1
|
Mataracı-Kara E, Damar-Çelik D, Özbek-Çelik B. The in vitro synergistic and antibiofilm activity of Ceftazidime/avibactam against Achromobacter species recovered from respiratory samples of cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-05017-0. [PMID: 39702543 DOI: 10.1007/s10096-024-05017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Achromobacter spp. may form biofilm in patients' respiratory tracts and cause serious infections. This research examined the bactericidal and synergistic effects of ceftazidime/avibactam (CZA) alone and in combination with different antibiotics against Achromobacter spp. METHODS MICs of 52 Achromobacter spp. were determined by broth microdilution. In-vitro time-kill curve experiments assessed CZA's bactericidal and synergistic properties alone and in combination with other antibiotics. Moreover, the antibiofilm activity of CZA alone or in combination with the antibiotics was assessed with using microplate method. RESULTS Based on MIC90 values, CZA exhibited four times greater in-vitro activity against tested strains than ceftazidime. The most effective agent was meropenem, with a 92% susceptibility level on the tested strains. On the other hand, ciprofloxacin was found to be bactericidal at both 1 × and 4xMIC concentrations. CZA, chloramphenicol and meropenem were observed to have bactericidal effects alone at 4xMIC concentrations against the tested isolates. CZA + CS and CZA + MEM showed synergy in three out of five and two out of five strains tested at 1xMIC, respectively. Furthermore, the pairing of CZA with colistin, CZA with meropenem and CZA with ciprofloxacin exhibited a synergistic impact at 4xMIC. Moreover, combination therapy CZA with the tested antibiotics showed reduced biofilm formation in a concentration-dependent manner at 24 h. CONCLUSION The outcomes of this research also suggest that CZA plus colistin, meropenem, or ciprofloxacin were more productive against Achromobacter strains. To our knowledge, this is the first article to evaluate the synergistic and antibiofilm activities of CZA alone or in combination with different agents against Achromobacter species.
Collapse
Affiliation(s)
- Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit-Istanbul, Turkey.
| | - Damla Damar-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit-Istanbul, Turkey
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Marmara University, Başıbüyük-Istanbul, Turkey
| | - Berna Özbek-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit-Istanbul, Turkey
| |
Collapse
|
2
|
Müderris T, Dursun Manyaslı G, Kaya S, Gül Yurtsever S. In vitro interactions of combinations of colistin with meropenem, rifampicin and tigecycline in colistin-resistant, biofilm-forming Klebsiella pneumoniae. Diagn Microbiol Infect Dis 2024; 110:116408. [PMID: 39079190 DOI: 10.1016/j.diagmicrobio.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 08/24/2024]
Abstract
In this study, it was aimed to reveal the in vitro interactions of combinations of colistin with meropenem, rifampicin and tigecycline in colistin-resistant, biofilm-forming Klebsiella pneumonia. A total of 30 isolates, 15 of which formed biofilms and 15 did not form biofilms, were randomly selected from K. pneumoniae isolates growing in blood samples. The synergy rates of colistin-meropenem, colistin-tigecycline, colistin-rifampicin combinations in planktonic/sessile bacteria are; It was determined as 83,3%/73,3%, 66,6%/33,3%, 100%/60% respectively. Biofilm inhibitory concentration (BIC) of colistin, meropenem, tigecycline, and rifampicin significantly increased after biofilm formation. The synergistic activity seen in the sessile form was independent of the planktonic form. Although a high synergistic effect was observed in the meropenem-colistin combination on sessile bacteria, colistin had very high BIC in all combinations. Large-scale studies are needed in which the number of isolates studied is large, bacterial resistance profiles are evaluated genomically, and various antimicrobial groups are included.
Collapse
Affiliation(s)
- Tuba Müderris
- İzmir Katip Çelebi University, Faculty of Medicine, Department of Medical Microbiology, İzmir, Türkiye.
| | - Gülden Dursun Manyaslı
- Ministry of Health Cizre Dr Selahattin Cizrelioglu State Hospital, Department of Medical Microbiology, Şırnak, Türkiye
| | - Selçuk Kaya
- İzmir Katip Çelebi University, Faculty of Medicine, Department of Medical Microbiology, İzmir, Türkiye
| | - Süreyya Gül Yurtsever
- İzmir Katip Çelebi University, Faculty of Medicine, Department of Medical Microbiology, İzmir, Türkiye
| |
Collapse
|
3
|
Diani E, Bianco G, Gatti M, Gibellini D, Gaibani P. Colistin: Lights and Shadows of an Older Antibiotic. Molecules 2024; 29:2969. [PMID: 38998921 PMCID: PMC11243602 DOI: 10.3390/molecules29132969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The emergence of antimicrobial resistance represents a serious threat to public health and for infections due to multidrug-resistant (MDR) microorganisms, representing one of the most important causes of death worldwide. The renewal of old antimicrobials, such as colistin, has been proposed as a valuable therapeutic alternative to the emergence of the MDR microorganisms. Although colistin is well known to present several adverse toxic effects, its usage in clinical practice has been reconsidered due to its broad spectrum of activity against Gram-negative (GN) bacteria and its important role of "last resort" agent against MDR-GN. Despite the revolutionary perspective of treatment with this old antimicrobial molecule, many questions remain open regarding the emergence of novel phenotypic traits of resistance and the optimal usage of the colistin in clinical practice. In last years, several forward steps have been made in the understanding of the resistance determinants, clinical usage, and pharmacological dosage of this molecule; however, different points regarding the role of colistin in clinical practice and the optimal pharmacokinetic/pharmacodynamic targets are not yet well defined. In this review, we summarize the mode of action, the emerging resistance determinants, and its optimal administration in the treatment of infections that are difficult to treat due to MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Gabriele Bianco
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Paolo Gaibani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
4
|
Xu M, Yao Z, Kong J, Tang M, Liu Q, Zhang X, Shi S, Zheng X, Cao J, Zhou T, Wang Z. Antiparasitic nitazoxanide potentiates colistin against colistin-resistant Acinetobacter baumannii and Escherichia coli in vitro and in vivo. Microbiol Spectr 2024; 12:e0229523. [PMID: 38032179 PMCID: PMC10783142 DOI: 10.1128/spectrum.02295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Colistin is used as a last resort in many infections caused by multidrug-resistant Gram-negative bacteria; however, colistin-resistant (COL-R) is on the rise. Hence, it is critical to develop new antimicrobial strategies to overcome COL-R. We found that nitazoxanide (NTZ) combined with colistin showed notable synergetic antibacterial activity. These findings suggest that the NTZ/colistin combination may provide an effective alternative route to combat COL-R A. baumannii and COL-R Escherichia coli infections.
Collapse
Affiliation(s)
- Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Qi Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Shiyi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| |
Collapse
|
5
|
Özer B, Özbek Çelık B. Comparative in vitro activities of eravacycline in combination with colistin, meropenem, or ceftazidime against various Achromobacter spp. strains isolated from patients with cystic fibrosis. J Chemother 2023; 35:700-706. [PMID: 37211830 DOI: 10.1080/1120009x.2023.2213600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
The Achromobacter species is an emerging pathogen causing chronic bacterial infections in patients with certain conditions, such as cystic fibrosis (CF), hematologic and solid organ malignancies, renal failure, and certain immune deficiencies. In the present study, we assessed the in vitro bactericidal activities of eravacycline, either alone or in combination with colistin, meropenem, or ceftazidime, using 50 Achromobacter spp. strains isolated from CF patients. We also investigated the synergistic interactions of these combinations using microbroth dilutions against 50 strains of Achromobacter spp. Bactericidal, and we assessed the synergistic effects of the tested antibiotic combinations using the time-kill curve (TKC) technique. Our studies show that meropenem alone is the most effective antibiotic of those tested. Based on the TKCs, we found that eravacycline-colistin combinations display both bactericidal and synergistic activities for 24 h against 5 of the 6 Achromobacter spp. strains, including colistin-resistant ones, at 4xMIC of colistin. Although we did not observe synergistic interactions with eravacycline-meropenem or eravacycline-ceftazidime combinations, we did not observe antagonism with any combination tested.This study's findings could have important implications for antimicrobial therapy with tested antibiotics.
Collapse
Affiliation(s)
- Bekir Özer
- Department of Pharmaceutical Microbiology, Institute of Graduate Studies in Health Sciences, University of Istanbul, Beyazıt, Istanbul, Turkey
- Department of Pharmaceutical Microbiology, University of Istanbul, Beyazıt, Istanbul, Turkey
| | - Berna Özbek Çelık
- Department of Pharmaceutical Microbiology, University of Istanbul, Beyazıt, Istanbul, Turkey
| |
Collapse
|
6
|
Olsson A, Allander L, Shams A, Al-Farsi H, Lagerbäck P, Tängdén T. Activity of polymyxin B combinations against genetically well-characterised Klebsiella pneumoniae producing NDM-1 and OXA-48-like carbapenemases. Int J Antimicrob Agents 2023; 62:106967. [PMID: 37716575 DOI: 10.1016/j.ijantimicag.2023.106967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Combination therapy can enhance the activity of available antibiotics against multidrug-resistant Gram-negative bacteria. This study assessed the effects of polymyxin B combinations against carbapenemase-producing Klebsiella pneumoniae (K. pneumoniae). METHODS Twenty clinical K. pneumoniae strains producing NDM-1 (n = 8), OXA-48-like (n = 10), or both NDM-1 and OXA-48-like (n = 2) carbapenemases were used. Whole-genome sequencing was applied to detect resistance genes (e.g. encoding antibiotic-degrading enzymes) and sequence alterations influencing permeability or efflux. The activity of polymyxin B in combination with aztreonam, fosfomycin, meropenem, minocycline, or rifampicin was investigated in 24-hour time-lapse microscopy experiments. Endpoint samples were spotted on plates with and without polymyxin B at 4 x MIC to assess resistance development. Finally, associations between synergy and bacterial genetic traits were explored. RESULTS Synergistic and bactericidal effects were observed with polymyxin B in combination with all other antibiotics: aztreonam (11 of 20 strains), fosfomycin (16 of 20), meropenem (10 of 20), minocycline (18 of 20), and rifampicin (15 of 20). Synergy was found with polymyxin B in combination with fosfomycin, minocycline, or rifampicin against all nine polymyxin-resistant strains. Wildtype mgrB was associated with polymyxin B and aztreonam synergy (P = 0.0499). An absence of arr-2 and arr-3 was associated with synergy of polymyxin B and rifampicin (P = 0.0260). Emergence of populations with reduced polymyxin B susceptibility was most frequently observed with aztreonam and meropenem. CONCLUSION Combinations of polymyxin B and minocycline or rifampicin were most active against the tested NDM-1 and OXA-48-like-producing K. pneumoniae. Biologically plausible genotype-phenotype associations were found. Such information might accelerate the search for promising combinations and guide individualised treatment.
