulou M, Sipsas NV, Taj-Aldeen SJ, Zeller V, Lortholary O, Walsh TJ. Osteoarticular Mycoses. Clin Microbiol Rev 2022; 35:e0008619. [PMID: 36448782 PMCID: PMC9769674 DOI: 10.1128/cmr.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Osteoarticular mycoses are chronic debilitating infections that require extended courses of antifungal therapy and may warrant expert surgical intervention. As there has been no comprehensive review of these diseases, the International Consortium for Osteoarticular Mycoses prepared a definitive treatise for this important class of infections. Among the etiologies of osteoarticular mycoses are Candida spp., Aspergillus spp., Mucorales, dematiaceous fungi, non-Aspergillus hyaline molds, and endemic mycoses, including those caused by Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species. This review analyzes the history, epidemiology, pathogenesis, clinical manifestations, diagnostic approaches, inflammatory biomarkers, diagnostic imaging modalities, treatments, and outcomes of osteomyelitis and septic arthritis caused by these organisms. Candida osteomyelitis and Candida arthritis are associated with greater events of hematogenous dissemination than those of most other osteoarticular mycoses. Traumatic inoculation is more commonly associated with osteoarticular mycoses caused by Aspergillus and non-Aspergillus molds. Synovial fluid cultures are highly sensitive in the detection of Candida and Aspergillus arthritis. Relapsed infection, particularly in Candida arthritis, may develop in relation to an inadequate duration of therapy. Overall mortality reflects survival from disseminated infection and underlying host factors.
Collapse
Affiliation(s)
- Maria N. Gamaletsou
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Blandine Rammaert
- Université de Poitiers, Faculté de médecine, CHU de Poitiers, INSERM U1070, Poitiers, France
| | - Barry Brause
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Marimelle A. Bueno
- Far Eastern University-Dr. Nicanor Reyes Medical Foundation, Manilla, Philippines
| | | | - Michael W. Henry
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aspasia Katragkou
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | - Matthew W. McCarthy
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
| | - Andy O. Miller
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | | | - Zoi Dorothea Pana
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Ruta Petraitiene
- Weill Cornell Medicine of Cornell University, New York, New York, USA
| | | | - Emmanuel Roilides
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Maria Simitsopoulou
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Nikolaos V. Sipsas
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Valérie Zeller
- Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France
| | - Olivier Lortholary
- Université de Paris, Faculté de Médecine, APHP, Hôpital Necker-Enfants Malades, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR 2000, Paris, France
| | - Thomas J. Walsh
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
25
|
Prajapati J, Goswami D, Dabhi M, Acharya D, Rawal RM. Potential dual inhibition of SE and CYP51 by eugenol conferring inhibition of Candida albicans: Computationally curated study with experimental validation. Comput Biol Med 2022; 151:106237. [PMID: 36327880 DOI: 10.1016/j.compbiomed.2022.106237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
Ergosterol is the key sterol component in the cell membrane of fungi including moulds and yeasts. Any decrease in the levels of ergosterol in the cell membrane of fungi render them venerable to cell membrane damage and even its death. Majority of antifungal drug targets the key enzymes involved in ergosterol biosynthesis pathway. The biochemical pathway for the synthesis of Ergosterol is a complex one, though the reactions carried by Squalene Epoxidase (SE) and 14α-demethylase (CYP51- a member of Cytochrome P450 family) serves to the key rate limiting reactions that can impact the overall production of Ergosterol. Allylamines class of antifungal drug target SE while Azoles target the CYP51. Currently advancement in the drug development is focused to introduce newer drugs that can simultaneously inhibit both this rate limiting enzymes. However, natural compounds established to possess antifungal activity but the major loophole about their understanding lies in the fact that their mode of action are severely unstudied. One such well-established antifungal natural phytochemical is Eugenol, and in current manuscript we investigated its efficacy to interact with both, SE and CYP51 of Candida albicans using molecular Docking, Free energy change calculations and Molecular Dynamics (MD) simulation, showing promising outcomes. For experimental studies, terbinafine, clotrimazole and eugenol showed 4 μg/ml, 2 μg/ml, and 512 μg/ml MIC90 values, respectively against C. albicans and also showed reduction in Ergosterol production at sub-MIC levels. The obtained result indicates the involvement of eugenol in the inhibition of enzymes require in the ergosterol biosynthesis pathway.
