1
|
Herrera-Espejo S, Domínguez-Miranda JL, Rodríguez-Mogollo JI, Pachón J, Cordero E, Pachón-Ibáñez ME. Effects of pH on the Pathogenicity of Escherichia coli and Klebsiella pneumoniae on the Kidney: In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:7925. [PMID: 39063167 PMCID: PMC11277208 DOI: 10.3390/ijms25147925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Urine pH reflects the functional integrity of the body and may influence the virulence of uropathogenic Escherichia coli and Klebsiella pneumoniae, the main causes of urinary tract infections (UTIs). This study evaluated the effects of acidic pH on the pathogenicity of uropathogenic E. coli and K. pneumoniae strains, in vitro and in vivo. Four uropathogenic E. coli and four K. pneumoniae strains were used. Biofilm formation, growth competition indices, motility, and adhesion and invasion of human renal cells were analyzed in media with acidic, neutral, and alkaline pH. A murine lower UTI model was used, with urine adjusted to acidic, neutral, or alkaline pH. At acidic pH, E. coli and K. pneumoniae exhibited higher bacterial concentrations in the kidneys and systemic symptoms, including bacteremia. Alkaline urine pH did not affect bacterial concentrations of any strain. In mice with UTIs caused by E. coli Nu14 and K. pneumoniae HUVR42 and acidic urine pH, histopathological studies of the kidneys showed acute inflammation affecting the urothelium and renal parenchyma, which are traits of acute pyelonephritis. These results indicate that acidic pH could increase the pathogenicity of E. coli and K. pneumoniae in murine models of lower UTI, promoting renal infection and acute inflammation.
Collapse
Affiliation(s)
- Soraya Herrera-Espejo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
| | | | - Juan Ignacio Rodríguez-Mogollo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Bassetti M, Labate L, Melchio M, Robba C, Battaglini D, Ball L, Pelosi P, Giacobbe DR. Current pharmacotherapy for methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Expert Opin Pharmacother 2021; 23:361-375. [PMID: 34882041 DOI: 10.1080/14656566.2021.2010706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Currently, several antibiotics are active against methicillin-resistant Staphylococcus aureus (MRSA) and can be used for the treatment of pneumonia. They show great variability in terms of antibiotic class, indication, pharmacodynamic/pharmacokinetic properties, type of available formulations, spectrum of activity against bacteria other than MRSA, and toxicity profile. AREAS COVERED In this narrative review, the authors discuss the characteristics of currently available agents for the treatment of MRSA pneumonia. EXPERT OPINION The availability of different agents with anti-MRSA activity, and approved for the treatment of pneumonia can allow a personalized approach for any given patient based on the severity of the disease, the setting of occurrence, the patient's baseline risk of toxicity and drug interactions, and the possibility of oral therapy whenever early discharge or outpatient treatment are possible. Although some gray areas still remain, like the lack of high certainty evidence on the efficacy of some old agents and on the precise role of companion agents with toxin inhibitory activity in the case of necrotizing pneumonia, the frequent availability of different treatment choices, each with peculiar characteristics, is already allowing an important step toward a precision medicine approach for the treatment of MRSA pneumonia.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Laura Labate
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Monica Melchio
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Reduced Vancomycin Susceptibility, MRSA and Treatment Failure in Pediatric Staphylococcus aureus Bloodstream Infections. Pediatr Infect Dis J 2021; 40:429-433. [PMID: 33196562 PMCID: PMC8592063 DOI: 10.1097/inf.0000000000002992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clinical implications of reduced vancomycin susceptibility (RVS) among pediatric Staphylococcus aureus bloodstream infections are unknown. METHODS We identified all children at 2 children's hospitals with ≥1 blood culture positive for S. aureus. We compared patient and clinical factors for RVS and non-RVS infections using Wilcoxon rank-sum and chi-squared tests. Treatment failure and the duration of bacteremia for RVS versus non-RVS and for methicillin-resistant Staphylococcus aureus (MRSA) versus methicillin-susceptible Staphylococcus aureus (MSSA) infections were compared using multivariable logistic and Poisson regressions, respectively. For MRSA infections, the association of empiric vancomycin monotherapy with treatment failure was assessed using multivariable logistic regression. RESULTS RVS was present in 72% (309/426) of cases. No patient or infection characteristics, including methicillin resistance, were associated with RVS. RVS was associated with an increased duration of bacteremia compared with non-RVS infections, aIRR = 1.15 (95% confidence interval: 1.02-1.30). The odds of treatment failure was similar for RVS and non-RVS infections, aOR = 1.04 (0.62-1.74). In contrast, MRSA infections were more likely to have treatment failure than MSSA infections, aOR = 3.03 (95% confidence interval: 1.84-5.00). For MRSA infections, empiric vancomycin monotherapy was associated with an increased odds of treatment failure compared with non-vancomycin or combination anti-MRSA antibiotics, aOR = 3.23 (1.12-9.26). CONCLUSIONS RVS was common and was associated with a longer duration of bacteremia but not with treatment failure. Treatment failure was more common for MRSA than for MSSA bloodstream infections. Empiric vancomycin monotherapy increased the odds of treatment failure for MRSA infections.