Collapse
Affiliation(s)
- Anna Olsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lisa Allander
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ayda Shams
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hissa Al-Farsi
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | | | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Palombo M, Bovo F, Amadesi S, Gaibani P. Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:858. [PMID: 37237761 PMCID: PMC10215675 DOI: 10.3390/antibiotics12050858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Limited treatment options are among the main reasons why antimicrobial resistance has become a leading major public health problem. In particular, carbapenem-resistant Enterobacteriales (CRE), Pseudomonas aeruginosa and Acinetobacter baumannii have been included by the World Health Organization (WHO) among the pathogens for which new therapeutic agents are needed. The combination of antibiotics represents an effective strategy to treat multidrug-resistant (MDR) pathogen infections. In this context, the aim of this study is to evaluate the in vitro activity of cefiderocol (CFD) in combination with different antimicrobial molecules against a collection of well-characterized clinical strains, exhibiting different patterns of antimicrobial susceptibility. Clinical strains were genomically characterized using Illumina iSeq100 platform. Synergy analyses were performed by combining CFD with piperacillin-tazobactam (PIP-TAZ), fosfomycin (FOS), ampicillin-sulbactam (AMP-SULB), ceftazidime-avibactam (CAZ-AVI), meropenem-vaborbactam (MER-VAB) and imipenem-relebactam (IMI-REL). Our results demonstrated the synergistic effect of CFD in combination with FOS and CAZ-AVI against CRE and carbapenem-resistant Acinetobacter baumannii (CR-Ab) clinical strains owing CFD-resistant profile, while the CFD and AMP-SULB combination was effective against CR-Pa strain displaying AMP-SULB-resistant profile. Moreover, the combination of CAZ-AVI/SULB showed synergistic activity in CAZ-AVI-resistant CRE strain. In conclusion, although further analyses are needed to confirm these results, our work showed the efficacy of CFD when used for synergistic formulations.
Collapse
Affiliation(s)
- Marta Palombo
- Microbiology Unit, IRCCS Azienda Ospedaliera-University of Bologna, 40126 Bologna, Italy
| | - Federica Bovo
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Stefano Amadesi
- Microbiology Unit, IRCCS Azienda Ospedaliera-University of Bologna, 40126 Bologna, Italy
| | - Paolo Gaibani
- Microbiology Unit, IRCCS Azienda Ospedaliera-University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
8
|
Ardebili A, Izanloo A, Rastegar M. Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 2023; 21:387-429. [PMID: 36820511 DOI: 10.1080/14787210.2023.2184346] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION The increasing prevalence of infections with multidrug-resistant (MDR), extensively-drug resistant (XDR) or difficult-to-treat drug resistant (DTR) Gram-negative bacilli (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter species, and Escherichia coli poses a severe challenge. AREAS COVERED The rapid growing of multi-resistant GNB as well as the considerable deceleration in development of new anti-infective agents have made polymyxins (e.g. polymyxin B and colistin) a mainstay in clinical practices as either monotherapy or combination therapy. However, whether the polymyxin-based combinations lead to better outcomes remains unknown. This review mainly focuses on the effect of polymyxin combination therapy versus monotherapy on treating GNB-related infections. We also provide several factors in designing studies and their impact on optimizing polymyxin combinations. EXPERT OPINION An abundance of recent in vitro and preclinical in vivo data suggest clinical benefit for polymyxin-drug combination therapies, especially colistin plus meropenem and colistin plus rifampicin, with synergistic killing against MDR, XDR, and DTR P. aeruginosa, K. pneumoniae and A. baumannii. The beneficial effects of polymyxin-drug combinations (e.g. colistin or polymyxin B + carbapenem against carbapenem-resistant K. pneumoniae and carbapenem-resistant A. baumannii, polymyxin B + carbapenem + rifampin against carbapenem-resistant K. pneumoniae, and colistin + ceftolozan/tazobactam + rifampin against PDR-P. aeruginosa) have often been shown in clinical setting by retrospective studies. However, high-certainty evidence from large randomized controlled trials is necessary. These clinical trials should incorporate careful attention to patient's sample size, characteristics of patient's groups, PK/PD relationships and dosing, rapid detection of resistance, MIC determinations, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahdieh Izanloo
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mostafa Rastegar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
9
|
Nour El-Din HT, Elsebaie MM, Abutaleb NS, Kotb AM, Attia AS, Seleem MN, Mayhoub AS. Expanding the structure-activity relationships of alkynyl diphenylurea scaffold as promising antibacterial agents. RSC Med Chem 2023; 14:367-377. [PMID: 36846365 PMCID: PMC9945853 DOI: 10.1039/d2md00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
With the continuous and alarming threat of exhausting the current antimicrobial arsenals, efforts are urgently needed to develop new effective ones. In this study, the antibacterial efficacy of a set of structurally related acetylenic-diphenylurea derivatives carrying the aminoguanidine moiety was tested against a panel of multidrug-resistant Gram-positive clinical isolates. Compound 18 was identified with a superior bacteriological profile than the lead compound I. Compound 18 demonstrated an excellent antibacterial profile in vitro: low MIC values, extended post-antibiotic effect, refractory ability to resistance development upon extended repeated exposure, and high tolerability towards mammalian cells. Finally, when assessed in a MRSA skin infection animal model, compound 18 showed considerable healing and less inflammation, decrease in the bacterial loads in skin lesions, and it surpassed fusidic acid in controlling the systemic dissemination of S. aureus. Collectively, compound 18 represents a promising lead anti-MRSA agent that merits further investigation for the development of new anti-staphylococcal therapeutics.
Collapse
Affiliation(s)
- Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Mohamed M Elsebaie
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Ahmed M Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University Giza Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Center for One Health Research, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
- Nanoscience Program, University of Science and Technology, Zewail City of Science and Technology Giza Egypt
| |
Collapse
|
10
|
Liu S, She P, Li Z, Li Y, Li L, Yang Y, Zhou L, Wu Y. Drug synergy discovery of tavaborole and aminoglycosides against Escherichia coli using high throughput screening. AMB Express 2022; 12:151. [PMID: 36454354 PMCID: PMC9715904 DOI: 10.1186/s13568-022-01488-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
High incidences of urinary tract infection (UTI) of aminoglycosides-resistant E.coli causes a severe burden for public health. A new therapeutic strategy to ease this crisis is to repurpose non-antibacterial compounds to increase aminoglycosides sensibility against multidrug resistant E.coli pathogens. Based on high throughput screening technology, we profile the antimicrobial activity of tavaborole, a first antifungal benzoxaborole drug for onychomycosis treatment, and investigate the synergistic interaction between tavaborole and aminoglycosides, especially tobramycin and amikacin. Most importantly, by resistance accumulation assay, we found that, tavaborole not only slowed resistance occurrence of aminoglycosides, but also reduced invasiveness of E.coli in combination with tobramycin. Mechanistic studies preliminary explored that tavaborole and aminoglycosides lead to mistranslation, but would be still necessary to investigate more details for further research. In addition, tavaborole exhibited low systematic toxicity in vitro and in vivo, and enhanced aminoglycoside bactericidal activity in mice peritonitis model. Collectively, these results suggest the potential of tavaborole as a novel aminoglycosides adjuvant to tackle the clinically relevant drug resistant E. coli and encourages us to discover more benzoxaborole analogues for circumvention of recalcitrant infections.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
11
|
Woźniak A, Burzyńska N, Zybała I, Empel J, Grinholc M. Priming effect with photoinactivation against extensively drug-resistant Enterobacter cloacae and Klebsiella pneumoniae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112554. [PMID: 36095975 DOI: 10.1016/j.jphotobiol.2022.112554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, we present antimicrobial blue light (aBL) and antimicrobial photoinactivation with green light in the presence of Rose Bengal (aPDI) to modulate the susceptibility of extensively drug-resistant (XDR) Enterobacter cloacae and Klebsiella pneumoniae clinical isolates to antimicrobials. This process can be considered a photodynamic priming tool that influences other therapeutic options, such as antibiotics. The current study evaluated the different environments to estimate the most effective priming conditions by testing a broad spectrum of antimicrobials (including antimicrobials with different targets and mechanisms of action). The susceptibility of the E. cloacae and K. pneumoniae clinical isolates to various antibiotics after aBL and green light (with rose bengal) as aPDI treatment was examined with multiple methods of synergy testing (e.g., diffusion methods, checkerboard assay, postantibiotic effect), and most effective photoinactivation conditions were implemented for each environment. When Enterobacteriaceae were exposed to aBL, the most efficient reduction in survival rate under TSB conditions was observed. Similar results were observed when rose bengal, as a photosensitizer, was present during the exposure to green light in PBS. aBL and aPDI led to an increased susceptibility of K. pneumoniae and E. cloacae isolates to chloramphenicol and colistin or fosfomycin and colistin antibiotics, respectively. However, among the 4 tested isolates, we observed synergies between different antimicrobial agents and photoinactivation conditions. Thus, it may suggest that the sensitization process may be considered a strain dependent priming tool.
Collapse
Affiliation(s)
- Agata Woźniak
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Natalia Burzyńska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Izabela Zybała
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland.
| |
Collapse
|
12
|
Wang Y, Kong J, Zhang X, Liu Y, Huang Z, Yuan L, Zhang Y, Cao J, Chen L, Liu Y, Zhou T. Plumbagin resurrect colistin susceptible against colistin-resistant Pseudomonas aeruginosa in vitro and in vivo. Front Microbiol 2022; 13:1020652. [PMID: 36274701 PMCID: PMC9579824 DOI: 10.3389/fmicb.2022.1020652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
The global emergence and spread of multi-drug resistant (MDR) strains is becoming increasingly worrisome due to the overuse of broad-spectrum antibiotics. Colistin, the last resort for treating MDR strains infections, has once again returned to the clinician’s choice. However, with the widespread use of colistin, colistin-resistant gram-negative bacteria (GNB) have subsequently emerged, including colistin-resistant Pseudomonas aeruginosa (COL-R PA). Therefore, available solutions are urgently needed to respond to this situation. Here, we inspiringly found that the combination of plumbagin and colistin had an efficiently inhibitory effect for colistin-resistant P. aeruginosa in vitro through checkerboard assay and time-kill assay. The combinatorial inhibition of biofilm formation was clearly demonstrated by crystal violet staining and scanning electron microscopy (SEM), and this combination can not only inhibited biofilm formation but also eradicated the mature biofilm. Erythrocytes hemolysis test showed that plumbagin has negligible hemolysis ability. In addition, the increased survival rate of Galleria mellonella (G. mellonella) larva confirmed this combination as same as effective in vivo. As for the mechanism of this combination, propidium iodide (PI) staining showed colistin combined with plumbagin could significantly change the membrane permeability, thus exerting synergistic antibacterial activity. In conclusion, the combination of plumbagin and colistin shows a prominently synergistic antibacterial effect in vitro and in vivo, providing a promising option for the therapy of COL-R PA infection.
