1
|
Zhang H, Monk IR, Braverman J, Jones CM, Brooks AG, Stinear TP, Wakim LM. Staphylococcal superantigens evoke temporary and reversible T cell anergy, but fail to block the development of a bacterium specific cellular immune response. Nat Commun 2024; 15:9872. [PMID: 39543088 PMCID: PMC11564628 DOI: 10.1038/s41467-024-54074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Superantigens (sAgs) are bacterial virulence factors that induce a state of immune hyperactivation by forming a bridge between certain subsets of T cell receptor (TCR) β chains on T lymphocytes, and class II major histocompatibility complex (MHC-II) molecules; this cross-linking leads to indiscriminate T cell activation, cytokine storm and toxic shock. Here we show that sAg exposure drives the preferential expansion of naive and central memory T cell subsets, but not effector or resident memory T cells, which instead, hyper release pro-inflammatory cytokines. A targeted therapeutic approach to minimise cytokine release by effector memory T cells attenuated sAg-induced cytokine release. Irrespective of antigen experience, sAg activation does not render mature T cells permanently dysfunctional, and full restoration of effector function is observed following a transient and reversible anergy. Moreover, we show that in the face of sAg induced immune hyperactivation, an intact bacterium-specific CD4+ T cell response can be mounted.
Collapse
Affiliation(s)
- Heran Zhang
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Jessica Braverman
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Claerwen M Jones
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
2
|
Zhang XE, Zheng P, Ye SZ, Ma X, Liu E, Pang YB, He QY, Zhang YX, Li WQ, Zeng JH, Guo J. Microbiome: Role in Inflammatory Skin Diseases. J Inflamm Res 2024; 17:1057-1082. [PMID: 38375021 PMCID: PMC10876011 DOI: 10.2147/jir.s441100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.
Collapse
Affiliation(s)
- Xue-Er Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Pai Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Sheng-Zhen Ye
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yao-Bin Pang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Qing-Ying He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yu-Xiao Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Wen-Quan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Jin-Hao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| |
Collapse
|
3
|
Zhao H, Ma X, Song J, Jiang J, Fei X, Luo Y, Ru Y, Luo Y, Gao C, Kuai L, Li B. From gut to skin: exploring the potential of natural products targeting microorganisms for atopic dermatitis treatment. Food Funct 2023; 14:7825-7852. [PMID: 37599562 DOI: 10.1039/d3fo02455e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Recent studies have revealed that interactions between pathogenic microorganisms, which have a tendency to parasitize the skin of AD patients, play a significant role in the progression of the disease. Furthermore, specific species of commensal bacteria in the human intestinal tract can have a profound impact on the immune system by promoting inflammation and pruritogenesis in AD, while also regulating adaptive immunity. Natural products (NPs) have emerged as promising agents for the treatment of various diseases. Consequently, there is growing interest in utilizing natural products as a novel therapeutic approach for managing AD, with a focus on modulating both skin and gut microbiota. In this review, we discuss the mechanisms and interplay between the skin and gut microbiota in relation to AD. Additionally, we provide a comprehensive overview of recent clinical and fundamental research on NPs targeting the skin and gut microbiota for AD treatment. We anticipate that our work will contribute to the future development of NPs and facilitate research on microbial mechanisms, based on the efficacy of NPs in treating AD.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
4
|