Collapse
Affiliation(s)
- Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Milan Dabhi
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dhaval Acharya
- Department of Microbiology, B N Patel Institute of Paramedical and Sciences, Anand, 388001, Gujarat, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India; Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
26
|
Vanathi M, Naik R, Sidhu N, Ahmed NH, Gupta N, Tandon R. Evaluation of antifungal susceptibility and clinical characteristics in fungal keratitis in a tertiary care center in North India. Indian J Ophthalmol 2022; 70:4270-4283. [PMID: 36453329 PMCID: PMC9940598 DOI: 10.4103/ijo.ijo_855_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose To study the antifungal susceptibility of common corneal pathogenic fungi to antifungal agents in the North Indian population. Methods Prospective study of the antifungal sensitivity testing (natamycin, amphotericin B, voriconazole, itraconazole, fluconazole, posaconazole, caspofungin, micafungin) of fungal isolates from 50 cases of culture positive fungal keratitis by using E test method. Details noted included demographic data, visual acuity, clinical details, grade of keratitis, healing time, and success in medical management. Results Of 50 patients with fungal keratitis (mean age: 40.28 ± 16.77 years), 12 eyes healed within 3 weeks, 14 had a delayed healing response, and 24 had chronic keratitis. Among the 15 cases of Fusarium isolates, 93.3% were sensitive to natamycin, while 40% to amphotericin B; 66.6% to voriconazole, 13.4% to itraconazole and fluconazole each. 80% of Fusarium cases (n = 12) showed susceptibility to posaconazole. Among Aspergillus flavus isolates, 53.4% (n = 8) were sensitive to natamycin, with only 40% (n = 7) showing sensitivity to amphotericin B and good susceptibility to azoles. MIC against susceptible Fusarium spp. for natamycin was 3-16 μg/mL, amphotericin B: 1-8 μg/mL, voriconazole: 0.5-1.5 μg/mL, itraconazole: 0.5-12 μg/mL, posaconazole: 0.094-1.5 μg/mL. MIC against Aspergillus flavus was natamycin: 8-32 μg/mL, amphotericin B: 0.5-16 μg/mL, voriconazole: 0.025-4 μg/mL, itraconazole: 0.125-8 μg/mL, posaconazole: 0.047-0.25 μg/mL; against Aspergillus niger isolates, to natamycin was 6 μg/mL (n=1), amphotericin B 8-12 μg/mL (n = 3), voriconazole: 0.125-0.19 μg/mL (n = 3), itraconazole: 0.38-0.75 μg/mL, posaconazole: 0.064-0.19 μg/mL and against Aspergillus fumigatus (n = 1), was natamycin4 μg/mL, amphotericin B - 8 μg/mL, voriconazole 0.25 μg/mL, itraconazole 1 μg/mL, and posaconazole 0.19 μg/mL. MIC against susceptible Acremonium spp. for natamycin was 1.5-16 μg/mL, amphotericin B: 0.5-8 μg/mL, voriconazole: 0.19-3 μg/mL, itraconazole: 0.125 μg/mL, posaconazole: 0.125-0.5 μg/mL and against susceptible Curvularia was natamycin 0.75-4 μg/mL, amphotericin B 0.5-1 μg/mL, voriconazole 0.125-0.19 μg/mL, itraconazole 0.047-0.094 μg/mL, posaconazole 0.047-0.094 μg/mL. MIC against Mucor spp.+ Rhizopus spp. (n = 1) was natamycin: 8 μg/mL, amphotericin B: 0.75 μg/mL, posaconazole: 1.5 μg/mL. MIC against of Alternaria (n = 1) was voriconazole: 0.19 μg/mL, posaconazole: 0.094 μg/mL. MIC against Penicillium (n=1) was natamycin: 8 μg/mL, voriconazole: 0.25 μg/mL, itraconazole: 0.5 μg/mL, and Posaconazole: 0.125 μg/mL. Conclusion Our observations highlight the variations in susceptibility to antifungal agents. Posaconazole seems to be effective with low MIC against common corneal pathogenic fungal isolates.
Collapse
Affiliation(s)
- Murugesan Vanathi
- Cornea, Lens and Refractive Surgery Services, All India Institute of Medical Sciences, New Delhi, India,Correspondence to: Dr. Murugesan Vanathi, Professor of Ophthalmology Cornea and Ocular Surface, Cataract and Refractive Services Dr. R. P. Center for Ophthalmic Sciences All India Institute of Medical Sciences, New Delhi - 110 029, India. E-mail:
| | - Ravinder Naik
- Cornea, Lens and Refractive Surgery Services, All India Institute of Medical Sciences, New Delhi, India
| | - Navneet Sidhu
- Cornea, Lens and Refractive Surgery Services, All India Institute of Medical Sciences, New Delhi, India
| | - Nishat Hussain Ahmed
- Ocular Microbiology Services, Dr. R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Noopur Gupta
- Cornea, Lens and Refractive Surgery Services, All India Institute of Medical Sciences, New Delhi, India
| | - Radhika Tandon
- Cornea, Lens and Refractive Surgery Services, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
27
|
Hammoudi Halat D, Younes S, Mourad N, Rahal M. Allylamines, Benzylamines, and Fungal Cell Permeability: A Review of Mechanistic Effects and Usefulness against Fungal Pathogens. MEMBRANES 2022; 12:membranes12121171. [PMID: 36557078 PMCID: PMC9781035 DOI: 10.3390/membranes12121171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 05/30/2023]
Abstract
Allylamines, naftifine and terbinafine, and the benzylamine, butenafine, are antifungal agents with activity on the fungal cell membrane. These synthetic compounds specifically inhibit squalene epoxidase, a key enzyme in fungal sterol biosynthesis. This results in a deficiency in ergosterol, a major fungal membrane sterol that regulates membrane fluidity, biogenesis, and functions, and whose damage results in increased membrane permeability and leakage of cellular components, ultimately leading to fungal cell death. With the fungal cell membrane being predominantly made up of lipids including sterols, these lipids have a vital role in the pathogenesis of fungal infections and the identification of improved therapies. This review will focus on the fungal cell membrane structure, activity of allylamines and benzylamines, and the mechanistic damage they cause to the membrane. Furthermore, pharmaceutical preparations and clinical uses of these drugs, mainly in dermatophyte infections, will be reviewed.