Collapse
Affiliation(s)
- Yue Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Yuan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yong Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Yong Liu,
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Tieli Zhou,
| |
Collapse
|
13
|
Gao Y, Dutta S, Wang X. Serendipitous Discovery of a Highly Active and Selective Resistance-Modifying Agent for Colistin-Resistant Gram-Negative Bacteria. ACS OMEGA 2022; 7:12442-12446. [PMID: 35449921 PMCID: PMC9016814 DOI: 10.1021/acsomega.2c01530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 05/03/2023]
Abstract
Antibiotic resistance is a growing global health concern. Colistin is one of the last-resort antibiotics that treats multidrug-resistant (MDR) Gram-negative bacterial infection. However, bacteria resistant to colistin have become increasingly prevalent. Using a bacterial whole-cell screen of a fragment-based library, one compound was discovered to resensitize MDR Escherichia coli AR-0493 to colistin with low mammalian toxicity. Interestingly, postscreening validation studies identified a highly related yet distinct compound as the actual substance responsible for the activity. Further studies showed that this novel resistance-modifying agent is not only very potent but also highly selective to potentiate the activity of polymyxin family antibiotics in a wide range of MDR Gram-negative bacteria. Thus, it may be further developed as a combination therapy to prolong the life span of colistin in the clinic.
Collapse
|
14
|
Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021. [PMID: 34475315 PMCID: PMC8387214 DOI: 10.1007/s12038-021-00209-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections caused by multi-drug resistant (MDR) bacterial pathogens are a leading cause of mortality and morbidity across the world. Indiscriminate use of broad-spectrum antibiotics has seriously affected this situation. With the diminishing discovery of novel antibiotics, new treatment methods are urgently required to combat MDR pathogens. Polymyxins, the cationic lipopeptide antibiotics, discovered more than half a century ago, are considered to be the last-line of antibiotics available at the moment. This antibiotic shows a great bactericidal effect against Gram-negative bacteria. Polymyxins primarily target the bacterial membrane and disrupt them, causing lethality. Because of their membrane interacting mode of action, polymyxins cause nephrotoxicity and neurotoxicity in humans, limiting their usability. However, recent modifications in their chemical structure have been able to reduce the toxic effects. The development of better dosing regimens has also helped in getting better clinical outcomes in the infections caused by MDR pathogens. Since the mid-1990s the use of polymyxins has increased manifold in clinical settings, resulting in the emergence of polymyxin-resistant strains. The risk posed by the polymyxin-resistant nosocomial pathogens such as the Enterobacteriaceae group, Pseudomonas aeruginosa, and Acinetobacter baumannii, etc. is very serious considering these pathogens are resistant to almost all available antibacterial drugs. In this review article, the mode of action of the polymyxins and the genetic regulatory mechanism responsible for the emergence of resistance are discussed. Specifically, this review aims to update our current understanding in the field and suggest possible solutions that can be pursued for future antibiotic development. As polymyxins primarily target the bacterial membranes, resistance to polymyxins arises primarily by the modification of the lipopolysaccharides (LPS) in the outer membrane (OM). The LPS modification pathways are largely regulated by the bacterial two-component signal transduction (TCS) systems. Therefore, targeting or modulating the TCS signalling mechanisms can be pursued as an alternative to treat the infections caused by polymyxin-resistant MDR pathogens. In this review article, this aspect is also highlighted.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Indira Padhy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| |
Collapse
|
15
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
16
|
Ben-Chetrit E, Mc Gann P, Maybank R, Stam J, Assous MV, Katz DE. Colistin-resistant Klebsiella pneumoniae bloodstream infection: old drug, bad bug. Arch Microbiol 2021; 203:2999-3006. [PMID: 33774687 DOI: 10.1007/s00203-021-02289-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
Multi-drug-resistant (MDR) Enterobacteriaceae pose a global threat to hospitalized patients. We report a series of colistin-resistant Klebsiella pneumoniae blood isolates from Israel and explore their resistance mechanisms using whole genome sequencing (WGS). Patients with colistin-resistant K. pneumoniae bloodstream infection (BSI) were identified during the period between 2006 and 2018. Demographic and clinical data were collected, and antibiotic susceptibility testing (AST) was performed using three commercial platforms. Long and short read sequencing were performed on a PacBio RS II (Pacific Biosciences) and an Illumina Miseq (Illumina), respectively. Thirteen patients with colistin-resistant K. pneumoniae BSI were identified, and seven isolates from seven different patients were successfully revived. Patient records indicated that five of the patients were previously treated with colistin. AST indicated that six of the seven isolates were colistin resistant and four of these isolates were resistant to carbapenems. WGS assigned the isolates to four distinct clusters that corresponded to in silico-derived multi-locus sequence types (MLST). Three isolates carried blaKPC-3 on two different plasmids and one carried blaOXA-48 on a novel IncL/M plasmid. All colistin-resistant isolates carried a variety of different mutations that inactivated the mgrB gene. We report the first comprehensive analysis of a series of colistin-resistant K. pneumoniae from Israel. A diverse set of isolates were obtained and colistin resistance was found to be attributed to different mechanisms that ablated the mgrB gene. Notably, carbapenemase genes were identified in four isolates and were carried on novel plasmids.
Collapse
Affiliation(s)
- Eli Ben-Chetrit
- Shaare Zedek Medical Center, Department of Infectious Diseases, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Patrick Mc Gann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rosslyn Maybank
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jason Stam
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Marc V Assous
- Shaare Zedek Medical Center, Department of Microbiology, Jerusalem, Israel
| | - David E Katz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel. .,Shaare Zedek Medical Center, Division of Internal Medicine, Jerusalem, Israel.
| |
Collapse
|
17
|
Investigation of double-carbapenem efficiency in experimental sepsis of colistin-resistant Klebsiella pneumoniae. North Clin Istanb 2021; 8:113-118. [PMID: 33851073 PMCID: PMC8039106 DOI: 10.14744/nci.2020.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE: Klebsiella pneumoniae, a Gram-negative pathogen, especially which produces carbapenemase, is seen as a major threat to public health due to rapid plasmid-mediated spread of resistance and limited therapeutic options available for treatment. Although colistin has been recognized as a “last resort” antimicrobial for multidrug-resistant K. pneumoniae infections, these isolates have developed resistance to colistin as a result of its intensive use. The aim of this study was to evaluate the efficacy of double-carbapenem treatment of colistin-resistant K. pneumoniae experimental sepsis in mice. METHODS: In the study, 8–10-week-old Balb-c mice were divided as control groups (positive and negative) and treatment groups (colistin, ertapenem+meropenem, and ertapenem+meropenem+colistin). Sepsis was developed in mice by an intraperitoneal injection of colistin resistant K. pneumoniae. Antibiotics were given intraperitoneally 3 h after bacterial inoculation. Mice in each subgroup were sacrificed with overdose anesthetic at the end of 24–48 h and cultures were made from the heart, lung, liver, and spleen. Furthermore, homogenates of lung and liver were used to detect the number of colony-forming units per gram. Bacterial clearance was evaluated in lung and liver at different time points. RESULTS: When the quantitative bacterial loads in the lung and liver tissues are evaluated, no statistically significant difference was observed between different antibiotic treatments (p>0.05). All three treatment options were not effective, especially in 24 h. Only the decrease in bacterial load at the 48th h of the group treated with ertapenem + meropenem + colistin was found significant (p<0.05) compared to the 24 h. CONCLUSION: In the light of these data, it was understood that double-carbapenem application was not sufficient in the treatment of experimental sepsis in mice with colistin-resistant K. pneumoniae. Furthermore, ertapenem + meropenem + colistin combined therapy was not found to be superior to colistin monotherapy or double-carbapenem therapy.
Collapse
|
18
|
Liu E, Jia P, Li X, Zhou M, Kudinha T, Wu C, Xu Y, Yang Q. In vitro and in vivo Effect of Antimicrobial Agent Combinations Against Carbapenem-Resistant Klebsiella pneumoniae with Different Resistance Mechanisms in China. Infect Drug Resist 2021; 14:917-928. [PMID: 33707959 PMCID: PMC7943327 DOI: 10.2147/idr.s292431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Objective This study aimed to evaluate the in vitro and in vivo effects of different combinations of antimicrobial agents against carbapenemase-producing and non-producing Klebsiella pneumoniae from China. Methods A checkerboard assay of meropenem (MEM), amikacin (AK), tigecycline (TGC), colistin (COL) and their combinations was carried out against 58 clinical carbapenem-resistant K. pneumoniae (CRKp) isolates, including 11 carbapenemase-non-producing K. pneumoniae isolates and 21 isolates producing KPC-2 enzyme, 11 NDM-1, 13 IMP, one VIM-1 and one OXA-48. The checkerboard assay was analyzed by the fractional inhibitory concentration index (FICI). A time-kill assay and Galleria mellonella infection model were conducted to evaluate the in vitro and in vivo effects of the four drugs alone and in combination. Results In the checkerboard assay, TGC+AK and MEM+AK combinations showed the highest synergistic effect against KPC-2 and NDM-1 carbapenemase-producing isolates, with synergy+partial synergy (defined as FICI <1) rates of 76.2% and 71.4% against KPC-2 producers, and 54.5% and 81.8% against NDM-1 producers. TGC+AK and MEM+COL combinations showed the highest rate of synergistic effect against IMP-producing isolates. Against carbapenemase-non-producing isolates, TGC+COL and TGC+AK combinations showed the highest rate of synergy effect (63.6% and 54.5%). MEM+AK showed a synergistic effect against one VIM-1 producer (FICI=0.31) and an additivite effect (FICI=1) against one OXA-48 producer. In the time-kill assay, COL+AK, COL+TGC, COL+MEM and AK+TGC showed good synergistic effects against the KPC-2-producing isolate D16. COL+MEM and COL+TGC combinations showed good effects against the NDM-1-producing isolate L13 and IMP-4-producing isolate L34. Against the carbapenemase-non-producing isolate Y105, MEM+TGC and COL+AK showed high synergistic effects, with log10CFU/mL decreases of 6.2 and 5.5 compared to the most active single drug. In the G. mellonella survival assay, MEM-based combinations had relatively high survival rates, especially when combined with colistin, against KPC-2 producers (90% survival rate) and with amikacin against metallo-beta-lactamase producers (95-100% survival rate). Conclusion Our study suggests that different antimicrobial agent combinations should be considered against CRKp infections with different resistance mechanisms.