Rashu R, Ninkov M, Wardell CM, Benoit JM, Wang NI, Meilleur CE, D'Agostino MR, Zhang A, Feng E, Saeedian N, Bell GI, Vahedi F, Hess DA, Barr SD, Troyer RM, Kang CY, Ashkar AA, Miller MS, Haeryfar SMM. Targeting the MR1-MAIT cell axis improves vaccine efficacy and affords protection against viral pathogens. PLoS Pathog 2023; 19:e1011485. [PMID: 37384813 DOI: 10.1371/journal.ppat.1011485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are MR1-restricted, innate-like T lymphocytes with tremendous antibacterial and immunomodulatory functions. Additionally, MAIT cells sense and respond to viral infections in an MR1-independent fashion. However, whether they can be directly targeted in immunization strategies against viral pathogens is unclear. We addressed this question in multiple wild-type and genetically altered but clinically relevant mouse strains using several vaccine platforms against influenza viruses, poxviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), a riboflavin-based MR1 ligand of bacterial origin, can synergize with viral vaccines to expand MAIT cells in multiple tissues, reprogram them towards a pro-inflammatory MAIT1 phenotype, license them to bolster virus-specific CD8+ T cell responses, and potentiate heterosubtypic anti-influenza protection. Repeated 5-OP-RU administration did not render MAIT cells anergic, thus allowing for its inclusion in prime-boost immunization protocols. Mechanistically, tissue MAIT cell accumulation was due to their robust proliferation, as opposed to altered migratory behavior, and required viral vaccine replication competency and Toll-like receptor 3 and type I interferon receptor signaling. The observed phenomenon was reproducible in female and male mice, and in both young and old animals. It could also be recapitulated in a human cell culture system in which peripheral blood mononuclear cells were exposed to replicating virions and 5-OP-RU. In conclusion, although viruses and virus-based vaccines are devoid of the riboflavin biosynthesis machinery that supplies MR1 ligands, targeting MR1 enhances the efficacy of vaccine-elicited antiviral immunity. We propose 5-OP-RU as a non-classic but potent and versatile vaccine adjuvant against respiratory viruses.
Collapse
Affiliation(s)
- Rasheduzzaman Rashu
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Christine M Wardell
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jenna M Benoit
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Courtney E Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Emily Feng
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Nasrin Saeedian
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Gillian I Bell
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - David A Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Ryan M Troyer
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
5
|
Parham KA, Kim GN, Richer CG, Ninkov M, Wu K, Saeedian N, Li Y, Rashu R, Barr SD, Arts EJ, Haeryfar SMM, Kang CY, Troyer RM. Monovalent and trivalent VSV-based COVID-19 vaccines elicit neutralizing antibodies and CD8 + T cells against SARS-CoV-2 variants. iScience 2023; 26:106292. [PMID: 36915805 PMCID: PMC9970654 DOI: 10.1016/j.isci.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Recombinant vesicular stomatitis virus (rVSV) vaccines expressing spike proteins of Wuhan, Beta, and/or Delta variants of SARS-CoV-2 were generated and tested for induction of antibody and T cell immune responses following intramuscular delivery to mice. rVSV-Wuhan and rVSV-Delta vaccines and an rVSV-Trivalent (mixed rVSV-Wuhan, -Beta, -Delta) vaccine elicited potent neutralizing antibodies (nAbs) against live SARS-CoV-2 Wuhan (USAWA1), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529) viruses. Prime-boost vaccination with rVSV-Beta was less effective in this capacity. Heterologous boosting of rVSV-Wuhan with rVSV-Delta induced strong nAb responses against Delta and Omicron viruses, with the rVSV-Trivalent vaccine consistently effective in inducing nAbs against all the SARS-CoV-2 variants tested. All vaccines, including rVSV-Beta, elicited a spike-specific immunodominant CD8+ T cell response. Collectively, rVSV vaccines targeting SARS-CoV-2 variants of concern may be considered in the global fight against COVID-19.