Collapse
Affiliation(s)
- Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
| | - Nisreen Mourad
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
| | - Mohamad Rahal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
| |
Collapse
|
28
|
Calcineurin Inhibitors Synergize with Manogepix to Kill Diverse Human Fungal Pathogens. J Fungi (Basel) 2022; 8:jof8101102. [PMID: 36294667 PMCID: PMC9605145 DOI: 10.3390/jof8101102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Invasive fungal infections have mortality rates of 30–90%, depending on patient co-morbidities and the causative pathogen. The frequent emergence of drug resistance reduces the efficacy of currently approved treatment options, highlighting an urgent need for antifungals with new modes of action. Addressing this need, fosmanogepix (N-phosphonooxymethylene prodrug of manogepix; MGX) is the first in a new class of gepix drugs, and acts as a broad-spectrum, orally bioavailable inhibitor of the essential fungal glycosylphosphatidylinositol (GPI) acyltransferase Gwt1. MGX inhibits the growth of diverse fungal pathogens and causes accumulation of immature GPI-anchored proteins in the fungal endoplasmic reticulum. Relevant to the ongoing clinical development of fosmanogepix, we report a synergistic, fungicidal interaction between MGX and inhibitors of the protein phosphatase calcineurin against important human fungal pathogens. To investigate this synergy further, we evaluated a library of 124 conditional expression mutants covering 95% of the genes encoding proteins involved in GPI-anchor biosynthesis or proteins predicted to be GPI-anchored. Strong negative chemical-genetic interactions between the calcineurin inhibitor FK506 and eleven GPI-anchor biosynthesis genes were identified, indicating that calcineurin signalling is required for fungal tolerance to not only MGX, but to inhibition of the GPI-anchor biosynthesis pathway more broadly. Depletion of these GPI-anchor biosynthesis genes, like MGX treatment, also exposed fungal cell wall (1→3)-β-D-glucans. Taken together, these findings suggest the increased risk of invasive fungal infections associated with use of calcineurin inhibitors as immunosuppressants may be mitigated by their synergistic fungicidal interaction with (fos)manogepix and its ability to enhance exposure of immunostimulatory glucans.
Collapse
|
29
|
Hu H, Yang Y, Aissa A, Tekin V, Li J, Panda SK, Huang H, Luyten W. Ethnobotanical study of Hakka traditional medicine in Ganzhou, China and their antibacterial, antifungal, and cytotoxic assessments. BMC Complement Med Ther 2022; 22:244. [PMID: 36123737 PMCID: PMC9484230 DOI: 10.1186/s12906-022-03712-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Traditional herbs played a crucial role in the health care of the Hakka people. However, studies to identify these traditional herbs are few. Here we document and assess the potential of these plants for treating microbial infections. Many herbs used by the Hakka people could potentially be a novel medicinal resource. Methods Local herb markets were surveyed via semi-structured interviews, complemented by direct observations to obtain information on herbal usage. For each herb selected for this study, extracts in four different solvents were prepared, and tested for activity against 20 microorganisms, as well as cancerous and noncancerous cells. All data were subjected to cluster analysis to discover relationships among herbs, plant types, administration forms, solvents, microorganisms, cells, etc., with the aim to discern promising herbs for medicine. Results Ninety-seven Hakka herbs in Ganzhou were documented from 93 plants in 62 families; most are used for bathing (97%), or as food, such as tea (32%), soup (12%), etc. Compared with the Chinese Pharmacopoeia and Chinese Materia Medica, 24 Hakka medicines use different plant parts, and 5 plants are recorded here for the first time as traditional medicines. The plant parts used were closely related with the life cycle: annual and perennial herbs were normally used as a whole plant, and woody plants as (tender) stem and leaf, indicating a trend to use the parts that are easily collected. Encouragingly, 311 extracts (94%) were active against one or more microorganisms. Most herbs were active against Gram-positive bacteria, such as Staphylococcus aureus (67%), Listeria innocua (64%), etc. Cytotoxicity was often observed against a tumor cell, but rarely against normal cells. Considering both antimicrobial activity and cytotoxicity, many herbs reported in this study show promise as medicine. Conclusion Hakka people commonly use easily-collected plant parts (aerial parts or entire herb) as medicine. External use of decoctions dominated, and may help combating microbial infections. The results offer promising perspectives for further research since little phytopharmacology and phytochemistry has been published to date. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03712-z.
Collapse
|
30
|
Nicoletti G, White K. The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor. Antibiotics (Basel) 2022; 11:antibiotics11091188. [PMID: 36139967 PMCID: PMC9495065 DOI: 10.3390/antibiotics11091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Phylogenetically diverse fungal species are an increasing cause of severe disease and mortality. Identification of new targets and development of new fungicidal drugs are required to augment the effectiveness of current chemotherapy and counter increasing resistance in pathogens. Nitroalkenyl benzene derivatives are thiol oxidants and inhibitors of cysteine-based molecules, which show broad biological activity against microorganisms. Nitropropenyl benzodioxole (NPBD), one of the most active antimicrobial derivatives, shows high activity in MIC assays for phylogenetically diverse saprophytic, commensal and parasitic fungi. NPBD was fungicidal to all species except the dermatophytic fungi, with an activity profile comparable to that of Amphotericin B and Miconazole. NPBD showed differing patterns of dynamic kill rates under different growth conditions for Candida albicans and Aspergillus fumigatus and was rapidly fungicidal for non-replicating vegetative forms and microconidia. It did not induce resistant or drug tolerant strains in major pathogens on long term exposure. A literature review highlights the complexity and interactivity of fungal tyrosine phosphate and redox signaling pathways, their differing metabolic effects in fungal species and identifies some targets for inhibition. A comparison of the metabolic activities of Amphotericin B, Miconazole and NPBD highlights the multiple cellular functions of these agents and the complementarity of many mechanisms. The activity profile of NPBD illustrates the functional diversity of fungal tyrosine phosphatases and thiol-based redox active molecules and contributes to the validation of tyrosine phosphatases and redox thiol molecules as related and complementary selective targets for antimicrobial drug development. NPBD is a selective antifungal agent with low oral toxicity which would be suitable for local treatment of skin and mucosal infections.