Collapse
Affiliation(s)
- Enbo Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Peiyao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xue Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.,Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Menglan Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Orange, 2800, Australia.,Pathology West, NSW Health Pathology, Orange, 2800, Australia
| | - Chuncai Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| |
Collapse
|
19
|
Zhang B, Yu B, Zhou W, Wang Y, Sun Z, Wu X, Chen S, Ni M, Hu Y. Mobile Plasmid Mediated Transition From Colistin-Sensitive to Resistant Phenotype in Klebsiella pneumoniae. Front Microbiol 2021; 12:619369. [PMID: 33658985 PMCID: PMC7917065 DOI: 10.3389/fmicb.2021.619369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Multidrug-resistant bacteria, including carbapenem-resistant Klebsiella pneumoniae (CRKP), are becoming an increasing health crisis worldwide. For CRKP, colistin is regarded as "the last treatment option." In this study, we isolated a clinical CRKP strain named as K. pneumoniae R10-341. Phenotyping analysis showed that this strain could transit from a colistin-sensitive to a resistant phenotype by inserting an IS4 family ISKpn72 element into the colistin-resistance associated mgrB gene. To investigate the mechanism of this transition, we performed genome sequencing analysis of the colistin-sensitive parental strain and found that 12 copies of ISKpn72 containing direct repeats (DR) are located on the chromosome and 1 copy without DR is located on a multidrug-resistant plasmid pR10-341_2. Both types of ISKpn72 could be inserted into the mgrB gene to cause colistin-resistance, though the plasmid-derived ISKpn72 without DR was in higher efficiency. Importantly, we demonstrated that colistin-sensitive K. pneumoniae strain transferred with the ISKpn72 element also obtained the ability to switch from colistin-sensitive to colistin-resistant phenotype. Furthermore, we confirmed that the ISKpn72-containing pR10-341_2 plasmid was able to conjugate, suggesting that the ability of causing colistin-resistant transition is transferable through common conjugation. Our results point to new challenges for both colistin-resistance detection and CRKP treatment.
Collapse
Affiliation(s)
- Baoyue Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Wu
- Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Ni
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangbo Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021; 46:85. [PMID: 34475315 PMCID: PMC8387214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/03/2021] [Indexed: 04/04/2024]
Abstract
Infections caused by multi-drug resistant (MDR) bacterial pathogens are a leading cause of mortality and morbidity across the world. Indiscriminate use of broad-spectrum antibiotics has seriously affected this situation. With the diminishing discovery of novel antibiotics, new treatment methods are urgently required to combat MDR pathogens. Polymyxins, the cationic lipopeptide antibiotics, discovered more than half a century ago, are considered to be the last-line of antibiotics available at the moment. This antibiotic shows a great bactericidal effect against Gram-negative bacteria. Polymyxins primarily target the bacterial membrane and disrupt them, causing lethality. Because of their membrane interacting mode of action, polymyxins cause nephrotoxicity and neurotoxicity in humans, limiting their usability. However, recent modifications in their chemical structure have been able to reduce the toxic effects. The development of better dosing regimens has also helped in getting better clinical outcomes in the infections caused by MDR pathogens. Since the mid1990s the use of polymyxins has increased manifold in clinical settings, resulting in the emergence of polymyxin-resistant strains. The risk posed by the polymyxin-resistant nosocomial pathogens such as the Enterobacteriaceae group, Pseudomonas aeruginosa, and Acinetobacter baumannii, etc. is very serious considering these pathogens are resistant to almost all available antibacterial drugs. In this review article, the mode of action of the polymyxins and the genetic regulatory mechanism responsible for the emergence of resistance are discussed. Specifically, this review aims to update our current understanding in the field and suggest possible solutions that can be pursued for future antibiotic development. As polymyxins primarily target the bacterial membranes, resistance to polymyxins arises primarily by the modification of the lipopolysaccharides (LPS) in the outer membrane (OM). The LPS modification pathways are largely regulated by the bacterial two-component signal transduction (TCS) systems. Therefore, targeting or modulating the TCS signalling mechanisms can be pursued as an alternative to treat the infections caused by polymyxin-resistant MDR pathogens. In this review article, this aspect is also highlighted.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Indira Padhy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| |
Collapse
|
21
|
Wistrand-Yuen P, Olsson A, Skarp KP, Friberg L, Nielsen E, Lagerbäck P, Tängdén T. Evaluation of polymyxin B in combination with 13 other antibiotics against carbapenemase-producing Klebsiella pneumoniae in time-lapse microscopy and time-kill experiments. Clin Microbiol Infect 2020; 26:1214-1221. [DOI: 10.1016/j.cmi.2020.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/17/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
|
22
|
Rázquin-Olazarán I, Shahrour H, Martínez-de-Tejada G. A synthetic peptide sensitizes multi-drug resistant Pseudomonas aeruginosa to antibiotics for more than two hours and permeabilizes its envelope for twenty hours. J Biomed Sci 2020; 27:85. [PMID: 32762680 PMCID: PMC7412836 DOI: 10.1186/s12929-020-00678-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/30/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a Gram-negative pathogen that frequently causes life-threatening infections in immunocompromised patients. We previously showed that subinhibitory concentrations of short synthetic peptides permeabilize P. aeruginosa and enhance the lethal action of co-administered antibiotics. METHODS Long-term permeabilization caused by exposure of multidrug-resistant P. aeruginosa strains to peptide P4-9 was investigated by measuring the uptake of several antibiotics and fluorescent probes and by using confocal imaging and atomic force microscopy. RESULTS We demonstrated that P4-9, a 13-amino acid peptide, induces a growth delay (i.e. post-antibiotic effect) of 1.3 h on a multidrug-resistant P. aeruginosa clinical isolate. Remarkably, when an independently P4-9-treated culture was allowed to grow in the absence of the peptide, cells remained sensitive to subinhibitory concentrations of antibiotics such as ceftazidime, fosfomycin and erythromycin for at least 2 h. We designated this persistent sensitization to antibiotics occurring in the absence of the sensitizing agent as Post-Antibiotic Effect associated Permeabilization (PAEP). Using atomic force microscopy, we showed that exposure to P4-9 induces profound alterations on the bacterial surface and that treated cells need at least 2 h of growth to repair those lesions. During PAEP, P. aeruginosa mutants overexpressing either the efflux pump MexAB-OprM system or the AmpC β-lactamase were rendered sensitive to antibiotics that are known substrates of those mechanisms of resistance. Finally, we showed for the first time that the descendants of bacteria surviving exposure to a membrane disturbing peptide retain a significant level of permeability to hydrophobic compounds, including propidium iodide, even after 20 h of growth in the absence of the peptide. CONCLUSIONS The phenomenon of long-term sensitization to antibiotics shown here may have important therapeutic implications for a combined peptide-antibiotic treatment because the peptide would not need to be present to exert its antibiotic enhancing activity as long as the target organism retains sensitization to the antibiotic.
Collapse
Affiliation(s)
- Iosu Rázquin-Olazarán
- Department of Microbiology and Parasitology, University of Navarra, E-31008, Pamplona, Spain
| | - Hawraa Shahrour
- Department of Microbiology and Parasitology, University of Navarra, E-31008, Pamplona, Spain
- Laboratory of Microbiology, Department of Life & Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat campus, Beirut, Lebanon
| | - Guillermo Martínez-de-Tejada
- Department of Microbiology and Parasitology, University of Navarra, E-31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
23
|
Gaibani P, Ambretti S, Viale P, Re MC. In vitro synergistic activity of meropenem/vaborbactam in combination with ceftazidime/avibactam against KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother 2020; 74:1457-1459. [PMID: 30649310 DOI: 10.1093/jac/dky557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paolo Gaibani
- Operative Unit of Clinical Microbiology, St Orsola-Malpighi University Hospital, Bologna, Italy
| | - Simone Ambretti
- Operative Unit of Clinical Microbiology, St Orsola-Malpighi University Hospital, Bologna, Italy
| | - PierLuigi Viale
- Operative Unit of Infectious Diseases, St Orsola-Malpighi University Hospital, Bologna, Italy.,University of Bologna, Bologna, Italy
| | - Maria Carla Re
- Operative Unit of Clinical Microbiology, St Orsola-Malpighi University Hospital, Bologna, Italy.,University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Aye SM, Galani I, Yu H, Wang J, Chen K, Wickremasinghe H, Karaiskos I, Bergen PJ, Zhao J, Velkov T, Giamarellou H, Lin YW, Tsuji BT, Li J. Polymyxin Triple Combinations against Polymyxin-Resistant, Multidrug-Resistant, KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:e00246-20. [PMID: 32393492 PMCID: PMC7526826 DOI: 10.1128/aac.00246-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Resistance to polymyxin antibiotics is increasing. Without new antibiotic classes, combination therapy is often required. We systematically investigated bacterial killing with polymyxin-based combinations against multidrug-resistant (including polymyxin-resistant), carbapenemase-producing Klebsiella pneumoniae Monotherapies and double- and triple-combination therapies were compared to identify the most efficacious treatment using static time-kill studies (24 h, six isolates), an in vitro pharmacokinetic/pharmacodynamic model (IVM; 48 h, two isolates), and the mouse thigh infection model (24 h, six isolates). In static time-kill studies, all monotherapies (polymyxin B, rifampin, amikacin, meropenem, or minocycline) were ineffective. Initial bacterial killing was enhanced with various polymyxin B-containing double combinations; however, substantial regrowth occurred in most cases by 24 h. Most polymyxin B-containing triple combinations provided greater and more sustained killing than double combinations. Standard dosage regimens of polymyxin B (2.5 mg/kg of body weight/day), rifampin (600 mg every 12 h), and amikacin (7.5 mg/kg every 12 h) were simulated in the IVM. Against isolate ATH 16, no viable bacteria were detected across 5 to 25 h with triple therapy, with regrowth to ∼2-log10 CFU/ml occurring at 48 h. Against isolate BD 32, rapid initial killing of ∼3.5-log10 CFU/ml at 5 h was followed by a slow decline to ∼2-log10 CFU/ml at 48 h. In infected mice, polymyxin B monotherapy (60 mg/kg/day) generally was ineffective. With triple therapy (polymyxin B at 60 mg/kg/day, rifampin at 120 mg/kg/day, and amikacin at 300 mg/kg/day), at 24 h there was an ∼1.7-log10 CFU/thigh reduction compared to the starting inoculum for all six isolates. Our results demonstrate that the polymyxin B-rifampin-amikacin combination significantly enhanced in vitro and in vivo bacterial killing, providing important information for the optimization of polymyxin-based combinations in patients.