Collapse
|
4
|
Efficacy of Azithromycin in a Mouse Pneumonia Model against Hospital-Acquired Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2019; 63:AAC.00149-19. [PMID: 31235625 DOI: 10.1128/aac.00149-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/10/2019] [Indexed: 11/20/2022] Open
Abstract
The use of macrolides against pneumonia has been reported to improve survival; however, little is known about their efficacy against methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. In this study, we investigated the effect of azithromycin (AZM) and compared it with that of vancomycin (VCM) and daptomycin (DAP) in a murine model of MRSA pneumonia. Mice were infected with MRSA by intratracheal injection and then treated with AZM, VCM, or DAP. The therapeutic effect of AZM, in combination or not with the other drugs, was compared in vivo, whereas the effect of AZM on MRSA growth and toxin mRNA expression was evaluated in vitro. In vivo, the AZM-treated group showed significantly longer survival and fewer bacteria in the lungs 24 h after infection than the untreated group, as well as the other anti-MRSA drug groups. No significant decrease in cytokine levels (interleukin-6 [IL-6] and macrophage inflammatory protein-2 [MIP-2]) in bronchoalveolar lavage fluid or toxin expression levels (α-hemolysin [Hla] and staphylococcal protein A [Spa]) was observed following AZM treatment. In vitro, AZM suppressed the growth of MRSA in late log phase but not in stationary phase. No suppressive effect against toxin production was observed following AZM treatment in vitro In conclusion, contrary to the situation in vitro, AZM was effective against MRSA growth in vivo in our pneumonia model, substantially improving survival. The suppressive effect on MRSA growth at the initial stage of pneumonia could underlie the potential mechanism of AZM action against MRSA pneumonia.
Collapse
|
5
|
Brooks Peterson M, Cohen MN, O'Neill BR, Garg S, Child J, Henthorn TK, Galinkin JG. Preoperative Vancomycin Administration for Surgical Site Prophylaxis: Plasma and Soft-Tissue Concentrations in Pediatric Neurosurgical and Orthopedic Patients. Anesth Analg 2019; 130:1435-1444. [PMID: 31397701 DOI: 10.1213/ane.0000000000004340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Vancomycin is used for antibiotic prophylaxis in pediatric surgical patients without a complete understanding of plasma and soft-tissue pharmacokinetics. Guidelines recommend incision within 60 minutes after administration; however, tissue vancomycin concentrations at that early time may not be therapeutic. We conducted a study of plasma and skin concentrations in pediatric neurosurgical and orthopedic patients to characterize intraoperative vancomycin pharmacokinetics. METHODS Patients (0.1-18.8 years of age) undergoing posterior spinal fusion (n = 30) or ventriculoperitoneal shunt placement (n = 30) received intravenous vancomycin 15 mg/kg (maximum 1000 mg) over 1 hour. Skin was biopsied at incision and skin closure. Blood samples were collected at incision, at 2 and 4 hours intraoperatively, and at closure. Population pharmacokinetic analysis was performed to characterize pharmacokinetic parameter estimates and to develop a model of intraoperative plasma and skin vancomycin concentrations versus time. RESULTS Pharmacokinetic analysis included data from 59 subjects, 130 plasma samples, and 107 skin samples. A 2-compartment model, volume of the central (Vc) and volume of the peripheral compartment (V2), proved to have the best fit. Stepwise covariate selection yielded a significant relationship for body surface area on elimination clearance and body weight on V2. Skin vancomycin concentrations rose continuously during surgery. Modeling predicted that equilibration of skin and plasma vancomycin concentrations took ≥5 hours. CONCLUSIONS Skin vancomycin concentrations immediately after a preoperative dose are relatively low compared with concentrations at the end of surgery. It may be advisable to extend the time between dose and incision if higher skin concentrations are desired at the start of surgery.
Collapse
Affiliation(s)
| | | | | | - Sumeet Garg
- Department of Orthopedic Surgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Jason Child
- Department of Pharmacy, Children's Hospital Colorado, Aurora, Colorado
| | - Thomas K Henthorn
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
6
|
Evaluation of the clinical relevance of vancomycin for the treatment of Lyme disease. Wien Klin Wochenschr 2019; 135:185-189. [PMID: 31076888 DOI: 10.1007/s00508-019-1505-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Vancomycin is active in vitro and in vivo in mouse systems against Lyme disease borrelia; however, there are no published data on the efficacy of vancomycin in patients with Lyme disease and no convincing theoretical advantages of vancomycin over the currently used and highly effective orally administered antimicrobial agents, including doxycycline, amoxicillin and cefuroxime axetil. In addition, vancomycin may cause a wide variety of potentially serious adverse effects and requires the placement of an intravenous catheter. It is concluded that vancomycin is a much less attractive option for the treatment of patients with early Lyme disease (or any other manifestation of Lyme disease), compared with the antimicrobials currently being used. Based on available evidence, clinical studies to evaluate the safety and efficacy of vancomycin for Lyme disease cannot be recommended.