Collapse
|
31
|
Pharmacokinetic profile of sarcin and thionin from Aspergillus giganteus and in vitro validation against human fungal pathogen. Biosci Rep 2022; 42:231624. [PMID: 35924795 PMCID: PMC9469106 DOI: 10.1042/bsr20220229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/28/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Fungal infections are more predominant in agricultural and clinical fields. Aspergillosis caused by Aspergillus fumigatus leads to respiratory failure in patients along with various illnesses. Due to the limitation of antifungal therapy and antifungal drugs, there is an emergence to develop efficient antifungal compounds (AFCs) from natural sources to cure and prevent fungal infections. The present study deals with the investigation of the mechanism of the active compounds from Aspergillus giganteus against aspergillosis. Primarily, the bioavailability and toxicological properties of antifungal proteins such as, sarcin, thionin, chitinase and their derivatives have proved the efficiency of pharmacokinetic properties of selected compounds. Molecular interactions of selected compounds from A. giganteus with the virulence proteins of A. fumigatus (UDP-N-acetylglucosamine pyrophosphorylase, N-myristoyl transferase and Chitinase) have exhibited a good glide score and druggable nature of the AFCs. The antagonistic potential of AFCs on the pathogen was confirmed by SEM analysis where the shrunken and damaged spores of AFCs treated pathogen were observed. The integrity of A. fumigatus cell membrane and nuclear membrane treated with AFCs were analyzed by determining the release of cellular materials. The effective concentration of AFCs was found to be 250 µg/ml (P<0.0001). The GC-MS profiling has revealed the volatile bioactive metabolites present in A. giganteus. Further, interaction studies might provide more information on the synergism activity with the non-volatile metabolites which leads to the development of novel drugs for the treatment of aspergillosis.
Collapse
|
32
|
Vassilopoulos S, Mylonakis E. Avenues for antifungal drug discovery and development: where to now? Expert Opin Drug Discov 2022; 17:667-672. [PMID: 35790187 DOI: 10.1080/17460441.2022.2098950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Stephanos Vassilopoulos
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
33
|
Prakash SMU, Kabir MA. Repurposing vilanterol as a novel potential antifungal for Candida albicans: In-silico & in-vitro approach. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
34
|
Dhandapani K, Sivarajan K, Ravindhiran R, Sekar JN. Fungal Infections as an Uprising Threat to Human Health: Chemosensitization of Fungal Pathogens With AFP From Aspergillus giganteus. Front Cell Infect Microbiol 2022; 12:887971. [PMID: 35694549 PMCID: PMC9174459 DOI: 10.3389/fcimb.2022.887971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Occurrence and intensity of systemic invasive fungal infections have significantly risen in recent decades with large amount of mortality and morbidity rates at global level. Treatment therapy lies on the current antifungal interventions and are often limited due to the emergence of resistance to antifungal agents. Chemosensitization of fungal strains to the conventional antimycotic drugs are of growing concern. Current antifungal drugs often have been reported with poor activity and side effects to the host and have a few number of targets to manifest their efficacy on the pathogens. Indiscriminately, the aforementioned issues have been easily resolved by the development of new intervention strategies. One such approach is to employ combinational therapy that has exhibited a great level of inhibitions than that of a single compound. Chemosensitization of pathogenic mycoses to commercial antifungal drugs could be drastically enhanced by co-application of chemosensitizers along with the conventional drugs. Chemosensitizers could address the resistance mechanisms evolved in the pathogenic fungi and targeting the system to make the organism susceptible to commercially and clinically proven antifungal drugs. However, this strategy has not been overreached to the greater level, but it needs much attention to fight against not only with the pathogen but combat the resistance mechanisms of pathogens to drugs. Natural compounds including plant compounds and microbial proteins act as potential chemosensitizers to break the resistance in mycoses. Aspergillus giganteus, a filamentous fungus, is known to produce a cysteine rich extracellular protein called as antifungal protein (AFP). AFP has shown enhanced efficacy against several filamentous and non-filamentous fungal pathogens. On the basis of the reported studies on its targeted potential against pathogenic mycoses, AFP would be fabricated as a good chemosensitizer to augment the fungicidal efficacy of commercial antimycotic drugs. This paper reviews on breakthrough in the discovery of antifungal drugs along with the resistance patterns of mycoses to commercial drugs followed by the current intervention strategies applied to augment the fungicidal potential of drugs.
Collapse
|
35
|
Aspergillus terreus and the Interplay with Amphotericin B: from Resistance to Tolerance? Antimicrob Agents Chemother 2022; 66:e0227421. [PMID: 35254091 PMCID: PMC9017323 DOI: 10.1128/aac.02274-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aspergillus terreus is an opportunistic causative agent of invasive aspergillosis and, in most cases, it is refractory to amphotericin B (AMB) therapy. Notably, AMB-susceptible Aspergillus terreus sensu stricto (s.s.) representatives exist which are also associated with poor clinical outcomes. Such findings may be attributable to drug tolerance, which is not detectable by antifungal susceptibility testing. Here, we tested in vitro antifungal susceptibility (AFST) and the fungicidal activity of AMB against 100 clinical isolates of A. terreus species complex in RPMI 1640 and antibiotic medium 3 (AM3). MICs ranged from 0.5 to 16 μg/mL for RPMI 1640 and from 1 to >16 mg/L for AM3. AMB showed medium-dependent activity, with fungicidal effects only in antibiotic medium 3, not in RPMI 1640. Furthermore, the presence of AMB-tolerant phenotypes of A. terreus has been examined by assessing the minimum duration for killing 99% of the population (MDK99) and evaluating the data obtained in a Galleria mellonella infection model. A time-kill curve analysis revealed that A. terreus with AMB MICs of ≤1 mg/L (susceptible range) displayed AMB-tolerant phenotypes, exhibiting MDK99s at 18 and 36 h, respectively. Survival rates of infected G. mellonella highlighted that AMB was effective against susceptible A. terreus isolates, but not against tolerant or resistant isolates. Our analysis reveals that A. terreus isolates which are defined as susceptible based on MIC may comprise tolerant phenotypes, which may, in turn, explain the worse outcome of AMB therapy for phenotypically susceptible isolates.
