1
|
Heljanko V, Karama M, Kymäläinen A, Kurittu P, Johansson V, Tiwari A, Nyirenda M, Malahlela M, Heikinheimo A. Wastewater and environmental sampling holds potential for antimicrobial resistance surveillance in food-producing animals - a pilot study in South African abattoirs. Front Vet Sci 2024; 11:1444957. [PMID: 39421833 PMCID: PMC11483616 DOI: 10.3389/fvets.2024.1444957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global One Health challenge that causes increased mortality and a high financial burden. Animal production contributes to AMR, as more than half of antimicrobials are used in food-producing animals globally. There is a growing body of literature on AMR in food-producing animals in African countries, but the surveillance practices across countries vary considerably. This pilot study aims to explore the potential of wastewater and environmental surveillance (WES) of AMR and its extension to the veterinary field. Floor drainage swab (n = 18, 3/abattoir) and wastewater (n = 16, 2-3/abattoir) samples were collected from six South African abattoirs that handle various animal species, including cattle, sheep, pig, and poultry. The samples were tested for Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenemase-producing Enterobacterales, Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococci (VRE), and Candida auris by using selective culturing and MALDI-TOF MS identification. The phenotype of all presumptive ESBL-producing Escherichia coli (n = 60) and Klebsiella pneumoniae (n = 24) isolates was confirmed with a disk diffusion test, and a subset (15 and 6 isolates, respectively), were further characterized by whole-genome sequencing. In total, 314 isolates (0-12 isolates/sample) withstood MALDI-TOF MS, from which 37 species were identified, E. coli and K. pneumoniae among the most abundant. Most E. coli (n = 48/60; 80%) and all K. pneumoniae isolates were recovered from the floor drainage samples, while 21 presumptive carbapenem-resistant Acinetobacter spp. isolates were isolated equally from floor drainage and wastewater samples. MRSA, VRE, or C. auris were not found. All characterized E. coli and K. pneumoniae isolates represented ESBL-phenotype. Genomic analyses revealed multiple sequence types (ST) of E. coli (n = 10) and K. pneumoniae (n = 5), including STs associated with food-producing animals globally, such as E. coli ST48 and ST10 and K. pneumoniae ST101. Common beta-lactamases linked to food-producing animals, such as bla CTX-M-55 and bla CTX-M-15, were detected. The presence of food-production-animal-associated ESBL-gene-carrying E. coli and K. pneumoniae in an abattoir environment and wastewater indicates the potential of WES in the surveillance of AMR in food-producing animals. Furthermore, the results of this pilot study encourage studying the topic further with refined methodologies.
Collapse
Affiliation(s)
- Viivi Heljanko
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Musafiri Karama
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Kymäläinen
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paula Kurittu
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Ananda Tiwari
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Matteo Nyirenda
- Centre for Animal Health Studies, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng, South Africa
| | - Mogaugedi Malahlela
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Annamari Heikinheimo
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
2
|
Cai M, Song K, Wang R, Wang S, Chen H, Wang H. Tracking intra-species and inter-genus transmission of KPC through global plasmids mining. Cell Rep 2024; 43:114351. [PMID: 38923465 DOI: 10.1016/j.celrep.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) poses a major public health risk. Understanding its transmission dynamics requires examining the epidemiological features of related plasmids. Our study compiled 15,660 blaKPC-positive isolates globally over the past two decades. We found extensive diversity in the genetic background of KPC, with 23 Tn4401-related and 341 non-Tn4401 variants across 163 plasmid types in 14 genera. Intra-K. pneumoniae and cross-genus KPC transmission patterns varied across four distinct periods. In the initial periods, plasmids with narrow host ranges gradually established a survival advantage. In later periods, broad-host-range plasmids became crucial for cross-genera transmission. In total, 61 intra-K. pneumoniae and 66 cross-genus transmission units have been detected. Furthermore, phylogenetic reconstruction dated the origin of KPC transmission back to 1991 and revealed frequent exchanges across countries. Our research highlights the frequent and transient spread events of KPC mediated by plasmids across multiple genera and offers theoretical support for high-risk plasmid monitoring.
Collapse
Affiliation(s)
- Meng Cai
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Kaiwen Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China.