Collapse
Affiliation(s)
- Kate A Parham
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Gyoung Nyoun Kim
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Connor G Richer
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Kunyu Wu
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Nasrin Saeedian
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Yue Li
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Rasheduzzaman Rashu
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Eric J Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - C Yong Kang
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Ryan M Troyer
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| |
Collapse
|
6
|
Johnson AF, Sands JS, Trivedi KM, Russell R, LaRock DL, LaRock CN. Constitutive secretion of pro-IL-18 allows keratinocytes to initiate inflammation during bacterial infection. PLoS Pathog 2023; 19:e1011321. [PMID: 37068092 PMCID: PMC10138833 DOI: 10.1371/journal.ppat.1011321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
Group A Streptococcus (GAS, Streptococcus pyogenes) is a professional human pathogen that commonly infects the skin. Keratinocytes are one of the first cells to contact GAS, and by inducing inflammation, they can initiate the earliest immune responses to pathogen invasion. Here, we characterized the proinflammatory cytokine repertoire produced by primary human keratinocytes and surrogate cell lines commonly used in vitro. Infection induces several cytokines and chemokines, but keratinocytes constitutively secrete IL-18 in a form that is inert (pro-IL-18) and lacks proinflammatory activity. Canonically, IL-18 activation and secretion are coupled through a single proteolytic event that is regulated intracellularly by the inflammasome protease caspase-1 in myeloid cells. The pool of extracellular pro-IL-18 generated by keratinocytes is poised to sense extracellular proteases. It is directly processed into a mature active form by SpeB, a secreted GAS protease that is a critical virulent factor during skin infection. This mechanism contributes to the proinflammatory response against GAS, resulting in T cell activation and the secretion of IFN-γ. Under these conditions, isolates of several other major bacterial pathogens and microbiota of the skin were found to not have significant IL-18-maturing ability. These results suggest keratinocyte-secreted IL-18 is a sentinel that sounds an early alarm that is highly sensitive to GAS, yet tolerant to non-invasive members of the microbiota.
Collapse
Affiliation(s)
- Anders F Johnson
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Jenna S Sands
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Keya M Trivedi
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Raedeen Russell
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Doris L LaRock
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Christopher N LaRock
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, Georgia, United States of America
- Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| |
Collapse
|
7
|
Hamdy A, Leonardi A. Superantigens and SARS-CoV-2. Pathogens 2022; 11:390. [PMID: 35456065 PMCID: PMC9026686 DOI: 10.3390/pathogens11040390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 12/31/2022] Open
Abstract
It has been posited SARS-CoV-2 contains at least one unique superantigen-like motif not found in any other SARS or endemic coronaviruses. Superantigens are potent antigens that can send the immune system into overdrive. SARS-CoV-2 causes many of the biological and clinical consequences of a superantigen, and, in the context of reinfection and waning immunity, it is important to better understand the impact of a widely circulating, airborne pathogen that may be a superantigen, superantigen-like or trigger a superantigenic host response. Urgent research is needed to better understand the long-term risks being taken by governments whose policies enable widespread transmission of a potential superantigenic pathogen, and to more clearly define the vaccination and public health policies needed to protect against the consequences of repeat exposure to the pathogen.
Collapse
Affiliation(s)
- Adam Hamdy
- Panres Pandemic Research, Newport TF10 8PG, UK
| | - Anthony Leonardi
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
8
|