Collapse
|
36
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|
37
|
Wen W, Cao H, Huang Y, Tu J, Wan C, Wan J, Han X, Chen H, Liu J, Rao L, Su C, Peng C, Sheng C, Ren Y. Structure-Guided Discovery of the Novel Covalent Allosteric Site and Covalent Inhibitors of Fructose-1,6-Bisphosphate Aldolase to Overcome the Azole Resistance of Candidiasis. J Med Chem 2022; 65:2656-2674. [PMID: 35099959 DOI: 10.1021/acs.jmedchem.1c02102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fructose-1,6-bisphosphate aldolase (FBA) represents an attractive new antifungal target. Here, we employed a structure-based optimization strategy to discover a novel covalent binding site (C292 site) and the first-in-class covalent allosteric inhibitors of FBA from Candida albicans (CaFBA). Site-directed mutagenesis, liquid chromatography-mass spectrometry, and the crystallographic structures of APO-CaFBA, CaFBA-G3P, and C157S-2a4 revealed that S268 is an essential pharmacophore for the catalytic activity of CaFBA, and L288 is an allosteric regulation switch for CaFBA. Furthermore, most of the CaFBA covalent inhibitors exhibited good inhibitory activity against azole-resistant C. albicans, and compound 2a11 can inhibit the growth of azole-resistant strains 103 with the MIC80 of 1 μg/mL. Collectively, this work identifies a new covalent allosteric site of CaFBA and discovers the first generation of covalent inhibitors for fungal FBA with potent inhibitory activity against resistant fungi, establishing a structural foundation and providing a promising strategy for the design of potent antifungal drugs.
Collapse
Affiliation(s)
- Wuqiang Wen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongxuan Cao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chen Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Han Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiaqi Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
38
|
Sakyiamah M, Larbi E, Kwofie S. In silico-based identification of some selected phytoconstituents in Ageratum conyzoides Leaves as potential inhibitors of crucial proteins of Blastomyces dermatitidis. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2022. [DOI: 10.4103/bbrj.bbrj_224_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Antifungal Activity of N-(4-Halobenzyl)amides against Candida spp. and Molecular Modeling Studies. Int J Mol Sci 2021; 23:ijms23010419. [PMID: 35008845 PMCID: PMC8745543 DOI: 10.3390/ijms23010419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
Fungal infections remain a high-incidence worldwide health problem that is aggravated by limited therapeutic options and the emergence of drug-resistant strains. Cinnamic and benzoic acid amides have previously shown bioactivity against different species belonging to the Candida genus. Here, 20 cinnamic and benzoic acid amides were synthesized and tested for inhibition of C. krusei ATCC 14243 and C. parapsilosis ATCC 22019. Five compounds inhibited the Candida strains tested, with compound 16 (MIC = 7.8 µg/mL) producing stronger antifungal activity than fluconazole (MIC = 16 µg/mL) against C. krusei ATCC 14243. It was also tested against eight Candida strains, including five clinical strains resistant to fluconazole, and showed an inhibitory effect against all strains tested (MIC = 85.3–341.3 µg/mL). The MIC value against C. krusei ATCC 6258 was 85.3 mcg/mL, while against C. krusei ATCC 14243, it was 10.9 times smaller. This strain had greater sensitivity to the antifungal action of compound 16. The inhibition of C. krusei ATCC 14243 and C. parapsilosis ATCC 22019 was also achieved by compounds 2, 9, 12, 14 and 15. Computational experiments combining target fishing, molecular docking and molecular dynamics simulations were performed to study the potential mechanism of action of compound 16 against C. krusei. From these, a multi-target mechanism of action is proposed for this compound that involves proteins related to critical cellular processes such as the redox balance, kinases-mediated signaling, protein folding and cell wall synthesis. The modeling results might guide future experiments focusing on the wet-lab investigation of the mechanism of action of this series of compounds, as well as on the optimization of their inhibitory potency.
Collapse
|
40
|
Abstract
On 2 June, 2021, the US Food and Drug Administration approved ibrexafungerp (formerly MK-3118 and SCY-078) for the treatment of vulvovaginal candidiasis, also known as vaginal yeast infection. Ibrexafungerp is the first drug approved in a novel antifungal class in more than two decades, and the Food and Drug Administration’s decision was based on positive results from two pivotal phase III studies in which oral ibrexafungerp proved both safe and effective in patients with vulvovaginal candidiasis. The decision was also based on substantial preclinical and clinical work in both the pharmacokinetics and pharmacodynamics of ibrexafungerp. This paper reviews that research and looks ahead to explore how this novel antifungal agent may be used in the future to address the expanding problem of drug-resistant mycotic infections.
