1
|
Wale YM, Roberts JA, Sime FB. Dynamic In Vitro PK/PD Infection Models for the Development and Optimisation of Antimicrobial Regimens: A Narrative Review. Antibiotics (Basel) 2024; 13:1201. [PMID: 39766591 PMCID: PMC11672834 DOI: 10.3390/antibiotics13121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The antimicrobial concentration-time profile in humans affects antimicrobial activity, and as such, it is critical for preclinical infection models to simulate human-like dynamic concentration-time profiles for maximal translatability. This review discusses the setup, principle, and application of various dynamic in vitro PK/PD infection models commonly used in the development and optimisation of antimicrobial treatment regimens. It covers the commonly used dynamic in vitro infection models, including the one-compartment model, hollow fibre infection model, biofilm model, bladder infection model, and aspergillus infection model. It summarises the mathematical methods for the simulation of the pharmacokinetic profile of single or multiple antimicrobials when using the serial or parallel configurations of in vitro systems. Dynamic in vitro models offer reliable pharmacokinetic/pharmacodynamic data to help define the initial dosing regimens of new antimicrobials that can be developed further in clinical trials. They can also help in the optimisation of dosing regimens for existing antimicrobials, especially in the presence of emerging antimicrobial resistance. In conclusion, dynamic in vitro infection models replicate the interactions that occur between microorganisms and dynamic antimicrobial exposures in the human body to generate data highly predictive of the clinical efficacy. They are particularly useful for the development new treatment strategies against antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Yalew M. Wale
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Jason A. Roberts
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia
- Division of Anesthesia Critical Care and Emergency and Pain Medicine, Nimes University Hospital, University of Montpellier, UR UM 103, 34090 Nimes, France
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, QLD 4006, Australia
| | - Fekade B. Sime
- Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| |
Collapse
|
2
|
Mikziński P, Kraus K, Widelski J, Paluch E. Modern Microbiological Methods to Detect Biofilm Formation in Orthopedy and Suggestions for Antibiotic Therapy, with Particular Emphasis on Prosthetic Joint Infection (PJI). Microorganisms 2024; 12:1198. [PMID: 38930580 PMCID: PMC11205407 DOI: 10.3390/microorganisms12061198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Biofilm formation is a serious problem that relatively often causes complications in orthopedic surgery. Biofilm-forming pathogens invade implanted foreign bodies and surrounding tissues. Such a condition, if not limited at the appropriate time, often requires reoperation. This can be partially prevented by selecting an appropriate prosthesis material that prevents the development of biofilm. There are many modern techniques available to detect the formed biofilm. By applying them we can identify and visualize biofilm-forming microorganisms. The most common etiological factors associated with biofilms in orthopedics are: Staphylococcus aureus, coagulase-negative Staphylococci (CoNS), and Enterococcus spp., whereas Gram-negative bacilli and Candida spp. also deserve attention. It seems crucial, for therapeutic success, to eradicate the microorganisms able to form biofilm after the implantation of endoprostheses. Planning the effective targeted antimicrobial treatment of postoperative infections requires accurate identification of the microorganism responsible for the complications of the procedure. The modern microbiological testing techniques described in this article show the diagnostic options that can be followed to enable the implementation of effective treatment.
Collapse
Affiliation(s)
- Paweł Mikziński
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (P.M.); (K.K.)
| | - Karolina Kraus
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (P.M.); (K.K.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland;
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chalubinskiego 4, 50-376 Wroclaw, Poland
| |
Collapse
|
3
|
Kunz Coyne AJ, Stamper K, Bleick C, Kebriaei R, Lehman SM, Rybak MJ. Synergistic bactericidal effects of phage-enhanced antibiotic therapy against MRSA biofilms. Microbiol Spectr 2024; 12:e0321223. [PMID: 38411110 PMCID: PMC10986480 DOI: 10.1128/spectrum.03212-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes biofilm-related medical device infections. Phage-antibiotic combinations offer potential therapy due to proven in vitro antibiofilm efficacy. We evaluated phage-antibiotic synergy against biofilms using modified checkerboard and 24-h time-kill assays. Humanized-simulated daptomycin (DAP) (10, 8, and 6 mg/kg q24h) and ceftaroline (CPT) (600 mg q12h) were combined with Intesti13, Sb-1, and Romulus phages (tMOI 1, q12h). Assays were conducted in 168-h biofilm reactor models against DAP non-susceptible (DNS) vancomycin intermediate S. aureus (VISA) MRSA D712 and DAP-susceptible MRSA 8014. Synergistic activity and bactericidal activity were defined as ≥2log10 CFU/mL reduction from antibiotic-only regimens and ≥3log10 CFU/mL decrease from baseline at 24 h. Differences were analyzed by one-way analysis of variance with Tukey's post hoc test (P ≤ 0.05 is considered significant). Surviving bacteria were examined for antibiotic minimum biofilm inhibitory concentration (MBIC) changes and phage susceptibility. In 168-h biofilm models, humanized DAP 10 mg/kg + CPT, combined with a 2-phage cocktail (Intesti13 + Sb-1) against D712, and a 3-phage cocktail (Intesti13 + Sb-1 + Romulus) against 8014, demonstrated synergistic bactericidal activity. At 168 h, bacteria were minimally detectable [2log10 CFU/cm2 (-Δ4.23 and -Δ4.42 log10 CFU/cm2; both P < 0.001)]. Antibiotic MBIC remained unchanged compared to baseline across various time points. None of the tested bacteria at 168 h exhibited complete phage resistance. This study reveals bactericidal efficacy of DAP + CPT with 2-phage and 3-phage cocktails against DNS VISA and MRSA isolates (D712 and 8014) in biofilm models, maintaining susceptibility. Further research is needed for diverse strains and durations, aligning with infection care. IMPORTANCE The prevalence of biofilm-associated medical device infections caused by methicillin-resistant Staphylococcus aureus (MRSA) presents a pressing medical challenge. The latest research demonstrates the potential of phage-antibiotic combinations (PACs) as a promising solution, notably in vitro antibiofilm efficacy. By adopting modified checkerboard and 24-h time-kill assays, the study investigated the synergistic action of phages combined with humanized-simulated doses of daptomycin (DAP) and ceftaroline (CPT). The results were promising: a combination of DAP, CPT, and either a 2-phage or 3-phage cocktail effectively exhibited bactericidal activity against both DAP non-susceptible vancomycin intermediate S. aureus MRSA and DAP-susceptible MRSA strains within 168-h biofilm models. Moreover, post-treatment evaluations revealed no discernible rise in antibiotic resistance or complete phage resistance. This pioneering work suggests the potential of PACs in addressing MRSA biofilm infections, setting the stage for further expansive research tailored to diverse bacterial strains and treatment durations.
Collapse
Affiliation(s)
- Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Callan Bleick
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
- Department of Medicine, Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
4
|
Zhao R, Du B, Luo Y, Xue F, Wang H, Qu D, Han S, Heilbronner S, Zhao Y. Antimicrobial and anti-biofilm activity of a thiazolidinone derivative against Staphylococcus aureus in vitro and in vivo. Microbiol Spectr 2024; 12:e0232723. [PMID: 38329365 PMCID: PMC10913468 DOI: 10.1128/spectrum.02327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Staphylococcus aureus (S. aureus) causes many infections with significant morbidity and mortality. S. aureus can form biofilms, which can cause biofilm-associated diseases and increase resistance to many conventional antibiotics, resulting in chronic infection. It is critical to develop novel antibiotics against staphylococcal infections, particularly those that can kill cells embedded in biofilms. This study aimed to investigate the bacteriocidal and anti-biofilm activities of thiazolidinone derivative (TD-H2-A) against S. aureus. A total of 40 non-duplicate strains were collected, and the minimum inhibitory concentrations (MICs) of TD-H2-A were determined. The effect of TD-H2-A on established S. aureus mature biofilms was examined using a confocal laser scanning microscope (CLSM). The antibacterial effects of the compound on planktonic bacteria and bacteria in mature biofilms were investigated. Other characteristics, such as cytotoxicity and hemolytic activity, were researched. A mouse skin infection model was used, and a routine hematoxylin and eosin (H&E) staining was used for histological examination. The MIC values of TD-H2-A against the different S. aureus strains were 6.3-25.0 µg/mL. The 5 × MIC TD-H2-A killed almost all planktonic S. aureus USA300. The derivative was found to have strong bacteriocidal activity against cells in mature biofilms meanwhile having low cytotoxicity and hemolytic activity against Vero cells and human erythrocytes. TD-H2-A had a good bacteriocidal effect on S. aureus SA113-infected mice. In conclusion, TD-H2-A demonstrated good bacteriocidal and anti-biofilm activities against S. aureus, paving the way for the development of novel agents to combat biofilm infections and multidrug-resistant staphylococcal infections.IMPORTANCEStaphylococcus aureus, a notorious pathogen, can form a stubborn biofilm and develop drug resistance. It is crucial to develop new anti-infective therapies against biofilm-associated infections. The manuscript describes the new antibiotic to effectively combat multidrug-resistant and biofilm-associated diseases.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bingyu Du
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fen Xue
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Huanhuan Wang
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Di Qu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Yanfeng Zhao
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Bano S, Hassan N, Rafiq M, Hassan F, Rehman M, Iqbal N, Ali H, Hasan F, Kang YQ. Biofilms as Battlefield Armor for Bacteria against Antibiotics: Challenges and Combating Strategies. Microorganisms 2023; 11:2595. [PMID: 37894253 PMCID: PMC10609369 DOI: 10.3390/microorganisms11102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial biofilms are formed by communities, which are encased in a matrix of extracellular polymeric substances (EPS). Notably, bacteria in biofilms display a set of 'emergent properties' that vary considerably from free-living bacterial cells. Biofilms help bacteria to survive under multiple stressful conditions such as providing immunity against antibiotics. Apart from the provision of multi-layered defense for enabling poor antibiotic absorption and adaptive persistor cells, biofilms utilize their extracellular components, e.g., extracellular DNA (eDNA), chemical-like catalase, various genes and their regulators to combat antibiotics. The response of biofilms depends on the type of antibiotic that comes into contact with biofilms. For example, excessive production of eDNA exerts resistance against cell wall and DNA targeting antibiotics and the release of antagonist chemicals neutralizes cell membrane inhibitors, whereas the induction of protein and folic acid antibiotics inside cells is lowered by mutating genes and their regulators. Here, we review the current state of knowledge of biofilm-based resistance to various antibiotic classes in bacteria and genes responsible for biofilm development, and the key role of quorum sensing in developing biofilms and antibiotic resistance is also discussed. In this review, we also highlight new and modified techniques such as CRISPR/Cas, nanotechnology and bacteriophage therapy. These technologies might be useful to eliminate pathogens residing in biofilms by combating biofilm-induced antibiotic resistance and making this world free of antibiotic resistance.
