1
|
Cao J, Li Y, Xue F, Sheng Z, Liu L, Zhang Y, Wang L, Zeng L, Jiang Y, Fan D, Li F, An J. Case study: May human norovirus infection be associated with premature delivery? Virol Sin 2024:S1995-820X(24)00169-X. [PMID: 39490793 DOI: 10.1016/j.virs.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute gastroenteritis. The varying severity of chronic infection in patients with underlying immune deficiencies poses additional burdens on public health. However, the potential effects of HuNoV infection during pregnancy, a specific immune perturbed state, have been rarely reported. Recently, four cases of HuNoV-infected patients in the late stages of pregnancy were admitted to the Guangzhou Women and Children's Medical Center, and premature rupture of membranes as primary adverse outcome was observed in these cases. Samples of fetal accessory tissue were collected from two of these cases at delivery to explore the potential pathogenesis. Pathological analysis showed placental malperfusion in both maternal and fetal vascular, while a decrease in vessels was not observed in villi of placenta. There was obvious pathological change in the chorion of fetal membrane, accompanied by a tendency of Th-1 immune bias. Notably, aggregation of M2 macrophages was observed in the chorion of the fetal membrane, potentially recruited for tissue repair. Next-generation sequencing showed minimal changes in immune pathways within placenta tissue. A gene panel associated with immunosuppression was identified in the fetal membrane of HuNoV-infected women compared to those of normal parturient. Taken together, this study provides clues for the association between the HuNoV and premature delivery, which requires the attention of the clinicians.
Collapse
Affiliation(s)
- Jiaying Cao
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Clinical Laboratory, The Fifth People's Hospital of Jinan, Jinan, 250022, China
| | - Yuetong Li
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Feiyang Xue
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ziyang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Libo Liu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yingying Zhang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lele Wang
- Department of Obstetrics & Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510180, China
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yanmin Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Dongying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Fang Li
- Department of Obstetrics & Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Izquierdo-Lara RW, Villabruna N, Hesselink DA, Schapendonk CME, Ribó Pons S, Nieuwenhuijse D, Meier JIJ, Goodfellow I, Dalm VASH, Fraaij PLA, van Kampen JJA, Koopmans MPG, de Graaf M. Patterns of the within-host evolution of human norovirus in immunocompromised individuals and implications for treatment. EBioMedicine 2024; 109:105391. [PMID: 39396425 DOI: 10.1016/j.ebiom.2024.105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Currently, there is no licensed treatment for chronic norovirus infections, but the use of intra-duodenally-delivered immunoglobulins is promising; nevertheless, varying results have limited their wide use. Little is known about the relationship between norovirus genetic diversity and treatment efficacy. METHODS We analyzed the norovirus within-host diversity and evolution in a cohort of 20 immunocompromised individuals using next-generation sequencing (NGS) and clone-based sequencing of the capsid (VP1) gene. Representative VP1s were expressed and their glycan receptor binding affinity and antigenicity were evaluated. FINDINGS The P2 domain, within the VP1, accumulated up to 30-fold more non-synonymous mutations than other genomic regions. Intra-host virus populations in these patients tended to evolve into divergent lineages that were often antigenically distinct. Several of these viruses were widely resistant to binding-blocking antibodies in immunoglobulin preparations. Notably, for one patient, a single amino-acid substitution in the P2 domain resulted in an immune-escape phenotype, and it was likely the main contributor to treatment failure. Furthermore, we found evidence for transmission of late-stage viruses between two immunocompromised individuals. INTERPRETATION The findings demonstrated that within-host noroviruses in chronic infections tend to evolve into antigenically distinct subpopulations. This antigenic evolution was likely caused by the remaining low immunity levels exerted by immunocompromised individuals, possibly undermining antiviral treatment. Our observations provide insights into norovirus (within-host) evolution and treatment. FUNDING Erasmus MC grant mRACE, the European Union's Horizon 2020 research and innovation program under grant agreement No. 874735 (VEO), and the NWO STEVIN award (Koopmans).
