1
|
Painter H, Larsen SE, Williams BD, Abdelaal HFM, Baldwin SL, Fletcher HA, Fiore-Gartland A, Coler RN. Backtranslation of human RNA biosignatures of tuberculosis disease risk into the preclinical pipeline is condition dependent. mSphere 2025; 10:e0086424. [PMID: 39651886 PMCID: PMC11774039 DOI: 10.1128/msphere.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024] Open
Abstract
It is unclear whether human progression to active tuberculosis disease (TB) risk signatures are viable endpoint criteria for evaluations of treatments in development. TB is the deadliest infectious disease globally and more efficacious vaccines are needed to reduce this mortality. However, the immune correlates of protection for either preventing infection with Mycobacterium tuberculosis or preventing TB disease have yet to be completely defined, making the advancement of candidate vaccines through the pipeline slow, costly, and fraught with risk. Human-derived correlate of risk (COR) gene signatures, which identify an individual's risk of progressing to active TB disease, provide an opportunity for evaluating new therapies for TB with clear and defined endpoints. Though prospective clinical trials with longitudinal sampling are prohibitively expensive, the characterization of COR gene signatures is practical with preclinical models. Using a 3Rs (replacement, reduction, and refinement) approach we reanalyzed heterogeneous publicly available transcriptional data sets to determine whether a specific set of COR signatures are viable endpoints in the preclinical pipeline. We selected RISK6, Sweeney3, and BATF2 human-derived blood-based RNA biosignatures because they require relatively few genes and have been carefully evaluated across several clinical cohorts. These data suggest that in certain experimental designs and in several tissue types, human COR signatures correlate with disease progression as measured by the bacterial burden in the preclinical TB model pipeline. We observed the best performance when the model most closely reflected human infection or disease conditions. Human-derived COR signatures offer an opportunity for high-throughput preclinical endpoint criteria of vaccine and drug therapy evaluations. IMPORTANCE Understanding the strengths or limitations of back-translating human-derived correlate of risk (COR) RNA signatures into the preclinical pipeline may help streamline down-selection of therapeutic vaccine and drug candidates and better align preclinical models with proposed clinical trial efficacy endpoints.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Hazem F. M. Abdelaal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Helen A. Fletcher
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew Fiore-Gartland
- Biostatistics, Bioinformatics and Epidemiology Program, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Sarkar M. Incipient and subclinical tuberculosis: a narrative review. Monaldi Arch Chest Dis 2025. [PMID: 39783831 DOI: 10.4081/monaldi.2025.2982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/21/2024] [Indexed: 01/12/2025] Open
Abstract
Mycobacterium tuberculosis has been known to infect humans for eons. It is an airborne infectious disease transmitted through droplet nuclei of 1 to 5 µm in diameter. Historically, tuberculosis (TB) was considered a distinct condition characterized by TB infection and active TB disease. However, recently, the concept of a dynamic spectrum of infection has emerged, wherein the pathogen is initially eradicated by the innate or adaptive immune system, either in conjunction with or independently of T cell priming. Other categories within this spectrum include TB infection, incipient TB, subclinical TB, and active TB disease. Various host- and pathogen-related factors influence these categories. Furthermore, subclinical TB can facilitate the spread of infection within the community. Due to its asymptomatic nature, there is a risk of delayed diagnosis, and some patients may remain undiagnosed. Individuals with subclinical TB may stay in this stage for an indeterminate period without progressing to active TB disease, and some may even experience regression. Early diagnosis and treatment of TB are essential to meet the 2035 targets outlined in the end-TB strategy. This strategy should also include incipient and subclinical TB. This review will focus on the definition, natural history, burden, trajectory, transmissibility, detection, and management of early-stage TB.
Collapse
Affiliation(s)
- Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh
| |
Collapse
|
3
|
Painter H, Larsen SE, Williams BD, Abdelaal HFM, Baldwin SL, Fletcher HA, Fiore-Gartland A, Coler RN. Backtranslation of human RNA biosignatures of tuberculosis disease risk into the preclinical pipeline is condition dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600067. [PMID: 38948876 PMCID: PMC11212953 DOI: 10.1101/2024.06.21.600067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
It is not clear whether human progression to active tuberculosis disease (TB) risk signatures are viable endpoint criteria for evaluations of treatments in clinical or preclinical development. TB is the deadliest infectious disease globally and more efficacious vaccines are needed to reduce this mortality. However, the immune correlates of protection for either preventing infection with Mycobacterium tuberculosis or preventing TB disease have yet to be completely defined, making the advancement of candidate vaccines through the pipeline slow, costly, and fraught with risk. Human-derived correlate of risk (COR) gene signatures, which identify an individual's risk to progressing to active TB disease, provide an opportunity for evaluating new therapies for TB with clear and defined endpoints. Though prospective clinical trials with longitudinal sampling are prohibitively expensive, characterization of COR gene signatures is practical with preclinical models. Using a 3Rs (Replacement, Reduction and Refinement) approach we reanalyzed heterogeneous publicly available transcriptional datasets to determine whether a specific set of COR signatures are viable endpoints in the preclinical pipeline. We selected RISK6, Sweeney3 and BATF2 human-derived blood-based RNA biosignatures because they require relatively few genes to assign a score and have been carefully evaluated across several clinical cohorts. Excitingly, these data provide proof-of-concept that human COR signatures seem to have high fidelity across several tissue types in the preclinical TB model pipeline and show best performance when the model most closely reflected human infection or disease conditions. Human-derived COR signatures offer an opportunity for high-throughput preclinical endpoint criteria of vaccine and drug therapy evaluations. One Sentence Summary Human-derived biosignatures of tuberculosis disease progression were evaluated for their predictive fidelity across preclinical species and derived tissues using available public data sets.
Collapse
|
4
|
Kiwanuka N, Zalwango S, Kakaire R, Castellanos ME, Quach THT, Whalen CC. M. tuberculosis Infection Attributable to Exposure in Social Networks of Tuberculosis Cases in an Urban African Community. Open Forum Infect Dis 2024; 11:ofae200. [PMID: 38737427 PMCID: PMC11083641 DOI: 10.1093/ofid/ofae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Background The persistence of tuberculosis today and its global disparity send a powerful message that effective tuberculosis control must respond to its regional epidemiology. Active case finding through contact investigation is a standard protocol used for tuberculosis control, but its effectiveness has not been established, especially in endemic areas. Methods To quantify the potential effectiveness of contact investigation in Kampala, Uganda, we used a cross-sectional design to evaluate the social networks of 123 tuberculosis index cases and 124 controls without tuberculosis. Results Tuberculous infection was present in 515 of 989 tuberculosis case contacts (52.1%) and 396 of 1026 control contacts (38.6%; adjusted prevalence ratio, 1.4; 95% CI, 1.3-1.6). The proportion of infected participants with known exposure within the social network of the tuberculosis case was 35%. The population-attributable fraction was 11.1% for any known exposure, with 7.3% attributable to household exposure and 3.4% attributable to extrahousehold exposure. Conclusions This low population-attributable fraction indicates that contact tracing in the social networks of index cases will have only a modest effect in reducing tuberculous infection in a community. New approaches to community-level active case finding are needed.