Collapse
|
41
|
Keighley C, Cooley L, Morris AJ, Ritchie D, Clark JE, Boan P, Worth LJ. Consensus guidelines for the diagnosis and management of invasive candidiasis in haematology, oncology and intensive care settings, 2021. Intern Med J 2021; 51 Suppl 7:89-117. [DOI: 10.1111/imj.15589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Caitlin Keighley
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney Camperdown New South Wales Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology Westmead New South Wales Australia
- Southern IML Pathology, Sonic Healthcare Coniston New South Wales Australia
| | - Louise Cooley
- Department of Microbiology and Infectious Diseases Royal Hobart Hospital Hobart Tasmania Australia
- University of Tasmania Hobart Tasmania Australia
| | - Arthur J. Morris
- LabPLUS, Clinical Microbiology Laboratory Auckland City Hospital Auckland New Zealand
| | - David Ritchie
- Department of Clinical Haematology Peter MacCallum Cancer Centre and Royal Melbourne Hospital Melbourne Victoria Australia
| | - Julia E. Clark
- Department of Infection Management Queensland Children's Hospital, Children's Health Queensland Brisbane Queensland Australia
- Child Health Research Centre The University of Queensland Brisbane Queensland Australia
| | - Peter Boan
- PathWest Laboratory Medicine WA, Department of Microbiology Fiona Stanley Fremantle Hospitals Group Murdoch Western Australia Australia
- Department of Infectious Diseases Fiona Stanley Fremantle Hospitals Group Murdoch Western Australia Australia
| | - Leon J. Worth
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | |
Collapse
|
42
|
Burgart Y, Shchegolkov E, Shchur I, Kopchuk D, Gerasimova N, Borisevich S, Evstigneeva N, Zyryanov G, Savchuk M, Ulitko M, Zilberberg N, Kungurov N, Saloutin V, Charushin V, Chupakhin O. Promising Antifungal and Antibacterial Agents Based on 5-Aryl-2,2'-bipyridines and Their Heteroligand Salicylate Metal Complexes: Synthesis, Bioevaluation, Molecular Docking. ChemMedChem 2021; 17:e202100577. [PMID: 34783161 DOI: 10.1002/cmdc.202100577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/11/2021] [Indexed: 12/25/2022]
Abstract
A series of new 5-aryl-2,2'-bipyridines and their (polyfluoro)salicylate complexes of Cu(II), Co(II) and Mn(II) were synthesized. Their antimicrobial activity was evaluated in vitro against six strains of Trichophytons, E. floccosum, M. canis, C. ablicans and Gram-negative bacteria N. gonorrhoeae. Among azo-ligands, Ph-bipy and Tol-bipy showed promising antifungal activity (minimum inhibitory concentration (MIC)<0.8-27 μM). Their antifungal action was found can be realized via binding Fe(III) ions. Tol-bipy suppressed growth of Gram-positive bacteria S. aureus, S. aureus MRSA and their monospecies biofilms (MIC 6-16 μM). Using molecular docking, the anti-staphylococcal action mechanism based on the inhibition of S. aureus DNA gyrase GyrB was proposed for the lead compounds. Among metal complexes, Cu(II) and Mn(II) complexes based on tetrafluorosalicylic acid and Tol-bipy or Ph-bipy had the high antifungal activity (MIC<0.24-32 μM). Mn(SalF4 -2H)2 (Tol-bipy)2 ] suppressed the growth of seven Candida strains at MIC 12-24 μM. [Cu(Sal-2H)(Ph-bipy)] and [Cu(SalF3 -2H)(Ph-bipy)2 ] showed the promising anti-gonorrhoeae activity (MIC 4.2-5.2 μM). (Cu(SalFn -2H)(Tol-bipy)2 ], [Cu(SalF4 -2H)(Ph-bipy)2 ] and [Cu(SalF3 -2H)(Ph-bipy)2 ]) were found active against the bacteria of S. aureus, S. aureus MRSA and their biofilms (MIC 2.4-41.4 μM). The most active compounds were tested for toxicity in vitro against human embryonic kidney (HEK-293) cells and in vivo experiments with CD-1 mice.
Collapse
Affiliation(s)
- Yanina Burgart
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Evgeny Shchegolkov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Irina Shchur
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Dmitry Kopchuk
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Natalia Gerasimova
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Sophia Borisevich
- Ufa Institute of Chemistry of, Russian Academy of Science, Octyabrya St., 71, Ufa, 450078, Russia
| | - Natalia Evstigneeva
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Grigory Zyryanov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Maria Savchuk
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Maria Ulitko
- Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Natalia Zilberberg
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Nikolai Kungurov
- Ural Research Institute for Dermatology, Venereology and Immunopathology, Shcherbakova St., 8, Ekaterinburg, 620076, Russia
| | - Victor Saloutin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia
| | - Valery Charushin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| | - Oleg Chupakhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi St., 22, Ekaterinburg, 620990, Russia.,Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg, 620002, Russia
| |
Collapse
|
43
|
Prajapati J, Rao P, Poojara L, Goswami D, Acharya D, Patel SK, Rawal RM. Unravelling the antifungal mode of action of curcumin by potential inhibition of CYP51B: A computational study validated in vitro on mucormycosis agent, Rhizopus oryzae. Arch Biochem Biophys 2021; 712:109048. [PMID: 34600893 DOI: 10.1016/j.abb.2021.109048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
Like human, fungi too are known to share lot of structural similarities amongst their CYPs (Cytochrome P450 super family of enzymes) which allows antifungal 'azole' compounds to interact with CYPs of human. Clotrimazole, an 'azole' antifungal drug, is a known inhibitor of fungal CYP named CYP51B. Curcumin, a phytochemical obtained from Curcuma longa has the ability to interact with several different human CYPs to induce inhibition. The sequence and the structural similarities amongst both human and fungal CYPs suggest a strong possibility for curcumin to interact with fungal CYP51B to behave like an antifungal agent. To test this hypothesis a study was designed involving mucormycosis agent, Rhizopus oryzae. The ability of curcumin to interact with fungal CYP51B was analysed computationally through molecular docking, MM-GBSA and Molecular Dynamics (MD) simulation assessment. Further, interaction profile for fungal CYP51B-curcumin was compared with human CYP3A4-curcumin, as there are published evidence describing curcumin as an inhibitor of human CYPs. Additionally, to validate in silico findings, an in vitro assay was performed to examine the antifungal potentials of curcumin on the R. oryzae. Conclusive results allow us to determine a plausible mode of action of curcumin to act as an antifungal against a mucormycosis agent.