Collapse
Affiliation(s)
- Su Mon Aye
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Irene Galani
- Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Heidi Yu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiping Wang
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ke Chen
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hasini Wickremasinghe
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ilias Karaiskos
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Phillip J Bergen
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jinxin Zhao
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen Giamarellou
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, NYS Centre of Excellence in Bioinformatics & Life Sciences, Buffalo, New York, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Comparative in vitro activities of meropenem in combination with colistin, levofloxacin, or chloramphenicol against Achromobacter xylosoxidans strains isolated from patients with cystic fibrosis. J Glob Antimicrob Resist 2020; 22:713-717. [PMID: 32534046 DOI: 10.1016/j.jgar.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Achromobacter xylosoxidans is an emerging pathogen in cystic fibrosis (CF). Relatively little is known about its clinical impact and optimal management. In the present study, the in vitro bactericidal activities of meropenem, either alone or in combination with colistin, levofloxacin, or chloramphenicol, were assessed using A. xylosoxidans strains isolated from CF patients. The synergistic interactions of these combinations were also investigated. METHODS Minimal inhibitory concentrations (MICs) were determined by microbroth dilution. Bactericidal and synergistic effects of the tested antibiotic combinations were assessed by using the time-kill curve technique. RESULTS Based on the time-kill curves, we found that meropenem-colistin combinations have bactericidal and synergistic activities for 24 h against A. xylosoxidans strains, both at 1 × MIC and 4 × MIC. Although synergistic interactions were seen with meropenem-levofloxacin combinations, no bactericidal interactions were observed. Additionally, the meropenem-chloramphenicol combinations were found to be neither bactericidal nor synergistic. No antagonism was observed with any combination tested. CONCLUSIONS This study's findings could have important implications for empirical or combination antimicrobial therapy with tested antibiotics.
Collapse
|
26
|
Özbek-Çelik B, Damar-Çelik D, Nørskov-Lauritsen N. Post-antibiotic Effect of Various Antibiotics against <i>Achromobacter xylosoxidans</i> Strains Isolated from Patients with Cystic Fibrosis. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2020. [DOI: 10.5799/jcei/8294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Bassetti M, Peghin M. How to manage KPC infections. Ther Adv Infect Dis 2020; 7:2049936120912049. [PMID: 32489663 PMCID: PMC7238785 DOI: 10.1177/2049936120912049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemase-producing Enterobacteriaceae represent an increasing global threat worldwide and Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-KP) has become one of the most important contemporary pathogens, especially in endemic areas. Risk stratification and rapid diagnostics laboratory workflows are of paramount importance and indication for therapy of KPC-KP infection must be individualized according to the baseline characteristics of the patient and severity of infection. The optimal treatment of infection because of KPC-KP organisms is uncertain and antibiotic options are limited. The knowledge of the patient's pathophysiology, infection site, and application of the pharmacokinetic/pharmacodynamic principles on the basis of minimum inhibitory concentration (MIC) has progressively gained major relevance. Combination therapies including high-dose meropenem, colistin, fosfomycin, tigecycline, and aminoglycosides are widely used, with suboptimal results. In the past few years, new antimicrobials targeting KPC-KP have been developed and are now at various stages of clinical research. However, their optimal use should be guaranteed in the long term for delaying, as much as possible, the emergence of resistance. Strict infection control measures remain necessary. The aim of this review is to discuss the challenges in the management and treatment of patients with infections because KPC-KP and provide an expert opinion.
Collapse
Affiliation(s)
- Matteo Bassetti
- Clinica Malattie Infettive, Azienda Ospedaliero-Universitaria "Santa Maria della Misericordia", Piazzale S. Maria della Misericordia, n. 15, Udine, 33100, Italy
| | - Maddalena Peghin
- Department of Medicine, Infectious Diseases Clinic, University of Udine and Azienda Sanitaria Universitaria, Integrata di Udine, Udine, Italy
| |
Collapse
|
28
|
Gaudereto JJ, Neto LVP, Leite GC, Espinoza EPS, Martins RCR, Villas Boa Prado G, Rossi F, Guimarães T, Levin AS, Costa SF. Comparison of methods for the detection of in vitro synergy in multidrug-resistant gram-negative bacteria. BMC Microbiol 2020; 20:97. [PMID: 32299353 PMCID: PMC7161189 DOI: 10.1186/s12866-020-01756-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The use of combined antibiotic therapy has become an option for infections caused by multidrug-resistant (MDR) bacteria. The time-kill (TK) assay is considered the gold standard method for the evaluation of in vitro synergy, but it is a time-consuming and expensive method. The purpose of this study was to evaluate two methods for testing in vitro antimicrobial combinations: the disk diffusion method through disk approximation (DA) and the agar gradient diffusion method via the MIC:MIC ratio. The TK assay was included as the gold standard. MDR Gram-negative clinical isolates (n = 62; 28 Pseudomonas aeruginosa, 20 Acinetobacter baumannii, and 14 Serratia marcescens) were submitted to TK, DA, and MIC:MIC ratio synergy methods. RESULTS Overall, the agreement between the DA and TK assays ranged from 20 to 93%. The isolates of A. baumannii showed variable results of synergism according to TK, and the calculated agreement was statistically significant in this species against fosfomycin with meropenem including colistin-resistant isolates. The MIC:MIC ratiometric agreed from 35 to 71% with TK assays. The kappa test showed good agreement for the combination of colistin with amikacin (K = 0.58; P = 0.04) among the colistin-resistant A. baumannii isolates. CONCLUSIONS The DA and MIC:MIC ratiometric methods are easier to perform and might be a more viable tool for clinical microbiology laboratories.
Collapse
Affiliation(s)
- Juliana Januario Gaudereto
- Laboratório de Investigação Médica 49 - LIM-49, Instituto de Medicina Tropical, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Enéas de Carvalho Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Lauro Vieira Perdigão Neto
- Laboratório de Investigação Médica 49 - LIM-49, Instituto de Medicina Tropical, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Enéas de Carvalho Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Gleice Cristina Leite
- Laboratório de Investigação Médica 49 - LIM-49, Instituto de Medicina Tropical, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Enéas de Carvalho Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Evelyn Patricia Sanchez Espinoza
- Laboratório de Investigação Médica 49 - LIM-49, Instituto de Medicina Tropical, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Enéas de Carvalho Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Roberta Cristina Ruedas Martins
- Laboratório de Investigação Médica 49 - LIM-49, Instituto de Medicina Tropical, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Enéas de Carvalho Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Gladys Villas Boa Prado
- Laboratório de Investigação Médica 49 - LIM-49, Instituto de Medicina Tropical, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Enéas de Carvalho Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Flavia Rossi
- Divisão de Laboratório Central - Serviço de Microbiologia Clínica, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thais Guimarães
- Laboratório de Investigação Médica 49 - LIM-49, Instituto de Medicina Tropical, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Enéas de Carvalho Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Anna Sara Levin
- Laboratório de Investigação Médica 49 - LIM-49, Instituto de Medicina Tropical, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Enéas de Carvalho Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Silvia Figueiredo Costa
- Laboratório de Investigação Médica 49 - LIM-49, Instituto de Medicina Tropical, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Avenida Doutor Enéas de Carvalho Aguiar, 470, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
29
|
Papoutsaki V, Galani I, Papadimitriou E, Karantani I, Karaiskos I, Giamarellou H. Evaluation of in vitro methods for testing tigecycline combinations against carbapenemase-producing Klebsiella pneumoniae isolates. J Glob Antimicrob Resist 2019; 20:98-104. [PMID: 31398495 DOI: 10.1016/j.jgar.2019.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Treatment of infections caused by carbapenemase-producing Klebsiella pneumoniae (CPKP) frequently involves combination therapy with various antimicrobial agents in the hope of achieving synergistic effects. Routine laboratory antimicrobial synergy testing is a service that is currently unavailable owing to the laborious nature of the reference time-kill assay (TKA) as well as the widely used chequerboard method. In this study, we explored whether easier methods, based on the Etest technique, might offer a suitable alternative. METHODS In vitro interactions of tigecycline combination with colistin, gentamicin, fosfomycin or meropenem against 26 CPKP isolates were evaluated employing the TKA, chequerboard method and three Etest methodologies (the MIC/MIC ratio, the cross formation and the agar/Etest method). Rates of consequent synergy and concordance of the studied methods were determined. RESULTS All antimicrobial combinations demonstrated some degree of synergy against the CPKP isolates tested. No antagonism was observed for any of the combinations. All methods showed poor synergy concordance with the TKA, producing non-significant kappa (κ) results. Etest methods (MIC/MIC ratio and agar/Etest) exhibited fair agreement (κ=0.29 and 0.38, respectively) with the chequerboard method. CONCLUSION There is a poor correlation between synergy testing methods of tigecycline combinations, which may be associated with their different endpoints. To elucidate method comparability and reliability, their correlation with clinical outcomes appears important.
Collapse
Affiliation(s)
| | - Irene Galani
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Eleni Papadimitriou
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Irene Karantani
- Microbiology Department, Hygeia General Hospital, Athens, Greece
| | - Ilias Karaiskos
- 1st Internal Medicine & Infectious Diseases Clinic, Hygeia General Hospital, 4 Erythrou Stavrou Str. & Kifisias Av., Marousi Athens, 151 23 Greece
| | - Helen Giamarellou
- 1st Internal Medicine & Infectious Diseases Clinic, Hygeia General Hospital, 4 Erythrou Stavrou Str. & Kifisias Av., Marousi Athens, 151 23 Greece.
| |
Collapse
|
30
|
Gaibani P, Lombardo D, Bartoletti M, Ambretti S, Campoli C, Giannella M, Tedeschi S, Conti M, Mancini R, Landini MP, Re MC, Viale P, Lewis RE. Comparative serum bactericidal activity of meropenem-based combination regimens against extended-spectrum beta-lactamase and KPC-producing Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis 2019; 38:1925-1931. [PMID: 31278562 DOI: 10.1007/s10096-019-03628-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022]
Abstract
Combination therapies are frequently used in the treatment of multidrug-resistant Klebsiella pneumoniae infection without consensus regarding which combination is the most effective. We compared bactericidal titres from sera collected from critically ill patients receiving meropenem plus tigecycline (n = 5), meropenem plus colistin (n = 5), or meropenem, colistin and tigecycline (n = 5) against K. pneumoniae isolates that included ESBL-producing (n = 7) and KPC-producing strains (n = 14) with varying sensitivity patterns to colistin and tigecycline. Meropenem concentrations (Cmin) were measured in all samples by LC-MS/MS, and indexed to respective pathogen MICs to explore differences in patterns of bactericidal activity for two versus three drug combination regimens. All combination regimens achieved higher SBTs against ESBL (median reciprocal titre 128, IQR 32-256) versus KPC (4, IQR 2-32) strains. Sera from patients treated with meropenem-colistin yielded higher median SBTs (256, IQR 64-512) than either meropenem-tigecycline (32, IQR 8-256; P < 0.001). The addition of tigecycline was associated with a lower probability of achieving a reciprocal SBT above 8 when meropenem concentrations were below the MIC (P = 0.04). Although the clinical significance is unknown, sera from patients receiving tigecycline-based combination regimens produce lower serum bactericidal titres against ESBL or KPC-producing K. pneumoniae. SBTs may represent a useful complimentary endpoint for comparing pharmacodynamics of combinations regimens for MDR Enterobacteriaceae.