Collapse
Affiliation(s)
- Noah Kiwanuka
- Department of Epidemiology and Biostatistics, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sarah Zalwango
- Department of Public Health and Environment, Kampala Capital City Authority, Kampala, Uganda
| | - Robert Kakaire
- Global Health Institute, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Maria Eugenia Castellanos
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Trang Ho Thu Quach
- Global Health Institute, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Christopher C Whalen
- Global Health Institute, College of Public Health, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Brown TS, Robinson DA, Buckee CO, Mathema B. Connecting the dots: understanding how human mobility shapes TB epidemics. Trends Microbiol 2022; 30:1036-1044. [PMID: 35597716 PMCID: PMC10068677 DOI: 10.1016/j.tim.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/13/2023]
Abstract
Tuberculosis (TB) remains a leading infectious cause of death worldwide. Reducing TB infections and TB-related deaths rests ultimately on stopping forward transmission from infectious to susceptible individuals. Critical to this effort is understanding how human host mobility shapes the transmission and dispersal of new or existing strains of Mycobacterium tuberculosis (Mtb). Important questions remain unanswered. What kinds of mobility, over what temporal and spatial scales, facilitate TB transmission? How do human mobility patterns influence the dispersal of novel Mtb strains, including emergent drug-resistant strains? This review summarizes the current state of knowledge on mobility and TB epidemic dynamics, using examples from three topic areas, including inference of genetic and spatial clustering of infections, delineating source-sink dynamics, and mapping the dispersal of novel TB strains, to examine scientific questions and methodological issues within this topic. We also review new data sources for measuring human mobility, including mobile phone-associated movement data, and discuss important limitations on their use in TB epidemiology.
Collapse
Affiliation(s)
- Tyler S Brown
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Infectious Diseases Division, Massachusetts General Hospital, Boston, MA, USA
| | - D Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Liebenberg D, Gordhan BG, Kana BD. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front Cell Infect Microbiol 2022; 12:943545. [PMID: 36211964 PMCID: PMC9538507 DOI: 10.3389/fcimb.2022.943545] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/06/2022] [Indexed: 01/17/2023] Open
Abstract
Drug resistant tuberculosis contributes significantly to the global burden of antimicrobial resistance, often consuming a large proportion of the healthcare budget and associated resources in many endemic countries. The rapid emergence of resistance to newer tuberculosis therapies signals the need to ensure appropriate antibiotic stewardship, together with a concerted drive to develop new regimens that are active against currently circulating drug resistant strains. Herein, we highlight that the current burden of drug resistant tuberculosis is driven by a combination of ongoing transmission and the intra-patient evolution of resistance through several mechanisms. Global control of tuberculosis will require interventions that effectively address these and related aspects. Interrupting tuberculosis transmission is dependent on the availability of novel rapid diagnostics which provide accurate results, as near-patient as is possible, together with appropriate linkage to care. Contact tracing, longitudinal follow-up for symptoms and active mapping of social contacts are essential elements to curb further community-wide spread of drug resistant strains. Appropriate prophylaxis for contacts of drug resistant index cases is imperative to limit disease progression and subsequent transmission. Preventing the evolution of drug resistant strains will require the development of shorter regimens that rapidly eliminate all populations of mycobacteria, whilst concurrently limiting bacterial metabolic processes that drive drug tolerance, mutagenesis and the ultimate emergence of resistance. Drug discovery programs that specifically target bacterial genetic determinants associated with these processes will be paramount to tuberculosis eradication. In addition, the development of appropriate clinical endpoints that quantify drug tolerant organisms in sputum, such as differentially culturable/detectable tubercle bacteria is necessary to accurately assess the potential of new therapies to effectively shorten treatment duration. When combined, this holistic approach to addressing the critical problems associated with drug resistance will support delivery of quality care to patients suffering from tuberculosis and bolster efforts to eradicate this disease.
Collapse
|
7
|
Ding C, Hu M, Guo W, Hu W, Li X, Wang S, Shangguan Y, Zhang Y, Yang S, Xu K. Prevalence trends of latent tuberculosis infection at the global, regional, and country levels from 1990-2019. Int J Infect Dis 2022; 122:46-62. [PMID: 35577247 DOI: 10.1016/j.ijid.2022.05.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES To track the prevalence trends of latent tuberculosis infection (LTBI) at the global, regional, and national levels. METHODS Data on the prevalence of LTBI were extracted from the Global Burden of Disease database. The average annual percent change (AAPC) was estimated by joinpoint regression and was used to evaluate the epidemic of the disease. RESULTS Globally, the prevalence rate of LTBI decreased from 30.66% in 1990 to 23.67% in 2019, with an AAPC of -0.9%. The prevalence rate of LTBI varied from 5.02% (Jordan) to 48.35% (Uganda) in 1990 and from 2.51% (Jordan) to 43.75% (Vietnam) in 2019 at the country level. The prevalence decreased in all the six World Health Organization (WHO) regions and in most countries, with the AAPC ranging from -0.5% in the Western Pacific Region to -2.1% in the European Region and from -4.3% (Bhutan) to -0.1% (Malaysia, Myanmar, South Africa, Tokelau, and Vietnam), respectively. Disparities were also observed among different sex and age groups. CONCLUSION The prevalence of LTBI decreased slightly worldwide in the last three decades, but the decrease is slow and not sufficient to meet the targets of WHO tuberculosis elimination. Much more effort and progress should be made in order to decrease the prevalence of LTBI.
Collapse
Affiliation(s)
- Cheng Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China
| | - Ming Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China
| | - Wanru Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China
| | - Wenjuan Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China
| | - Xiaomeng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China
| | - Yanwan Shangguan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China.
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China.