Knopick P, Terman D, Riha N, Alvine T, Larson R, Badiou C, Lina G, Ballantyne J, Bradley D. Endogenous HLA-DQ8αβ programs superantigens (SEG/SEI) to silence toxicity and unleash a tumoricidal network with long-term melanoma survival. J Immunother Cancer 2021; 8:jitc-2020-001493. [PMID: 33109631 PMCID: PMC7592263 DOI: 10.1136/jitc-2020-001493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background As the most powerful T cell agonists known, superantigens (SAgs) have enormous potential for cancer immunotherapy. Their development has languished due to high incidence (60%–80%) of seroreactive neutralizing antibodies in humans and tumor necrosis factor-α (TNFα)-mediated cardiopulmonary toxicity. Such toxicity has narrowed their therapeutic index while neutralizing antibodies have nullified their therapeutic effects. Methods Female HLA-DQ8 (DQA*0301/DQB*0302) tg mice expressing the human major histocompatibility complex II (MHCII) HLA-DQ8 allele on a high proportion of PBL, spleen and lymph node cells were used. In the established tumor model, staphylococcal enterotoxin G and staphylococcal enterotoxin I (SEG/ SEI) (50 µg each) were injected on days 6 and 9 following tumor inoculation. Lymphoid, myeloid cells and tumor cell digests from tumor tissue were assayed using flow cytometry or quantitated using a cytometric bead array. Tumor density, necrotic and viable areas were quantitated using the ImageJ software. Results In a discovery-driven effort to address these problems we introduce a heretofore unrecognized binary complex comprizing SEG/SEI SAgs linked to the endogenous human MHCII HLA-DQ8 allele in humanized mice. By contrast to staphylococcal enterotoxin A (SEA) and staphylococcal enterotoxin B (SEB) deployed previously in clinical trials, SEG and SEI does not exhibit neutralizing antibodies in humans or TNFα-mediated toxicity in humanized HLA-DQ8 mice. In the latter model wherein SAg behavior is known to be ‘human-like’, SEG/SEI induced a powerful tumoricidal response and long-term survival against established melanoma in 82% of mice. Other SAgs deployed in the same model displayed toxic shock. Initially, HLA-DQ8 mediated melanoma antigen priming, after which SEG/SEI unleashed a broad CD4+ and CD8+ antitumor network marked by expansion of melanoma reactive T cells and interferon-γ (IFNy) in the tumor microenvironment (TME). SEG/SEI further initiated chemotactic recruitment of tumor reactive T cells to the TME converting the tumor from ‘cold’ to a ‘hot’. Long-term survivors displayed remarkable resistance to parental tumor rechallenge along with the appearance of tumor specific memory and tumor reactive T memory cells. Conclusions Collectively, these findings show for the first time that the SEG/SEI-(HLA-DQ8) empowers priming, expansion and recruitment of a population of tumor reactive T cells culminating in tumor specific memory and long-term survival devoid of toxicity. These properties distinguish SEG/SEI from other SAgs used previously in human tumor immunotherapy. Consolidation of these principles within the SEG/SEI-(HLA-DQ8) complex constitutes a conceptually new therapeutic weapon with compelling translational potential.
Collapse
Affiliation(s)
- Peter Knopick
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - David Terman
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Nathan Riha
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Travis Alvine
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Riley Larson
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Cedric Badiou
- University of Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Gerard Lina
- University of Lyon 1 University Institute of Tecnology Lyon 1, Villeurbanne, Auvergne-Rhône-Alpes, France
| | | | - David Bradley
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| |
Collapse
|
9
|
Deacy AM, Gan SKE, Derrick JP. Superantigen Recognition and Interactions: Functions, Mechanisms and Applications. Front Immunol 2021; 12:731845. [PMID: 34616400 PMCID: PMC8488440 DOI: 10.3389/fimmu.2021.731845] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Superantigens are unconventional antigens which recognise immune receptors outside their usual recognition sites e.g. complementary determining regions (CDRs), to elicit a response within the target cell. T-cell superantigens crosslink T-cell receptors and MHC Class II molecules on antigen-presenting cells, leading to lymphocyte recruitment, induction of cytokine storms and T-cell anergy or apoptosis among many other effects. B-cell superantigens, on the other hand, bind immunoglobulins on B-cells, affecting opsonisation, IgG-mediated phagocytosis, and driving apoptosis. Here, through a review of the structural basis for recognition of immune receptors by superantigens, we show that their binding interfaces share specific physicochemical characteristics when compared with other protein-protein interaction complexes. Given that antibody-binding superantigens have been exploited extensively in industrial antibody purification, these observations could facilitate further protein engineering to optimize the use of superantigens in this and other areas of biotechnology.