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
3
|
Li Y, Xie C, Zhang Z, Liu J, Chang H, Liu Y, Qin X. Molecular epidemiology and antimicrobial resistance profiles of Klebsiella pneumoniae isolates from hospitalized patients in different regions of China. Front Cell Infect Microbiol 2024; 14:1380678. [PMID: 38817445 PMCID: PMC11137252 DOI: 10.3389/fcimb.2024.1380678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction The increasing incidence of Klebsiella pneumoniae and carbapenem-resistant Klebsiella pneumoniae (CRKP) has posed great challenges for the clinical anti-infective treatment. Here, we describe the molecular epidemiology and antimicrobial resistance profiles of K. pneumoniae and CRKP isolates from hospitalized patients in different regions of China. Methods A total of 219 K. pneumoniae isolates from 26 hospitals in 19 provinces of China were collected during 2019-2020. Antimicrobial susceptibility tests, multilocus sequence typing were performed, antimicrobial resistance genes were detected by polymerase chain reaction (PCR). Antimicrobial resistance profiles were compared between different groups. Results The resistance rates of K. pneumoniae isolates to imipenem, meropenem, and ertapenem were 20.1%, 20.1%, and 22.4%, respectively. A total of 45 CRKP isolates were identified. There was a significant difference in antimicrobial resistance between 45 CRKP and 174 carbapenem-sensitive Klebsiella pneumoniae (CSKP) strains, and the CRKP isolates were characterized by the multiple-drug resistance phenotype.There were regional differences among antimicrobial resistance rates of K. pneumoniae to cefazolin, chloramphenicol, and sulfamethoxazole,which were lower in the northwest than those in north and south of China.The mostcommon sequence type (ST) was ST11 (66.7% of the strains). In addition, we detected 13 other STs. There were differences between ST11 and non-ST11 isolates in the resistance rate to amikacin, gentamicin, latamoxef, ciprofloxacin, levofloxacin, aztreonam, nitrofurantoin, fosfomycin, and ceftazidime/avibactam. In terms of molecular resistance mechanisms, the majority of the CRKP strains (71.1%, 32/45) harbored blaKPC-2, followed by blaNDM (22.2%, 10/45). Strains harboring blaKPC or blaNDM genes showed different sensitivities to some antibiotics. Conclusion Our analysis emphasizes the importance of surveilling carbapenem-resistant determinants and analyzing their molecular characteristics for better management of antimicrobial agents in clinical use.
Collapse
Affiliation(s)
- Yan Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
- Center of Clinical Laboratory and Quality Control, Health Service Center of Liaoning Province, Shenyang, China
| | - Chonghong Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Zhijie Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Hui Chang
- Center of Clinical Laboratory and Quality Control, Health Service Center of Liaoning Province, Shenyang, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
4
|
Sharma S, Chauhan A, Ranjan A, Mathkor DM, Haque S, Ramniwas S, Tuli HS, Jindal T, Yadav V. Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol 2024; 15:1403168. [PMID: 38741745 PMCID: PMC11089201 DOI: 10.3389/fmicb.2024.1403168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Overuse of antibiotics is accelerating the antimicrobial resistance among pathogenic microbes which is a growing public health challenge at the global level. Higher resistance causes severe infections, high complications, longer stays at hospitals and even increased mortality rates. Antimicrobial resistance (AMR) has a significant impact on national economies and their health systems, as it affects the productivity of patients or caregivers due to prolonged hospital stays with high economic costs. The main factor of AMR includes improper and excessive use of antimicrobials; lack of access to clean water, sanitation, and hygiene for humans and animals; poor infection prevention and control measures in hospitals; poor access to medicines and vaccines; lack of awareness and knowledge; and irregularities with legislation. AMR represents a global public health problem, for which epidemiological surveillance systems have been established, aiming to promote collaborations directed at the well-being of human and animal health and the balance of the ecosystem. MDR bacteria such as E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Acinetobacter spp., and Klebsiella pneumonia can even cause death. These microorganisms use a variety of antibiotic resistance mechanisms, such as the development of drug-deactivating targets, alterations in antibiotic targets, or a decrease in intracellular antibiotic concentration, to render themselves resistant to numerous antibiotics. In context, the United Nations issued the Sustainable Development Goals (SDGs) in 2015 to serve as a worldwide blueprint for a better, more equal, and more sustainable existence on our planet. The SDGs place antimicrobial resistance (AMR) in the context of global public health and socioeconomic issues; also, the continued growth of AMR may hinder the achievement of numerous SDGs. In this review, we discuss the role of environmental pollution in the rise of AMR, different mechanisms underlying the antibiotic resistance, the threats posed by pathogenic microbes, novel antibiotics, strategies such as One Health to combat AMR, and the impact of resistance on sustainability and sustainable development goals.