Collapse
Affiliation(s)
- Ray W Izquierdo-Lara
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nele Villabruna
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | - Sol Ribó Pons
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - David Nieuwenhuijse
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jenny I J Meier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology; Department of Immunology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen J A van Kampen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Dakouo D, Ouermi D, Ouattara AK, Simpore A, Compaore TR, Traore MAE, Gamsore Z, Zoure AA, Traore L, Zohoncon TM, Yonli AT, Ilboudo PD, Djigma FW, Simpore J. Rotavirus vaccines in Africa and Norovirus genetic diversity in children aged 0 to 5 years old: a systematic review and meta-analysis : Rotavirus vaccines in Africa and Norovirus genetic diversity. BMC Infect Dis 2024; 24:547. [PMID: 38822241 PMCID: PMC11143598 DOI: 10.1186/s12879-024-09434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Noroviruses are the second leading cause of death in children under the age of 5 years old. They are responsible for 200 million cases of diarrhoea and 50,000 deaths in children through the word, mainly in low-income countries. The objective of this review was to assess how the prevalence and genetic diversity of noroviruses have been affected by the introduction of rotavirus vaccines in Africa. PubMed, Web of Science and Science Direct databases were searched for articles. All included studies were conducted in Africa in children aged 0 to 5 years old with gastroenteritis. STATA version 16.0 software was used to perform the meta-analysis. The method of Dersimonian and Laird, based on the random effects model, was used for the statistical analyses in order to estimate the pooled prevalence's at a 95% confidence interval (CI). Heterogeneity was assessed by Cochran's Q test using the I2 index. The funnel plot was used to assess study publication bias. A total of 521 studies were retrieved from the databases, and 19 were included in the meta-analysis. The pooled norovirus prevalence's for pre- and post-vaccination rotavirus studies were 15% (95 CI, 15-18) and 13% (95 CI, 09-17) respectively. GII was the predominant genogroup, with prevalence of 87.64% and 91.20% respectively for the pre- and post-vaccination studies. GII.4 was the most frequently detected genotype, with rates of 66.84% and 51.24% respectively for the pre- and post-vaccination studies. This meta-analysis indicates that rotavirus vaccination has not resulted in a decrease in norovirus infections in Africa.
Collapse
Affiliation(s)
- Dako Dakouo
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Djénéba Ouermi
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
- Département de Biologie et Physiologie Animales, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Abdoul Karim Ouattara
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso.
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso.
| | - Abibou Simpore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Agence Nationale pour la Sécurité Sanitaire de l'Environnement, de l'Alimentation, du Travail et des Produits de Santé (ANSSEAT), Ouagadougou, Burkina Faso
| | - Tégwendé Rebecca Compaore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03, 03 BP 7192, Burkina Faso
| | - Mah Alima Esther Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Zakaria Gamsore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Abdou Azaque Zoure
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03, 03 BP 7192, Burkina Faso
| | - Lassina Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - Théodora Mahoukèdè Zohoncon
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
- Faculté de Médecine, Université Saint Thomas d'Aquin, Ouagadougou 01, 06 BP 10212, Burkina Faso
| | - Albert Théophane Yonli
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - P Denise Ilboudo
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| |
Collapse
|
4
|
Yu JR, Xie DJ, Li JH, Koroma MM, Wang L, Wang Y, Jing DN, Xu JY, Yu JX, Du HS, Zhou FY, Liang ZY, Zhang XF, Dai YC. Serological surveillance of GI norovirus reveals persistence of blockade antibody in a Jidong community-based prospective cohort, 2014-2018. Front Cell Infect Microbiol 2023; 13:1258550. [PMID: 38188632 PMCID: PMC10766831 DOI: 10.3389/fcimb.2023.1258550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Herd immunity against norovirus (NoV) is poorly understood in terms of its serological properties and vaccine designs. The precise neutralizing serological features of genotype I (GI) NoV have not been studied. Methods To expand insights on vaccine design and herd immunity of NoVs, seroprevalence and seroincidence of NoV genotypes GI.2, GI.3, and GI.9 were determined using blockade antibodies based on a 5-year longitudinal serosurveillance among 449 residents in Jidong community. Results Correlation between human histo-blood group antigens (HBGAs) and GI NoV, and dynamic and persistency of antibodies were also analyzed. Seroprevalence of GI.2, GI.3, and GI.9 NoV were 15.1%-18.0%, 35.0%-38.8%, and 17.6%-22.0%; seroincidences were 10.0, 21.0, and 11.0 per 100.0 person-year from 2014 to 2018, respectively. Blockade antibodies positive to GI.2 and GI.3 NoV were significantly associated with HBGA phenotypes, including blood types A, B (excluding GI.3), and O+; Lewis phenotypes Leb+/Ley+ and Lea+b+/Lex+y+; and secretors. The overall decay rate of anti-GI.2 antibody was -5.9%/year (95% CI: -7.1% to -4.8%/year), which was significantly faster than that of GI.3 [-3.6%/year (95% CI: -4.6% to -2.6%/year)] and GI.9 strains [-4.0%/year (95% CI: -4.7% to -3.3%/year)]. The duration of anti-GI.2, GI.3, and GI.9 NoV antibodies estimated by generalized linear model (GLM) was approximately 2.3, 4.2, and 4.8 years, respectively. Discussion In conclusion, enhanced community surveillance of GI NoV is needed, and even one-shot vaccine may provide coast-efficient health benefits against GI NoV infection.