Collapse
Affiliation(s)
- Sara Bano
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Farwa Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Maliha Rehman
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Naveed Iqbal
- Department of Biotechnology & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ying-Qian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guiyang 550025, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
6
|
Tzalis S, Ioannou P, Billiari E, Kofteridis DP, Karakonstantis S. Daptomycin as an option for lock therapy: a systematic literature review. Future Microbiol 2023; 18:917-928. [PMID: 37622290 DOI: 10.2217/fmb-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
Aim: To review preclinical and clinical data relevant to daptomycin lock therapy in catheter-related bloodstream infection (CRBSI). Methods: Systematic review in PubMed, Scopus and clinical trial registries. Results: Preclinical data demonstrate daptomycin lock solution stability and compatibility with heparin, good biofilm penetration, bactericidal activity against biofilm-embedded bacteria, and high efficacy in vitro and in animal catheter infection models. Clinical data remain limited (two case reports and five case series totaling n = 65 CRBSI episodes), albeit promising (successful catheter salvage in about 80% of cases). Conclusion: Despite theoretical advantages of daptomycin, clinical data remain scarce. Comparative studies versus alternative lock solutions are needed, as well as studies to define optimal daptomycin lock regimen (including optimal concentration, dwell time and lock duration).
Collapse
Affiliation(s)
- Sotirios Tzalis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
| | - Petros Ioannou
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
- School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
- Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, 71500, Greece
| | - Eleni Billiari
- School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
| | - Diamantis P Kofteridis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
- School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
- Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, 71500, Greece
| | - Stamatis Karakonstantis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
- Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, 71500, Greece
| |
Collapse
|
7
|
Senneville E, Gachet B, Blondiaux N, Robineau O. Do Anti-Biofilm Antibiotics Have a Place in the Treatment of Diabetic Foot Osteomyelitis? Antibiotics (Basel) 2023; 12:antibiotics12020317. [PMID: 36830229 PMCID: PMC9952315 DOI: 10.3390/antibiotics12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The choice of antibiotic regimens for use in patients presenting with diabetic foot osteomyelitis and their duration differs according to the situation. Antibiotics play a more important role in the medical option where no infected bone has been resected, while their role is reduced but not negligible in the case of surgical options. Some studies have reported the presence of biofilm structures in bone samples taken from patients with diabetic foot osteomyelitis, which raises the question of the place of anti-biofilm antibiotic regimens in this setting. During the last two decades, clinical studies have suggested a potential benefit for anti-biofilm antibiotics, mainly rifampicin against staphylococci and fluoroquinolones against gram-negative bacilli. However, no data from randomized controlled studies have been reported so far. The present work provides a summary of the available data on the question of the place of anti-biofilm antibiotics for the treatment of diabetic foot osteomyelitis, but also the potential limitations of such treatments.
Collapse
Affiliation(s)
- Eric Senneville
- Infectious Diseases Unit, Gustave Dron Hospital, F-59200 Tourcoing, France
- French National Referent Centre for Complex Bone and Joint Infections, CRIOAC Lille-Tourcoing, F-59000 Lille, France
- EA2694, Lille University, F-59000 Lille, France
- Correspondence: ; Tel.: +33-(0)320694848
| | - Benoit Gachet
- Infectious Diseases Unit, Gustave Dron Hospital, F-59200 Tourcoing, France
- French National Referent Centre for Complex Bone and Joint Infections, CRIOAC Lille-Tourcoing, F-59000 Lille, France
- EA2694, Lille University, F-59000 Lille, France
| | - Nicolas Blondiaux
- French National Referent Centre for Complex Bone and Joint Infections, CRIOAC Lille-Tourcoing, F-59000 Lille, France
- Microbiology Laboratory, Gustave Dron Hospital, F-59200 Tourcoing, France
| | - Olivier Robineau
- Infectious Diseases Unit, Gustave Dron Hospital, F-59200 Tourcoing, France
- French National Referent Centre for Complex Bone and Joint Infections, CRIOAC Lille-Tourcoing, F-59000 Lille, France
- EA2694, Lille University, F-59000 Lille, France
| |
Collapse
|
8
|
Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:87. [PMID: 36671287 PMCID: PMC9854895 DOI: 10.3390/antibiotics12010087] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a microorganism frequently associated with implant-related infections, owing to its ability to produce biofilms. These infections are difficult to treat because antimicrobials must cross the biofilm to effectively inhibit bacterial growth. Although some antibiotics can penetrate the biofilm and reduce the bacterial load, it is important to understand that the results of routine sensitivity tests are not always valid for interpreting the activity of different drugs. In this review, a broad discussion on the genes involved in biofilm formation, quorum sensing, and antimicrobial activity in monotherapy and combination therapy is presented that should benefit researchers engaged in optimizing the treatment of infections associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Joao Paulo Telles
- AC Camargo Cancer Center, Infectious Diseases Department, São Paulo 01525-001, São Paulo, Brazil
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Nícolas Henrique Borges
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
9
|
Antonello RM, Canetti D, Riccardi N. Daptomycin synergistic properties from in vitro and in vivo studies: a systematic review. J Antimicrob Chemother 2022; 78:52-77. [PMID: 36227704 DOI: 10.1093/jac/dkac346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/21/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Daptomycin is a bactericidal lipopeptide antibiotic approved for the treatment of systemic infections (i.e. skin and soft tissue infections, bloodstream infections, infective endocarditis) caused by Gram-positive cocci. It is often prescribed in association with a partner drug to increase its bactericidal effect and to prevent the emergence of resistant strains during treatment; however, its synergistic properties are still under evaluation. METHODS We performed a systematic review to offer clinicians an updated overview of daptomycin synergistic properties from in vitro and in vivo studies. Moreover, we reported all in vitro and in vivo data evaluating daptomycin in combination with other antibiotic agents, subdivided by antibiotic classes, and a summary graph presenting the most favourable combinations at a glance. RESULTS A total of 92 studies and 1087 isolates (723 Staphylococcus aureus, 68 Staphylococcus epidermidis, 179 Enterococcus faecium, 105 Enterococcus faecalis, 12 Enterococcus durans) were included. Synergism accounted for 30.9% of total interactions, while indifferent effect was the most frequently observed interaction (41.9%). Antagonistic effect accounted for 0.7% of total interactions. The highest synergistic rates against S. aureus were observed with daptomycin in combination with fosfomycin (55.6%). For S. epidermidis and Enterococcus spp., the most effective combinations were daptomycin plus ceftobiprole (50%) and daptomycin plus fosfomycin (63.6%) or rifampicin (62.8%), respectively. FUTURE PERSPECTIVES We believe this systematic review could be useful for the future updates of guidelines on systemic infections where daptomycin plays a key role.
Collapse
Affiliation(s)
- Roberta Maria Antonello
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50121, Italy
| | - Diana Canetti
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Niccolò Riccardi
- Department of Clinical and Experimental Medicine, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa 56124, Italy
| |
Collapse
|
10
|
Hong XB, Yu ZL, Fu HB, Cai ZH, Chen J. Daptomycin and linezolid for severe methicillin-resistant Staphylococcus aureus psoas abscess and bacteremia: A case report and review of the literature. World J Clin Cases 2022; 10:2550-2558. [PMID: 35434080 PMCID: PMC8968589 DOI: 10.12998/wjcc.v10.i8.2550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vancomycin remains a first-line treatment drug as per the treatment guidelines for methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. However, a number of gram-positive cocci have developed resistance to several drugs, including glycopeptides. Therefore, there is an urgent need for effective and innovative antibacterial drugs to treat patients with infections caused by drug-resistant bacteria.
CASE SUMMARY A 24-year-old male was admitted to hospital owing to lumbago, fever, and hematuria. Computed tomography (CT) results showed an abscess in the psoas major muscle of the patient. Repeated abscess drainage and blood culture suggested MRSA, and vancomycin was initiated. However, after day 10, CT scans showed abscesses in the lungs and legs of the patient. Therefore, treatment was switched to daptomycin. Linezolid was also added considering inflammation in the lungs. After 10 d of the dual-drug anti-MRSA treatment, culture of the abscess drainage turned negative for MRSA. On day 28, the patient was discharged without any complications.
CONCLUSION This case indicates that daptomycin combined with linezolid is an effective remedy for bacteremia caused by MRSA with pulmonary complications.
Collapse
Affiliation(s)
- Xiao-Bing Hong
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University of Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Lin Yu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University of Medical College, Shantou 515041, Guangdong Province, China
| | - Hong-Bo Fu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University of Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Hong Cai
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
11
|
Zhang L, Yang W, Chu Y, Wen B, Cheng Y, Mahmood T, Bao M, Ge F, Li L, Yi J, Du C, Lu C, Tan Y. The Inhibition Effect of Linezolid With Reyanning Mixture on MRSA and its Biofilm is More Significant than That of Linezolid Alone. Front Pharmacol 2022; 12:766309. [PMID: 35046807 PMCID: PMC8762264 DOI: 10.3389/fphar.2021.766309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a superbacterium, and when it forms biofilms, it is difficult to treat even with the first-line of antibiotic linezolid (LNZ). Reyanning mixture (RYN), a compound-based Chinese medicine formula, has been found to have inhibitory effects on biofilms. This study aims to explore the synergistic inhibitory effect and corresponding mechanisms of their (LNZ&RYN) combination on the planktonic as well as biofilm cells of MRSA. Broth microdilution and chessboard methods were employed for the determination of minimum inhibitory concentrations (MICs) and synergistic concentration of LNZ&RYN, respectively. The effect of the combined medication on biofilm and mature biofilm of MRSA were observed by biofilm morphology and permeability experiments, respectively. To unveil the molecular mechanism of action of the synergistic combination of LNZ and RYN, RT-PCR based biofilm-related gene expression analysis and ultra-high pressure liquid chromatography-time-of-flight mass spectrometry based endogenous metabonomic analysis were deployed. The results indicated that 1/16RYN as the best combined dose reduced LNZ (4 μg/ml) to 2 μg/ml. The combined treatment inhibited living MRSA before and after biofilm formation, removed the residual structure of dead bacteria in MRSA biofilms and affected the shape and size of bacteria, resulting in the improvement of biofilm permeability. The mechanism was that biofilm-related genes such as agrC, atlA, and sarA, as well as amino acid uptake associated with the metabolism of 3-dehydrocarnitine, kynurenine, L-leucine, L-lysine and sebacic acid were inhibited. This study provides evidence for the treatment of MRSA and its biofilms with LNZ combined with RYN.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Weifeng Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajun Chu
- Tsing Hua De Ren Xi an Happiness Pharmaceutical Co., Ltd., Xi'an, China
| | - Bo Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yungchi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mei Bao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Chengqiang Du
- Tsing Hua De Ren Xi an Happiness Pharmaceutical Co., Ltd., Xi'an, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Oliva A, Stefani S, Venditti M, Di Domenico EG. Biofilm-Related Infections in Gram-Positive Bacteria and the Potential Role of the Long-Acting Agent Dalbavancin. Front Microbiol 2021; 12:749685. [PMID: 34745053 PMCID: PMC8569946 DOI: 10.3389/fmicb.2021.749685] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Infections caused by Gram-positive bacteria are a major public health problem due to their increasing resistance to antibiotics. Staphylococcus and Enterococcus species' resistance and pathogenicity are enhanced by their ability to form biofilm. The biofilm lifestyle represents a significant obstacle to treatment because bacterial cells become highly tolerant to a wide range of antimicrobial compounds normally effective against their planktonic forms. Thus, novel therapeutic strategies targeting biofilms are urgently needed. The lipoglycopeptide dalbavancin is a long-acting agent for treating acute bacterial skin and skin structure infections caused by a broad range of Gram-positive pathogens. Recent studies have shown promising activity of dalbavancin against Gram-positive biofilms, including methicillin-resistant S. aureus (MRSA), methicillin-resistant S. epidermidis (MRSE), and vancomycin-susceptible enterococci. This review outlines the mechanisms regulating biofilm development in Staphylococcus and Enterococcus species and the clinical impact of biofilm-related infections. In addition, it discusses the clinical implications and potential therapeutic perspectives of the long-acting drug dalbavancin against biofilm-forming Gram-positive pathogens.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, “La Sapienza” University of Rome, Rome, Italy
| | - Stefania Stefani
- Laboratory of Molecular Medical Microbiology and Antimicrobial Resistance Research (Mmarl), Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, “La Sapienza” University of Rome, Rome, Italy
| | | |
Collapse
|
13
|
New Adapted In Vitro Technology to Evaluate Biofilm Formation and Antibiotic Activity Using Live Imaging under Flow Conditions. Diagnostics (Basel) 2021; 11:diagnostics11101746. [PMID: 34679444 PMCID: PMC8535051 DOI: 10.3390/diagnostics11101746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022] Open
Abstract
The polymicrobial nature of biofilms and bacterial interactions inside chronic wounds are keys for the understanding of bacterial cooperation. The aim of this present study was to develop a technique to study and visualize biofilm in live imaging under flow conditions (Bioflux™ 200, Fluxion Biosciences). The BiofluxTM system was adapted using an in vitro chronic wound-like medium (CWM) that mimics the environment encountered in ulcers. Two reference strains of Staphylococcus aureus (Newman) and Pseudomonas aeruginosa (PAO1) were injected in the BiofluxTM during 24 h to 72 h in mono and coculture (ratio 1:1, bacteria added simultaneously) in the CWM vs. a control medium (BHI). The quantification of biofilm formation at each time was evaluated by inverted microscopy. After 72 h, different antibiotics (ceftazidime, imipenem, linezolid, oxacillin and vancomycin) at 1x MIC, 10x MIC and 100x MIC were administrated to the system after an automatic increase of the flow that mimicked a debridement of the wound surface. Biofilm studies highlighted that the two species, alone or associated, constituted a faster and thicker biofilm in the CWM compared to the BHI medium. The effect of antibiotics on mature or “debrided” biofilm indicated that some of the most clinically used antibiotic such as vancomycin or imipenem were not able to disrupt and reduce the biofilm biomass. The use of a life cell imaging with an in vitro CWM represents a promising tool to study bacterial biofilm and investigate microbial cooperation in a chronic wound context.