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
8
|
Nagot N, Hai VV, Dong TTT, Hai OKT, Rapoud D, Hoang GT, Quillet C, Minh KP, Vallo R, Nham TTT, Castellani J, Feelemyer J, Des Jarlais DC, Nguyen LP, Van Le H, Nguyen NV, Vo LNQ, Duong HT, Moles JP, Laureillard D. Alarming Tuberculosis Rate Among People Who Inject Drugs in Vietnam. Open Forum Infect Dis 2022; 9:ofab548. [PMID: 35106311 PMCID: PMC8801226 DOI: 10.1093/ofid/ofab548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The tuberculosis (TB) epidemic is not homogeneous in the general population but presents high-risk groups. People who inject drugs (PWID) are such a group. However, TB among PWID remains largely undocumented. Our goal was to assess the prevalence of TB and the risk factors associated with TB among PWID in Vietnam. METHODS We implemented a cross-sectional survey among 2 community-based cohorts of human immunodeficiency virus (HIV)-positive and HIV-negative PWID in Hai Phong. Participants were screened for TB using questions on TB symptoms. Those who reported any symptom were accompanied by peers to the TB clinic for chest x-ray. If the latter was abnormal, a sputum was collected to perform an Xpert MTB/RIF test. RESULTS A total of 885 PWID were screened for TB. For both cohorts, most PWID were male (>90.0%), with a median age of 42 years. Beside heroin injection, 52.5% of participants reported smoking methamphetamine, and 63.2% were on methadone. Among HIV-positive PWID (N = 451), 90.4% were on antiretroviral therapy and 81.6% had a viral load <1000 copies/mL. Using a complete-case analysis, the estimated TB prevalence was 2.3% (95% confidence interval [CI], 1.0-4.5) and 2.1% (95% CI, 0.8-4.2) among HIV-positive and HIV-negative people, respectively. Living as a couple, arrest over the past 6 months, homelessness, and smoking methamphetamine were independently associated with TB but not HIV infection. CONCLUSIONS In the context of very large antiretroviral therapy coverage, this extremely high rate of TB among PWID requires urgent actions.
Collapse
Affiliation(s)
- Nicolas Nagot
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | - Vinh Vu Hai
- Infectious and Tropical Diseases Department, Viet Tiep Hospital, Hai Phong, Vietnam
| | | | | | - Delphine Rapoud
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | - Giang Thi Hoang
- Department of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Catherine Quillet
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | - Khue Pham Minh
- Department of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Roselyne Vallo
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | | | - Joëlle Castellani
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | - Jonathan Feelemyer
- School of Global Public Health, New York University, New York, New York, USA
| | - Don C Des Jarlais
- School of Global Public Health, New York University, New York, New York, USA
| | | | - Hoi Van Le
- National TB control program, Hanoi, Vietnam
| | | | | | - Huong Thi Duong
- Department of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Jean-Pierre Moles
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | - Didier Laureillard
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
- Infectious Diseases Department, Caremeau University Hospital, Nimes, France
| |
Collapse
|
9
|
Zürcher K, Riou J, Morrow C, Ballif M, Koch A, Bertschinger S, Warner DF, Middelkoop K, Wood R, Egger M, Fenner L. Estimating Tuberculosis Transmission Risks in a Primary Care Clinic in South Africa: Modeling of Environmental and Clinical Data. J Infect Dis 2022; 225:1642-1652. [PMID: 35039860 PMCID: PMC9071349 DOI: 10.1093/infdis/jiab534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/09/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Congregate settings, such as healthcare clinics, may play an essential role in Mycobacterium tuberculosis (Mtb) transmission. Using patient and environmental data, we studied transmission at a primary care clinic in South Africa. METHODS We collected patient movements, cough frequency, and clinical data, and measured indoor carbon dioxide (CO2) levels, relative humidity, and Mtb genomes in the air. We used negative binomial regression model to investigate associations. RESULTS We analyzed 978 unique patients who contributed 14 795 data points. The median patient age was 33 (interquartile range [IQR], 26-41) years, and 757 (77.4%) were female. Overall, median CO2 levels were 564 (IQR 495-646) parts per million and were highest in the morning. Median number of coughs per day was 466 (IQR, 368-503), and overall median Mtb DNA copies/μL/day was 4.2 (IQR, 1.2-9.5). We found an increased presence of Mtb DNA in the air of 32% (95% credible interval, 7%-63%) per 100 additional young adults (aged 15-29 years) and 1% (0-2%) more Mtb DNA per 10% increase of relative humidity. Estimated cumulative transmission risks for patients attending the clinic monthly for at least 1 hour range between 9% and 29%. CONCLUSIONS We identified young adults and relative humidity as potentially important factors for transmission risks in healthcare clinics. Our approach should be used to detect transmission and evaluate infection control interventions.
Collapse
Affiliation(s)
- Kathrin Zürcher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Julien Riou
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Carl Morrow
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Desmond Tutu HIV Centre, Department of Medicine, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Marie Ballif
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Anastasia Koch
- South African Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit and Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Simon Bertschinger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland,Institute for Medical Informatics, Bern University of Applied Sciences, Bern, Switzerland
| | - Digby F Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,South African Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit and Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Keren Middelkoop
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Desmond Tutu HIV Centre, Department of Medicine, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Desmond Tutu HIV Centre, Department of Medicine, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland,Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lukas Fenner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland,Correspondence: Lukas Fenner, MD, MSc, Institute of Social and Preventive Medicine, University of Bern (ISPM), Mittelstrasse 43, 3012 Bern, Switzerland ()
| |
Collapse
|
10
|
Ayabina DV, Gomes MGM, Nguyen NV, Vo L, Shreshta S, Thapa A, Codlin AJ, Mishra G, Caws M. The impact of active case finding on transmission dynamics of tuberculosis: A modelling study. PLoS One 2021; 16:e0257242. [PMID: 34797864 PMCID: PMC8604297 DOI: 10.1371/journal.pone.0257242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Background In the last decade, active case finding (ACF) strategies for tuberculosis (TB) have been implemented in many diverse settings, with some showing large increases in case detection and reporting at the sub-national level. There have also been several studies which seek to provide evidence for the benefits of ACF to individuals and communities in the broader context. However, there remains no quantification of the impact of ACF with regards to reducing the burden of transmission. We sought to address this knowledge gap and quantify the potential impact of active case finding on reducing transmission of TB at the national scale and further, to determine the intensification of intervention efforts required to bring the reproduction number (R0) below 1 for TB. Methods We adopt a dynamic transmission model that incorporates heterogeneity in risk to TB to assess the impact of an ACF programme (IMPACT TB) on reducing TB incidence in Vietnam and Nepal. We fit the models to country-level incidence data using a Bayesian Markov Chain Monte Carlo approach. We assess the impact of ACF using a parameter in our model, which we term the treatment success rate. Using programmatic data, we estimate how much this parameter has increased as a result of IMPACT TB in the implementation districts of Vietnam and Nepal and quantify additional efforts needed to eliminate transmission of TB in these countries by 2035. Results Extending the IMPACT TB programme to national coverage would lead to moderate decreases in TB incidence and would not be enough to interrupt transmission by 2035. Decreasing transmission sufficiently to bring the reproduction number (R0) below 1, would require a further intensification of current efforts, even at the sub-national level. Conclusions Active case finding programmes are effective in reducing TB in the short term. However, interruption of transmission in high-burden countries, like Vietnam and Nepal, will require comprehensive incremental efforts. Complementary measures to reduce progression from infection to disease, and reactivation of latent infection, are needed to meet the WHO End TB incidence targets.