Collapse
Affiliation(s)
- Anthony M. Deacy
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Experimental Drug Development Centre – Bioinformatics Institute (EDDC-BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore
- James Cook University, Singapore, Singapore
| | - Jeremy P. Derrick
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Mujtaba MG, Johnson HM, Parrish JM. Staphylococcal Enterotoxin Superantigens Induce Prophylactic Antiviral Activity Against Encephalomyocarditis Virus In Vivo and In Vitro. Viral Immunol 2021; 34:392-400. [PMID: 33566741 DOI: 10.1089/vim.2020.0310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The staphylococcal enterotoxins (SEs) are classified as superantigens due to their potent stimulation of the immune system resulting in T cell activation and prodigious cytokine production and toxicity. This study examined the ability of superantigens to induce prophylactic antiviral activity in vivo and in vitro and evaluated potential superantigen mimetic peptides. Prophylactic treatment of mice in vivo with intraperitoneal injections of SE superantigens SEA and SEB (both at 20 μg/day for 3 days) prevented encephalomyocarditis virus (EMCV)-induced lethality in 100% and 80% of mice, respectively, as compared with control saline-treated groups in which EMCV was lethal to all mice. Furthermore, SEA (2 μg/mL) and SEB (1 μg/mL) induced antiviral activity in mouse splenocytes to produce an antiviral factor since their supernatant prevented EMCV lysis of L929 cells in tissue culture. It was found that superantigens do not directly prevent EMCV infection, but rather indirectly through inducing interferon gamma (IFNγ) production in cells as the antiviral factor. Evaluation of various superantigen mimetic peptides showed that one peptide (SEA3) had superantigen-like activity by inducing IFNγ production in cells but without the cellular proliferation, as associated with superantigens. However, the induction of IFNγ activation by the SEA3 peptide was not as pronounced, and took a much higher peptide concentration, when compared with the parent superantigen. If the negative side effects of superantigens can be eliminated, their beneficial properties can be harnessed for prophylactic treatment of viral infections and other pathologies requiring a robust immune response.
Collapse
Affiliation(s)
- Mustafa G Mujtaba
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Jordan M Parrish
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| |
Collapse
|
11
|
Rudak PT, Haeryfar SMM. In Vivo Cytotoxicity by α-GalCer-transactivated NK Cells. Methods Mol Biol 2021; 2388:157-174. [PMID: 34524671 DOI: 10.1007/978-1-0716-1775-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Invariant natural killer T (iNKT) cells are innate-like, lipid-reactive T lymphocytes known for their potent immunomodulatory properties. In addition to expressing and utilizing cytolytic effector molecules of their own against certain target cells, iNKT cells can be stimulated with α-galactosylceramide (α-GalCer) to augment the cytotoxic capacity of natural killer (NK) cells. Herein, we describe a flow cytometry-based in vivo killing assay that enables examination of α-GalCer-promoted cytotoxicity against β2 microglobulin knockout (β2M-/-) target cells, which mimic tumor and virus-infected cells displaying little to no MHC class I molecules on their surface. Using an anti-asialo GM1 antibody, which depletes NK cells but not iNKT cells, we confirmed that the increased clearance of β2M-/- cells in α-GalCer-primed recipients was mediated by NK cells. The protocol detailed here can be leveraged to assess the functional fitness of iNKT cells and their crosstalk with NK cells and to further our understanding of α-GalCer-promoted cytotoxicity in preclinical immunotherapeutic applications.