Collapse
|
14
|
Zinner SH, Alieva KN, Golikova MV, Strukova EN, Portnoy YA, Firsov AA. Anti-mutant efficacy of antibiotic combinations: in vitro model studies with linezolid and daptomycin. J Antimicrob Chemother 2021; 76:1832-1839. [PMID: 33907810 DOI: 10.1093/jac/dkab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES To explore whether linezolid/daptomycin combinations can restrict Staphylococcus aureus resistance and if this restriction is associated with changes in the mutant prevention concentrations (MPCs) of the antibiotics in combination, the enrichment of resistant mutants was studied in an in vitro dynamic model. METHODS Two MRSA strains, vancomycin-intermediate resistant ATCC 700699 and vancomycin-susceptible 2061 (both susceptible to linezolid and daptomycin), and their linezolid-resistant mutants selected by passaging on antibiotic-containing medium were used in the study. MPCs of antibiotics in combination were determined at a linezolid-to-daptomycin concentration ratio (1:2) that corresponds to the ratio of 24 h AUCs (AUC24s) actually used in the pharmacokinetic simulations. Each S. aureus strain was supplemented with respective linezolid-resistant mutants (mutation frequency 10-8) and treated with twice-daily linezolid and once-daily daptomycin, alone and in combination, simulated at therapeutic and sub-therapeutic AUC24s. RESULTS Numbers of linezolid-resistant mutants increased at therapeutic and sub-therapeutic AUC24s, whereas daptomycin-resistant mutants were enriched only at sub-therapeutic AUC24 in single drug treatments. Linezolid/daptomycin combinations prevented the enrichment of linezolid-resistant S. aureus and restricted the enrichment of daptomycin-resistant mutants. The pronounced anti-mutant effects of the combinations were attributed to lengthening the time above MPC of both linezolid and daptomycin as their MPCs were lowered. CONCLUSIONS The present study suggests that (i) the inhibition of S. aureus resistant mutants using linezolid/daptomycin combinations can be predicted by MPCs determined at pharmacokinetically derived antibiotic concentration ratios and (ii) T>MPC is a reliable predictor of the anti-mutant efficacy of antibiotic combinations as studied using in vitro dynamic models.
Collapse
Affiliation(s)
- Stephen H Zinner
- Harvard Medical School; Department of Medicine, Mount Auburn Hospital, 330 Mount Auburn Street, Cambridge, MA 02138, USA
| | - Kamilla N Alieva
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | - Maria V Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | - Elena N Strukova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | - Yury A Portnoy
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | - Alexander A Firsov
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| |
Collapse
|
15
|
Wouthuyzen-Bakker M, Shohat N, Parvizi J, Soriano A. Risk Scores and Machine Learning to Identify Patients With Acute Periprosthetic Joints Infections That Will Likely Fail Classical Irrigation and Debridement. Front Med (Lausanne) 2021; 8:550095. [PMID: 34012968 PMCID: PMC8126631 DOI: 10.3389/fmed.2021.550095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
Abstract
The most preferred treatment for acute periprosthetic joint infection (PJI) is surgical debridement, antibiotics and retention of the implant (DAIR). The reported success of DAIR varies greatly and depends on a complex interplay of several host-related factors, duration of symptoms, the microorganism(s) causing the infection, its susceptibility to antibiotics and many others. Thus, there is a great clinical need to predict failure of the "classical" DAIR procedure so that this surgical option is offered to those most likely to succeed, but also to identify those patients who may benefit from more intensified antibiotic treatment regimens or new and innovative treatment strategies. In this review article, the current recommendations for DAIR will be discussed, a summary of independent risk factors for DAIR failure will be provided and the advantages and limitations of the clinical use of preoperative risk scores in early acute (post-surgical) and late acute (hematogenous) PJIs will be presented. In addition, the potential of implementing machine learning (artificial intelligence) in identifying patients who are at highest risk for failure of DAIR will be addressed. The ultimate goal is to maximally tailor and individualize treatment strategies and to avoid treatment generalization.
Collapse
Affiliation(s)
- Marjan Wouthuyzen-Bakker
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Noam Shohat
- Department of Orthopaedic Surgery, Yitzhak Shamir Medical Center, Zriffin, Israel
- Department of Orthopaedic Surgery, Tel Aviv University, Tel Aviv, Israel
| | - Javad Parvizi
- Department of Orthopaedic Surgery, Rothman Institute at Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Alex Soriano
- Service of Infectious Diseases, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Meyer KJ, Taylor HB, Seidel J, Gates MF, Lewis K. Pulse Dosing of Antibiotic Enhances Killing of a Staphylococcus aureus Biofilm. Front Microbiol 2020; 11:596227. [PMID: 33240251 PMCID: PMC7680849 DOI: 10.3389/fmicb.2020.596227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Biofilms are highly tolerant to antibiotics and underlie the recalcitrance of many chronic infections. We demonstrate that mature Staphylococcus aureus biofilms can be substantially sensitized to the treatment by pulse dosing of an antibiotic – in this case, oxacillin. Pulse (periodic) dosing was compared to continuous application of antibiotic and was studied in a novel in vitro flow system which allowed for robust biofilm growth and tractable pharmacokinetics of dosing regimens. Our results highlight that a subpopulation of the biofilm survives antibiotic without becoming resistant, a population we refer to as persister bacteria. When oxacillin was continuously present the persister level did not decline, but, importantly, providing correctly timed periodic breaks decreased the surviving population. We found that the length of the periodic break impacted efficacy, and there was an optimal length that sensitized the biofilm to repeat treatment without allowing resistance expansion. Periodic dosing provides a potential simple solution to a complicated problem.
Collapse
Affiliation(s)
- Kirsten J Meyer
- Department of Biology, Antimicrobial Discovery Center, Northeastern University, Boston, MA, United States
| | - Hannah B Taylor
- Department of Biology, Antimicrobial Discovery Center, Northeastern University, Boston, MA, United States
| | - Jazlyn Seidel
- Department of Biology, Antimicrobial Discovery Center, Northeastern University, Boston, MA, United States
| | - Michael F Gates
- Department of Biology, Antimicrobial Discovery Center, Northeastern University, Boston, MA, United States
| | - Kim Lewis
- Department of Biology, Antimicrobial Discovery Center, Northeastern University, Boston, MA, United States
| |
Collapse
|
17
|
Zheng JX, Tu HP, Sun X, Xu GJ, Chen JW, Deng QW, Yu ZJ, Qu D. In vitro activities of telithromycin against Staphylococcus aureus biofilms compared with azithromycin, clindamycin, vancomycin and daptomycin. J Med Microbiol 2020; 69:120-131. [PMID: 31916929 DOI: 10.1099/jmm.0.001122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction. Staphylococcus aureus biofilms are difficult to treat and the effect of telithromycin treatment is still unclear.Aim. This study aimed to explore the effect of telithromycin against Staphylococcus aureus biofilms compared with azithromycin, clindamycin, vancomycin and daptomycin.Methodology. Eight methicillin-susceptible and eight methicillin-resistant S. aureus isolates (MSSA and MRSA, respectively) were used for this study. Biofilm biomasses were detected by crystal violet staining and the adherent cells in the established biofilms were quantified by determination of colony-forming units (c.f.u.). The RNA levels of biofilm formation-related genes were determined by RT-qPCR.Results. Telithromycin [8× minimum inhibitory concentration (MIC)] eradicated more established biofilms than azithromycin or clindamycin in the four MSSA isolates, and eliminated the established biofilms of six MRSA isolates more effectively than vancomycin or daptomycin. Telithromycin (8× MIC) killed more adherent cells in the established biofilms than azithromycin or clindamycin in the six MSSA isolates, and killed more adherent cells than vancomycin in all eight MRSA isolates. Daptomycin also showed an excellent effect on the adherent cells of MRSA isolates, with similarresults to telithromycin. The effect of a subinhibitory concentration of telithromycin (1/4× MIC) was significantly superior to that of azithromycin or clindamycin, inhibiting the biofilm formation of six MSSA isolates and seven MRSA isolates more effectively than vancomycin or daptomycin. The RNA levels of agrA, agrC, clfA, icaA and sigB decreased when treated with telithromycin (1/4× MIC).Conclusions. Telithromycin is more effective than azithromycin, clindamycin, vancomycin, or daptomycin against S. aureus biofilms.
Collapse
Affiliation(s)
- Jin-Xin Zheng
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Hao-Peng Tu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Xiang Sun
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Guang-Jian Xu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Jun-Wen Chen
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Qi-Wen Deng
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| |
Collapse
|
18
|
Role of linezolid combination therapy for serious infections: review of the current evidence. Eur J Clin Microbiol Infect Dis 2020; 39:1043-1052. [PMID: 31898798 DOI: 10.1007/s10096-019-03801-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/17/2019] [Indexed: 01/24/2023]
Abstract
As long-standing clinical problems, a series of complicated infections are more difficult to treat due to the development of antibiotic resistance, especially caused by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis). Moreover, the treatment options available to against these infections are also becoming increasingly limited. Linezolid is the first synthetic oxazolidinone antibiotic with a unique mechanism of action, and its efficacy against Gram-positive bacteria has been clearly demonstrated. However, the limitations of linezolid alone for the treatment of these complicated infections have been reported in the recent years. Combination therapy may be a good approach to enhance efficacy and prevent the development of resistance. In this review, the results of multiple linezolid combination therapies from in vitro, animal studies, and clinical cases for the treatment of MRSA, VRE, and multidrug-resistant M. tuberculosis strains will be discussed, and thus provide more relevant information for clinician in clinical practice.