Collapse
Affiliation(s)
- Paolo Gaibani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S.Orsola-Malpighi University Hospital, 9 via G. Massarenti, 40138, Bologna, Italy.
| | - Donatella Lombardo
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S.Orsola-Malpighi University Hospital, 9 via G. Massarenti, 40138, Bologna, Italy
| | - Michele Bartoletti
- Department of Medical Sciences and Surgery, Operative Unit of Infectious Diseases, S.Orsola-Malpighi University Hospital, Bologna, Italy
- University of Bologna, Bologna, Italy
| | - Simone Ambretti
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S.Orsola-Malpighi University Hospital, 9 via G. Massarenti, 40138, Bologna, Italy
| | - Caterina Campoli
- Department of Medical Sciences and Surgery, Operative Unit of Infectious Diseases, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maddalena Giannella
- Department of Medical Sciences and Surgery, Operative Unit of Infectious Diseases, S.Orsola-Malpighi University Hospital, Bologna, Italy
- Central Laboratory, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Sara Tedeschi
- Department of Medical Sciences and Surgery, Operative Unit of Infectious Diseases, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Matteo Conti
- Central Laboratory, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Rita Mancini
- Central Laboratory, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Paola Landini
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S.Orsola-Malpighi University Hospital, 9 via G. Massarenti, 40138, Bologna, Italy
- University of Bologna, Bologna, Italy
- Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Carla Re
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S.Orsola-Malpighi University Hospital, 9 via G. Massarenti, 40138, Bologna, Italy
- University of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical Sciences and Surgery, Operative Unit of Infectious Diseases, S.Orsola-Malpighi University Hospital, Bologna, Italy
- University of Bologna, Bologna, Italy
| | - Russell E Lewis
- Department of Medical Sciences and Surgery, Operative Unit of Infectious Diseases, S.Orsola-Malpighi University Hospital, Bologna, Italy
- Central Laboratory, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
31
|
Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, Yousefi M, Asgharzadeh M, Yousefi B, Kafil HS. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist 2019; 12:965-975. [PMID: 31190901 PMCID: PMC6519339 DOI: 10.2147/idr.s199844] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance.
Collapse
Affiliation(s)
- Zahra Aghapour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Suhad Saad Mahmood
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Asghar Tanomand
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Dose-Dependent Synergistic Interactions of Colistin with Rifampin, Meropenem, and Tigecycline against Carbapenem-Resistant Klebsiella pneumoniae Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.02357-18. [PMID: 30642942 DOI: 10.1128/aac.02357-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/02/2019] [Indexed: 01/13/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) can cause biofilm-related bloodstream infections associated with significant morbidity and mortality worldwide. We investigated the bactericidal activities of colistin (CST), rifampin (RIF), meropenem (MEM), gentamicin (GEN), and tigecycline (TGC) alone and that of CST in combination with RIF, MEM, GEN, or TGC against CR-Kp mature biofilms. Twenty CR-Kp blood isolates were derived from an equal number of bloodstream infections in adult patients. Biofilm formation was assessed by staining with 0.4% crystal violet and measuring the optical density spectrophotometrically at 545 nm. Biofilm damage was measured as the percent reduction of metabolic activity by an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt] assay. The MIC50 for biofilms was determined as the minimum concentration that caused ≥50% bacterial damage compared to that for untreated controls. Antibacterial drug interactions were analyzed by the Bliss independence model. Four of the 20 CR-Kp isolates were biofilm producers. Biofilm MIC50s of CST, RIF, MEM, GEN, and TGC for these isolates were 64, 8, >256, 128, and 8 mg/liter, respectively. Synergistic interactions were observed at 32 to 64 mg/liter of CST combined with 0.25 to 4 mg/liter of RIF, at 32 mg/liter of CST combined with 0.007 to 0.25 mg/liter of MEM, and at 16 to 32 mg/liter of CST combined with 16 to 64 mg/liter of TGC. The synergy was highest for CST plus RIF, with a mean ΔE ± standard error (SE) of 49.87% ± 9.22%, compared to 29.52% ± 4.97% for CST plus MEM (P < 0.001) and 32.44% ± 6.49% for CST plus TGC (P < 0.001). Indifferent results were exhibited by CST plus GEN. None of the combinations exhibited antagonism. These drug interaction findings, especially those for CST with RIF, may be of importance in the treatment of biofilm-related CR-Kp infections.
Collapse
|
33
|
Durdu B, Koc MM, Hakyemez IN, Akkoyunlu Y, Daskaya H, Gultepe BS, Aslan T. Risk Factors Affecting Patterns of Antibiotic Resistance and Treatment Efficacy in Extreme Drug Resistance in Intensive Care Unit-Acquired Klebsiella Pneumoniae Infections: A 5-Year Analysis. Med Sci Monit 2019; 25:174-183. [PMID: 30614487 PMCID: PMC6391853 DOI: 10.12659/msm.911338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We investigated the factors affecting antibiotic resistance in the intensive care unit (ICU)-related hospital-acquired infections caused by Klebsiella pneumoniae (KP-HAI) and the effects of antibiotics used for high-level antibiotic resistance on patient survival. MATERIAL AND METHODS This retrospective study was performed at the adult ICU of Bezmialem Vakif University Hospital. Patients who were followed up between 01 January 2012 and 31 May 2017 were evaluated. Each KP strain was categorized according to resistance patterns and analyzed. The efficiency of antibiotic therapy for highly-resistant KP-HAI was determined by patients' lifespans. RESULTS We evaluated 208 patients. With the prior use of carbapenem, antibiotics against resistant Gram-positives, and tigecycline, it was observed that the resistance rate of the infectious agents had a significant increase. As the resistance category increases, a significant decrease was seen in the survival time. We observed that if the treatment combination included trimethoprim-sulfamethoxazole, the survival time became significantly longer, and tigecycline-carbapenem-colistin and tigecycline-carbapenem combination patients showed significantly shorter survival times. CONCLUSIONS When the resistance increases, delays will occur in starting suitable and effective antibiotic treatment, with increased sepsis frequency and higher mortality rates. Trimethoprim-sulfamethoxazole can be an efficient alternative to extend survival time in trimethoprim-sulfamethoxazole-susceptible KP infections that have extensive drug resistance.
Collapse
Affiliation(s)
- Bulent Durdu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Meliha Meric Koc
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ismail N. Hakyemez
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yasemin Akkoyunlu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Hayrettin Daskaya
- Department of Anesthesia and Reanimation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Bilge Sumbul Gultepe
- Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Turan Aslan
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
34
|
Bergen PJ, Smith NM, Bedard TB, Bulman ZP, Cha R, Tsuji BT. Rational Combinations of Polymyxins with Other Antibiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:251-288. [PMID: 31364082 DOI: 10.1007/978-3-030-16373-0_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Combinations of antimicrobial agents are often used in the management of infectious diseases. Antimicrobial agents used as part of combination therapy are often selected empirically. As regrowth and the emergence of polymyxin (either colistin or polymyxin B) resistance has been observed with polymyxin monotherapy, polymyxin combination therapy has been suggested as a possible means by which to increase antimicrobial activity and reduce the development of resistance. This chapter provides an overview of preclinical and clinical investigations of CMS/colistin and polymyxin B combination therapy. In vitro data and animal model data suggests a potential clinical benefit with many drug combinations containing clinically achievable concentrations of polymyxins, even when resistance to one or more of the drugs in combination is present and including antibiotics normally inactive against Gram-negative organisms. The growing body of data on the emergence of polymyxin resistance with monotherapy lends theoretical support to a benefit with combination therapy. Benefits include enhanced bacterial killing and a suppression of polymyxin resistant subpopulations. However, the complexity of the critically ill patient population, and high rates of treatment failure and death irrespective of infection-related outcome make demonstrating a potential benefit for polymyxin combinations extremely challenging. Polymyxin combination therapy in the clinic remains a heavily debated and controversial topic. When combinations are selected, optimizing the dosage regimens for the polymyxin and the combinatorial agent is critical to ensure that the benefits outweigh the risk of the development of toxicity. Importantly, patient characteristics, pharmacokinetics, the site of infection, pathogen and resistance mechanism must be taken into account to define optimal and rational polymyxin combination regimens in the clinic.
Collapse
Affiliation(s)
- Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Parkville Campus, Melbourne, VIC, Australia.
| | - Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Tyler B Bedard
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Zackery P Bulman
- University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Raymond Cha
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| |
Collapse
|
35
|
Synergistic Activity of Colistin-Containing Combinations against Colistin-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 2018; 62:AAC.00873-18. [PMID: 30061285 DOI: 10.1128/aac.00873-18] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/24/2018] [Indexed: 11/20/2022] Open
Abstract
Resistance to colistin, a polypeptide drug used as an agent of last resort for the treatment of infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae (CRE), severely limits treatment options and may even transform an XDR organism into one that is pan-resistant. We investigated the synergistic activity of colistin in combination with 19 antibiotics against a collection of 20 colistin-resistant Enterobacteriaceae isolates, 15 of which were also CRE. All combinations were tested against all strains using an inkjet printer-assisted digital dispensing checkerboard array, and the activities of those that demonstrated synergy by this method were evaluated against a single isolate in a time-kill synergy study. Eighteen of 19 combinations demonstrated synergy against two or more isolates, and the 4 most highly synergistic combinations (colistin combined with linezolid, rifampin, azithromycin, and fusidic acid) were synergistic against ≥90% of strains. Sixteen of 18 combinations (88.9%) that were synergistic in the checkerboard array were also synergistic in a time-kill study. Our findings demonstrate that colistin in combination with a range of antibiotics, particularly protein and RNA synthesis inhibitors, exhibits synergy against colistin-resistant strains, suggesting that colistin may exert a subinhibitory permeabilizing effect on the Gram-negative bacterial outer membrane even in isolates that are resistant to it. These findings suggest that colistin combination therapy may have promise as a treatment approach for patients infected with colistin-resistant XDR Gram-negative pathogens.