Collapse
Affiliation(s)
- Diepreye Victoria Ayabina
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - M. Gabriela M. Gomes
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- CIBIO-InBIO, Centro de Investiga¸c˜ao em Biodiversidade e Recursos Gen´eticos, and CMUP, Centro de Matem´atica da Universidade do Porto, Porto, Portugal
| | - Nhung Viet Nguyen
- National Tuberculosis Control Programme of Vietnam- National Lung Hospital (VNTP-NLH), Hanoi, Vietnam
| | - Luan Vo
- Friends for International TB Relief (FIT), Ho Chi Minh City, Vietnam
| | | | - Anil Thapa
- National TB Control Centre, Thimi, Kathmandu, Nepal
| | | | - Gokul Mishra
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Birat Nepal Medical Trust, Kathmandu, Nepal
| | - Maxine Caws
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Birat Nepal Medical Trust, Kathmandu, Nepal
| |
Collapse
|
11
|
He Y, Zheng W. Evaluation of the treatment efficacy of systemic care combined with thymopentin and 2HRZE/4HR for primary tuberculosis. Am J Transl Res 2021; 13:2891-2898. [PMID: 34017453 PMCID: PMC8129341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the efficacy of systemic care combined with thymopentin and 2HRZE/4HR in the treatment of primary tuberculosis. METHODS The clinical data of 93 patients with primary tuberculosis were retrospectively collected and divided into two groups based on the intervention method. Group A (n=46) was treated only with 2HRZE/4HR, and group B (n=47) was treated with the 2HRZE/4HR combined with thymopentin. Meanwhile, both groups received systematic care. The lesion absorption rate, sputum conversion rate (SCR), T lymphocyte subpopulation count, immunoglobulin level, lung function index, changes in sputum supernatant levels of cytokines before and after treatment, and the occurrence of adverse reactions were compared. RESULTS Group B exhibited higher complete absorption rate of foci and lower basic absorption rate than group A (P < 0.05). The SCRs of group B after 2, 4 and 6 months of intervention were higher than those of group A (P < 0.05). Compared with group A, group B had lower CD8+ level and higher CD4+ and CD3+ levels (P < 0.05). Group B also had higher levels of IgA, IgG, and IgM than group A after intervention (P < 0.05). Group B had higher levels of FEV1, PEF, and FVC than group A after intervention (P < 0.05). In contrast to group A, group B had lower IL-4 levels and higher TNF-γ levels (P < 0.05). The incidence rate of adverse events in group B was not significantly different from that in group A (P > 0.05). CONCLUSION Systemic care combined with 2HRZE/4HR was effective for treatment of primary tuberculosis, which is beneficial for improving the immunity, SCR, and the inflammatory status, with low incidence of adverse events and a high safety level.
Collapse
Affiliation(s)
- Ying He
- Department of Infectious Diseases, The First People's Hospital of Fuyang Hangzhou Hangzhou 311400, Zhejiang, China
| | - Wandi Zheng
- Department of Infectious Diseases, The First People's Hospital of Fuyang Hangzhou Hangzhou 311400, Zhejiang, China
| |
Collapse
|
12
|
Karat AS, Gregg M, Barton HE, Calderon M, Ellis J, Falconer J, Govender I, Harris RC, Tlali M, Moore DAJ, Fielding KL. Evidence for the Use of Triage, Respiratory Isolation, and Effective Treatment to Reduce the Transmission of Mycobacterium Tuberculosis in Healthcare Settings: A Systematic Review. Clin Infect Dis 2021; 72:155-172. [PMID: 32502258 PMCID: PMC7823078 DOI: 10.1093/cid/ciaa720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023] Open
Abstract
Evidence is limited for infection prevention and control (IPC) measures reducing Mycobacterium tuberculosis (MTB) transmission in health facilities. This systematic review, 1 of 7 commissioned by the World Health Organization to inform the 2019 update of global tuberculosis (TB) IPC guidelines, asked: do triage and/or isolation and/or effective treatment of TB disease reduce MTB transmission in healthcare settings? Of 25 included articles, 19 reported latent TB infection (LTBI) incidence in healthcare workers (HCWs; absolute risk reductions 1%-21%); 5 reported TB disease incidence in HCWs (no/slight [high TB burden] or moderate [low burden] reduction) and 2 in human immunodeficiency virus-positive in-patients (6%-29% reduction). In total, 23/25 studies implemented multiple IPC measures; effects of individual measures could not be disaggregated. Packages of IPC measures appeared to reduce MTB transmission, but evidence for effectiveness of triage, isolation, or effective treatment, alone or in combination, was indirect and low quality. Harmonizing study designs and reporting frameworks will permit formal data syntheses and facilitate policy making.
Collapse
Affiliation(s)
- Aaron S Karat
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Meghann Gregg
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hannah E Barton
- University College Hospital, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | | | - Jayne Ellis
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jane Falconer
- Library and Archives Service, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Indira Govender
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Rebecca C Harris
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Mpho Tlali
- Centre for Infectious Disease Epidemiology and Research (CIDER), School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - David A J Moore
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
13
|
Ault RC, Headley CA, Hare AE, Carruthers BJ, Mejias A, Turner J. Blood RNA signatures predict recent tuberculosis exposure in mice, macaques and humans. Sci Rep 2020; 10:16873. [PMID: 33037303 PMCID: PMC7547102 DOI: 10.1038/s41598-020-73942-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death due to a single infectious disease. Knowing when a person was infected with Mycobacterium tuberculosis (M.tb) is critical as recent infection is the strongest clinical risk factor for progression to TB disease in immunocompetent individuals. However, time since M.tb infection is challenging to determine in routine clinical practice. To define a biomarker for recent TB exposure, we determined whether gene expression patterns in blood RNA correlated with time since M.tb infection or exposure. First, we found RNA signatures that accurately discriminated early and late time periods after experimental infection in mice and cynomolgus macaques. Next, we found a 6-gene blood RNA signature that identified recently exposed individuals in two independent human cohorts, including adult household contacts of TB cases and adolescents who recently acquired M.tb infection. Our work supports the need for future longitudinal studies of recent TB contacts to determine whether biomarkers of recent infection can provide prognostic information of TB disease risk in individuals and help map recent transmission in communities.