Collapse
Affiliation(s)
- Patrick T Rudak
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, ON, Canada. .,Department of Medicine, Division of Clinical Immunology and Allergy, Western University, London, ON, Canada. .,Department of Surgery, Division of General Surgery, Western University, London, ON, Canada. .,Centre for Human Immunology, Western University, London, ON, Canada. .,Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
12
|
Meilleur CE, Memarnejadian A, Shivji AN, Benoit JM, Tuffs SW, Mele TS, Singh B, Dikeakos JD, Topham DJ, Mu HH, Bennink JR, McCormick JK, Haeryfar SMM. Discordant rearrangement of primary and anamnestic CD8+ T cell responses to influenza A viral epitopes upon exposure to bacterial superantigens: Implications for prophylactic vaccination, heterosubtypic immunity and superinfections. PLoS Pathog 2020; 16:e1008393. [PMID: 32433711 PMCID: PMC7239382 DOI: 10.1371/journal.ppat.1008393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Infection with (SAg)-producing bacteria may precede or follow infection with or vaccination against influenza A viruses (IAVs). However, how SAgs alter the breadth of IAV-specific CD8+ T cell (TCD8) responses is unknown. Moreover, whether recall responses mediating heterosubtypic immunity to IAVs are manipulated by SAgs remains unexplored. We employed wild-type (WT) and mutant bacterial SAgs, SAg-sufficient/deficient Staphylococcus aureus strains, and WT, mouse-adapted and reassortant IAV strains in multiple in vivo settings to address the above questions. Contrary to the popular view that SAgs delete or anergize T cells, systemic administration of staphylococcal enterotoxin B (SEB) or Mycoplasma arthritidis mitogen before intraperitoneal IAV immunization enlarged the clonal size of ‘select’ IAV-specific TCD8 and reshuffled the hierarchical pattern of primary TCD8 responses. This was mechanistically linked to the TCR Vβ makeup of the impacted clones rather than their immunodominance status. Importantly, SAg-expanded TCD8 retained their IFN-γ production and cognate cytolytic capacities. The enhancing effect of SEB on immunodominant TCD8 was also evident in primary responses to vaccination with heat-inactivated and live attenuated IAV strains administered intramuscularly and intranasally, respectively. Interestingly, in prime-boost immunization settings, the outcome of SEB administration depended strictly upon the time point at which this SAg was introduced. Accordingly, SEB injection before priming raised CD127highKLRG1low memory precursor frequencies and augmented the anamnestic responses of SEB-binding TCD8. By comparison, introducing SEB before boosting diminished recall responses to IAV-derived epitopes drastically and indiscriminately. This was accompanied by lower Ki67 and higher Fas, LAG-3 and PD-1 levels consistent with a pro-apoptotic and/or exhausted phenotype. Therefore, SAgs can have contrasting impacts on anti-IAV immunity depending on the naïve/memory status and the TCR composition of exposed TCD8. Finally, local administration of SEB or infection with SEB-producing S. aureus enhanced pulmonary TCD8 responses to IAV. Our findings have clear implications for superinfections and prophylactic vaccination. Exposure to bacterial superantigens (SAgs) is often a consequence of infection with common Gram-positive bacteria causing septic and toxic shock or food poisoning. How SAgs affect the magnitude, breadth and quality of infection/vaccine-elicited CD8+ T cell (TCD8) responses to respiratory viral pathogens, including influenza A viruses (IAVs), is far from clear. Also importantly, superinfections with IAVs and SAg-producing bacteria are serious clinical occurrences during seasonal and pandemic flu and require urgent attention. We demonstrate that two structurally distinct SAgs, including staphylococcal enterotoxin B (SEB), unexpectedly enhance primary TCD8 responses to ‘select’ IAV-derived epitopes depending on the TCR makeup of the responding clones. Intriguingly, the timing of exposure to SEB dictates the outcome of prime-boost immunization. Seeing a SAg before priming raises memory precursor frequencies and augments anamnestic TCD8 responses. Conversely, a SAg encounter before boosting renders TCD8 prone to death or exhaustion and impedes recall responses, thus likely compromising heterosubtypic immunity to IAVs. Finally, local exposure to SEB increases the pulmonary response of immunodominant IAV-specific TCD8. These findings shed new light on how bacterial infections and SAgs influence the effectiveness of anti-IAV TCD8 responses, and have, as such, wide-ranging implications for preventative vaccination and infection control.
Collapse
Affiliation(s)
- Courtney E. Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Arash Memarnejadian
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Adil N. Shivji
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jenna M. Benoit
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Stephen W. Tuffs
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Tina S. Mele
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Division of Critical Care Medicine, Department of Medicine, Western University, London, Ontario, Canada
| | - Bhagirath Singh
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hong-Hua Mu
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jack R. Bennink
- Viral Immunology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John K. McCormick
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology & Allergy, Department of Medicine, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|