Collapse
Affiliation(s)
- Jing-Rong Yu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Public Health, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Dong-Jie Xie
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Heng Li
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mark Momoh Koroma
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Wang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Duo-Na Jing
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jia-Yi Xu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jun-Xuan Yu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hui-Sha Du
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei-Yuan Zhou
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhi-Yan Liang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xu-Fu Zhang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying-Chun Dai
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Maina MM, Faneye AO, Motayo BO, Nseabasi-Maina N, Adeniji AJ. Human rotavirus VP4 and VP7 genetic diversity and detection of GII norovirus in Ibadan as Nigeria introduces rotavirus vaccine. J Int Med Res 2022; 50:3000605221121956. [PMID: 36138570 PMCID: PMC9511342 DOI: 10.1177/03000605221121956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective This cross-sectional study investigated the circulating strains of rotavirus and screened for noravirus in Ibadan, Nigeria as the country introduces the rotavirus vaccine into its national immunization program. Methods Sixty-five stool samples were collected from children younger than 5 years with clinically diagnosed diarrhea and screened for the presence of rotavirus and norovirus using RT-PCR. Rotavirus-positive samples were further analyzed to determine the G and P genotypes using semi-nested multiplex PCR. Results The rates of rotavirus and norovirus positivity were 30.8% and 10.8%, respectively, whereas the rate of rotavirus and norovirus mixed infection was 4.6%. G1 was the predominant VP7 genotype, followed by G2, G9, and G1G2G9, whereas the predominant VP4 genotype was P[4], followed by P[6], P[8], and P[9]. The mixed P types P[4]P[8] and P[4]P[6] were also detected. G1P[4] was the most common VP4 and VP7 combination, followed by G2P[4], G1[P6], G1P[8], G2P[6], G2P[9], G9P[6], G2G9P[4], G2P[4]P[6], G1P[4]P[8], G2G9P[8], G1G2G9P[8], and G1[non-typable] P[non-typable], which were detected in at least 5% of the samples. Four samples had a combination of non-typable G and P types. Conclusions It is essential to monitor the circulation of virus strains prior to and during the implementation of the immunization program.
Collapse
Affiliation(s)
- Meshach Maunta Maina
- Department of Veterinary Microbiology, University of Maiduguri, Nigeria.,Department of Virology, College of Medicine, University of Ibadan, Nigeria
| | | | | | | | - Adekunle Johnson Adeniji
- Department of Virology, College of Medicine, University of Ibadan, Nigeria.,WHO National Poliovirus laboratory, Department of Virology, University of Ibadan, Nigeria
| |
Collapse
|
6
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|
7
|
Lubyayi L, Mpairwe H, Nkurunungi G, Lule SA, Nalwoga A, Webb EL, Levin J, Elliott AM. Infection-exposure in infancy is associated with reduced allergy-related disease in later childhood in a Ugandan cohort. eLife 2021; 10:66022. [PMID: 34550875 PMCID: PMC8457824 DOI: 10.7554/elife.66022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/16/2021] [Indexed: 01/16/2023] Open
Abstract
Background Lack of early infection-exposure has been associated with increased allergy-related disease (ARD) susceptibility. In tropical Africa, little is known about which infections contribute to development of ARDs, and at which time. Methods We used latent class analysis to characterise the early infection-exposure of participants in a Ugandan birth cohort and assessed ARDs in later childhood. Results Of 2345 live births, 2115 children (90%) had data on infections within the first year of life while 1179 (50%) had outcome data at 9 years. We identified two latent classes of children based on first-year infection-exposure. Class 1 (32% membership), characterised by higher probabilities for malaria (80%), diarrhoea (76%), and lower respiratory tract infections (LRTI) (22%), was associated with lower prevalence of wheeze, eczema, rhinitis, and Dermatophagoides skin prick test (SPT) positivity at 9 years. Based on 5-year cumulative infection experience, class 1 (31% membership), characterised by higher probabilities for helminths (92%), malaria (79%), and LRTI (45%), was associated with lower probabilities of SPT positivity at 9 years. Conclusions In this Ugandan birth cohort, early childhood infection-exposure, notably to malaria, helminths, LRTI, and diarrhoea, is associated with lower prevalence of atopy and ARDs in later childhood. Funding This work was supported by several funding sources. The Entebbe Mother and Baby Study (EMaBS) was supported by the Wellcome Trust, UK, senior fellowships for AME (grant numbers 064693, 079110, 95778) with additional support from the UK Medical Research Council. LL is supported by a PhD fellowship through the DELTAS Africa Initiative SSACAB (grant number 107754). ELW received funding from MRC Grant Reference MR/K012126/1. SAL was supported by the PANDORA-ID-NET Consortium (EDCTP Reg/Grant RIA2016E-1609). HM was supported by the Wellcome's Institutional Strategic Support Fund (grant number 204928/Z/16/Z).