Collapse
Affiliation(s)
- Russell C Ault
- Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, Ohio State University, Columbus, OH, USA
- Medical Scientist Training Program, Ohio State University, Columbus, OH, USA
| | - Colwyn A Headley
- Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, Ohio State University, Columbus, OH, USA
| | - Alexander E Hare
- Biomedical Sciences Graduate Program, Ohio State University, Columbus, OH, USA
- Medical Scientist Training Program, Ohio State University, Columbus, OH, USA
| | - Bridget J Carruthers
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX, USA.
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Sandoval M, Swamy P, Kay AW, Alonso PU, Dube GS, Hlophe-Dlamini H, Mandalakas AM. Distinct Risk Factors for Clinical and Bacteriologically Confirmed Tuberculosis among Child Household Contacts in a High-Burden Setting. Am J Trop Med Hyg 2020; 103:2506-2509. [PMID: 32996456 DOI: 10.4269/ajtmh.20-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The identification and screening of children at high risk of tuberculosis is essential to the control and prevention of child tuberculosis (TB). BUTIMBA, an active case finding and household contact-tracing project implemented between 2013 and 2015 in Eswatini, evaluated 5,413 contacts of 1,568 index cases, of whom 82 (1.5%) were diagnosed with TB disease. We conducted univariate and multivariate clustered logistic regression analyses of risk factors for any TB diagnosis among child household contacts of TB cases. Children younger than 5 years and children with positive HIV status were more likely to have TB than children aged 5-14 years and children with negative HIV status, respectively (adjusted odds ratio [aOR]: 2.2, P < 0.001; aOR: 5.0, P < 0.001). Children with one or more TB symptoms were more likely to be diagnosed with TB based on clinical criteria, but less likely to have bacteriologically confirmed TB, highlighting subjectivity in determination of child TB.
Collapse
Affiliation(s)
- Micaela Sandoval
- The Global Tuberculosis Program, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas.,UTHealth School of Public Health, Houston, Texas
| | - Padma Swamy
- The Global Tuberculosis Program, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Alexander W Kay
- Baylor College of Medicine Children's Foundation-Swaziland, Mbabane, Eswatini.,The Global Tuberculosis Program, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Pilar Ustero Alonso
- Baylor College of Medicine Children's Foundation-Swaziland, Mbabane, Eswatini.,The Global Tuberculosis Program, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Gloria Sisi Dube
- Eswatini National Tuberculosis Control Program, Manzini, Eswatini
| | | | - Anna M Mandalakas
- The Global Tuberculosis Program, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
15
|
Nelson KN, Gandhi NR, Mathema B, Lopman BA, Brust JCM, Auld SC, Ismail N, Omar SV, Brown TS, Allana S, Campbell A, Moodley P, Mlisana K, Shah NS, Jenness SM. Modeling Missing Cases and Transmission Links in Networks of Extensively Drug-Resistant Tuberculosis in KwaZulu-Natal, South Africa. Am J Epidemiol 2020; 189:735-745. [PMID: 32242216 PMCID: PMC7443195 DOI: 10.1093/aje/kwaa028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/26/2020] [Indexed: 11/14/2022] Open
Abstract
Patterns of transmission of drug-resistant tuberculosis (TB) remain poorly understood, despite over half a million incident cases worldwide in 2017. Modeling TB transmission networks can provide insight into drivers of transmission, but incomplete sampling of TB cases can pose challenges for inference from individual epidemiologic and molecular data. We assessed the effect of missing cases on a transmission network inferred from Mycobacterium tuberculosis sequencing data on extensively drug-resistant TB cases in KwaZulu-Natal, South Africa, diagnosed in 2011-2014. We tested scenarios in which cases were missing at random, missing differentially by clinical characteristics, or missing differentially by transmission (i.e., cases with many links were under- or oversampled). Under the assumption that cases were missing randomly, the mean number of transmissions per case in the complete network needed to be larger than 20, far higher than expected, to reproduce the observed network. Instead, the most likely scenario involved undersampling of high-transmitting cases, and models provided evidence for super-spreading. To our knowledge, this is the first analysis to have assessed support for different mechanisms of missingness in a TB transmission study, but our results are subject to the distributional assumptions of the network models we used. Transmission studies should consider the potential biases introduced by incomplete sampling and identify host, pathogen, or environmental factors driving super-spreading.
Collapse
Affiliation(s)
- Kristin N Nelson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Neel R Gandhi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- School of Medicine, Emory University, Atlanta, Georgia
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - James C M Brust
- Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York
| | - Sara C Auld
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- School of Medicine, Emory University, Atlanta, Georgia
| | - Nazir Ismail
- National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Shaheed Vally Omar
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Tyler S Brown
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Salim Allana
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Angie Campbell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Pravi Moodley
- National Health Laboratory Service, Johannesburg, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Koleka Mlisana
- National Health Laboratory Service, Johannesburg, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - N Sarita Shah
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Samuel M Jenness
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
16
|
Penn-Nicholson A, Mbandi SK, Thompson E, Mendelsohn SC, Suliman S, Chegou NN, Malherbe ST, Darboe F, Erasmus M, Hanekom WA, Bilek N, Fisher M, Kaufmann SHE, Winter J, Murphy M, Wood R, Morrow C, Van Rhijn I, Moody B, Murray M, Andrade BB, Sterling TR, Sutherland J, Naidoo K, Padayatchi N, Walzl G, Hatherill M, Zak D, Scriba TJ. RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. Sci Rep 2020; 10:8629. [PMID: 32451443 PMCID: PMC7248089 DOI: 10.1038/s41598-020-65043-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/27/2020] [Indexed: 11/17/2022] Open
Abstract
Improved tuberculosis diagnostics and tools for monitoring treatment response are urgently needed. We developed a robust and simple, PCR-based host-blood transcriptomic signature, RISK6, for multiple applications: identifying individuals at risk of incident disease, as a screening test for subclinical or clinical tuberculosis, and for monitoring tuberculosis treatment. RISK6 utility was validated by blind prediction using quantitative real-time (qRT) PCR in seven independent cohorts. Prognostic performance significantly exceeded that of previous signatures discovered in the same cohort. Performance for diagnosing subclinical and clinical disease in HIV-uninfected and HIV-infected persons, assessed by area under the receiver-operating characteristic curve, exceeded 85%. As a screening test for tuberculosis, the sensitivity at 90% specificity met or approached the benchmarks set out in World Health Organization target product profiles for non-sputum-based tests. RISK6 scores correlated with lung immunopathology activity, measured by positron emission tomography, and tracked treatment response, demonstrating utility as treatment response biomarker, while predicting treatment failure prior to treatment initiation. Performance of the test in capillary blood samples collected by finger-prick was noninferior to venous blood collected in PAXgene tubes. These results support incorporation of RISK6 into rapid, capillary blood-based point-of-care PCR devices for prospective assessment in field studies.