Collapse
|
36
|
Laishram S, Pragasam AK, Bakthavatchalam YD, Veeraraghavan B. An update on technical, interpretative and clinical relevance of antimicrobial synergy testing methodologies. Indian J Med Microbiol 2018; 35:445-468. [PMID: 29405135 DOI: 10.4103/ijmm.ijmm_17_189] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Testing for antimicrobial interactions has gained popularity in the last decade due to the increasing prevalence of drug-resistant organisms and limited options for the treatment of these infections. In vitro combination testing provides information, on which two or more antimicrobials can be combined for a good clinical outcome. Amongst the various in vitro methods of drug interactions, time-kill assay (TKA), checkerboard (CB) assay and E-test-based methods are most commonly used. Comparative performance of these methods reveals the TKA as the most promising method to detect synergistic combinations followed by CB assay and E-test. Various combinations of antimicrobials have been tested to demonstrate synergistic activity. Promising results were obtained for the combinations of meropenem plus colistin and rifampicin plus colistin against Acinetobacter baumannii, colistin plus carbapenem and carbapenem plus fluoroquinolones against Pseudomonas aeruginosa and colistin/polymyxin B plus rifampicin/meropenem against Klebsiella pneumoniae. Antagonism was detected in only few instances. The presence of synergy or antagonism with a combination seems to correlate with minimum inhibitory concentration of the agent and molecular mechanism involved in the resistance. Further studies need to be conducted to assess the utility of in vitro testing to predict clinical outcome and direct therapy for drug-resistant organisms.
Collapse
Affiliation(s)
- Shakti Laishram
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| | - Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| | | | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| |
Collapse
|
37
|
Bakthavatchalam YD, Pragasam AK, Biswas I, Veeraraghavan B. Polymyxin susceptibility testing, interpretative breakpoints and resistance mechanisms: An update. J Glob Antimicrob Resist 2018; 12:124-136. [DOI: 10.1016/j.jgar.2017.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
|
38
|
Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol Rev 2018; 31:31/2/e00079-17. [PMID: 29444952 DOI: 10.1128/cmr.00079-17] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Therapy of invasive infections due to multidrug-resistant Enterobacteriaceae (MDR-E) is challenging, and some of the few active drugs are not available in many countries. For extended-spectrum β-lactamase and AmpC producers, carbapenems are the drugs of choice, but alternatives are needed because the rate of carbapenem resistance is rising. Potential active drugs include classic and newer β-lactam-β-lactamase inhibitor combinations, cephamycins, temocillin, aminoglycosides, tigecycline, fosfomycin, and, rarely, fluoroquinolones or trimethoprim-sulfamethoxazole. These drugs might be considered in some specific situations. AmpC producers are resistant to cephamycins, but cefepime is an option. In the case of carbapenemase-producing Enterobacteriaceae (CPE), only some "second-line" drugs, such as polymyxins, tigecycline, aminoglycosides, and fosfomycin, may be active; double carbapenems can also be considered in specific situations. Combination therapy is associated with better outcomes for high-risk patients, such as those in septic shock or with pneumonia. Ceftazidime-avibactam was recently approved and is active against KPC and OXA-48 producers; the available experience is scarce but promising, although development of resistance is a concern. New drugs active against some CPE isolates are in different stages of development, including meropenem-vaborbactam, imipenem-relebactam, plazomicin, cefiderocol, eravacycline, and aztreonam-avibactam. Overall, therapy of MDR-E infection must be individualized according to the susceptibility profile, type, and severity of infection and the features of the patient.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Multidrug-resistant (MDR) Enterobacteriaceae are often related to the production of extended-spectrum b-lactamases (ESBLs) and carbapenemase-producing Enterobacteriaceae (CRE), and represent an increasing global threat. Recommendations for the therapeutic management of MDR-related infections, however, are mainly derived from retrospective and nonrandomized prospective studies. The aim of this review is to discuss the challenges in the treatment of patients with infections because of MDR Enterobacteriaceae and provide an expert opinion while awaiting for more definitive data. RECENT FINDINGS To avoid the selection of carbapenemase-producing Enterobacteriaceae, carbapenem-sparing strategies should be considered. B-lactams/b-lactamase inhibitors, mainly piperacillin-tazobactam, minimum inhibitory concentration (MIC) 16/4mg/ml or less represents the best alternative to carbapenems for the treatment of ESBL-producing strains. Overall, combination therapy may be preferred over monotherapy for CRE. The combination of a carbapenem-containing regimen with colistin or high-dose tigecycline or aminoglycoside can be administered at high-dose prolonged infusion with therapeutic drug monitoring for the treatment of CRE with MIC for meropenem 8-16 mg/l or less. For MIC higher than 8-16 mg/l, the use of meropenem should be avoided and various combination therapies based on the in-vitro susceptibility of antimicrobials (e.g., colistin, high-dose tigecycline, fosfomycin, and aminoglycosides) should be selected. SUMMARY Carbapenem-sparing strategies should be used, when feasible, for ESBL infections. The majority of available nonrandomized studies highlight that combination for CRE seem to offer some therapeutic advantage over monotherapy. Strict infection control measures toward MDR Gram-negative pathogens remain necessary while awaiting for new treatment options.
Collapse
|
40
|
Gaibani P, Lewis RE, Volpe SL, Giannella M, Campoli C, Landini MP, Viale P, Re MC, Ambretti S. In vitro interaction of ceftazidime–avibactam in combination with different antimicrobials against KPC-producing Klebsiella pneumoniae clinical isolates. Int J Infect Dis 2017; 65:1-3. [DOI: 10.1016/j.ijid.2017.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 11/25/2022] Open
|
41
|
Jacobs DM, Safir MC, Huang D, Minhaj F, Parker A, Rao GG. Triple combination antibiotic therapy for carbapenemase-producing Klebsiella pneumoniae: a systematic review. Ann Clin Microbiol Antimicrob 2017; 16:76. [PMID: 29178957 PMCID: PMC5702089 DOI: 10.1186/s12941-017-0249-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
Background The spread of carbapenemase-producing K. pneumoniae (CPKP) has become a significant problem worldwide. Combination therapy for CPKP is encouraging, but polymyxin resistance to many antibiotics is hampering effective treatment. Combination therapy with three or more antibiotics is being increasingly reported, therefore we performed a systematic review of triple combination cases in an effort to evaluate their clinical effectiveness for CPKP infections. Methods The PubMed database was searched to identify all published clinical outcomes of CPKP infections treated with triple combination therapy. Articles were stratified into two tiers depending on the level of clinical detail provided. A tier 1 study included: antibiotic regimen, regimen-specific outcome, patient status at onset of infection, and source of infection. Articles not reaching these criteria were considered tier 2. Results Thirty-three studies were eligible, 23 tier 1 and ten tier 2. Among tier 1 studies, 53 cases were included in this analysis. The most common infection was pneumonia (31%) followed by primary or catheter-related bacteremia (21%) and urinary tract infection (17%). Different combinations of antibiotic classes were utilized in triple combinations, the most common being a polymyxin (colistin or polymyxin B, 86.8%), tigecycline (73.6%), aminoglycoside (43.4%), or carbapenem (43.4%). Clinical and microbiological failure occurred in 14/39 patients (35.9%) and 22/42 patients (52.4%), respectively. Overall mortality for patients treated with triple combination therapy was 35.8% (19/53 patients). Conclusions Triple combination therapy is being considered as a treatment option for CPKP. Polymyxin-based therapy is the backbone antibiotic in these regimens, but its effectiveness needs establishing in prospective clinical trials.
Collapse
Affiliation(s)
- David M Jacobs
- Department of Pharmacy Practice, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.
| | - M Courtney Safir
- Department of Pharmacy Practice, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA
| | - Dennis Huang
- Department of Pharmacy Practice, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA
| | - Faisal Minhaj
- Department of Pharmacy Practice, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA
| | - Adam Parker
- Department of Pharmacy Practice, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA
| | - Gauri G Rao
- Division of Pharmaceutics and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Ungphakorn W, Lagerbäck P, Nielsen EI, Tängdén T. Automated time-lapse microscopy a novel method for screening of antibiotic combination effects against multidrug-resistant Gram-negative bacteria. Clin Microbiol Infect 2017; 24:778.e7-778.e14. [PMID: 29108951 DOI: 10.1016/j.cmi.2017.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Antibiotic combinations are often used for carbapenemase-producing Enterobacteriaceae (CPE) but more data are needed on the optimal selection of drugs. This study aimed to evaluate the feasibility of a novel automated method based on time-lapse microscopy (the oCelloScope, Philips BioCell A/S, Allerød, Denmark) to determine in vitro combination effects against CPE and to discuss advantages and limitations of the oCelloScope in relation to standard methods. METHODS Four Klebsiella pneumoniae and two Escherichia coli were exposed to colistin, meropenem, rifampin and tigecycline, alone and in combination. In the oCelloScope experiments, a background corrected absorption (BCA) value of ≤8 at 24 h was used as a primary cut-off indicating inhibition of bacterial growth. A new approach was used to determine synergy, indifference and antagonism based on the number of objects (bacteria) in the images. Static time-kill experiments were performed for comparison. RESULTS The time-kill experiments showed synergy with 12 of 36 regimens, most frequently with colistin plus rifampin. BCA values ≤8 consistently correlated with 24-h bacterial concentrations ≤6 log10 CFU/mL. The classification of combination effects agreed with the time-kill results for 33 of 36 regimens. In three cases, the interactions could not be classified with the microscopy method because of low object counts. CONCLUSIONS Automated time-lapse microscopy can accurately determine the effects of antibiotic combinations. The novel method is highly efficient compared with time-kill experiments, more informative than checkerboards and can be useful to accelerate the screening for combinations active against multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- W Ungphakorn
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - P Lagerbäck
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - E I Nielsen
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - T Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Rabanal F, Cajal Y. Recent advances and perspectives in the design and development of polymyxins. Nat Prod Rep 2017. [PMID: 28628170 DOI: 10.1039/c7np00023e] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 1947-early 2017, particularly from 2005-early 2017The rise of bacterial pathogens with acquired resistance to almost all available antibiotics is becoming a serious public health issue. Polymyxins, antibiotics that were mostly abandoned a few decades ago because of toxicity concerns, are ultimately considered as a last-line therapy to treat infections caused by multi-drug resistant Gram-negative bacteria. This review surveys the progress in understanding polymyxin structure, and their chemistry, mechanisms of antibacterial activity and nephrotoxicity, biomarkers, synergy and combination with other antimicrobial agents and antibiofilm properties. An update of recent efforts in the design and development of a new generation of polymyxin drugs is also discussed. A novel approach considering the modification of the scaffold of polymyxins to integrate metabolism and detoxification issues into the drug design process is a promising new line to potentially prevent accumulation in the kidneys and reduce nephrotoxicity.