Collapse
Affiliation(s)
- Lawrence Lubyayi
- Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa, Johannesburg, South Africa
| | - Harriet Mpairwe
- Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gyaviira Nkurunungi
- Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Swaib A Lule
- Institute for Global Health, University College London, London, United Kingdom
| | - Angela Nalwoga
- Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Emily L Webb
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jonathan Levin
- Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa, Johannesburg, South Africa
| | - Alison M Elliott
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
8
|
Abstract
Histo-blood group antigen contains oligosaccharides that serve as receptors for norovirus (NoV) and rotavirus (RV). The receptors are only present on the surface of intestinal mucosal epithelial cells of secretors; therefore, secretors are susceptible to NoV and RV diarrhea and nonsecretors are resistant. The prevalence of secretors in different countries varies between 50% and 90%. Secretor rates evolved in response to environmental pressures such as infectious diseases.
Collapse
|
9
|
Human Noroviruses Attach to Intestinal Tissues of a Broad Range of Animal Species. J Virol 2021; 95:JVI.01492-20. [PMID: 33115870 DOI: 10.1128/jvi.01492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are the most common nonbacterial cause of gastroenteritis outbreaks, with new variants and genotypes frequently emerging. The origin of these new viruses is unknown; however, animals have been proposed as a potential source, as human noroviruses have been detected in animal species. Here, we investigated the potential of animals to serve as a reservoir of human noroviruses by testing norovirus attachment to formalin-fixed intestinal tissues of a range of potential reservoir animals. We set up a novel method to study norovirus binding using fluorescein isothiocyanate (FITC)-labeled virus-like particles (VLPs). In humans, noroviruses interact with histo-blood group antigens (HBGAs), carbohydrates that are expressed, among others, on the epithelial lining of the gastrointestinal tract. In animals, this interaction is not well understood. To test if virus binding depends on HBGAs, we characterized the HBGA phenotype in animal tissues by immunohistochemistry. With the exception of the black-headed gull and the straw-colored fruitbat, we observed the attachment of several human norovirus genotypes to the intestinal epithelium of all tested animal species. However, we did not find an association between the expression of a specific HBGA phenotype and virus-like particle (VLP) attachment. We show that selected human noroviruses can attach to small-intestinal tissues across species, supporting the hypothesis that human noroviruses can reside in an animal reservoir. However, whether this attachment can subsequently lead to infection needs to be further assessed.IMPORTANCE Noroviruses are a major cause of acute gastroenteritis in humans. New norovirus variants and recombinants (re)emerge regularly in the human population. From animal experiments and surveillance studies, it has become clear that at least seven animal models are susceptible to infection with human strains and that domesticated and wild animals shed human noroviruses in their feces. As virus attachment is an important first step for infection, we used a novel method utilizing FITC-labeled VLPs to test for norovirus attachment to intestinal tissues of potential animal hosts. We further characterized these tissues with regard to their HBGA expression, a well-studied norovirus susceptibility factor in humans. We found attachment of several human strains to a variety of animal species independent of their HBGA phenotype. This supports the hypothesis that human strains could reside in an animal reservoir.