Collapse
Affiliation(s)
- Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ethan Thompson
- Center for Infectious Disease Research, Seattle, WA, USA
| | - Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sara Suliman
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Brigham and Women's Hospital, Division of Rheumatology, Immunity and Inflammation, Harvard Medical School, Boston, USA
| | - Novel N Chegou
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T Malherbe
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Fatoumatta Darboe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Hagler Institute for Advanced Study at Texas A&M University, College Station, TX, USA
| | - Jill Winter
- Catalysis Foundation for Health, San Ramon, CA, USA
| | - Melissa Murphy
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Robin Wood
- Desmond Tutu HIV Centre, and Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Carl Morrow
- Desmond Tutu HIV Centre, and Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Ildiko Van Rhijn
- Brigham and Women's Hospital, Division of Rheumatology, Immunity and Inflammation, Harvard Medical School, Boston, USA
| | - Branch Moody
- Brigham and Women's Hospital, Division of Rheumatology, Immunity and Inflammation, Harvard Medical School, Boston, USA
| | - Megan Murray
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
| | - Jayne Sutherland
- Vaccines and Immunity, Medical Research Council Unit, Fajara, The Gambia
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in Africa, Durban, South Africa.,South African Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in Africa, Durban, South Africa.,South African Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Gerhard Walzl
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Daniel Zak
- Center for Infectious Disease Research, Seattle, WA, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Campbell JR, Bastos ML. No time to waste: preventing tuberculosis in children. Lancet 2020; 395:924-926. [PMID: 32199475 DOI: 10.1016/s0140-6736(20)30532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Jonathon R Campbell
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC H3A 1A2, Canada; McGill International TB Centre, Montreal, QC, Canada.
| | - Mayara L Bastos
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC H3A 1A2, Canada; McGill International TB Centre, Montreal, QC, Canada; Department of Epidemiology, Social Medicine Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Schluger NW. Tuberculosis Elimination, Research, and Respect for Persons. Am J Respir Crit Care Med 2020; 199:560-563. [PMID: 30339459 DOI: 10.1164/rccm.201809-1623ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Neil W Schluger
- 1 Division of Pulmonary, Allergy and Critical Care Medicine Columbia University Medical Center New York, New York
| |
Collapse
|
19
|
Rufino de Sousa N, Sandström N, Shen L, Håkansson K, Vezozzo R, Udekwu KI, Croda J, Rothfuchs AG. A fieldable electrostatic air sampler enabling tuberculosis detection in bioaerosols. Tuberculosis (Edinb) 2020; 120:101896. [PMID: 32090857 PMCID: PMC7049907 DOI: 10.1016/j.tube.2019.101896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/05/2019] [Accepted: 12/15/2019] [Indexed: 01/03/2023]
Abstract
Tuberculosis (TB) infects about 25% of the world population and claims more human lives than any other infectious disease. TB is spread by inhalation of aerosols containing viable Mycobacterium tuberculosis expectorated or exhaled by patients with active pulmonary disease. Air-sampling technology could play an important role in TB control by enabling the detection of airborne M. tuberculosis, but tools that are easy to use and scalable in TB hotspots are lacking. We developed an electrostatic air sampler termed the TB Hotspot DetectOR (THOR) and investigated its performance in laboratory aerosol experiments and in a prison hotspot of TB transmission. We show that THOR collects aerosols carrying microspheres, Bacillus globigii spores and M. bovis BCG, concentrating these microparticles onto a collector piece designed for subsequent detection analysis. The unit was also successfully operated in the complex setting of a prison hotspot, enabling detection of a molecular signature for M. tuberculosis in the cough of inmates. Future deployment of this device may lead to a measurable impact on TB case-finding by screening individuals through the aerosols they generate.
Collapse
Affiliation(s)
- Nuno Rufino de Sousa
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Niklas Sandström
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Lei Shen
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Kathleen Håkansson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Rafaella Vezozzo
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Klas I Udekwu
- Department of Molecular Biosciences, Wenner-Gren Institutet, Stockholms Universitet, Stockholm, Sweden
| | - Julio Croda
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil; Oswaldo Cruz Foundation, Mato Grosso do Sul, Campo Grande, Brazil
| | | |
Collapse
|
20
|
Min J, Kim JS, Kim HW, Shin AY, Koo HK, Lee SS, Kim YK, Shin KC, Chang JH, Chun G, Lee J, Park MS, Park JS. Clinical profiles of early and tuberculosis-related mortality in South Korea between 2015 and 2017: a cross-sectional study. BMC Infect Dis 2019; 19:735. [PMID: 31438876 PMCID: PMC6704578 DOI: 10.1186/s12879-019-4365-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although the incidence of tuberculosis (TB) has decreased in South Korea, the mortality rate remains high. TB mortality is a key indicator for TB control interventions. The purpose of this study was to assess early and TB-related mortality during anti-TB treatment and describe the associated clinical characteristics. METHODS A multicenter cross-sectional study was performed across South Korea. Patients with pulmonary TB who died during anti-TB treatment and whose records were submitted to the national TB surveillance system between 2015 and 2017 were enrolled. All TB deaths were categorized based on cause (TB-related or non-TB-related) and timing (early or late). We identified statistical associations using the frequency table, chi-square test, and binary logistic regression. RESULTS Of 5595 notifiable mortality cases, 3735 patients with pulmonary TB were included in the analysis. There were 2541 (68.0%) male patients, and 2935 (78.6%) mortality cases were observed in patients older than 65 years. There were 944 (25.3%) cases of TB-related death and 2545 (68.1%) cases of early death. Of all cases, 187 (5.0%) patients were diagnosed post-mortem and 38 (1.0%) patients died on the first day of treatment. Low body mass index (adjusted odds ratio (aOR) = 1.26; 95% confidence interval (CI) = 1.08-1.48), no reported illness (aOR = 1.36; 95% CI = 1.10-1.68), bilateral disease on chest X-ray (aOR = 1.30; 95% CI = 1.11-1.52), and positive acid-fast bacilli smear result (aOR = 1.30; 95% CI = 1.11-1.52) were significantly associated with early death, as well as TB-related death. Acute respiratory failure was the most common mode of non-TB-related death. Malignancy was associated with both late (aOR = 0.71; 95% CI = 0.59-0.89) and non-TB-related (aOR = 0.35; 95% CI = 0.26-0.46) death. CONCLUSIONS A high proportion of TB death was observed in elderly patients and attributed to non-TB-related causes. Many TB-related deaths occurred during the intensive phase, particularly within the first month. Further studies identifying risk factors for different causes of TB death at different phases of anti-TB treatment are warranted for early targeted intervention in order to reduce TB mortality.