Collapse
|
7
|
Li B, Jin Y, Xiang H, Mu D, Yang P, Li X, Zhong L, Cao J, Xu D, Gong Q, Wang T, Wang L, Wang D. An Inhibitory Effect of Dryocrassin ABBA on Staphylococcus aureus vWbp That Protects Mice From Pneumonia. Front Microbiol 2019; 10:7. [PMID: 30728809 PMCID: PMC6351477 DOI: 10.3389/fmicb.2019.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/07/2019] [Indexed: 01/18/2023] Open
Abstract
Von Willebrand factor-binding protein (vWbp), secreted by Staphylococcus aureus (S. aureus), can activate host prothrombin, convert fibrinogen to fibrin clots, induce blood clotting, and contribute to pathophysiology of S. aureus-related diseases, including infective endocarditis, staphylococcal sepsis and pneumonia. Therefore, vWbp is an promising drug target in the treatment of S. aureus-related infections. Here, we report that dryocrassin ABBA (ABBA), a natural compound derived from Dryopteris crassirhizoma, can significantly inhibit the coagulase activity of vWbp in vitro by directly interacting with vWbp without killing the bacteria or inhibiting the expression of the vWbp. Using molecular dynamics simulations, we demonstrate that ABBA binds to the "central cavity" in the elbow of vWbp by interacting with Arg-70, His-71, Ala-72, Gly-73, Tyr-74, Glu-75, Tyr-83, and Gln-87 in vWbp, thus interfering with the binding of vWbp to prothrombin. Furthermore, in vivo studies demonstrated that ABBA can attenuate injury and inflammation of mouse lung tissues caused by S. aureus and increase survival of mice. Together these findings indicate that ABBA is a promising lead drug for the treatment of S. aureus-related infections. This is the first report of potential inhibitor which inhibit the coagulase activity of vWbp by directly interacting with vWbp.
Collapse
Affiliation(s)
- Bangbang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingli Jin
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hua Xiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan Mu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Panpan Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xianmei Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Ling Zhong
- College of Animal Sciences, Jilin University, Changchun, China
| | - Junjie Cao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Dan Xu
- Shen Yang Weijia Animal Husbandry Company Limited, Shenyang, China
| | - Qian Gong
- College of Humanities & Sciences of Northeast Normal University, Changchun, China
| | - Tiedong Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dacheng Wang
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
8
|
de Souza Constantino L, da Rosa Guimarães T, de Oliveira SQ, Bianco ÉM, de Souza Pessoa LG, Michels M, Schenkel EP, Dal Pizzol F, Reginatto FH. TSH fraction from Petromica citrina: A potential marine natural product for the treatment of sepsis by Methicillin-resistant Staphylococcus aureus (MRSA). Pharmacotherapy 2018; 108:1759-1766. [DOI: 10.1016/j.biopha.2018.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
9
|
Liu P, Capitano B, Stein A, El-Solh AA. Clinical outcomes of linezolid and vancomycin in patients with nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus stratified by baseline renal function: a retrospective, cohort analysis. BMC Nephrol 2017; 18:168. [PMID: 28532398 PMCID: PMC5440938 DOI: 10.1186/s12882-017-0581-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/12/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The primary objective of this study is to assess whether baseline renal function impacts treatment outcomes of linezolid and vancomycin (with a dose-optimized regimen) for methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. METHODS We conducted a retrospective cohort analysis of data generated from a prospective, randomized, controlled clinical trial (NCT 00084266). The analysis included 405 patients with culture-proven MRSA pneumonia. Baseline renal function was stratified based on creatinine clearance. Clinical and microbiological success rates and presence of nephrotoxicity were assessed at the end of treatment (EOT) and end of study (EOS). Multivariate logistic regression analyses of baseline patient characteristics, including treatment, were performed to identify independent predictors of efficacy. Vancomycin concentrations were analyzed using a nonlinear mixed-effects modeling approach. The relationships between vancomycin exposures, pharmacokinetic-pharmacodynamic index (trough concentration, area under the curve over a 24-h interval [AUC0-24], and AUC0-24/MIC) and efficacy/nephrotoxicity were assessed in MRSA pneumonia patients using univariate logistic regression or Cox proportional hazards regression analysis approach. RESULTS After controlling for use of vasoactive agents, choice of antibiotic therapy and bacteremia, baseline renal function was not correlated with clinical and microbiological successes in MRSA pneumonia at either end of treatment or at end of study for both treatment groups. No positive association was identified between vancomycin exposures and efficacy in these patients. Higher vancomycin exposures were correlated with an increased risk of nephrotoxicity (e.g., hazards ratio [95% confidence interval] for a 5 μg/ml increase in trough concentration: 1.42 [1.10, 1.82]). CONCLUSIONS In non-dialysis patients, baseline renal function did not impact the differences in efficacy or nephrotoxicity with treatment of linezolid versus vancomycin in MRSA pneumonia.