Collapse
|
19
|
Galanter KM, Ho J. Treatment of tricuspid valve endocarditis with daptomycin and linezolid therapy. Am J Health Syst Pharm 2019; 76:1033-1036. [DOI: 10.1093/ajhp/zxz101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Purpose
A case report of the use of linezolid and daptomycin for the treatment of multidrug-resistant right-sided infective endocarditis is presented.
Summary
A 36-year-old patient with a history of intravenous drug use was hospitalized for treatment of native tricuspid valve endocarditis resulting in persistent methicillin-resistant Staphylococcus aureus bacteremia. During the admission the patient was unsuccessfully treated with vancomycin monotherapy (final E-test minimum inhibitory concentration, 4 μg/mL). The patient’s treatment was switched to daptomycin and gentamicin, with no improvement in blood culture results over 4 days. Gentamicin was discontinued, and linezolid was administered in combination with daptomycin; bacteremia was cleared after 13 days of linezolid and daptomycin combination therapy. Due to daptomycin resistance (minimum inhibitory concentration, 4 μg/mL), gentamicin was substituted for daptomycin due to the former agent’s synergistic effects with linezolid. After 23 days of therapy the patient was transferred to another facility for a tricuspid valve replacement procedure, which was completed without complications. The patient was transferred in stable condition to a skilled nursing facility to continue antibiotic therapy lasting 6 weeks from the date of surgery. The patient’s blood cultures remained negative.
Conclusion
A 36-year-old woman with resistant tricuspid valve endocarditis was successfully treated with linezolid in combination with daptomycin.
Collapse
Affiliation(s)
| | - Jackie Ho
- Pharmacy, San Leandro Hospital, San Leandro, CA
| |
Collapse
|
20
|
Kashyap R, Shah A, Dutt T, Wieruszewski PM, Ahdal J, Jain R. Treatments and limitations for methicillin-resistant Staphylococcus aureus: A review of current literature. World J Clin Infect Dis 2019; 9:1-10. [DOI: 10.5495/wjcid.v9.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has remained a major threat to healthcare; in both hospital and community settings over the past five decades. With the current use of antibiotics for a variety of infections, including MRSA, emerging resistance is a major concern. Currently available treatments have restrictions limiting their use. These issues include, but are not limited to, side effects, cross-resistance, lack of understanding of pharmacokinetics and clinical pharmacodynamics, gradual increment in minimal inhibitory concentration over the period (MIC creep) and ineffectiveness in dealing with bacterial biofilms. Despite availability of various therapeutic options for MRSA, the clinical cure rates remain low with high morbidity and mortality. Given these challenges with existing treatments, there is a need for development of novel agents for MRSA. Along with prompt infection control strategies and strict implementation of antibiotic stewardship, cautious use of newer anti-MRSA agents will be of utmost importance. This article reviews the treatments and limitations of MRSA management and highlights the future path.
Collapse
Affiliation(s)
- Rahul Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, United States
| | - Aditya Shah
- Department of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, United States
| | - Taru Dutt
- Neurology Research, Mayo Clinic, Rochester, MN 55902, United States
| | - Patrick M Wieruszewski
- Department of Pharmacy, Critical Care Medicine, Mayo Clinic, Rochester, MN 55902, United States
| | - Jaishid Ahdal
- Workhardt Limited, Bandra East, Mumbai, Maharashtra 400051, India
| | - Rishi Jain
- Workhardt Limited, Bandra East, Mumbai, Maharashtra 400051, India
| |
Collapse
|
21
|
Lee YC, Chen PY, Wang JT, Chang SC. A study on combination of daptomycin with selected antimicrobial agents: in vitro synergistic effect of MIC value of 1 mg/L against MRSA strains. BMC Pharmacol Toxicol 2019; 20:25. [PMID: 31060599 PMCID: PMC6503441 DOI: 10.1186/s40360-019-0305-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Daptomycin is an important drug used in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection. A high dose of daptomycin is indicated for an MRSA infection with a minimum inhibitory concentration (MIC) of 1 mg/L for daptomycin. Combination therapies with daptomycin and other antimicrobial agents, including fosfomycin, display in vitro synergism potentially. This study was conducted to investigate the in vitro synergistic effect of daptomycin-based combination therapy against MRSA strains with high daptomycin MIC. Method The synergistic effects of daptomycin in combination with fosfomycin, gentamicin, linezolid, oxacillin, or rifampicin against MRSA with an MIC of 1 mg/L for daptomycin were measured using the microbroth checkerboard assay in vitro. Result A total of 100 MRSA isolates was tested. The synergistic interactions of the drugs were evaluated using the fractional inhibitory concentration index. The MIC values revealed that all isolates (100%) were found to be susceptible to linezolid, 85% to fosfomycin, 8% to gentamicin, 69% to rifampicin, and no isolate was susceptible to oxacillin. The in vitro synergism rates of daptomycin in combination with fosfomycin, oxacillin, gentamicin, linezolid, and rifampicin were 37, 11, 5, 3, and 1%, respectively. Conclusion The combination of daptomycin plus fosfomycin may be an effective therapeutic option for MRSA infection. Electronic supplementary material The online version of this article (10.1186/s40360-019-0305-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Chien Lee
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, 100, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, 100, Taipei, Taiwan. .,Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tsu-Nan County, Taiwan.
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, 100, Taipei, Taiwan
| |
Collapse
|
22
|
Sivaranjani M, Leskinen K, Aravindraja C, Saavalainen P, Pandian SK, Skurnik M, Ravi AV. Deciphering the Antibacterial Mode of Action of Alpha-Mangostin on Staphylococcus epidermidis RP62A Through an Integrated Transcriptomic and Proteomic Approach. Front Microbiol 2019; 10:150. [PMID: 30787919 PMCID: PMC6372523 DOI: 10.3389/fmicb.2019.00150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/21/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Alpha-mangostin (α-MG) is a natural xanthone reported to exhibit rapid bactericidal activity against Gram-positive bacteria, and may therefore have potential clinical application in healthcare sectors. This study sought to identify the impact of α-MG on Staphylococcus epidermidis RP62A through integrated advanced omic technologies. Methods: S. epidermidis was challenged with sub-MIC (0.875 μg/ml) of α-MG at various time points and the differential expression pattern of genes/proteins were analyzed in the absence and presence of α-MG using RNA sequencing and LC-MS/MS experiments. Bioinformatic tools were used to categorize the biological processes, molecular functions and KEGG pathways of differentially expressed genes/proteins. qRT-PCR was employed to validate the results obtained from these analyses. Results: Transcriptomic and proteomic profiling of α-MG treated cells indicated that genes/proteins affected by α-MG treatment were associated with diverse cellular functions. The greatest reduction in expression was observed in transcription of genes conferring cytoplasmic membrane integrity (yidC2, secA and mscL), cell division (ftsY and divlB), teichoic acid biosynthesis (tagG and dltA), fatty-acid biosynthesis (accB, accC, fabD, fabH, fabI, and fabZ), biofilm formation (icaA) and DNA replication and repair machinery (polA, polC, dnaE, and uvrA). Those with increased expression were involved in oxidative (katA and sodA) and cellular stress response (clpB, clpC, groEL, and asp23). The qRT-PCR analysis substantiated the results obtained from transcriptomic and proteomic profiling studies. Conclusion: Combining transcriptomic and proteomic methods provided comprehensive information about the antibacterial mode of action of α-MG. The obtained results suggest that α-MG targets S. epidermidis through multifarious mechanisms, and especially prompts that loss of cytoplasmic membrane integrity leads to rapid onset of bactericidal activity.
Collapse
Affiliation(s)
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Päivi Saavalainen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | | |
Collapse
|
23
|
Boyle KK, Kuo FC, Horcajada JP, Hughes H, Cavagnaro L, Marculescu C, McLaren A, Nodzo SR, Riccio G, Sendi P, Silibovsky R, Stammers J, Tan TL, Wimmer M. General Assembly, Treatment, Antimicrobials: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S225-S237. [PMID: 30360976 DOI: 10.1016/j.arth.2018.09.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
24
|
Anemüller R, Belden K, Brause B, Citak M, Del Pozo JL, Frommelt L, Gehrke T, Hewlett A, Higuera CA, Hughes H, Kheir M, Kim KI, Konan S, Lausmann C, Marculescu C, Morata L, Ramirez I, Rossmann M, Silibovsky R, Soriano A, Suh GA, Vogely C, Volpin A, Yombi J, Zahar A, Zimmerli W. Hip and Knee Section, Treatment, Antimicrobials: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S463-S475. [PMID: 30348582 DOI: 10.1016/j.arth.2018.09.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
25
|
Synergistic effect of linezolid with fosfomycin against Staphylococcus aureus in vitro and in an experimental Galleria mellonella model. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:731-738. [PMID: 30638785 DOI: 10.1016/j.jmii.2018.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/09/2018] [Accepted: 12/09/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND/PURPOSES Treatment of Staphylococcus aureus infections is challenging owing to widespread multidrug resistance. There is now considerable interest in the potential of combination therapies. Although linezolid/fosfomycin combination appears to be a promising treatment option based on in vitro data, further preclinical work is needed. In this study, the Galleria mellonella system was employed to study the in vivo efficacy of this combination in order to determine whether it should be explored further for the treatment of S. aureus infections. METHODS The antimicrobial activity of linezolid and fosfomycin alone and in combination was assessed versus four S. aureus. Synergy studies were performed using the microtitre plate chequerboard assay and time-kill methodology. The in vivo activity of linezolid/fosfomycin combination was assessed using a G. mellonella larvae model. RESULTS The combination of linezolid and fosfomycin was synergistic and bacteriostatic against four tested strains. Treatment of G. mellonella larvae infected with lethal doses of S. aureus resulted in significantly enhanced survival rates when low-dose of combination has no significant differences with high-dose combination (P > 0.05), G. mellonella hemolymph burden of S. aureus suggest that combination therapy with rapid and sustained bacteriostatic activity compared monotherapy. CONCLUSION This work indicated that linezolid combination with fosfomycin has synergistic effect against S. aureus in vitro and in an experimental G. mellonella model, and it suggests that high-dose of linezolid and fosfomycin may not necessary.
Collapse
|
26
|
Evaluation of Oritavancin Combinations with Rifampin, Gentamicin, or Linezolid against Prosthetic Joint Infection-Associated Methicillin-Resistant Staphylococcus aureus Biofilms by Time-Kill Assays. Antimicrob Agents Chemother 2018; 62:AAC.00943-18. [PMID: 30012765 DOI: 10.1128/aac.00943-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/08/2018] [Indexed: 01/12/2023] Open
Abstract
The antibiofilm activity of oritavancin in combination with rifampin, gentamicin, or linezolid was evaluated against 10 prosthetic joint infection (PJI)-related methicillin-resistant Staphylococcus aureus (MRSA) isolates by time-kill assays. Oritavancin combined with rifampin demonstrated statistically significant bacterial reductions compared with those of either antimicrobial alone for all 10 isolates (P ≤ 0.001), with synergy being observed for 80% of the isolates. Oritavancin and rifampin combination therapy may be an option for treating MRSA PJI.