Collapse
Affiliation(s)
- Jinsoo Min
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ju Sang Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Woo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ah Young Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon-Kyoung Koo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Sung-Soon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Yang-Ki Kim
- Division of Pulmonary and Allergy Medicine, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Kyeong-Cheol Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeungnam University Medical Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jung Hyun Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Gayoung Chun
- Division of TB Epidemic Investigation, Korea Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Joosun Lee
- Division of TB Epidemic Investigation, Korea Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Mi Sun Park
- Division of TB Epidemic Investigation, Korea Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Jae Seuk Park
- Division of Pulmonary Medicine, Department of Internal Medicine, Dankook University College of Medicine, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
21
|
Acuña-Villaorduña C, Ayakaka I, Schmidt-Castellani LG, Mumbowa F, Marques-Rodrigues P, Gaeddert M, White LF, Palaci M, Ellner JJ, Dietze R, Joloba M, Fennelly KP, Jones-López EC. Host Determinants of Infectiousness in Smear-Positive Patients With Pulmonary Tuberculosis. Open Forum Infect Dis 2019; 6:ofz184. [PMID: 31205972 PMCID: PMC6557197 DOI: 10.1093/ofid/ofz184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background Epidemiologic data suggests that only a minority of tuberculosis (TB) patients are infectious. Cough aerosol sampling is a novel quantitative method to measure TB infectiousness. Methods We analyzed data from three studies conducted in Uganda and Brazil over a 13-year period. We included sputum acid fast bacilli (AFB) and culture positive pulmonary TB patients and used a cough aerosol sampling system (CASS) to measure the number of colony-forming units (CFU) of Mycobacterium tuberculosis in cough-generated aerosols as a measure for infectiousness. Aerosol data was categorized as: aerosol negative (CFU = 0) and aerosol positive (CFU > 0). Logistic regression models were built to identify factors associated with aerosol positivity. Results M. tuberculosis was isolated by culture from cough aerosols in 100/233 (43%) TB patients. In an unadjusted analysis, aerosol positivity was associated with fewer days of antituberculous therapy before CASS sampling (p = .0001), higher sputum AFB smear grade (p = .01), shorter days to positivity in liquid culture media (p = .02), and larger sputum volume (p = .03). In an adjusted analysis, only fewer days of TB treatment (OR 1.47 per 1 day of therapy, 95% CI 1.16-1.89; p = .001) was associated with aerosol positivity. Conclusion Cough generated aerosols containing viable M. tuberculosis, the infectious moiety in TB, are detected in a minority of TB patients and rapidly become non-culturable after initiation of antituberculous treatment. Mechanistic studies are needed to further elucidate these findings.
Collapse
Affiliation(s)
- Carlos Acuña-Villaorduña
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Massachusetts.,Lemuel Shattuck Hospital, Boston University School of Public Health, Massachusetts
| | - Irene Ayakaka
- Mulago Hospital Tuberculosis Clinic, Mulago Hospital, Kampala, Uganda
| | | | - Francis Mumbowa
- Department of Microbiology, Makerere University College of Medicine, Kampala, Uganda
| | | | - Mary Gaeddert
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Massachusetts
| | - Laura F White
- Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - Moises Palaci
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Jerrold J Ellner
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Massachusetts
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil.,Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Moses Joloba
- Department of Microbiology, Makerere University College of Medicine, Kampala, Uganda
| | - Kevin P Fennelly
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Edward C Jones-López
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Massachusetts
| |
Collapse
|
22
|
Vesga JF, Hallett TB, Reid MJA, Sachdeva KS, Rao R, Khaparde S, Dave P, Rade K, Kamene M, Omesa E, Masini E, Omale N, Onyango E, Owiti P, Karanja M, Kiplimo R, Alexandru S, Vilc V, Crudu V, Bivol S, Celan C, Arinaminpathy N. Assessing tuberculosis control priorities in high-burden settings: a modelling approach. LANCET GLOBAL HEALTH 2019; 7:e585-e595. [PMID: 30904521 DOI: 10.1016/s2214-109x(19)30037-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/22/2018] [Accepted: 01/11/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND In the context of WHO's End TB strategy, there is a need to focus future control efforts on those interventions and innovations that would be most effective in accelerating declines in tuberculosis burden. Using a modelling approach to link the tuberculosis care cascade to transmission, we aimed to identify which improvements in the cascade would yield the greatest effect on incidence and mortality. METHODS We engaged with national tuberculosis programmes in three country settings (India, Kenya, and Moldova) as illustrative examples of settings with a large private sector (India), a high HIV burden (Kenya), and a high burden of multidrug resistance (Moldova). We collated WHO country burden estimates, routine surveillance data, and tuberculosis prevalence surveys from 2011 (for India) and 2016 (for Kenya). Linking the tuberculosis care cascade to tuberculosis transmission using a mathematical model with Bayesian melding in each setting, we examined which cascade shortfalls would have the greatest effect on incidence and mortality, and how the cascade could be used to monitor future control efforts. FINDINGS Modelling suggests that combined measures to strengthen the care cascade could reduce cumulative tuberculosis incidence by 38% (95% Bayesian credible intervals 27-43) in India, 31% (25-41) in Kenya, and 27% (17-41) in Moldova between 2018 and 2035. For both incidence and mortality, modelling suggests that the most important cascade losses are the proportion of patients visiting the private health-care sector in India, missed diagnosis in health-care settings in Kenya, and drug sensitivity testing in Moldova. In all settings, the most influential delay is the interval before a patient's first presentation for care. In future interventions, the proportion of individuals with tuberculosis who are on high-quality treatment could offer a more robust monitoring tool than routine notifications of tuberculosis. INTERPRETATION Linked to transmission, the care cascade can be valuable, not only for improving patient outcomes but also in identifying and monitoring programmatic priorities to reduce tuberculosis incidence and mortality. FUNDING US Agency for International Development, Stop TB Partnership, UK Medical Research Council, and Department for International Development.