Collapse
Affiliation(s)
- Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyashi Rao
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Lipi Poojara
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dhaval Acharya
- Department of Microbiology, B N Patel Institute of Paramedical and Sciences, Anand, 388001, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
44
|
Safety, Tolerability, and Population Pharmacokinetics of Intravenous and Oral Isavuconazonium Sulfate in Pediatric Patients. Antimicrob Agents Chemother 2021; 65:e0029021. [PMID: 34031051 PMCID: PMC8284446 DOI: 10.1128/aac.00290-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Isavuconazole, administered as the water-soluble prodrug isavuconazonium sulfate, is a new triazole agent used to treat invasive fungal infections. This phase 1 study evaluated the pharmacokinetics (PK), safety, and tolerability of isavuconazole in 46 immunocompromised pediatric patients, stratified by age (1 to <6 [intravenous (i.v.) only], 6 to <12, and 12 to <18 years), receiving 10 mg/kg body weight (maximum, 372 mg) isavuconazonium sulfate either i.v. or orally. A population PK model using weight-based allometric scaling was constructed with the pediatric i.v. and oral data plus i.v. data from a phase 1 study in adults. The best model was a 3-compartment model with combined zero-order and first-order input, with linear elimination. Stepwise covariate modeling was performed in Perl-speaks-NONMEM version 4.7.0. None of the covariates examined, including age, sex, race, and body mass index, were statistically significant for any of the PK parameters. The area under the concentration-time curve at steady state (AUCSS) was predicted for pediatric patients using 1,000 Monte Carlo simulations per age cohort for each administration route. The probability of target attainment (AUCSS range, 60 to 233 μg · h/ml) was estimated; this target range was derived from plasma drug exposures in adults receiving the recommended clinical dose. Predicted plasma drug exposures were within the target range for >80% and >76% of simulated pediatric patients following i.v. or oral administration, respectively. Intravenous and oral administration of isavuconazonium sulfate at the studied dosage of 10 mg/kg was well tolerated and resulted in exposure in pediatric patients similar to that in adults. (This study has been registered at ClinicalTrials.gov under identifier NCT03241550).
Collapse
|
45
|
Xu H, Cao C, Wang X, Guo MB, Yan ZZ, An R, Zhang R, Dong EH, Mou YH, Hou Z, Guo C. Discovery of 1,2,3-selenadiazole analogues as antifungal agents using a scaffold hopping approach. Bioorg Chem 2021; 115:105182. [PMID: 34333426 DOI: 10.1016/j.bioorg.2021.105182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
With the increasing incidence of antifungal resistance, new antifungal agents having novel scaffolds hence are in an urgent need to combat infectious diseases caused by multidrug-resistant (MDR) pathogens. In this study, we reported the design, synthesis, and pharmacological evaluation of novel 1,2,3-selenadiazole analogues by scaffold hopping strategy. Preliminary results of antifungal activity demonstrated that the new class of compounds showed broad-spectrum fungistatic and fungicidal activity. Most importantly, these newly synthesized compounds can eliminate these azole-resistant fungi and inhibit the formation of C. albicans biofilm. In particular, compound S07 showed promising antifungal activity against five azole-resistant strains with MIC values ranging from 4 to 32 μg/mL. Then, further target identification and mechanistic studies indicated that representative compound S07 exert its inhibitory activity by inhibiting fungal lanosterol 14α-demethylase enzyme (CYP51). Interestingly, representative compounds showed low cytotoxicity on mammalian cell lines. In addition, the molecular docking studies elucidated the binding modes of these compounds toward CYP51. Altogether, these results suggest that compound S07 with novel skeleton is a promising CYP51 inhibitor for treatment of fungal infections.
Collapse
Affiliation(s)
- Hang Xu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China
| | - Chun Cao
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China
| | - Xin Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China
| | - Meng-Bi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China
| | - Zhong-Zuo Yan
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China
| | - Ran An
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China
| | - Rui Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China
| | - En-Hui Dong
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China
| | - Yan-Hua Mou
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China.
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China.
| |
Collapse
|
46
|
Colombo AL, Agnelli C, Kontoyiannis DP. Knowledge gaps in candidaemia/invasive candidiasis in haematological cancer patients. J Antimicrob Chemother 2021; 76:543-546. [PMID: 33150364 DOI: 10.1093/jac/dkaa446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As neutropenic patients with haematological cancer are not typically included in randomized controlled trials (RCTs) of candidaemia, there is low quality of evidence regarding the management of this common opportunistic mycosis in this patient population, which is at high risk for poor outcomes. Herein we identify the gaps in knowledge that are not addressed by the modern RCTs and candidaemia guidelines, and outline some considerations for the future clinical research agenda in candidaemia/invasive candidiasis in haematological patients.
Collapse
Affiliation(s)
- Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Agnelli
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Dimitrios P Kontoyiannis
- Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
47
|
Groll AH, Gordon K, Buchheidt D, Willinger B, Heinz WJ, Kurzai O, Rickerts V, Cornely OA. State of Medical Mycology at German Academic Medical Centres: A Survey of the German-Speaking Mycological Society (DMYKG) and the Paul-Ehrlich-Society for Chemotherapy (PEG). Mycoses 2021; 64:1177-1182. [PMID: 34180098 DOI: 10.1111/myc.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Little is known about the infrastructure to translate advances in the management of patients at risk to develop invasive opportunistic fungal diseases. To assess the current state of Medical Mycology support in Germany, we conducted a survey among all 36 academic medical centres. METHODS The survey consisted of a 3-pages questionnaire sent out in the first half of 2019. Information included details of infrastructure, education and teaching; consultation services and interdisciplinary conferences; research activities and participation in network groups; radiology, microbiology and pharmacology support; publication activity; and European Confederation for Medical Mycology (ECMM) Excellence Center designation, if assigned. RESULTS Information was returned from 24 centres (67%). Thirteen institutions (54%) reported an independent infectious disease, and two a separate Medical Mycology department (8%); a Medical Mycology working group was reported for nine institutions (38%). An infectious disease consultation service was existent in 16 institutions (67%) and a multidisciplinary conference in 13 (54%). Fifteen institutions reported a separate study office with activities in infectious disease studies (63%). Laboratory capability for fungal identification and susceptibility testing was confirmed by all 24 institutions; testing of galactomannan by 23 (96%), cryptococcal antigen by 21 (88%), ß-D-Glucan by 9 (38%), and panfungal and Pneumocystis PCR by 21 and 22 (88% and 92%), respectively. Therapeutic drug monitoring of voriconazole was reported to be available in 15 (63%) institutions with a turnaround of ≤24 h during weekdays in 10 (42%). Two of the 24 University hospitals (8%) reported ECMM Diamond Excellence Status. CONCLUSIONS The results of this survey document the continuing need to improve the availability of specialised Medical Mycology support in German academic medical centres.