Collapse
|
10
|
Xie D, Chen J, Yu J, Pei F, Koroma MM, Wang L, Qiu M, Hou Y, Yu D, Zhang XF, Dai YC. Characterization of Antigenic Relatedness Among GI Norovirus Genotypes Using Serum Samples From Norovirus-Infected Patients and Mouse Sera. Front Microbiol 2020; 11:607723. [PMID: 33363528 PMCID: PMC7752868 DOI: 10.3389/fmicb.2020.607723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
Characterizing diversity and the antigenic relatedness of norovirus remains a primary focus in understanding its biological properties and vaccine designs. The precise antigenic and serological features of GI genotypes have not been studied. The study represented an investigation on a gastroenteritis outbreak related to GI.3 norovirus and the three most detected GI genotypes, GI.2 (belonging to immunotype B), GI.3 and GI.9 (belonging to immunotype C), were selected to characterize their phylogenetic relationship, HBGA binding profiles and antigenic relatedness within (intra-immunotype), and between (inter-immunotypes) genotypes using mouse sera and patient’s serum samples from the GI.3 related outbreak. Wide HBGA binding profiles and evolution of binding affinity were observed in the three GI genotypes studied. A low specific blockade antibody to GI.3 in the population generated the pool of susceptible individuals and supported virus spread in the outbreak. We found strong blockade immune response in homologous strains, moderate intra-immunotype blockade but weak inter-immunotypes blockade in humans following GI.3 norovirus infections. These findings further support the immunotypes grouping and will be valuable for optimizing the design of norovirus vaccine.
Collapse
Affiliation(s)
- Dongjie Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junrui Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingrong Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fuyu Pei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mark Momoh Koroma
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengsi Qiu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuzhen Hou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dexian Yu
- Guangzhou Military Command Center for Disease Control and Prevention, Guangzhou, China
| | - Xu-Fu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying-Chun Dai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Zhao S, Schuurman N, Tieke M, Quist B, Zwinkels S, van Kuppeveld FJM, de Haan CAM, Egberink H. Serological Screening of Influenza A Virus Antibodies in Cats and Dogs Indicates Frequent Infection with Different Subtypes. J Clin Microbiol 2020; 58:e01689-20. [PMID: 32878956 PMCID: PMC7587082 DOI: 10.1128/jcm.01689-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAVs) infect humans and a variety of other animal species. Infections with some subtypes of IAV were also reported in domestic cats and dogs. In addition to animal health implications, close contact between companion animals and humans also poses a potential risk of zoonotic IAV infections. In this study, serum samples from different cat and dog cohorts were analyzed for IAV antibodies against seven IAV subtypes, using three distinctive IAV-specific assays differing in IAV subtype-specific discriminatory power and sensitivity. Enzyme-linked immunosorbent assays against the complete hemagglutinin (HA) ectodomain or the HA1 domain were used, as well as a novel nanoparticle-based, virus-free hemagglutination inhibition assay. Using these three assays, we found cat and dog sera from different cohorts to be positive for antibodies against one or more IAV subtypes and/or strains. Cat and dog serum samples collected after the 2009 pandemic H1N1 outbreak exhibit much higher seropositivity against H1 compared to samples from before 2009. Cat sera, furthermore, displayed higher reactivity for avian IAVs than dog sera. Our findings show the added value of using complementary serological assays, which are based on reactivity with different numbers of HA epitopes, to study IAV antibody responses and for improved serosurveillance of IAV infections. We conclude that infection of cats and dogs with both human and avian IAVs of different subtypes is prevalent. These observations highlight the role of cats and dogs in IAV ecology and indicate the potential of these companion animals to give rise to novel (reassorted) viruses with increased zoonotic potential.