Collapse
Affiliation(s)
- Juan F Vesga
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.
| | - Timothy B Hallett
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Michael J A Reid
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Raghuram Rao
- Central TB Division, New Delhi, India; Central TB Division, New Delhi, India
| | | | | | - Kiran Rade
- WHO India Country Office, New Delhi, India
| | - Maureen Kamene
- National Tuberculosis, Leprosy and Lung Disease Programme, Nairobi, Kenya
| | - Eunice Omesa
- National Tuberculosis, Leprosy and Lung Disease Programme, Nairobi, Kenya
| | | | - Newton Omale
- National Tuberculosis, Leprosy and Lung Disease Programme, Nairobi, Kenya
| | - Elizabeth Onyango
- National Tuberculosis, Leprosy and Lung Disease Programme, Nairobi, Kenya
| | - Philip Owiti
- National Tuberculosis, Leprosy and Lung Disease Programme, Nairobi, Kenya
| | | | - Richard Kiplimo
- National Tuberculosis, Leprosy and Lung Disease Programme, Nairobi, Kenya
| | - Sofia Alexandru
- National Tuberculosis Programme, 'Chiril Draganiuc' Institute of Phthisiopneumology, Chisinau, Moldova
| | - Valentina Vilc
- National Tuberculosis Programme, 'Chiril Draganiuc' Institute of Phthisiopneumology, Chisinau, Moldova
| | - Valeriu Crudu
- National Tuberculosis Programme, 'Chiril Draganiuc' Institute of Phthisiopneumology, Chisinau, Moldova
| | - Stela Bivol
- Centre for Health Policies and Studies, Chisinau, Moldova
| | - Cristina Celan
- Centre for Health Policies and Studies, Chisinau, Moldova
| | - Nimalan Arinaminpathy
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
23
|
Khan PY, Yates TA, Osman M, Warren RM, van der Heijden Y, Padayatchi N, Nardell EA, Moore D, Mathema B, Gandhi N, Eldholm V, Dheda K, Hesseling AC, Mizrahi V, Rustomjee R, Pym A. Transmission of drug-resistant tuberculosis in HIV-endemic settings. THE LANCET. INFECTIOUS DISEASES 2019; 19:e77-e88. [PMID: 30554996 PMCID: PMC6474238 DOI: 10.1016/s1473-3099(18)30537-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
Abstract
The emergence and expansion of the multidrug-resistant tuberculosis epidemic is a threat to the global control of tuberculosis. Multidrug-resistant tuberculosis is the result of the selection of resistance-conferring mutations during inadequate antituberculosis treatment. However, HIV has a profound effect on the natural history of tuberculosis, manifesting in an increased rate of disease progression, leading to increased transmission and amplification of multidrug-resistant tuberculosis. Interventions specific to HIV-endemic areas are urgently needed to block tuberculosis transmission. These interventions should include a combination of rapid molecular diagnostics and improved chemotherapy to shorten the duration of infectiousness, implementation of infection control measures, and active screening of multidrug-resistant tuberculosis contacts, with prophylactic regimens for individuals without evidence of disease. Development and improvement of the efficacy of interventions will require a greater understanding of the factors affecting the transmission of multidrug-resistant tuberculosis in HIV-endemic settings, including population-based molecular epidemiology studies. In this Series article, we review what we know about the transmission of multidrug-resistant tuberculosis in settings with high burdens of HIV and define the research priorities required to develop more effective interventions, to diminish ongoing transmission and the amplification of drug resistance.
Collapse
Affiliation(s)
- Palwasha Y Khan
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; TB Centre, London School of Hygiene & Tropical Medicine, London, UK; Interactive Research and Development, Karachi, Pakistan
| | - Tom A Yates
- Institute for Global Health, University College London, London, UK; Institute of Child Health, University College London, London, UK
| | - Muhammad Osman
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Robin M Warren
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Yuri van der Heijden
- Vanderbilt Tuberculosis Center and Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nesri Padayatchi
- South African Medical Research Council HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Edward A Nardell
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA
| | - David Moore
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Neel Gandhi
- Rollins School of Public Health and Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Vegard Eldholm
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Valerie Mizrahi
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Roxana Rustomjee
- Division of AIDS, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Pym
- Department of Infection and Immunity, University College London, London, UK; Africa Health Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa.
| |
Collapse
|
24
|
Abstract
Tuberculosis (TB) is one of the oldest infections afflicting humans yet remains the number one infectious disease killer worldwide. Despite decades of experience treating this disease, TB regimens require months of multidrug therapy, even for latent infections. There have been important recent advances in treatment options across the spectrum of TB, from latent infection to extensively drug-resistant (XDR) TB disease. In addition, new, potent drugs are emerging out of the development pipeline and are being tested in novel regimens in multiple currently enrolling trials. Shorter, safer regimens for many forms of TB are now available or are in our near-term vision. We review recent advances in TB therapeutics and provide an overview of the upcoming clinical trials landscape that will help define the future of worldwide TB treatment.
Collapse
Affiliation(s)
- Jeffrey A Tornheim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;
| | - Kelly E Dooley
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; .,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
25
|
Auld SC, Shah NS, Cohen T, Martinson NA, Gandhi NR. Where is tuberculosis transmission happening? Insights from the literature, new tools to study transmission and implications for the elimination of tuberculosis. Respirology 2018; 23:10.1111/resp.13333. [PMID: 29869818 PMCID: PMC6281783 DOI: 10.1111/resp.13333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022]
Abstract
More than 10 million new cases of tuberculosis (TB) are diagnosed worldwide each year. The majority of these cases occur in low- and middle-income countries where the TB epidemic is predominantly driven by transmission. Efforts to 'end TB' will depend upon our ability to halt ongoing transmission. However, recent studies of new approaches to interrupt transmission have demonstrated inconsistent effects on reducing population-level TB incidence. TB transmission occurs across a wide range of settings, that include households and hospitals, but also community-based settings. While home-based contact investigations and infection control programmes in hospitals and clinics have a successful track record as TB control activities, there is a gap in our knowledge of where, and between whom, community-based transmission of TB occurs. Novel tools, including molecular epidemiology, geospatial analyses and ventilation studies, provide hope for improving our understanding of transmission in countries where the burden of TB is greatest. By integrating these diverse and innovative tools, we can enhance our ability to identify transmission events by documenting the opportunity for transmission-through either an epidemiologic or geospatial connection-alongside genomic evidence for transmission, based upon genetically similar TB strains. A greater understanding of locations and patterns of transmission will translate into meaningful improvements in our current TB control activities by informing targeted, evidence-based public health interventions.
Collapse
Affiliation(s)
- Sara C Auld
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - N Sarita Shah
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Neil A Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neel R Gandhi
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Global Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|