Collapse
|
27
|
Heidary M, Khosravi AD, Khoshnood S, Nasiri MJ, Soleimani S, Goudarzi M. Daptomycin. J Antimicrob Chemother 2018; 73:1-11. [PMID: 29059358 DOI: 10.1093/jac/dkx349] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic used for the treatment of Gram-positive infections including complicated skin and skin structure infections, right-sided infective endocarditis, bacteraemia, meningitis, sepsis and urinary tract infections. Daptomycin has distinct mechanisms of action, disrupting multiple aspects of cell membrane function and inhibiting protein, DNA and RNA synthesis. Although daptomycin resistance in Gram-positive bacteria is uncommon, there are increasing reports of daptomycin resistance in Staphylococcus aureus, Enterococcus faecium and Enterococcus faecalis. Such resistance is seen largely in the context of prolonged treatment courses and infections with high bacterial burdens, but may occur in the absence of prior daptomycin exposure. Furthermore, use of inadequate treatment regimens, irregular drug supply and poor drug quality have also been recognized as other important risk factors for emergence of daptomycin-resistant strains. Antimicrobial susceptibility testing of Gram-positive bacteria, communication between clinicians and laboratories, establishment of internet-based reporting systems, development of better and more rapid diagnostic methods and continuous monitoring of drug resistance are urgent priorities.
Collapse
Affiliation(s)
- Mohsen Heidary
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azar Dohkt Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Khoshnood
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saleh Soleimani
- Department of Biology, Payame Noor University, Isfahan, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Yazaki M, Oami T, Nakanishi K, Hase R, Watanabe H. A successful salvage therapy with daptomycin and linezolid for right-sided infective endocarditis and septic pulmonary embolism caused by methicillin-resistant Staphylococcus aureus. J Infect Chemother 2018. [PMID: 29534850 DOI: 10.1016/j.jiac.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although vancomycin administration is recommended for the treatment of infective endocarditis (IE) caused by methicillin-resistant Staphylococcus aureus (MRSA), it is unclear whether an alternative agent, daptomycin, can be used to treat IE with pulmonary complications. A 26-year-old female who had undergone surgical repair of a ventricular septal defect as an early teenager presented with fever, headache, and vomiting. She was admitted to our hospital and diagnosed with right-sided IE with septic pulmonary embolism caused by MRSA. Vancomycin, rifampicin, and gentamicin were administered; however, exacerbation of drug eruption due to the antimicrobial agents on the 11th day led us to switch from vancomycin and rifampicin to daptomycin. Furthermore, we included linezolid to treat lung abscesses that accompanied the septic pulmonary embolism. We confirmed negative blood cultures on the 18th day. On the same day, a patch closure for the ventricular septal defect and tricuspid valve replacement were performed. She was discharged on the 65th day with an uneventful postoperative course. This experience suggests that daptomycin and linezolid are effective salvage therapies for right-sided IE caused by MRSA and accompanied by pulmonary complications.
Collapse
Affiliation(s)
- Megumi Yazaki
- Department of Emergency and Critical Care, Japanese Red Cross Narita Hospital, 90-1, Iida-chou, Narita City, Chiba, 286-8523, Japan.
| | - Takehiko Oami
- Department of Emergency and Critical Care, Japanese Red Cross Narita Hospital, 90-1, Iida-chou, Narita City, Chiba, 286-8523, Japan
| | - Kazuya Nakanishi
- Department of Emergency and Critical Care, Japanese Red Cross Narita Hospital, 90-1, Iida-chou, Narita City, Chiba, 286-8523, Japan
| | - Ryota Hase
- Department of Infectious Diseases, Japanese Red Cross Narita Hospital, 90-1, Iida-chou, Narita City, Chiba, 286-8523, Japan
| | - Hiroyuki Watanabe
- Department of Cardiovascular Surgery, Japanese Red Cross Narita Hospital, 90-1, Iida-chou, Narita City, Chiba, 286-8523, Japan
| |
Collapse
|
29
|
Increasing rate of daptomycin non-susceptible strains of Staphylococcus aureus in patients with atopic dermatitis. Postepy Dermatol Alergol 2017; 34:547-552. [PMID: 29422819 PMCID: PMC5799758 DOI: 10.5114/ada.2017.72460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/04/2016] [Indexed: 12/01/2022] Open
Abstract
Introduction Daptomycin is a cyclic lipopeptide that is bactericidal against Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), vancomycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA) strains. Daptomycin exerts its antimicrobial effect by a calcium-dependent interaction with the cytoplasmic membrane resulting in depolarization, ion loss and rapid cell death. Unfortunately, loss of daptomycin susceptibility in S. aureus in the clinical setting has been noted. Aim To evaluate the susceptibility profile to daptomycin among S. aureus strains isloted from patients with atopic dermatitis (AD). Another point was to correlate the results obtained by broth microdilution method and Etest, which is commonly applied in clinical setting. Material and methods One hundred patients with the diagnosis of atopic dermatitis were microbiologically assessed for the carriage of S. aureus. Antimicrobial susceptibility tests were performed using broth-microdilution (BMD) and Etests for daptomycin. Results Staphylococcus aureus strains were isolated from the majority of our patients, either from the skin (73%) or the anterior nares (75%). Six of the 100 nasal swabs (6%) and 5 of the 100 skin swabs (5%) were positive for methicillin-resistant Staphylococcus aureus (MRSA). A total of 81 of 148 (54.7%) daptomycin non-susceptible isolates of S. aureus were identified by BMD. Only 19 of 81 were also classified as non-susceptible by Etest. Conclusions Clinicians and microbiologists should be aware of the possibility of the emergence of daptomycin non-susceptibility (or increase in minimal inhibitory concentration) during prolonged therapy and closely monitor the susceptibility of persisting isolates that might be recovered during therapy.
Collapse
|
30
|
Dupieux C, Trouillet-Assant S, Camus C, Abad L, Bes M, Benito Y, Chidiac C, Lustig S, Ferry T, Valour F, Laurent F. Intraosteoblastic activity of daptomycin in combination with oxacillin and ceftaroline against MSSA and MRSA. J Antimicrob Chemother 2017; 72:3353-3356. [PMID: 28961767 DOI: 10.1093/jac/dkx314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/31/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The Staphylococcus aureus intracellular reservoir is associated with bone and joint infection (BJI) chronicity. As daptomycin is increasingly prescribed in BJI, strategies for improving its reduced intracellular activity should be promoted. OBJECTIVES Based on the known in vitro synergy of daptomycin with β-lactams, the aim of the present study was to evaluate the intracellular activity of these combinations in an ex vivo osteoblast infection model. METHODS Osteoblastic cells infected with an MRSA strain or its isogenic MSSA counterpart were incubated for 24 h with daptomycin, oxacillin or ceftaroline alone or in combination using usual intraosseous therapeutic concentrations. Intracellular bacteria were quantified by plating cell lysates. MICs for MSSA and MRSA were determined using the chequerboard method at pH 5 to mimic conditions expected within lysosomes, the foremost S. aureus intracellular location. RESULTS Daptomycin failed to reduce the intracellular MSSA inoculum, and was weakly active against MRSA compared with untreated cells (-27.6%; P < 10-3). Oxacillin and ceftaroline revealed significant intracellular activity, including oxacillin against MRSA-infected cells (-43.2%; P < 10-3). The daptomycin/oxacillin combination was significantly more active against intracellular MSSA and MRSA compared with daptomycin and oxacillin alone (-44.4% and -57.2%, respectively; P < 0.05). In contrast, daptomycin/ceftaroline was not more efficient than ceftaroline alone. Interestingly, oxacillin MICs for MRSA decreased in vitro from >256 to 0.023 mg/L when the pH decreased from 7 to 5, and chequerboards showed an additive effect of the daptomycin/oxacillin combination against MRSA at pH 5. CONCLUSIONS In acidic intracellular conditions, oxacillin enhances daptomycin activity against the intraosteoblastic reservoir of S. aureus, including MRSA.
Collapse
Affiliation(s)
- Céline Dupieux
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
- CRIOAc Lyon - French Regional Reference Centre for Bone and Joint Infection, Hospices Civils de Lyon, Lyon, France
- Laboratory of Bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Sophie Trouillet-Assant
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
| | - Caroline Camus
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
| | - Lélia Abad
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
| | - Michèle Bes
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
- Laboratory of Bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Yvonne Benito
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
- Laboratory of Bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Christian Chidiac
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
- CRIOAc Lyon - French Regional Reference Centre for Bone and Joint Infection, Hospices Civils de Lyon, Lyon, France
- Department of Infectious Diseases, Hospices Civils de Lyon, 103 Grande-Rue de la Croix-Rousse, 69004 Lyon, France
| | - Sébastien Lustig
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
- CRIOAc Lyon - French Regional Reference Centre for Bone and Joint Infection, Hospices Civils de Lyon, Lyon, France
- Orthopaedic Surgery Unit, Hospices Civils de Lyon, Lyon, France
| | - Tristan Ferry
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
- CRIOAc Lyon - French Regional Reference Centre for Bone and Joint Infection, Hospices Civils de Lyon, Lyon, France
- Department of Infectious Diseases, Hospices Civils de Lyon, 103 Grande-Rue de la Croix-Rousse, 69004 Lyon, France
| | - Florent Valour
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
- CRIOAc Lyon - French Regional Reference Centre for Bone and Joint Infection, Hospices Civils de Lyon, Lyon, France
- Department of Infectious Diseases, Hospices Civils de Lyon, 103 Grande-Rue de la Croix-Rousse, 69004 Lyon, France
| | - Frédéric Laurent
- International Centre for Research in Infectiology, INSERM U1111, CNRS UMR5308, Claude Bernard Lyon 1 University, Lyon, France
- CRIOAc Lyon - French Regional Reference Centre for Bone and Joint Infection, Hospices Civils de Lyon, Lyon, France
- Laboratory of Bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
31
|
Zimmerli W, Sendi P. Orthopaedic biofilm infections. APMIS 2017; 125:353-364. [PMID: 28407423 DOI: 10.1111/apm.12687] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/10/2017] [Indexed: 02/01/2023]
Abstract
Many infections of the musculoskeletal system are biofilm infections that develop on non-living surfaces. Microorganisms adhere either on dead bone (sequesters) or implants. As a rule for a curative concept, chronic osteomyelitis or implant-associated bone infection must be treated with a combination of surgery and antimicrobial therapy. If an implant is kept in place, or a new device is implanted before complete healing of infection, a biofilm-active antibiotic should be used. Rifamycins are active against biofilms of staphylococci, and fluoroquinolones against those of Gram-negative bacilli. In this review, the management of chronic osteomyelitis, periprosthetic joint infection and implant-associated osteomyelitis of long bones is presented.