Collapse
Affiliation(s)
- Shikha Sharma
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Blaikie JM, Sapula SA, Siderius NL, Hart BJ, Amsalu A, Leong LE, Warner MS, Venter H. Resistome Analysis of Klebsiella pneumoniae Complex from Residential Aged Care Facilities Demonstrates Intra-facility Clonal Spread of Multidrug-Resistant Isolates. Microorganisms 2024; 12:751. [PMID: 38674695 PMCID: PMC11051875 DOI: 10.3390/microorganisms12040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial-resistant Klebsiella pneumoniae is one of the predominant pathogens in healthcare settings. However, the prevalence and resistome of this organism within residential aged care facilities (RACFs), which are potential hotspots for antimicrobial resistance, remain unexplored. Here, we provide a phenotypic and molecular characterization of antimicrobial-resistant K. pneumoniae isolated from RACFs. K. pneumoniae was isolated from urine, faecal and wastewater samples and facility swabs. The antimicrobial susceptibility profiles of all the isolates were determined and the genomic basis for resistance was explored with whole-genome sequencing on a subset of isolates. A total of 147 K. pneumoniae were isolated, displaying resistance against multiple antimicrobials. Genotypic analysis revealed the presence of beta-lactamases and the ciprofloxacin-resistance determinant QnrB4 but failed to confirm the basis for the observed cephalosporin resistance. Clonal spread of the multidrug-resistant, widely disseminated sequence types 323 and 661 was observed. This study was the first to examine the resistome of K. pneumoniae isolates from RACFs and demonstrated a complexity between genotypic and phenotypic antimicrobial resistance. The intra-facility dissemination and persistence of multidrug-resistant clones is concerning, given that residents are particularly vulnerable to antimicrobial resistant infections, and it highlights the need for continued surveillance and interventions to reduce the risk of outbreaks.
Collapse
Affiliation(s)
- Jack M. Blaikie
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Sylvia A. Sapula
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Naomi L. Siderius
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Bradley J. Hart
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| | - Anteneh Amsalu
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
- Department of Medical Microbiology, University of Gondar, Gondar 196, Ethiopia
| | - Lex E.X. Leong
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
- Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA 5000, Australia;
| | - Morgyn S. Warner
- Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA 5000, Australia;
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Infectious Diseases Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Henrietta Venter
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (J.M.B.); (S.A.S.); (N.L.S.); (B.J.H.); (A.A.); (L.E.X.L.)
| |
Collapse
|
6
|
Regev-Yochay G, Margalit I, Smollan G, Rapaport R, Tal I, Hanage WP, Pinas Zade N, Jaber H, Taylor BP, Che Y, Rahav G, Zimlichman E, Keller N. Sink-traps are a major source for carbapenemase-producing Enterobacteriaceae transmission. Infect Control Hosp Epidemiol 2024; 45:284-291. [PMID: 38149351 DOI: 10.1017/ice.2023.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
OBJECTIVE We studied the extent of carbapenemase-producing Enterobacteriaceae (CPE) sink contamination and transmission to patients in a nonoutbreak setting. METHODS During 2017-2019, 592 patient-room sinks were sampled in 34 departments. Patient weekly rectal swab CPE surveillance was universally performed. Repeated sink sampling was conducted in 9 departments. Isolates from patients and sinks were characterized using pulsed-field gel electrophoresis (PFGE), and pairs of high resemblance were sequenced by Oxford Nanopore and Illumina. Hybrid assembly was used to fully assemble plasmids, which are shared between paired isolates. RESULTS In total, 144 (24%) of 592 CPE-contaminated sinks were detected in 25 of 34 departments. Repeated sampling (n = 7,123) revealed that 52%-100% were contaminated at least once during the sampling period. Persistent contamination for >1 year by a dominant strain was common. During the study period, 318 patients acquired CPE. The most common species were Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. In 127 (40%) patients, a contaminated sink was the suspected source of CPE acquisition. For 20 cases with an identical sink-patient strain, temporal relation suggested sink-to-patient transmission. Hybrid assembly of specific sink-patient isolates revealed that shared plasmids were structurally identical, and SNP differences between shared pairs, along with signatures for potential recombination events, suggests recent sharing of the plasmids. CONCLUSIONS CPE-contaminated sinks are an important source of transmission to patients. Although traditionally person-to-person transmission has been considered the main route of CPE transmission, these data suggest a change in paradigm that may influence strategies of preventing CPE dissemination.