Collapse
Affiliation(s)
- Ping Liu
- Clinical Pharmacology, Global Established Pharma Business, Pfizer Inc, Groton, CT USA
| | - Blair Capitano
- Medical Affairs, Specialty Care, Pfizer Inc., Collegeville, PA USA
| | - Amy Stein
- Customer Solutions, Biostatistics, Quintiles, Durham, NC USA
| | - Ali A. El-Solh
- Division of Pulmonary, Critical Care and Sleep Medicine, University at Buffalo, Buffalo, NY USA
- VA Western New York Healthcare System, Medical Research, Bldg. 20 (151) VISN02, 3495 Bailey Avenue, Buffalo, NY 14215-1199 USA
| |
Collapse
|
10
|
Domínguez-Herrera J, López-Rojas R, Smani Y, Labrador-Herrera G, Pachón J. Efficacy of ceftaroline versus vancomycin in an experimental foreign-body and systemic infection model caused by biofilm-producing methicillin-resistant Staphylococcus epidermidis. Int J Antimicrob Agents 2016; 48:661-665. [PMID: 28128094 DOI: 10.1016/j.ijantimicag.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/02/2016] [Accepted: 09/03/2016] [Indexed: 11/22/2022]
Abstract
In this study, the efficacy of ceftaroline versus vancomycin against biofilm-producing methicillin-resistant Staphylococcus epidermidis (MRSE) in a murine model of foreign-body and systemic infection was compared. Two bacteraemic biofilm-producing MRSE strains were used (SE284 and SE385). The minimum inhibitory concentrations (MICs) for strains SE284 and SE385, were, respectively, 0.25 mg/L and 0.5 mg/L for ceftaroline and 4 mg/L and 2 mg/L for vancomycin. The in vitro bactericidal activities of ceftaroline and vancomycin were evaluated using time-kill curves. A foreign-body and systemic infection model in neutropenic female C57BL/6 mice was used to ascertain in vivo efficacy. Animals were randomly allocated into three groups (n = 15) without treatment (controls) or treated with ceftaroline 50 mg/kg every 8 h or vancomycin 110 mg/kg every 6 h. In vitro, ceftaroline showed concentration-dependent bactericidal activity, whilst vancomycin presented time-dependent activity. In the experimental in vivo model, ceftaroline and vancomycin decreased the liver and catheter bacterial concentrations (P <0.05) and increased survival (P <0.05) for both strains. In conclusion, ceftaroline is as effective as vancomycin in the treatment of experimental foreign-body and systemic infection caused by biofilm-producing MRSE.
Collapse
Affiliation(s)
- Juan Domínguez-Herrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
| | - Rafael López-Rojas
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Younes Smani
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Gema Labrador-Herrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
11
|
Zhao M, Lepak AJ, Andes DR. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem 2016; 24:6390-6400. [PMID: 27887963 DOI: 10.1016/j.bmc.2016.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/28/2022]
Abstract
Animal infection models in the pharmacokinetic/pharmacodynamic (PK/PD) evaluation of antimicrobial therapy serve an important role in preclinical assessments of new antibiotics, dosing optimization for those that are clinically approved, and setting or confirming susceptibility breakpoints. The goal of animal model studies is to mimic the infectious diseases seen in humans to allow for robust PK/PD studies to find the optimal drug exposures that lead to therapeutic success. The PK/PD index and target drug exposures obtained in validated animal infection models are critical components in optimizing dosing regimen design in order to maximize efficacy while minimize the cost and duration of clinical trials. This review outlines the key components in animal infection models which have been used extensively in antibiotic discovery and development including PK/PD analyses.
Collapse
Affiliation(s)
- Miao Zhao
- Institute of Antibiotics Hua-shan Hospital, Fudan University & Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, China; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alexander J Lepak
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial VA Hospital, Madison, WI, USA.
| |
Collapse
|
12
|
Abstract
The increasing number of infections produced by beta-lactam-resistant Gram-positive bacteria and the morbidity secondary to these infections make it necessary to optimize the use of vancomycin. In 2009, the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Disease Pharmacists published specific guidelines about vancomycin dosage and monitoring. However, these guidelines have not been updated in the past 6 years. This review analyzes the new available information about vancomycin published in recent years regarding pharmacokinetics and pharmacodynamics, serum concentration monitoring, and optimal vancomycin dosing in special situations (obese people, burn patients, renal replacement therapy, among others). Vancomycin efficacy is linked to a correct dosage which should aim to reach an area under the curve (AUC)/MIC ratio of ≥400; serum trough levels of 15 to 20 mg/liter are considered a surrogate marker of an AUC/MIC ratio of ≥400 for a MIC of ≤1 mg/liter. For Staphylococcus aureus strains presenting with a MIC >1 mg/liter, an alternative agent should be considered. Vancomycin doses must be adjusted according to body weight and the plasma trough levels of the drug. Nephrotoxicity has been associated with target vancomycin trough levels above 15 mg/liter. Continuous infusion is an option, especially for patients at high risk of renal impairment or unstable vancomycin clearance. In such cases, vancomycin plasma steady-state level and creatinine monitoring are strongly indicated.