Collapse
Affiliation(s)
- Shan Zhao
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nancy Schuurman
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Malte Tieke
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berit Quist
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Steven Zwinkels
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Herman Egberink
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
FUT2 Secretor Status Influences Susceptibility to VP4 Strain-Specific Rotavirus Infections in South African Children. Pathogens 2020; 9:pathogens9100795. [PMID: 32992488 PMCID: PMC7601103 DOI: 10.3390/pathogens9100795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
Gastroenteritis is a preventable cause of morbidity and mortality worldwide. Rotavirus vaccination has significantly reduced the disease burden, but the sub-optimal vaccine efficacy observed in low-income regions needs improvement. Rotavirus VP4 'spike' proteins interact with FUT2-defined, human histo-blood group antigens on mucosal surfaces, potentially influencing strain circulation and the efficacy of P[8]-based rotavirus vaccines. Secretor status was investigated in 500 children <5 years-old hospitalised with diarrhoea, including 250 previously genotyped rotavirus-positive cases (P[8] = 124, P[4] = 86, and P[6] = 40), and 250 rotavirus-negative controls. Secretor status genotyping detected the globally prevalent G428A single nucleotide polymorphism (SNP) and was confirmed by Sanger sequencing in 10% of participants. The proportions of secretors in rotavirus-positive cases (74%) were significantly higher than in the rotavirus-negative controls (58%; p < 0.001). The rotavirus genotypes P[8] and P[4] were observed at significantly higher proportions in secretors (78%) than in non-secretors (22%), contrasting with P[6] genotypes with similar proportions amongst secretors (53%) and non-secretors (47%; p = 0.001). This suggests that rotavirus interacts with secretors and non-secretors in a VP4 strain-specific manner; thus, secretor status may partially influence rotavirus VP4 wild-type circulation and P[8] rotavirus vaccine efficacy. The study detected a mutation (rs1800025) ~50 bp downstream of the G428A SNP that would overestimate non-secretors in African populations when using the TaqMan® SNP Genotyping Assay.
Collapse
|
13
|
Molecular detection and characterisation of sapoviruses and noroviruses in outpatient children with diarrhoea in Northwest Ethiopia. Epidemiol Infect 2020; 147:e218. [PMID: 31364546 PMCID: PMC6625200 DOI: 10.1017/s0950268819001031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Childhood morbidity and mortality of diarrhoeal diseases are high, particularly in low-income countries and noroviruses and sapoviruses are among the most frequent causes worldwide. Their epidemiology and diversity remain not well studied in many African countries. To assess the positivity rate and the diversity of sapoviruses and noroviruses in Northwest Ethiopia, during November 2015 and April 2016, a total of 450 faecal samples were collected from outpatient children aged <5 years who presented with diarrhoea. Samples were screened for noroviruses and sapoviruses by real-time RT-PCR. Partial VP1 genes were sequenced, genotyped and phylogenetically analysed. Norovirus and sapovirus stool positivity rate was 13.3% and 10.0%, respectively. Noroviruses included GII.4 (35%), GII.6 (20%), GII.17 (13.3%), GII.10 (10%), GII.2 (6.7%), GII.16 (5%), GII.7 (3.3%), GII.9, GII.13, GII.20 and GI.3 (1.7% each) strains. For sapoviruses, GI.1, GII.1 (20.0% each), GII.6 (13.3%), GI.2 (8.9%), GII.2 (11.1%), GV.1 (8.9%), GIV.1 (6.7%), GI.3 and GII.4 (2.2% each) genotypes were detected. This study demonstrates a high genetic diversity of noroviruses and sapoviruses in Northwest Ethiopia. The positivity rate in stool samples from young children with diarrhoea was high for both caliciviruses. Continued monitoring is recommended to identify trends in genetic diversity and seasonal variations.
Collapse
|
14
|
Hosmillo M, Chaudhry Y, Nayak K, Sorgeloos F, Koo BK, Merenda A, Lillestol R, Drumright L, Zilbauer M, Goodfellow I. Norovirus Replication in Human Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses. mBio 2020; 11:e00215-20. [PMID: 32184238 PMCID: PMC7078467 DOI: 10.1128/mbio.00215-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system.IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture.