Collapse
Affiliation(s)
- Gili Regev-Yochay
- Infection Prevention & Control Unit, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ili Margalit
- Infection Prevention & Control Unit, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gillian Smollan
- Microbiology laboratory, Sheba Medical Center, Ramat-Gan, Israel
| | - Rotem Rapaport
- Infection Prevention & Control Unit, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ilana Tal
- Infection Prevention & Control Unit, Sheba Medical Center, Ramat Gan, Israel
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Nani Pinas Zade
- Infection Prevention & Control Unit, Sheba Medical Center, Ramat Gan, Israel
| | - Hanaa Jaber
- Infection Prevention & Control Unit, Sheba Medical Center, Ramat Gan, Israel
| | - Bradford P Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - You Che
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Galia Rahav
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
| | | | - Nati Keller
- Microbiology laboratory, Sheba Medical Center, Ramat-Gan, Israel
- Ariel University, Ari'el, Samaria
| |
Collapse
|
7
|
Lerminiaux N, Mitchell R, Bartoszko J, Davis I, Ellis C, Fakharuddin K, Hota SS, Katz K, Kibsey P, Leis JA, Longtin Y, McGeer A, Minion J, Mulvey M, Musto S, Rajda E, Smith SW, Srigley JA, Suh KN, Thampi N, Tomlinson J, Wong T, Mataseje L. Plasmid genomic epidemiology of blaKPC carbapenemase-producing Enterobacterales in Canada, 2010-2021. Antimicrob Agents Chemother 2023; 67:e0086023. [PMID: 37971242 PMCID: PMC10720558 DOI: 10.1128/aac.00860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/07/2023] [Indexed: 11/19/2023] Open
Abstract
Carbapenems are considered last-resort antibiotics for the treatment of infections caused by multidrug-resistant Enterobacterales, but carbapenem resistance due to acquisition of carbapenemase genes is a growing threat that has been reported worldwide. Klebsiella pneumoniae carbapenemase (blaKPC) is the most common type of carbapenemase in Canada and elsewhere; it can hydrolyze penicillins, cephalosporins, aztreonam, and carbapenems and is frequently found on mobile plasmids in the Tn4401 transposon. This means that alongside clonal expansion, blaKPC can disseminate through plasmid- and transposon-mediated horizontal gene transfer. We applied whole genome sequencing to characterize the molecular epidemiology of 829 blaKPC carbapenemase-producing isolates collected by the Canadian Nosocomial Infection Surveillance Program from 2010 to 2021. Using a combination of short-read and long-read sequencing, we obtained 202 complete and circular blaKPC-encoding plasmids. Using MOB-suite, 10 major plasmid clusters were identified from this data set which represented 87% (175/202) of the Canadian blaKPC-encoding plasmids. We further estimated the genomic location of incomplete blaKPC-encoding contigs and predicted a plasmid cluster for 95% (603/635) of these. We identified different patterns of carbapenemase mobilization across Canada related to different plasmid clusters, including clonal transmission of IncF-type plasmids (108/829, 13%) in K. pneumoniae clonal complex 258 and novel repE(pEh60-7) plasmids (44/829, 5%) in Enterobacter hormaechei ST316, and horizontal transmission of IncL/M (142/829, 17%) and IncN-type plasmids (149/829, 18%) across multiple genera. Our findings highlight the diversity of blaKPC genomic loci and indicate that multiple, distinct plasmid clusters have contributed to blaKPC spread and persistence in Canada.