Collapse
|
13
|
Assessments of Thioridazine as a Helper Compound to Dicloxacillin against Methicillin-Resistant Staphylococcus aureus: In Vivo Trials in a Mouse Peritonitis Model. PLoS One 2015; 10:e0135571. [PMID: 26267376 PMCID: PMC4534400 DOI: 10.1371/journal.pone.0135571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/23/2015] [Indexed: 02/06/2023] Open
Abstract
Introduction The rise in antimicrobial resistance is a major global concern and requires new treatment strategies. The use of helper compounds, such as thioridazine (TDZ), an antipsychotic drug, in combination with traditional antibiotics must be investigated. Objectives The aim of this study was to investigate the efficacy of TDZ as a helper compound for dicloxacillin (DCX) against methicillin-resistant Staphylococcus aureus (MRSA) in vivo, and compare the combination treatment of DCX+TDZ with vancomycin (VAN). Methods Mice were inoculated with an intraperitoneal (IP) injection of MRSA (108 CFU) and treated in a 12-hour cycle for 48 hours. By termination, bacterial quantities in a peritoneal flush, spleen and kidneys were obtained. In the main trial the drugs were administered subcutaneously in five treatment groups: 1) DCX, 2) TDZ, 3) DCX+TDZ, 4) VAN, 5) SALINE. Additional smaller studies with IP administration and higher subcutaneous dosages (×1.5 and ×4) of the drugs were subsequently performed. Results In the main trial no significant differences were found between DCX+TDZ and DCX or TDZ alone (p≥0.121–0.999). VAN performed significantly better than DCX+TDZ on all bacteriological endpoints (p<0.001). Higher subcutaneous dosages of DCX and TDZ improved the antibacterial efficacy, but the combination treatment was still not significantly better than monotherapy. IP drug administration of DCX+TDZ revealed a significantly better antibacterial effect than DCX or TDZ alone (p<0.001) but not significantly different from VAN (p>0.999). Conclusion In conclusion, TDZ did not prove to be a viable helper compound for dicloxacillin against MRSA in subcutaneous systemic treatment. However, IP-administration of DCX+TDZ, directly at the infection site resulted in a synergetic effect, with efficacy comparable to that of VAN.
Collapse
|
14
|
Chastre J, Blasi F, Masterton RG, Rello J, Torres A, Welte T. European perspective and update on the management of nosocomial pneumonia due to methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin Microbiol Infect 2014; 20 Suppl 4:19-36. [PMID: 24580739 DOI: 10.1111/1469-0691.12450] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of antimicrobial-resistant hospital-acquired infections worldwide and remains a public health priority in Europe. Nosocomial pneumonia (NP) involving MRSA often affects patients in intensive care units with substantial morbidity, mortality and associated costs. A guideline-based approach to empirical treatment with an antibacterial agent active against MRSA can improve the outcome of patients with MRSA NP, including those with ventilator-associated pneumonia. New methods may allow more rapid or sensitive diagnosis of NP or microbiological confirmation in patients with MRSA NP, allowing early de-escalation of treatment once the pathogen is known. In Europe, available antibacterial agents for the treatment of MRSA NP include the glycopeptides (vancomycin and teicoplanin) and linezolid (available as an intravenous or oral treatment). Vancomycin has remained a standard of care in many European hospitals; however, there is evidence that it may be a suboptimal therapeutic option in critically ill patients with NP because of concerns about its limited intrapulmonary penetration, increased nephrotoxicity with higher doses, as well as the emergence of resistant strains that may result in increased clinical failure. Linezolid has demonstrated high penetration into the epithelial lining fluid of patients with ventilator-associated pneumonia and shown statistically superior clinical efficacy versus vancomycin in the treatment of MRSA NP in a phase IV, randomized, controlled study. This review focuses on the disease burden and clinical management of MRSA NP, and the use of linezolid after more than 10 years of clinical experience.
Collapse
Affiliation(s)
- J Chastre
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|
15
|
Figueiredo AMS, Ferreira FA. The multifaceted resources and microevolution of the successful human and animal pathogen methicillin-resistant Staphylococcus aureus. Mem Inst Oswaldo Cruz 2014; 109:265-78. [PMID: 24789555 PMCID: PMC4131778 DOI: 10.1590/0074-0276140016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important bacterial pathogens based on its incidence and the severity of its associated infections. In addition, severe MRSA infections can occur in hospitalised patients or healthy individuals from the community. Studies have shown the infiltration of MRSA isolates of community origin into hospitals and variants of hospital-associated MRSA have caused infections in the community. These rapid epidemiological changes represent a challenge for the molecular characterisation of such bacteria as a hospital or community-acquired pathogen. To efficiently control the spread of MRSA, it is important to promptly detect the mecA gene, which is the determinant of methicillin resistance, using a polymerase chain reaction-based test or other rapidly and accurate methods that detect the mecA product penicillin-binding protein (PBP)2a or PBP2'. The recent emergence of MRSA isolates that harbour a mecA allotype, i.e., the mecC gene, infecting animals and humans has raised an additional and significant issue regarding MRSA laboratory detection. Antimicrobial drugs for MRSA therapy are becoming depleted and vancomycin is still the main choice in many cases. In this review, we present an overview of MRSA infections in community and healthcare settings with focus on recent changes in the global epidemiology, with special reference to the MRSA picture in Brazil.