Collapse
Affiliation(s)
- Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| | - Kathrin Gordon
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| | - Dieter Buchheidt
- Department of Hematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Werner J Heinz
- Department of Internal Medicine II, Caritas Hospital Bad Mergentheim, Bad Mergentheim, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut, Jena, Germany
| | - Volker Rickerts
- Unit 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute Berlin, Berlin, Germany
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), and German Centre for Infection Research (DZIF) Partner Site Bonn-Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|
48
|
Villa S, Hamideh M, Weinstock A, Qasim MN, Hazbun TR, Sellam A, Hernday AD, Thangamani S. Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Res 2021; 20:5715912. [PMID: 31981355 PMCID: PMC7000152 DOI: 10.1093/femsyr/foaa005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a multimorphic commensal organism and opportunistic fungal pathogen in humans. A morphological switch between unicellular budding yeast and multicellular filamentous hyphal growth forms plays a vital role in the virulence of C. albicans, and this transition is regulated in response to a range of environmental cues that are encountered in distinct host niches. Many unique transcription factors contribute to the transcriptional regulatory network that integrates these distinct environmental cues and determines which phenotypic state will be expressed. These hyphal morphogenesis regulators have been extensively investigated, and represent an increasingly important focus of study, due to their central role in controlling a key C. albicans virulence attribute. This review provides a succinct summary of the transcriptional regulatory factors and environmental signals that control hyphal morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Sonia Villa
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad Hamideh
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad N Qasim
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Adnane Sellam
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaron D Hernday
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA.,Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
49
|
How I perform hematopoietic stem cell transplantation on patients with a history of invasive fungal disease. Blood 2021; 136:2741-2753. [PMID: 33301030 DOI: 10.1182/blood.2020005884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic transplantation is the preferred treatment for many patients with hematologic malignancies. Some patients may develop invasive fungal diseases (IFDs) during initial chemotherapy, which need to be considered when assessing patients for transplantation and treatment posttransplantation. Given the associated high risk of relapse and mortality in the post-hematopoietic stem cell transplantation (HSCT) period, IFDs, especially invasive mold diseases, were historically considered a contraindication for HSCT. Over the last 3 decades, advances in antifungal drugs and early diagnosis have improved IFD outcomes, and HSCT in patients with a recent IFD has become increasingly common. However, an organized approach for performing transplantation in patients with a prior IFD is scarce, and decisions are highly individualized. Patient-, malignancy-, transplantation procedure-, antifungal treatment-, and fungus-specific issues affect the risk of IFD relapse. Effective surveillance to detect IFD relapse post-HSCT and careful drug selection for antifungal prophylaxis are of paramount importance. Antifungal drugs have their own toxicities and interact with immunosuppressive drugs such as calcineurin inhibitors. Immune adjunct cytokine or cellular therapy and surgery can be considered in selected cases. In this review, we critically evaluate these factors and provide guidance for the complex decision making involved in the peri-HSCT management of these patients.
Collapse
|
50
|
da Silva TG, da Silva JCP, Carneiro JNP, do Amaral W, Deschamps C, de Araújo JP, da Costa JGM, de Oliveira Almeida W, da Silva LE, Coutinho HDM, Filho JR, Morais-Braga MFB. Phytochemical characterization and inhibition of Candida sp. by the essential oil of Baccharis trimera (Less.) DC. Arch Microbiol 2021; 203:3077-3087. [PMID: 33787988 DOI: 10.1007/s00203-021-02304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the chemical composition and antifungal potential of the essential oil of Baccharis trimera (Less.) DC. against Candida strains. The half maximal inhibitory concentration (IC50) was assessed by the microdilution method using the essential oil at a concentration range of 8192 to 8 μg/mL. The minimum fungicide concentration (MFC) was determined by subculture in solid medium. The ability of the essential oil to modulate the activity of antifungals was determined in wells treated simultaneously with the oil at a subinhibitory concentration (MFC/16) and fluconazole (FCZ). The fungal morphology was analyzed by microscopy. Gas chromatography coupled with mass spectrometry (GC/MS) was used to identify the chemical composition. The essential oil presented an CI50 of 11.24 and 1.45 μg/mL, which was found to potentiate the effect of FCZ against Candida albicans. On the other hand, this combined treatment resulted in antagonism against Candida tropicalis and no evident modulation against Candida krusei was observed. The essential oil significantly inhibited hyphae growth. However, with a MFC ≥ 16,384 μg/mL, it is assumed that it has a fungistatic action. The antifungal properties demonstrated in this study might be related to the presence of sesquiterpenes and monoterpenes, and the interaction between them. In conclusion, Baccharis trimera showed promising anti-Candida effects, in addition to potentiating the activity of FCZ against Candida albicans, affecting its morphological transition. Therefore, this species constitutes a source of chemical compounds with the potential to be used in the combat of fungal infections.
Collapse
Affiliation(s)
- Taís Gusmão da Silva
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil
| | - Josefa Carolaine Pereira da Silva
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil
| | - Joara Nályda Pereira Carneiro
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil
| | | | | | | | - José Galberto Martins da Costa
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil
| | - Waltécio de Oliveira Almeida
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil
| | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil.
| | | | | |
Collapse
|