Collapse
Affiliation(s)
- Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Alessandra Merenda
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Reidun Lillestol
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Lydia Drumright
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Influence of histo blood group antigen expression on susceptibility to enteric viruses and vaccines. Curr Opin Infect Dis 2019; 32:445-452. [DOI: 10.1097/qco.0000000000000571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Arnold BF, Martin DL, Juma J, Mkocha H, Ochieng JB, Cooley GM, Omore R, Goodhew EB, Morris JF, Costantini V, Vinjé J, Lammie PJ, Priest JW. Enteropathogen antibody dynamics and force of infection among children in low-resource settings. eLife 2019; 8:45594. [PMID: 31424386 PMCID: PMC6746552 DOI: 10.7554/elife.45594] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/15/2019] [Indexed: 01/22/2023] Open
Abstract
Little is known about enteropathogen seroepidemiology among children in low-resource settings. We measured serological IgG responses to eight enteropathogens (Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, Salmonella enterica, enterotoxigenic Escherichia coli, Vibrio cholerae, Campylobacter jejuni, norovirus) in cohorts from Haiti, Kenya, and Tanzania. We studied antibody dynamics and force of infection across pathogens and cohorts. Enteropathogens shared common seroepidemiologic features that enabled between-pathogen comparisons of transmission. Overall, exposure was intense: for most pathogens the window of primary infection was <3 years old; for highest transmission pathogens primary infection occurred within the first year. Longitudinal profiles demonstrated significant IgG boosting and waning above seropositivity cutoffs, underscoring the value of longitudinal designs to estimate force of infection. Seroprevalence and force of infection were rank-preserving across pathogens, illustrating the measures provide similar information about transmission heterogeneity. Our findings suggest antibody response can be used to measure population-level transmission of diverse enteropathogens in serologic surveillance. Diarrhea, which is caused by bacteria such as Salmonella or by viruses like norovirus, is the fourth leading cause of death among children worldwide, with children in low-resource settings being at highest risk. The pathogens that cause diarrhea spread when stool from infected people comes into contact with new hosts, for example, through inadequate sanitation or by drinking contaminated water. Currently, the best way to track these infections is to collect stool samples from people and test them for the presence of the pathogens. Unfortunately, this is costly and difficult to do on a large scale outside of clinical settings, making it hard to track the spread of diarrhea-causing pathogens. The body produces antibodies – small proteins that can detect specific pathogens – in response to an infection. These antibodies help ward off future infections by the same pathogen, so if they are present in the blood, this indicates a current or previous infection. Scientists already collect blood samples to track malaria, HIV and vaccine-preventable diseases in low-resource settings. These samples could be tested more broadly to measure the levels of antibodies against diarrhea-causing pathogens. Now, Arnold et al. have used blood samples collected from children in Haiti, Kenya, and Tanzania to measure antibody responses to 8 diarrhea-causing pathogens. The results showed that many children in these settings had been infected with all 8 pathogens before age three, and that all of the pathogens shared similar age-dependent patterns of antibody response. This finding enabled Arnold et al. to combine antibody measurements with statistical models to estimate each pathogen’s force of infection, that is, the rate at which susceptible individuals in the population become infected. This is a key step for epidemiologists to understand which pathogens cause the most infections in a population. The experiments show that testing blood samples for antibodies could provide scientists with a new tool to track the transmission of diarrhea-causing pathogens in low-resource settings. This information could help public health officials design and test efforts to prevent diarrhea, for example, by improving water treatment or developing vaccines.
Collapse
Affiliation(s)
- Benjamin F Arnold
- Division of Epidemiology and Biostatistics, University of California, Berkeley, Berkeley, United States.,Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, United States.,Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| | - Diana L Martin
- Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, United States
| | - Jane Juma
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Harran Mkocha
- Kongwa Trachoma Project, Kongwa, United Republic of Tanzania
| | - John B Ochieng
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Gretchen M Cooley
- Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, United States
| | - Richard Omore
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - E Brook Goodhew
- Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, United States
| | - Jamae F Morris
- Department of African-American Studies, Georgia State University, Atlanta, United States
| | - Veronica Costantini
- Division of Viral Diseases, United States Centers for Disease Control and Prevention, Atlanta, United States
| | - Jan Vinjé
- Division of Viral Diseases, United States Centers for Disease Control and Prevention, Atlanta, United States
| | - Patrick J Lammie
- Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, United States.,Neglected Tropical Diseases Support Center, Task Force for Global Health, Decatur, United States