Collapse
Affiliation(s)
- Agnes Marie Sá Figueiredo
- Departamento de Microbiologia Médica , Instituto de Microbiologia Paulo de
Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ ,
Brasil
| | | |
Collapse
|
16
|
Jacqueline C, Broquet A, Roquilly A, Davieau M, Caillon J, Altare F, Potel G, Asehnoune K. Linezolid dampens neutrophil-mediated inflammation in methicillin-resistant Staphylococcus aureus-induced pneumonia and protects the lung of associated damages. J Infect Dis 2014; 210:814-23. [PMID: 24620024 DOI: 10.1093/infdis/jiu145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Linezolid is considered as a therapeutic alternative to the use of glycopeptides for the treatment of pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA). Clinical studies reported a potent survival advantage conferred by the oxazolidinone and called into question the use of glycopeptides as first-line therapy. METHODS In a mouse model of MRSA-induced pneumonia, quantitative bacteriology, proinflammatory cytokine concentrations in lung, myeloperoxidase activity, Ly6G immunohistochemistry, and endothelial permeability were assessed to compare therapeutic efficacy and immunomodulative properties of linezolid and vancomycin administered subcutaneously every 12 hours. RESULTS Significant antibacterial activity was achieved after 48 hours of treatment for linezolid and vancomycin. Levels of interleukin 1β, a major proinflammatory cytokine, and macrophage inflammatory protein 2, a chemokine involved in the recruitment of neutrophils, were decreased by both antimicrobials. Only linezolid was able to dramatically reduce the production of tumor necrosis factor α. Analysis of myeloperoxidase activity and Ly6G immunostaining showed a dramatic decrease of neutrophil infiltration in infected lung tissues for linezolid-treated animals. A time-dependent increase of endothelial permeability was observed for the control and vancomycin regimens. Of interest, in the linezolid group, decreased endothelial permeability was detected 48 hours after infection. CONCLUSIONS Our results indicate that linezolid could be superior to vancomycin for the management of MRSA pneumonia by attenuating an excessive inflammatory reaction and protecting the lung from pathogen-associated damages.
Collapse
Affiliation(s)
- Cédric Jacqueline
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Alexis Broquet
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Antoine Roquilly
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Marion Davieau
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Jocelyne Caillon
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Frédéric Altare
- Université de Nantes, INSERM U892, CNRS UMR 6299, Nantes, France
| | - Gilles Potel
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Karim Asehnoune
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| |
Collapse
|
17
|
Croisier-Bertin D, Hayez D, Da Silva S, Labrousse D, Biek D, Badiou C, Dumitrescu O, Guerard P, Charles PE, Piroth L, Lina G, Vandenesch F, Chavanet P. In vivo efficacy of ceftaroline fosamil in a methicillin-resistant panton-valentine leukocidin-producing Staphylococcus aureus rabbit pneumonia model. Antimicrob Agents Chemother 2014; 58:1855-61. [PMID: 24395236 PMCID: PMC4023709 DOI: 10.1128/aac.01707-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/20/2013] [Indexed: 01/03/2023] Open
Abstract
Ceftaroline, the active metabolite of the prodrug ceftaroline fosamil, is a cephalosporin with broad-spectrum in vitro activity against Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Streptococcus pneumoniae (MDRSP), and common Gram-negative pathogens. This study investigated the in vivo activity of ceftaroline fosamil compared with clindamycin, linezolid, and vancomycin in a severe pneumonia model due to MRSA-producing Panton-Valentine leukocidin (PVL). A USA300 PVL-positive clone was used to induce pneumonia in rabbits. Infected rabbits were randomly assigned to no treatment or simulated human-equivalent dosing with ceftaroline fosamil, clindamycin, linezolid, or vancomycin. Residual bacterial concentrations in the lungs and spleen were assessed after 48 h of treatment. PVL expression was measured using a specific enzyme-linked immunosorbent assay (ELISA). Ceftaroline, clindamycin, and linezolid considerably reduced mortality rates compared with the control, whereas vancomycin did not. Pulmonary and splenic bacterial titers and PVL concentrations were greatly reduced by ceftaroline, clindamycin, and linezolid. Ceftaroline, clindamycin, and linezolid were associated with reduced pulmonary tissue damage based on significantly lower macroscopic scores. Ceftaroline fosamil, clindamycin, and, to a lesser extent, linezolid were efficient in reducing bacterial titers in both the lungs and spleen and decreasing macroscopic scores and PVL production compared with the control.