Collapse
Affiliation(s)
- Werner Zimmerli
- Kantonsspital Baselland, Basel University Medical Clinic and Interdisciplinary Unit for Orthopaedic Infections, Liestal, Switzerland
| | - Parham Sendi
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Lin LC, Shu JC, Chang SC, Ge MC, Liu TP, Chen CW, Lu JJ. Nucleotide Sequence Variations in Autolysis Genes of ST59 Methicillin-Resistant Staphylococcus aureus Isolates. Microb Drug Resist 2017; 23:940-948. [PMID: 28358616 DOI: 10.1089/mdr.2016.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Biofilm formation is a virulence factor of bacteria. The goal of this study was to understand the mechanisms of biofilm formation by methicillin-resistant Staphylococcus aureus (MRSA). Whole-genome sequencing of eight MRSA strains was performed to identify sequence variations in genes related to biofilm formation. Thirty-one genes involved in MRSA biofilm formation were analyzed and 11 amino acid sequence variations in four genes related to autolysis were found. These variations include E121D and H387 N in ArlS; Q117K, T424S, K428T, A509S, V752E, A754V, and T771A in Atl; T184K in CidC; and D251N in CidR. Among the 26 clinical MRSA isolates studied, 13 isolates were nonbiofilm producers and were found to harbor these mutations. Furthermore, all of these 13 isolates belonged to ST59. Ten of these 13 ST59 isolates became able to produce biofilms when they were incubated with extracellular DNA from MRSA N315. Results of this study suggest that sequence variations in arlS, atl, cidC, and cidR genes may render MRSA unable to produce biofilms. Further investigations are needed to correlate these sequence variations with the biofilm-forming ability of MRSA isolates.
Collapse
Affiliation(s)
- Lee-Chung Lin
- 1 Department of Laboratory Medicine, Chang Gung Memorial Hospital , Taoyuan, Taiwan
| | - Jwu-Ching Shu
- 2 Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan, Taiwan
| | - Shih-Cheng Chang
- 1 Department of Laboratory Medicine, Chang Gung Memorial Hospital , Taoyuan, Taiwan .,2 Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan, Taiwan
| | - Mao-Cheng Ge
- 1 Department of Laboratory Medicine, Chang Gung Memorial Hospital , Taoyuan, Taiwan
| | - Tsui-Ping Liu
- 1 Department of Laboratory Medicine, Chang Gung Memorial Hospital , Taoyuan, Taiwan
| | - Chien-Wei Chen
- 1 Department of Laboratory Medicine, Chang Gung Memorial Hospital , Taoyuan, Taiwan
| | - Jang-Jih Lu
- 1 Department of Laboratory Medicine, Chang Gung Memorial Hospital , Taoyuan, Taiwan .,2 Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan, Taiwan
| |
Collapse
|
33
|
Sivaranjani M, Prakash M, Gowrishankar S, Rathna J, Pandian SK, Ravi AV. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol 2017; 101:3349-3359. [DOI: 10.1007/s00253-017-8231-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 11/24/2022]
|
34
|
Aktas G, Derbentli S. In vitro activity of daptomycin combined with dalbavancin and linezolid, and dalbavancin with linezolid against MRSA strains. J Antimicrob Chemother 2016; 72:441-443. [PMID: 28073963 DOI: 10.1093/jac/dkw416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/10/2016] [Accepted: 09/02/2016] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES Combination therapies have a distinct advantage over monotherapies in terms of their broad spectrum, synergistic effect and prevention of the emergence of drug resistance. In the present study, the in vitro antibacterial activity of daptomycin combinations with linezolid and dalbavancin, and dalbavancin with linezolid were evaluated against 30 clinical MRSA strains. METHODS The MICs of all antibiotics were determined using microbroth dilution as described by the CLSI. The in vitro activities of antibiotics in combination were assessed by using a microbroth 'chequerboard' assay. The MIC values of all antibiotics determined were evaluated in accordance with the recommendations of the CLSI for daptomycin and linezolid, and the FDA for dalbavancin. RESULTS All strains (100%) were found to be susceptible to daptomycin, dalbavancin and linezolid. The MIC50, MIC90 and MICrange values of these antibiotics were determined to be 1, 1 and 0.5-1 mg/L, 0.12, 0.12 and 0.03-0.12 mg/L, and 1, 2 and 1-2 mg/L, respectively. The rates of synergistic effects were 67% for daptomycin combined with dalbavancin and with linezolid, and 60% for dalbavancin combined with linezolid. CONCLUSIONS The results of this study show that in vitro combinations of these new antimicrobials will be effective in the therapy of MRSA infections.
Collapse
Affiliation(s)
- Gulseren Aktas
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sengul Derbentli
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
35
|
Fosfomycin Enhances the Activity of Daptomycin against Vancomycin-Resistant Enterococci in an In Vitro Pharmacokinetic-Pharmacodynamic Model. Antimicrob Agents Chemother 2016; 60:5716-23. [PMID: 27431211 DOI: 10.1128/aac.00687-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
Daptomycin (DAP) is being used more frequently to treat infections caused by vancomycin-resistant enterococcus (VRE). DAP tends to be less active against enterococci than staphylococci and may require high doses or combination therapy to be bactericidal. Fosfomycin (FOF) has activity against VRE and has demonstrated synergistic bactericidal activity with DAP in vitro The objective of this study was to evaluate the activity of DAP alone and in combination with FOF against VRE in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model. The activity of DAP at 8 and 12 mg/kg of body weight/day (DAP 8 and DAP 12, respectively) and FOF of 40 mg/kg intravenously every 8 h, alone and in combination, were evaluated against 2 vancomycin-resistant Enterococcus faecium strains (8019 and 5938) and 2 vancomycin-resistant E. faecalis strains (V583 and R7302) in an in vitro PK/PD model over 72 h. Cell surface charge in the presence and absence of FOF was evaluated by zeta potential analysis. Daptomycin-boron-dipyrromethene (bodipy) binding was assessed by fluorescence microscopy. The addition of FOF to DAP 8 and DAP 12 resulted in significantly increased killing over DAP alone at 72 h for 8019, V583, and R7302 (P < 0.05). Therapeutic enhancement was observed with DAP 12 plus FOF against 8019, V583, and R7302. Cell surface charge became more negative after exposure to FOF by ∼2 to 8mV in all 4 strains. Daptomycin-bodipy binding increased by 2.6 times in the presence of fosfomycin (P < 0.0001). The combination of DAP plus FOF may provide improved killing against VRE (including DAP-resistant strains) through modulation of cell surface charge. Further studies to clarify the role of intravenous FOF are warranted.
Collapse
|
36
|
Eduwu J, Tabasam F, Bastidas AA, Dar K, Ahmed Y. Successful management of methicillin-resistant Staphylococcus aureus bacteremia complicated with diffuse myelitis. Infect Dis (Lond) 2016; 49:234-236. [PMID: 27464005 DOI: 10.1080/23744235.2016.1212169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Joy Eduwu
- a Internal Medicine Department , Texas Tech University, Health Sciences Center , Odessa , TX , USA
| | | | - Alexander A Bastidas
- c Critical care, Texas Tech University, Health Sciences Center , Odessa , TX , USA
| | - Khavar Dar
- d Pulmo-Critical Care, Texas Tech University, Health Sciences Center , Odessa , TX , USA
| | - Yasir Ahmed
- e Infectious Diseases/Internal Medicine Department , Texas Tech University, Health Sciences Center , Odessa , TX , USA
| |
Collapse
|
37
|
Cai MG, Wu Y, Chang J. Synthesis and biological evaluation of 2-arylimino-3-pyridin-thiazolineone derivatives as antibacterial agents. Bioorg Med Chem Lett 2016; 26:2517-2520. [PMID: 27036520 DOI: 10.1016/j.bmcl.2016.03.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/06/2016] [Accepted: 03/25/2016] [Indexed: 01/13/2023]
Abstract
With an intention to find more potent antibacterial agents, four halogen disubstituted thiazolineone derivatives (2a-d), five halogen monosubstituted thiazolineone derivatives (2e-i), and eleven 2-arylimino-3-pyridin-thiazolineone derivatives (2j-t) were synthesized and screened for their antibacterial activity, bactericidal activity, cytotoxicity, and erythrocyte hemolysis. Most of the synthesized derivatives showed antibacterial activity in inhibiting the growth of S. epidermidis and MRSA, and exhibited safety in the cytotoxicity study on the Vero cells and hemolytic activities test on healthy human erythrocytes. 2-Arylimino-3-pyridin-thiazolineone derivatives not only improved the clog P, but also showed potent antibacterial activity in inhibiting the growth of S. epidermidis and MRSA. In particularly, several compounds (2f, 2i, 2r and 2t) showed bactericidal activity, in which compound 2r displayed the best inhibitory capacity among the synthesized compounds, and further druggability research is on going.
Collapse
Affiliation(s)
- Ming-Guang Cai
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| | - Jun Chang
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
38
|
Gonzalez-Ruiz A, Seaton RA, Hamed K. Daptomycin: an evidence-based review of its role in the treatment of Gram-positive infections. Infect Drug Resist 2016; 9:47-58. [PMID: 27143941 PMCID: PMC4846043 DOI: 10.2147/idr.s99046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infections caused by Gram-positive pathogens remain a major public health burden and are associated with high morbidity and mortality. Increasing rates of infection with Gram-positive bacteria and the emergence of resistance to commonly used antibiotics have led to the need for novel antibiotics. Daptomycin, a cyclic lipopeptide with rapid bactericidal activity against a wide range of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus, has been shown to be effective and has a good safety profile for the approved indications of complicated skin and soft tissue infections (4 mg/kg/day), right-sided infective endocarditis caused by S. aureus, and bacteremia associated with complicated skin and soft tissue infections or right-sided infective endocarditis (6 mg/kg/day). Based on its pharmacokinetic profile and concentration-dependent bactericidal activity, high-dose (>6 mg/kg/day) daptomycin is considered an important treatment option in the management of various difficult-to-treat Gram-positive infections. Although daptomycin resistance has been documented, it remains uncommon despite the increasing use of daptomycin. To enhance activity and to minimize resistance, daptomycin in combination with other antibiotics has also been explored and found to be beneficial in certain severe infections. The availability of daptomycin via a 2-minute intravenous bolus facilitates its outpatient administration, providing an opportunity to reduce risk of health care-associated infections, improve patient satisfaction, and minimize health care costs. Daptomycin, not currently approved for use in the pediatric population, has been shown to be widely used for treating Gram-positive infections in children.
Collapse
Affiliation(s)
| | | | - Kamal Hamed
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
39
|
Jørgensen NP, Skovdal SM, Meyer RL, Dagnæs-Hansen F, Fuursted K, Petersen E. Rifampicin-containing combinations are superior to combinations of vancomycin, linezolid and daptomycin against Staphylococcus aureus biofilm infection in vivo and in vitro. Pathog Dis 2016; 74:ftw019. [PMID: 27036412 DOI: 10.1093/femspd/ftw019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 11/14/2022] Open
Abstract
Susceptibility to antibiotics is dramatically reduced when bacteria form biofilms. In clinical settings this has a profound impact on treatment of implant-associated infections, as these are characterized by biofilm formation. Current routine susceptibility testing of microorganisms from infected implants does not reflect the actual susceptibility, and the optimal antibiotic strategy for treating implant-associated infections is not established. In this study of biofilm formation in implant-associated osteomyelitis, we compared thein vitroandin vivoefficacy of selected antibiotics alone and in combination againstStaphylococcus aureus.We tested vancomycin, linezolid, daptomycin and tigecycline alone and in combination with rifampicin, vancomycin, linezolid and daptomycin againstS. aureusIn vitro, biofilm formation dramatically reduced susceptibility by a factor of 500-2000.In vivo, antibiotic combinations were tested in a murine model of implant-associated osteomyelitis. Mice were infected by inserting implants colonized withS. aureustrough their tibia. After 11 days, the animals were divided into different groups (five animals/group) and given 14 days of antibiotic therapy. All antibiotics resulted in a reduced bacterial load in the infected bone surrounding the implant. Overall, the most effective antibiotic combinations contained rifampicin. Combinations containing two non-rifampicin antibiotics were not more active than single drugs.