| | - Jeffrey W Priest
- Division of Foodborne, Waterborne, and Environmental Diseases, United States Centers for Disease Control and Prevention, Atlanta, United States
| |
Collapse
|
17
|
de Moraes MTB, Olivares AIO, Fialho AM, Malta FC, da Silva E Mouta Junior S, de Souza Bispo R, Velloso AJ, Alves Leitão GA, Cantelli CP, Nordgren J, Svenson L, Miagostovich MP, Leite JPG. Phenotyping of Lewis and secretor HBGA from saliva and detection of new FUT2 gene SNPs from young children from the Amazon presenting acute gastroenteritis and respiratory infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 70:61-66. [PMID: 30790699 DOI: 10.1016/j.meegid.2019.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/16/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
The Histo-blood group antigens (HBGA) are host genetic factors associated with susceptibility to rotavirus (RV) and human norovirus (HuNoV), the major etiological agents of viral acute gastroenteritis (AGE) worldwide. The FUT2 gene expressing the alpha-1, 2-L- fucosyltransferase enzyme is important for gut HBGA expression, and also provides a composition of the phenotypic profile achieved through mutations occurring in populations with different evolutionary histories; as such, it can be considered a genetic population marker. In this study, Lewis and secretor HBGA phenotyping was performed using 352 saliva samples collected from children between three months and five years old born in the Amazon (Brazil, Venezuela and English Guyana) presenting AGE or acute respiratory infection (ARI), the latter considered as control samples. The total of children phenotyped as secretors was 323, corresponding to 91.80%. From these, 207 (58.80%) had a Le (a + b+) profile. The HBGA profiles were equally found in children with AGE as well as with ARI. The rs1047781 of the FUT2 gene was not detected in DNA from saliva cells with a Le (a+b+) profile. However, mutations not yet described in the FUT2 gene were observed: missense 325A>T, 501C>T, 585C>T, 855A>T and missense substitutions 327C>T [S (Ser) > C (Cys)], 446 T>C [L(Leu) > P(Pro)], 723C>A [N(Asn) > K(Lys)], 724A>T [I(Ile) > F(Phe)], 736C>A [H(His) > N(Asn)]. The SNP distribution in the FUT2 gene of the analyzed samples was very similar to that described in Asian populations, including indigenous tribes.
Collapse
Affiliation(s)
- Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Alberto Ignácio Olivares Olivares
- Federal University of Roraima, Research Center Roraima Health Observatory (ObservaRR), Avenida Capitão Ene Garcês, 2413-Aeroporto, Boa Vista, RR, Brazil; Post-Graduate Program in Parasite Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Alexandre Madi Fialho
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Fábio Correia Malta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Sergio da Silva E Mouta Junior
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Romanul de Souza Bispo
- Federal University of Roraima, Research Center Roraima Health Observatory (ObservaRR), Avenida Capitão Ene Garcês, 2413-Aeroporto, Boa Vista, RR, Brazil
| | - Alvaro Jorge Velloso
- Department of Viral Vaccines and Department of Quality Control, Immunobiological Technology Institute (BioManguinhos) - Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Gabriel Azevedo Alves Leitão
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Carina Pacheco Cantelli
- Post-Graduate Program in Parasite Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil; Department of Viral Vaccines and Department of Quality Control, Immunobiological Technology Institute (BioManguinhos) - Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Lennart Svenson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Norovirus Infections and Disease in Lower-MiddleandLow-Income Countries, 1997⁻2018. Viruses 2019; 11:v11040341. [PMID: 30974898 PMCID: PMC6521228 DOI: 10.3390/v11040341] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022] Open
Abstract
Noroviruses are a major cause of viral gastroenteritis. The burden of the norovirus in low-resource settings is not well-established due to limited data. This study reviews the norovirus prevalence, epidemiology, and genotype diversity in lower-middle-income countries (LMIC) and in low-income countries (LIC). PubMed was searched up to 14 January 2019 for norovirus studies from all LIC and LMIC (World Bank Classification). Studies that tested gastroenteritis cases and/or asymptomatic controls for norovirus by reverse transcription-polymerase chain reaction (RT-PCR) were included. Sixty-four studies, the majority on children <5 years of age, were identified, and 14% (95% confidence interval; CI 14–15, 5158/36,288) of the gastroenteritis patients and 8% (95% CI 7–9, 423/5310) of healthy controls tested positive for norovirus. In LMIC, norovirus was detected in 15% (95% CI 15–16) of cases and 8% (95% CI 8–10) of healthy controls. In LIC, 11% (95% CI 10–12) of symptomatic cases and 9% (95% CI 8–10) of asymptomatic controls were norovirus positive. Norovirus genogroup II predominated overall. GII.4 was the predominant genotype in all settings, followed by GII.3 and GII.6. The most prevalent GI strain was GI.3. Norovirus causes a significant amount of gastroenteritis in low-resource countries, albeit with high levels of asymptomatic infection in LIC and a high prevalence of coinfections.
Collapse
|
19
|
Mans J. Longitudinal Seroprevalence Study Elucidates High Norovirus Burden in Sub-Saharan Africa. J Infect Dis 2018; 218:676-678. [DOI: 10.1093/infdis/jiy220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Janet Mans
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|