Collapse
Affiliation(s)
| | | | | | | | | | - Cedric Badiou
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, and CNRS, UMR 5308, Lyon, France
| | - Oana Dumitrescu
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, and CNRS, UMR 5308, Lyon, France
| | | | - Pierre-Emmanuel Charles
- Ventilator Innate Immunity Pneumonia Team, Pôle M.E.R.S., UMR 1347, INRA, Burgundy University, Dijon, France
| | - Lionel Piroth
- Département Infectiologie, University Hospital, Dijon, France
| | - Gerard Lina
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, and CNRS, UMR 5308, Lyon, France
| | - Francois Vandenesch
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, and CNRS, UMR 5308, Lyon, France
| | - Pascal Chavanet
- Vivexia Laboratory, Dijon, France
- Département Infectiologie, University Hospital, Dijon, France
| |
Collapse
|
18
|
Assessment of an anti-alpha-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. Antimicrob Agents Chemother 2013; 58:1108-17. [PMID: 24295977 DOI: 10.1128/aac.02190-13] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alpha-toxin (AT) is a major virulence factor in the disease pathogenesis of Staphylococcus aureus. We previously identified a monoclonal antibody (MAb) against AT that reduced disease severity in a mouse dermonecrosis model. Here, we evaluate the activity of an affinity-optimized variant, LC10, in a mouse model of S. aureus pneumonia. Passive immunization with LC10 increased survival and reduced bacterial numbers in the lungs and kidneys of infected mice and showed protection against diverse S. aureus clinical isolates. The lungs of S. aureus-infected mice exhibited bacterial pneumonia, including widespread inflammation, whereas the lungs of mice that received LC10 exhibited minimal inflammation and retained healthy architecture. Consistent with reduced immune cell infiltration, LC10-treated animals had significantly lower (P < 0.05) proinflammatory cytokine and chemokine levels in the bronchoalveolar lavage fluid than did those of the control animals. This reduction in inflammation and damage to the LC10-treated animals resulted in reduced vascular protein leakage and CO2 levels in the blood. LC10 was also assessed for its therapeutic activity in combination with vancomycin or linezolid. Treatment with a combination of LC10 and vancomycin or linezolid resulted in a significant increase (P < 0.05) in survival relative to the monotherapies and was deemed additive to synergistic by isobologram analysis. Consistent with improved survival, the lungs of animals treated with antibiotic plus LC10 exhibited less inflammatory tissue damage than those that received monotherapy. These data provide insight into the mechanisms of protection provided by AT inhibition and support AT as a promising target for immunoprophylaxis or adjunctive therapy against S. aureus pneumonia.
Collapse
|
19
|
Gonzalez N, Sevillano D, Alou L, Cafini F, Gimenez MJ, Gomez-Lus ML, Prieto J, Aguilar L. Influence of the MBC/MIC ratio on the antibacterial activity of vancomycin versus linezolid against methicillin-resistant Staphylococcus aureus isolates in a pharmacodynamic model simulating serum and soft tissue interstitial fluid concentrations reported in diabetic patients. J Antimicrob Chemother 2013; 68:2291-5. [PMID: 23674766 DOI: 10.1093/jac/dkt185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES To explore serum and tissue pharmacodynamics of linezolid versus vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates with different MBC/MIC ratios. METHODS Five strains (vancomycin MIC/MBCs, mg/L) were used: TOL-1 (2/≥64), TOL-2 (1/16), LT-1 and LT-2 (1/8) and NT (1/2). The linezolid MIC/MBC for all strains was 2/≥64 mg/L. A two-compartment dynamic computerized device was used (inocula 10(7) cfu/mL). Free concentrations obtained in serum and interstitial fluid with twice-daily regimens of 1 g of vancomycin or 600 mg of linezolid were simulated over 48 h. ABBCs (differences between control growth curves and killing curves of bacteria exposed to antibiotics; log10 cfu × h/mL) and log10 reductions in initial inocula were calculated. RESULTS In serum simulations, vancomycin (AUC0-24/MIC = 251.8 for TOL-1 and 503.6 for the remaining strains) was bacteriostatic against strains with MBC/MIC ≥8, but bactericidal against NT. In interstitial fluid simulations (AUC0-24/MIC = 54.6 for TOL-1 and 109.2 for the remaining strains), initial inocula grew in all cases. Linezolid, both in serum (AUC0-24/MIC = 87.0) and in interstitial fluid (AUC0-24/MIC = 130.6) simulations, reduced initial inocula ≥2.2 log10 for all strains (apart from LT-1 in serum simulations that showed a bacteriostatic profile). ABBCs were similar in serum and interstitial fluid with linezolid, but significantly lower in interstitial fluid simulations with vancomycin. CONCLUSIONS From the pharmacodynamic perspective (serum concentrations), vancomycin tolerance should include MBC/MIC ≥8 since strains exhibiting this ratio showed bacteriostatic profiles similar to those obtained with isolates with MBC/MIC ratios of 16 or 32. Insufficient concentrations of vancomycin at the simulated infected site were linked to bacteriological failure. Free concentrations of linezolid at the infection site pharmacodynamically covered MRSA.