Collapse
Affiliation(s)
- Nis Pedersen Jørgensen
- Department of Infectious Diseases, Institute of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus, Denmark Department of Clinical Microbiology, Institute of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus, Denmark
| | - Sandra M Skovdal
- Department of Infectious Diseases, Institute of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus, Denmark Department of Clinical Microbiology, Institute of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus, Denmark
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds vej 14, 8000 Aarhus, Denmark Department of Bioscience, Aarhus University, Vennelyst Boulevard 4, 8000 Aarhus, Denmark
| | - Frederik Dagnæs-Hansen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Vennelyst Boulevard 4, 8000 Aarhus, Denmark
| | - Kurt Fuursted
- Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Eskild Petersen
- Department of Infectious Diseases, Institute of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus, Denmark
| |
Collapse
|
40
|
Roux S, Valour F, Karsenty J, Gagnieu MC, Perpoint T, Lustig S, Ader F, Martha B, Laurent F, Chidiac C, Ferry T. Daptomycin > 6 mg/kg/day as salvage therapy in patients with complex bone and joint infection: cohort study in a regional reference center. BMC Infect Dis 2016; 16:83. [PMID: 26888539 PMCID: PMC4756419 DOI: 10.1186/s12879-016-1420-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Background Even if daptomycin does not have approval for the treatment of bone and joint infections (BJI), the Infectious Diseases Society of America guidelines propose this antibiotic as alternative therapy for prosthetic joint infection. The recommended dose is 6 mg/kg/d, whereas recent data support the use of higher doses in these patients. Methods We performed a cohort study including consecutive patients that have received daptomycin >6 mg/kg/d for complex BJI between 2011 and 2013 in a French regional reference center. Factors associated with treatment failure were determined on univariate Cox analysis and Kaplan-Meier curves. Results Forty-three patients (age, 61 ± 17 years) received a mean dose of 8 ± 0.9 mg/kg/d daptomycin, for a mean 81 ± 59 days (range, 6–303 days). Most had chronic (n = 37, 86 %) implant-associated (n = 37, 86 %) BJI caused by coagulase-negative staphylococci (n = 32, 74 %). A severe adverse event (SAE) occurred in 6 patients (14 %), including 2 cases of eosinophilic pneumonia, concomitant with daptomycin Cmin >24 mg/L. Outcome was favorable in 30 (77 %) of the 39 clinically assessable patients. Predictors for treatment failure were age, non-optimal surgery and daptomycin withdrawal for SAE. Conclusions Prolonged high-dose daptomycin therapy was effective in patients with complex BJI. However, optimal surgery remains the cornerstone of medico-surgical strategy; and a higher incidence of eosinophilic pneumonia than expected was recorded.
Collapse
Affiliation(s)
- Sandrine Roux
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Florent Valour
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France.,Claude Bernard Lyon 1 University, Lyon, France.,International Center for Research in Infectiology, CIRI, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Judith Karsenty
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France.,Claude Bernard Lyon 1 University, Lyon, France.,Department of Infectious Diseases, William Morey Hospital, Chalon-sur-Saône, France
| | | | - Thomas Perpoint
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France
| | - Sébastien Lustig
- Claude Bernard Lyon 1 University, Lyon, France.,Department of Orthopaedic Surgery, Hospices Civils de Lyon, Lyon, France
| | - Florence Ader
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France.,Claude Bernard Lyon 1 University, Lyon, France.,International Center for Research in Infectiology, CIRI, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Benoit Martha
- Department of Infectious Diseases, William Morey Hospital, Chalon-sur-Saône, France
| | - Frédéric Laurent
- Claude Bernard Lyon 1 University, Lyon, France.,International Center for Research in Infectiology, CIRI, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.,Laboratory of Bacteriology, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Christian Chidiac
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France.,Claude Bernard Lyon 1 University, Lyon, France.,International Center for Research in Infectiology, CIRI, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Tristan Ferry
- Department of Infectious Diseases, Hospices Civils de Lyon - Hôpital de la Croix-Rousse, 103, Grande-Rue de la Croix-Rousse, 69317, Lyon, cedex 04, France. .,Claude Bernard Lyon 1 University, Lyon, France. .,International Center for Research in Infectiology, CIRI, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.
| | | |
Collapse
|
41
|
Zhou YF, Shi W, Yu Y, Tao MT, Xiong YQ, Sun J, Liu YH. Pharmacokinetic/Pharmacodynamic Correlation of Cefquinome Against Experimental Catheter-Associated Biofilm Infection Due to Staphylococcus aureus. Front Microbiol 2016; 6:1513. [PMID: 26779167 PMCID: PMC4703793 DOI: 10.3389/fmicb.2015.01513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
Biofilm formations play an important role in Staphylococcus aureus pathogenesis and contribute to antibiotic treatment failures in biofilm-associated infections. The aim of this study was to evaluate the pharmacokinetic/pharmacodynamic (PK/PD) profiles of cefquinome against an experimental catheter-related biofilm model due to S. aureus, including three clinical isolates and one non-clinical isolate. The minimal inhibitory concentration (MIC), minimal biofilm inhibitory concentration (MBIC), biofilm bactericidal concentration (BBC), minimal biofilm eradication concentration (MBEC) and biofilm prevention concentration (BPC) and in vitro time-kill curves of cefquinome were studied in both planktonic and biofilm cells of study S. aureus strains. The in vivo post-antibiotic effects (PAEs), PK profiles and efficacy of cefquinome were performed in the catheter-related biofilm infection model in murine. A sigmoid Emax model was utilized to determine the PK/PD index that best described the dose-response profiles in the model. The MICs and MBICs of cefquinome for the four S. aureus strains were 0.5 and 16 μg/mL, respectively. The BBCs (32–64 μg/mL) and MBECs (64–256 μg/mL) of these study strains were much higher than their corresponding BPC values (1–2 μg/mL). Cefquinome showed time-dependent killing both on planktonic and biofilm cells, but produced much shorter PAEs in biofilm infections. The best-correlated PK/PD parameters of cefquinome for planktonic and biofilm cells were the duration of time that the free drug level exceeded the MIC (fT > MIC, R2 = 96.2%) and the MBIC (fT > MBIC, R2 = 94.7%), respectively. In addition, the AUC24h/MBIC of cefquinome also significantly correlated with the anti-biofilm outcome in this model (R2 = 93.1%). The values of AUC24h/MBIC for biofilm-static and 1-log10-unit biofilm-cidal activity were 22.8 and 35.6 h; respectively. These results indicate that the PK/PD profiles of cefquinome could be used as valuable guidance for effective dosing regimens treating S. aureus biofilm-related infections.
Collapse
Affiliation(s)
- Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Wei Shi
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Meng-Ting Tao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Yan Q Xiong
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical CenterTorrance, CA, USA; Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los AngelesLos Angeles, CA, USA
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
42
|
Martínez SR, Rocca DM, Aiassa V, Becerra MC. Linezolid as an eradication agent against assembled methicillin-resistant Staphylococcus aureus biofilms. RSC Adv 2016. [DOI: 10.1039/c6ra19670e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Methicillin-resistantStaphylococcus aureus(MRSA) biofilms eradicated by linezolid.
Collapse
Affiliation(s)
- S. R. Martínez
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)
- CONICET
- Universidad Nacional de Córdoba
- Córdoba
- Argentina
| | - D. M. Rocca
- Departamento de Farmacia
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Córdoba
- Argentina
| | - V. Aiassa
- Departamento de Farmacia
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Córdoba
- Argentina
| | - M. C. Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV)
- CONICET
- Universidad Nacional de Córdoba
- Córdoba
- Argentina
| |
Collapse
|
43
|
Senneville E, Caillon J, Calvet B, Jehl F. Towards a definition of daptomycin optimal dose: Lessons learned from experimental and clinical data. Int J Antimicrob Agents 2015; 47:12-9. [PMID: 26712134 DOI: 10.1016/j.ijantimicag.2015.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/25/2023]
Abstract
Daptomycin exhibits excellent antibacterial activity against a wide range of Gram-positive bacteria. The on-label standard daily doses for daptomycin are 4 mg/kg for skin infections and 6 mg/kg for bacteraemia or right-sided endocarditis. Daptomycin bactericidal activity is predominantly concentration-dependent and by considering the values of pharmacokinetic targets established by several authors as well as the peak and trough concentrations of daptomycin obtained at various daily dosages, it appears that these targets can easily be reached with a dose of 6 mg/kg but only for a minimum inhibitory concentration (MIC) at 0.1 mg/L, and that for increasing MICs (e.g. 0.5 mg/L or 1 mg/L) these targets may only be attained with higher dosages (i.e. ≥10 mg/kg). High-dose (HD) daptomycin therapy has also been proven to be effective for reducing the risk of selection of daptomycin-resistant strains. Given the concentration-dependent bactericidal activity of daptomycin, the absence of a dose-toxicity relationship and the need to prevent the selection of resistant strains, we propose to consider for staphylococcal (i) skin and soft-tissue infections, daily doses of daptomycin of 6 mg/kg (new standard dose) and (ii) endocarditis or bacteraemia including those associated with intravascular catheter and implant-related infections, ≥10 mg/kg (HD) when the MIC is unknown or >0.25 mg/L, and 6-10 mg/kg (intermediate doses) when the MIC is ≤0.25 mg/L. For severe and deep-seated enterococcal infections, we propose high (≥10 mg/kg) daily doses of daptomycin in combination with another active agent, especially a β-lactam.
Collapse
Affiliation(s)
- Eric Senneville
- Infectious Diseases Department, Gustave Dron Hospital, University of Lille II, Tourcoing, France.
| | - Jocelyne Caillon
- Laboratory of Bacteriology, University of Nantes, Nantes, France
| | - Brigitte Calvet
- Department of Anesthesiology, General Hospital of Béziers, Béziers, France
| | - François Jehl
- Laboratory of Bacteriology, University of Strasbourg, Strasbourg, France
| |
Collapse
|
44
|
Observed Antagonistic Effect of Linezolid on Daptomycin or Vancomycin Activity against Biofilm-Forming Methicillin-Resistant Staphylococcus aureus in an In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother 2015; 59:7790-4. [PMID: 26369963 DOI: 10.1128/aac.01604-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/29/2015] [Indexed: 01/28/2023] Open
Abstract
Pharmacodynamic activity in antibiotic combinations of daptomycin, vancomycin, and linezolid was investigated in a 48-h in vitro pharmacodynamic model. Using human-simulated free drug concentrations, activity against clinical biofilm-forming methicillin-resistant Staphylococcus aureus isolates was evaluated. Linezolid antagonized vancomycin activity at 24 and 48 h. Linezolid antagonized daptomycin at 24 and 48 h depending on dose and strain. Adding daptomycin increased vancomycin activity at 48 h (P < 0.03). These results may be strain dependent and require further clinical investigation.