Collapse
Affiliation(s)
- Francesc Rabanal
- Organic Chemistry Section, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Spain.
| | | |
Collapse
|
44
|
Ku YH, Chen CC, Lee MF, Chuang YC, Tang HJ, Yu WL. Comparison of synergism between colistin, fosfomycin and tigecycline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:931-939. [PMID: 28716360 DOI: 10.1016/j.jmii.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE To investigate the synergistic and bactericidal effects of antimicrobial combinations of any two of colistin, fosfomycin and tigecycline against the nine extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (KP) clinical isolates, including 4 carbapenem-susceptible strains and five imipenem and/or meropenem-resistant strains. METHODS In vitro synergism and bactericidal activity of combination of colistin, fosfomycin and tigecycline were evaluated by time-kill studies in standard inoculum of bacterial densities of a suspension containing 5 × 105 CFU/mL by using 1/2× MIC for each alone, and both 1/2× and 1/4× MIC for any two drugs. The settings of low MIC dosing were allowed to rapidly survey the most active drug combination. RESULTS The most active combination group was colistin plus tigecycline, showing synergy in 8 isolates and bactericidal activities in 6 isolates by using concentrations of 1/2× MIC and 1/4× MIC, respectively. The least active combination was tigecycline plus fosfomycin, which showed synergy in only 4 isolates and no bactericidal activities by using concentrations of 1/2× MIC and 1/4× MIC, respectively. CONCLUSIONS The combination of tigecycline and colistin may be considered as a last-resort approach to the ESBL-producing KP infections, especially those isolates with carbapenem resistance.
Collapse
Affiliation(s)
- Yee-Huang Ku
- Division of Infectious Disease, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan City, Taiwan
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan
| | - Mei-Feng Lee
- Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan
| | - Yin-Ching Chuang
- Division of Infectious Disease, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan City, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan
| | - Hung-Jen Tang
- Division of Infectious Disease, Department of Internal Medicine, Chi Mei Hospital, Tainan City, Taiwan; Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
| | - Wen-Liang Yu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan City, Taiwan; Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
45
|
Grégoire N, Aranzana-Climent V, Magréault S, Marchand S, Couet W. Clinical Pharmacokinetics and Pharmacodynamics of Colistin. Clin Pharmacokinet 2017; 56:1441-1460. [DOI: 10.1007/s40262-017-0561-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
New Polymyxin B Dosing Strategies To Fortify Old Allies in the War against KPC-2-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2017; 61:AAC.02023-16. [PMID: 28167549 DOI: 10.1128/aac.02023-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Pharmacodynamics of a polymyxin B, meropenem, and rifampin triple combination were examined against Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) ST258. In time-kill experiments against three KPC-Kp isolates, triple combination generated 8.14, 8.19, and 8.29 log10 CFU/ml reductions within 24 h. In the hollow-fiber infection model, the triple combination caused maximal killing of 5.16 log10 CFU/ml at 78 h and the time required for regrowth was more than doubled versus the 2-drug combinations. Remarkably, combinations with a high single-dose polymyxin B burst plus rifampin preserved KPC-Kp polymyxin susceptibility (MIC240 h = 0.5 mg/liter) versus the same combination with traditionally dosed polymyxin B, where resistance was amplified (MIC240 h = 32 mg/liter).
Collapse
|
47
|
Oliva A, Scorzolini L, Cipolla A, Mascellino MT, Cancelli F, Castaldi D, D’Abramo A, D’Agostino C, Russo G, Ciardi MR, Mastroianni CM, Vullo V. In vitro evaluation of different antimicrobial combinations against carbapenemase-producing Klebsiella pneumoniae: the activity of the double-carbapenem regimen is related to meropenem MIC value. J Antimicrob Chemother 2017; 72:1981-1984. [DOI: 10.1093/jac/dkx084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/22/2017] [Indexed: 11/12/2022] Open
|
48
|
de Maio Carrillho CM, Gaudereto JJ, Martins RCR, de Castro Lima VAC, de Oliveira LM, Urbano MR, Perozin JS, Levin AS, Costa SF. Colistin-resistant Enterobacteriaceae infections: clinical and molecular characterization and analysis of in vitro synergy. Diagn Microbiol Infect Dis 2017; 87:253-257. [DOI: 10.1016/j.diagmicrobio.2016.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
49
|
Polymyxin B in Combination with Rifampin and Meropenem against Polymyxin B-Resistant KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2017; 61:AAC.02121-16. [PMID: 27872078 DOI: 10.1128/aac.02121-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022] Open
Abstract
Safe and effective therapies are urgently needed to treat polymyxin-resistant KPC-producing Klebsiella pneumoniae infections and suppress the emergence of resistance. We investigated the pharmacodynamics of polymyxin B, rifampin, and meropenem alone and as polymyxin B-based double and triple combinations against KPC-producing K. pneumoniae isolates. The rates and extents of killing with polymyxin B (1 to 128 mg/liter), rifampin (2 to 16 mg/liter), and meropenem (10 to 120 mg/liter) were evaluated against polymyxin B-susceptible (PBs) and polymyxin B-resistant (PBr) clinical isolates using 48-h static time-kill studies. Additionally, humanized triple-drug regimens of polymyxin B (concentration at steady state [Css] values of 0.5, 1, and 2 mg/liter), 600 mg rifampin every 12 or 8 h, and 1 or 2 g meropenem every 8 h dosed as an extended 3-h infusion were simulated over 48 h by using a one-compartment in vitro dynamic infection model. Serial bacterial counts were performed to quantify the pharmacodynamic effect. Population analysis profiles (PAPs) were used to assess the emergence of polymyxin B resistance. Monotherapy was ineffective against both isolates. Polymyxin B with rifampin demonstrated early bactericidal activity against the PBs isolate, followed by regrowth by 48 h. Bactericidal activity was sustained at all polymyxin B concentrations of ≥2 mg/liter in combination with meropenem. No two-drug combinations were effective against the PBr isolate, but all simulated triple-drug regimens showed early bactericidal activity against both strains by 8 h that was sustained over 48 h. PAPs did not reveal the emergence of resistant subpopulations. The triple-drug combination of polymyxin B, rifampin, and meropenem may be a viable consideration for the treatment of PBr KPC-producing K. pneumoniae infections. Further investigation is warranted to optimize triple-combination therapy.
Collapse
|
50
|
Del Bono V, Giacobbe DR, Marchese A, Parisini A, Fucile C, Coppo E, Marini V, Arena A, Molin A, Martelli A, Gratarola A, Viscoli C, Pelosi P, Mattioli F. Meropenem for treating KPC-producing Klebsiella pneumoniae bloodstream infections: Should we get to the PK/PD root of the paradox? Virulence 2017; 8:66-73. [PMID: 27430122 PMCID: PMC5963200 DOI: 10.1080/21505594.2016.1213476] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/14/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022] Open
Abstract
The objective of this study was to assess the achievement of pharmacokinetic/pharmacodynamic (PK/PD) targets of meropenem (MEM) in critically-ill patients with bloodstream infections (BSI) due to Klebsiella pneumoniae-carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) with MEM minimum inhibitory concentrations (MICs) ≥16 mg/L. Nineteen critically-ill patients with KPC-Kp BSI were given combination therapy including MEM, tigecycline, plus colistin or gentamicin (according to susceptibility testing). MEM was administered as an extended 3-hour infusion of 2 g every 8 hours, or adjusted according to renal function. MEM plasma concentrations were determined by high-performance liquid chromatography. PK/PD targets for MEM were defined as T > 40% 1×MIC and T > 40% 4×MIC. Possible synergisms between MEM and coadministered agents were assessed by time-kill assays based on plasma levels for MEM and on fixed plasma concentrations for the other agents. In none of 19 patients MEM reached any PK/PD target. The actual MEM MICs were 256, 512, and 1024 mg/L in 1, 3, and 15 isolates, respectively. However, theoretically, the PK/PD target of T > 40% 1×MIC could have been achieved in 95%, 68%, 32% and 0% of the isolates for MIC equal to 8, 16, 32, and 64 mg/L, respectively. No synergisms were observed between MEM and coadministered agents. In conclusion, high-dose MEM failed to reach PK/PD targets in 19 patients with BSI due to KPC-Kp with very high MEM MICs. On a theoretical basis, our results suggest a possible usefulness of MEM against resistant blood isolates with MICs up to 32 mg/L.
Collapse
Affiliation(s)
- Valerio Del Bono
- Clinica Malattie Infettive, DIPMI, DISSAL, IRCCS AOU San Martino-IST, Università di Genova, Genova, Italy
| | - Daniele Roberto Giacobbe
- Clinica Malattie Infettive, DIPMI, DISSAL, IRCCS AOU San Martino-IST, Università di Genova, Genova, Italy
| | - Anna Marchese
- Unità di Microbiologia, DIPSE, DISC, IRCCS AOU San Martino-IST, Università di Genova, Genova, Italy
| | - Andrea Parisini
- Centro ortopedico di Quadrante, Ospedale Madonna del Popolo, Omegna, Italy
| | - Carmen Fucile
- Unità di Farmacologia Clinica e Tossicologia, DIMI, Università di Genova, Genova, Italy
| | - Erika Coppo
- Unità di Microbiologia, DIPSE, DISC, IRCCS AOU San Martino-IST, Università di Genova, Genova, Italy
| | - Valeria Marini
- Unità di Farmacologia Clinica e Tossicologia, DIMI, Università di Genova, Genova, Italy
| | - Antonio Arena
- U.O. Anestesia e Rianimazione, DIPEA, IRCCS AOU San Martino-IST, Genova, Italy
| | - Alexandre Molin
- U.O. Anestesia e Terapia Intensiva, DIPEA, IRCCS AOU San Martino-IST, Genova, Italy
| | - Antonietta Martelli
- Unità di Farmacologia Clinica e Tossicologia, DIMI, Università di Genova, Genova, Italy
| | - Angelo Gratarola
- U.O. Anestesia e Rianimazione, DIPEA, IRCCS AOU San Martino-IST, Genova, Italy
| | - Claudio Viscoli
- Clinica Malattie Infettive, DIPMI, DISSAL, IRCCS AOU San Martino-IST, Università di Genova, Genova, Italy
| | - Paolo Pelosi
- U.O. Anestesia e Terapia Intensiva, DIPEA, IRCCS AOU San Martino-IST, Genova, Italy
- Anestesia e Terapia Intensiva, DISC, Università di Genova, Genova, Italy
| | - Francesca Mattioli
- Unità di Farmacologia Clinica e Tossicologia, DIMI, Università di Genova, Genova, Italy
| |
Collapse
|