Collapse
Affiliation(s)
- Natalia Gonzalez
- Microbiology Unit, Medicine Department, School of Medicine, Universidad Complutense, Avda. Complutense s/n, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: meta-analysis of randomised controlled trials. Eur J Clin Microbiol Infect Dis 2013; 32:1121-8. [PMID: 23568605 DOI: 10.1007/s10096-013-1867-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/14/2013] [Indexed: 01/09/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial pneumonia. Compared with glycopeptide antibiotics, linezolid achieves higher lung epithelial lining fluid concentrations, which may have an advantage in treating nosocomial pneumonia patients. The objective of this study was to evaluate the efficacy and safety of linezolid versus vancomycin or teicoplanin for the treatment of nosocomial pneumonia. Data were obtained from the Cochrane Central Register of Controlled Trials and the EMBASE and MEDLINE databases. Randomised controlled studies involving the use of linezolid versus vancomycin or teicoplanin in nosocomial pneumonia patients were included in the study. Twelve linezolid trials were included. There was no statistically significant difference between the two groups in the treatment of nosocomial pneumonia regarding the clinical cure rate [relative risk (RR) = 1.08, 95 % confidence interval (CI) = 1.00-1.17, p = 0.06]. Linezolid was associated with better microbiological eradication rate in nosocomial pneumonia patients compared with glycopeptide antibiotics (RR = 1.16, 95 % CI = 1.03-1.31, p = 0.01). There were no differences in the all-cause mortality (RR = 0.95, 95 % CI = 0.83-1.09, p = 0.46) between the two groups. However, the risks of rash (RR = 0.41, 95 % CI = 0.24-0.71, p = 0.001) and renal dysfunction (RR = 0.41, 95 % CI = 0.27-0.64, p < 0.0001) were higher with glycopeptide antibiotics. Although linezolid was more effective in eradicating microbiology than glycopeptide antibiotics for nosocomial pneumonia patients, it did not demonstrate superiority in clinical cure. The incidences of renal dysfunction and rash are higher in the glycopeptide antibiotics group.
Collapse
|
22
|
Schröppel K, Riessen R. [Multiresistant gram-negative bacteria. A bacterial challenge of the twenty-first century]. Med Klin Intensivmed Notfmed 2013; 108:107-12. [PMID: 23479223 DOI: 10.1007/s00063-012-0160-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
The incidence of human-pathogenic microorganisms with resistance or even complete insensitivity to broad-spectrum antibiotics is increasing. This poses a serious challenge to infection control in hospitals and to hygiene strategies in clinical areas with critically ill patients, particularly intensive care or transplant units. These microorganisms create problems that are seemingly impossible to solve at present. The management of gram-positive pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) has been facilitated by evidence-based recommendations resulting in a measurable decrease in the incidence of infection and, where treatment is concerned, in a selection of reliably effective drugs for clinicians. However, in the more frequent cases of multiresistant gram-negative (MRGN) pathogens, the only option is the use of poorly defined regimens with older drugs, which carry the risk of serious side effects and organ toxicities. This article presents a comparative analysis of hospital hygiene management for MRSA and MRGN pathogens, pointing out both similarities and features which are unique to MRGN pathogens.
Collapse
Affiliation(s)
- K Schröppel
- medhyg Institut für Medizinhygiene, Denzenbergstr. 20, 72072, Tübingen.
| | | |
Collapse
|
23
|
Watkins RR, Lemonovich TL, File TM. An evidence-based review of linezolid for the treatment of methicillin-resistant Staphylococcus aureus (MRSA): place in therapy. CORE EVIDENCE 2012; 7:131-43. [PMID: 23271985 PMCID: PMC3526863 DOI: 10.2147/ce.s33430] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), including community-associated and hospital-associated strains, is a major cause of human morbidity and mortality. Treatment options have become limited due to the emergence of MRSA strains with decreased sensitivity to vancomycin, which has long been the first-line therapy for serious infections. This has prompted the search for novel antibiotics that are efficacious against MRSA. Linezolid, an oxazolidinone class of antibiotic, was approved by the Food and Drug Administration in 2000 for treatment of MRSA infections. Since then, there have been a multitude of clinical trials and research studies evaluating the effectiveness of linezolid against serious infections, including pneumonia (both community- and hospital-acquired), skin and soft-tissue infections such as diabetic foot ulcers, endocarditis, osteomyelitis, prosthetic devices, and others. The primary aim of this review is to provide an up-to-date evaluation of the clinical evidence for using linezolid to treat MRSA infections, with a focus on recently published studies, including those on nosocomial pneumonia. Other objectives are to analyze the cost-effectiveness of linezolid compared to other agents, and to review the pharmokinetics and pharmacodynamics of linezolid, emphasizing the most current concepts.
Collapse
Affiliation(s)
- Richard R Watkins
- Division of Infectious Diseases, Akron General Medical Center, Akron, OH, USA
| | - Tracy L Lemonovich
- Division of Infectious Diseases and HIV Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Thomas M File
- Division of Infectious Diseases, Summa Health System, Akron, OH, USA
| |
Collapse
|