Collapse
|
45
|
In Vitro Activities of Novel Antimicrobial Combinations against Extensively Drug-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2015; 59:7316-9. [PMID: 26369956 DOI: 10.1128/aac.00493-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/07/2015] [Indexed: 11/20/2022] Open
Abstract
Extensively drug-resistant (XDR) Acinetobacter spp. have emerged as a cause of nosocomial infections, especially under conditions of intensive care. Unfortunately, resistance to colistin is increasing and there is a need for new therapeutic options. We aimed to study the effect of some novel combinations against XDR Acinetobacter baumannii in an in vitro pharmacokinetics-pharmacodynamics (PK/PD) model. Three nonrelated clinical strains of XDR A. baumannii were investigated. Antibiotic-simulated regimens were colistin at 3 MU every 8 h (q8h) (first dose, 6 MU), daptomycin at 10 mg/kg of body weight q24h, imipenem at 1 g q8h, and ertapenem at 1 g q24h. Combination regimens included colistin plus daptomycin, colistin plus imipenem, and imipenem plus ertapenem. Samples were obtained at 0, 1, 2, 4, 8, and 24 h. Among the single-agent regimens, only the colistin regimen resulted in significant reductions in log10 CFU per milliliter compared to the control for all the strains tested. Although colistin achieved bactericidal activity at 4 h, it was not able to reach the limit of detection (1 log10 CFU/ml). One strain had significant regrowth at 24 h without the emergence of resistance. Daptomycin-colistin combinations led to a significant reduction in levels of log10 CFU per milliliter that were better than those achieved with colistin as a single-agent regimen, reaching the limit of detection at 24 h against all the strains. The combination of imipenem plus ertapenem outperformed the colistin regimen, although the results did not reach the limit of detection, with significant regrowth at 24 h. Similarly, colistin-plus-imipenem combinations reduced the levels of log10 CFU per milliliter at 8 h, with significant regrowth at 24 h but with development of resistance to colistin. We have shown some potentially useful alternatives for the treatment of extensively drug-resistant A. baumannii. Among them, the daptomycin-colistin combination was the most effective and should be investigated in future studies.
Collapse
|
46
|
Fujimura S, Sato T, Hayakawa S, Kawamura M, Furukawa E, Watanabe A. Antimicrobial efficacy of combined clarithromycin plus daptomycin against biofilms-formed methicillin-resistant Staphylococcus aureus on titanium medical devices. J Infect Chemother 2015; 21:756-9. [PMID: 26162777 DOI: 10.1016/j.jiac.2015.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/27/2015] [Accepted: 06/03/2015] [Indexed: 11/28/2022]
Abstract
In vitro efficacy of combined eradication therapy with clarithromycin and daptomycin against biofilm-formed methicillin-resistant Staphylococcus aureus on the orthopedic titanium devices was evaluated. The bactericidal effect of this antibiotic was investigated by a re-culture test, the scanning electron microscopy, and fluorescence microscopy using a double-staining dyes. Clarithromycin decreased the amount to half in 24 h. Although MRSA biofilms were not eradicated with clarithromycin or daptomycin alone, clarithromycin combined with daptomycin was useful to sterilize titanium devices within 72 h. This in vitro study showed that combined treatment with clarithromycin plus daptomycin is useful to eradicate staphylococcal biofilms formed on orthopedic devices.
Collapse
Affiliation(s)
- Shigeru Fujimura
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Pharmaceutical University, Sendai, Japan; Research Division for Development of Anti-infective Agents, Institute of Development Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Tetsuro Sato
- Department of Orthopedics, Sendai Orthopedic Hospital, Sendai, Japan
| | - Sachiko Hayakawa
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Pharmaceutical University, Sendai, Japan
| | - Masato Kawamura
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Pharmaceutical University, Sendai, Japan
| | - Emiko Furukawa
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Pharmaceutical University, Sendai, Japan
| | - Akira Watanabe
- Research Division for Development of Anti-infective Agents, Institute of Development Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
47
|
Pompilio A, De Nicola S, Crocetta V, Guarnieri S, Savini V, Carretto E, Di Bonaventura G. New insights in Staphylococcus pseudintermedius pathogenicity: antibiotic-resistant biofilm formation by a human wound-associated strain. BMC Microbiol 2015; 15:109. [PMID: 25994406 PMCID: PMC4440327 DOI: 10.1186/s12866-015-0449-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/15/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Staphylococcus pseudintermedius is an opportunistic pathogen recognized as the leading cause of skin, ear, and post-operative bacterial infections in dogs and cats. Zoonotic infections have also recently been reported causing endocarditis, infection of surgical wounds, rhinosinusitis, and catheter-related bacteremia. The aim of the present study is to evaluate, for the first time, the pathogenic potential of S. pseudintermedius isolated from a human infection. To this end, strain DSM 25713, which was recently isolated from a wound of a leukemic patient who underwent a bone marrow transplantation, was investigated for biofilm formation and antibiotic-resistance under conditions relevant for wound infection. RESULTS The effect of pH (5.5, 7.1, and 8.7) and the presence of serum (diluted at 1:2, 1:10, and 1:100) on biofilm formation was assessed through a crystal violet assay. The presence of serum significantly reduced the ability to form biofilm, regardless of the pH value tested. In vitro activity of eight antibiotics against biofilm formation and mature 48 h-old biofilms was comparatively assessed by crystal violet assay and viable cell count, respectively. Antibiotics at sub-inhibitory concentrations reduced biofilm formation in a dose-dependent manner, although cefoxitin was the most active, causing a significant reduction already at 1/8xMIC. Rifampicin showed the highest activity against preformed biofilms (MBEC90: 2xMIC). None of the antibiotics completely eradicated the preformed biofilms, regardless of tested concentrations. Confocal and electron microscopy analyses of mature biofilm revealed a complex "mushroom-like" architecture consisting of microcolonies embedded in a fibrillar extracellular matrix. CONCLUSIONS For the first time, our results show that human wound-associated S. pseudintermedius is able to form inherently antibiotic-resistant biofilms, suggestive of its pathogenic potential, and consistent with recent reports of zoonotic infections.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University, Via Vestini 31, Chieti, 66100, Italy. .,Center for Research on Ageing, "G. d'Annunzio" University Foundation, Chieti, Italy.
| | - Serena De Nicola
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University, Via Vestini 31, Chieti, 66100, Italy. .,Center for Research on Ageing, "G. d'Annunzio" University Foundation, Chieti, Italy.
| | - Valentina Crocetta
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University, Via Vestini 31, Chieti, 66100, Italy. .,Center for Research on Ageing, "G. d'Annunzio" University Foundation, Chieti, Italy.
| | - Simone Guarnieri
- Center for Research on Ageing, "G. d'Annunzio" University Foundation, Chieti, Italy. .,Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy.
| | - Vincenzo Savini
- Clinical Microbiology and Virology, "Spirito Santo" Hospital, Pescara, Italy.
| | | | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University, Via Vestini 31, Chieti, 66100, Italy. .,Center for Research on Ageing, "G. d'Annunzio" University Foundation, Chieti, Italy.
| |
Collapse
|
48
|
Jacqueline C, Caillon J. Impact of bacterial biofilm on the treatment of prosthetic joint infections. J Antimicrob Chemother 2015; 69 Suppl 1:i37-40. [PMID: 25135088 DOI: 10.1093/jac/dku254] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microbial biofilm contributes to chronic infection and is involved in the pathogenesis of prosthetic joint infections. Biofilms are structurally complex and should be considered a dynamic system able to protect the bacteria from host defence mechanisms and from antibacterial agents. Despite the use of antibiotics recognized as effective against acute infections, prosthetic joint infections require long-term suppressive treatment acting on adherent bacteria. Conventional in vitro susceptibility testing methods are not suitable for biofilm-associated infections given that these tests do not take into account the physiological parameters of bacterial cells in vivo. Most anti-staphylococcal drugs are able to inhibit in vitro the adhesion of bacteria to a surface, considered to be the first step in biofilm formation. Recent studies suggest that the lack of activity of antibiotics against biofilm-embedded bacteria seems to be more related to the decreased effect of the drug on the pathogen than to the poor penetration of the drug into the biofilm. Eradication of biofilm-embedded bacteria is a very difficult task and combination therapy is required in the treatment of persistent infections involving biofilm. Although several combinations demonstrate potent efficacy, rifampicin is the most common partner drug of effective combinations against staphylococcal biofilms. Considering the complexity of biofilm-related infections, further studies are needed to assess the activity of new therapeutic agents in combination with antibiotics (quorum-sensing inhibitors, biofilm disruptors and specific anti-biofilm molecules).
Collapse
Affiliation(s)
- Cédric Jacqueline
- Université de Nantes, Faculté de Médecine, UPRES EA 3826, 1 rue Gaston Veil, Nantes, F-44000 France
| | - Jocelyne Caillon
- Université de Nantes, Faculté de Médecine, UPRES EA 3826, 1 rue Gaston Veil, Nantes, F-44000 France
| |
Collapse
|
49
|
Entenza JM, Giddey M, Vouillamoz J, Moreillon P, Mancini S. Assessment of the in vitro synergy of daptomycin plus linezolid against multidrug-resistant enterococci. J Glob Antimicrob Resist 2014; 2:306-308. [PMID: 27873692 DOI: 10.1016/j.jgar.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022] Open
Abstract
The widespread incidence of enterococci resistant to ampicillin, vancomycin and aminoglycosides, the first-line anti-enterococcal antibiotics, has made the treatment of severe enterococcal infections difficult and alternatives should be explored. We investigated the activity of daptomycin combined with linezolid against three Enterococcus faecalis and four Enterococcus faecium strains resistant to standard drugs used for therapy. Minimum inhibitory concentrations (MICs) were determined by the broth dilution method. Drug interactions were assessed by the checkerboard and time-kill methods. Synergy was defined by a fractional inhibitory concentration index (FICI) of ≤0.5 or a ≥2log10CFU/mL killing at 24h with the combination in comparison with killing by the most active single agent. Indifference was defined by a FICI>0.5-4.0 or a 1-2log10CFU/mL killing compared with the most active single agent. MICs of daptomycin were 2-4μg/mL for E. faecalis and 2-8μg/mL for E. faecium. MICs of linezolid were 1-2μg/mL for all bacteria. In the checkerboard assay, five isolates showed synergism (FICI<0.5) and two showed indifference (FICIs of 0.53 and 2). Killing studies revealed synergy of daptomycin plus linezolid against four isolates (2.2-3.7log10CFU/mL kill) and indifference (1.1-1.6log10CFU/mL kill) for the other three strains. Antagonism was not observed. In conclusion, the combination of daptomycin and linezolid had a synergistic or indifferent effect against multidrug-resistant enterococci. Additional studies are needed to explore the potential of this combination for severe enterococcal infections when first-line antibiotic combinations cannot be used.
Collapse
Affiliation(s)
- José M Entenza
- Department of Fundamental Microbiology, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Marlyse Giddey
- Department of Fundamental Microbiology, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jacques Vouillamoz
- Department of Fundamental Microbiology, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Philippe Moreillon
- Department of Fundamental Microbiology, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Stefano Mancini
- Department of Fundamental Microbiology, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
50
|
Macia M, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 2014; 20:981-90. [DOI: 10.1111/1469-0691.12651] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|