Collapse
Affiliation(s)
| | | | | | - Ian Davis
- QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Chelsey Ellis
- The Moncton Hospital, Moncton, New Brunswick, Canada
| | - Ken Fakharuddin
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Susy S. Hota
- University Health Network, Toronto, Ontario, Canada
| | - Kevin Katz
- North York General Hospital, Toronto, Ontario, Canada
| | - Pamela Kibsey
- Royal Jubilee Hospital, Victoria, British Columbia, Canada
| | - Jerome A. Leis
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Yves Longtin
- Jewish General Hospital, Montréal, Québec, Canada
| | | | - Jessica Minion
- Saskatchewan Health Authority, Regina, Saskatchewan, Canada
| | - Michael Mulvey
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Sonja Musto
- Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Ewa Rajda
- McGill University Health Centre, Montréal, Québec, Canada
| | | | - Jocelyn A. Srigley
- BC Women’s and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | | | - Nisha Thampi
- Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - Titus Wong
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Laura Mataseje
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - on behalf of the Canadian Nosocomial Infection Surveillance Program
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
- Public Health Agency of Canada, Ottawa, Ontario, Canada
- QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
- The Moncton Hospital, Moncton, New Brunswick, Canada
- University Health Network, Toronto, Ontario, Canada
- North York General Hospital, Toronto, Ontario, Canada
- Royal Jubilee Hospital, Victoria, British Columbia, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Jewish General Hospital, Montréal, Québec, Canada
- Sinai Health, Toronto, Ontario, Canada
- Saskatchewan Health Authority, Regina, Saskatchewan, Canada
- Health Sciences Centre, Winnipeg, Manitoba, Canada
- McGill University Health Centre, Montréal, Québec, Canada
- University of Alberta Hospital, Edmonton, Alberta, Canada
- BC Women’s and BC Children’s Hospital, Vancouver, British Columbia, Canada
- The Ottawa Hospital, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Pople D, Kypraios T, Donker T, Stoesser N, Seale AC, George R, Dodgson A, Freeman R, Hope R, Walker AS, Hopkins S, Robotham J. Model-based evaluation of admission screening strategies for the detection and control of carbapenemase-producing Enterobacterales in the English hospital setting. BMC Med 2023; 21:492. [PMID: 38087343 PMCID: PMC10717398 DOI: 10.1186/s12916-023-03007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Globally, detections of carbapenemase-producing Enterobacterales (CPE) colonisations and infections are increasing. The spread of these highly resistant bacteria poses a serious threat to public health. However, understanding of CPE transmission and evidence on effectiveness of control measures is severely lacking. This paper provides evidence to inform effective admission screening protocols, which could be important in controlling nosocomial CPE transmission. METHODS CPE transmission within an English hospital setting was simulated with a data-driven individual-based mathematical model. This model was used to evaluate the ability of the 2016 England CPE screening recommendations, and of potential alternative protocols, to identify patients with CPE-colonisation on admission (including those colonised during previous stays or from elsewhere). The model included nosocomial transmission from colonised and infected patients, as well as environmental contamination. Model parameters were estimated using primary data where possible, including estimation of transmission using detailed epidemiological data within a Bayesian framework. Separate models were parameterised to represent hospitals in English areas with low and high CPE risk (based on prevalence). RESULTS The proportion of truly colonised admissions which met the 2016 screening criteria was 43% in low-prevalence and 54% in high-prevalence areas respectively. Selection of CPE carriers for screening was improved in low-prevalence areas by adding readmission as a screening criterion, which doubled how many colonised admissions were selected. A minority of CPE carriers were confirmed as CPE positive during their hospital stay (10 and 14% in low- and high-prevalence areas); switching to a faster screening test pathway with a single-swab test (rather than three swab regimen) increased the overall positive predictive value with negligible reduction in negative predictive value. CONCLUSIONS Using a novel within-hospital CPE transmission model, this study assesses CPE admission screening protocols, across the range of CPE prevalence observed in England. It identifies protocol changes-adding readmissions to screening criteria and a single-swab test pathway-which could detect similar numbers of CPE carriers (or twice as many in low CPE prevalence areas), but faster, and hence with lower demand on pre-emptive infection-control resources. Study findings can inform interventions to control this emerging threat, although further work is required to understand within-hospital transmission sources.
Collapse
Affiliation(s)
- Diane Pople
- HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK.
| | - Theodore Kypraios
- School of Mathematical Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Tjibbe Donker
- University Medical Center Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Breisacher Strasse, 79106, Freiburg im Breisgau, Germany
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Antimicrobial Resistance and Healthcare Associated Infections, University of Oxford and UKHSA, Oxford, UK
| | - Anna C Seale
- University of Warwick, Warwick, UK
- London School of Hygiene & Tropical Medicine, London, UK
- UK Health Security Agency, London, UK
| | - Ryan George
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew Dodgson
- UK Health Security Agency, Manchester Public Health Laboratory, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, UK
| | - Rachel Freeman
- IQVIA, The Point, 37 North Wharf Road, London, W2 1AF, UK
| | - Russell Hope
- HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Ann Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susan Hopkins
- NIHR Health Protection Research Unit in Antimicrobial Resistance and Healthcare Associated Infections, University of Oxford and UKHSA, Oxford, UK
- UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
- Division of Infection and Immunity, UCL, Gower St, London, UK
| | - Julie Robotham
- HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
- NIHR Health Protection Research Unit in Antimicrobial Resistance and Healthcare Associated Infections, University of Oxford and UKHSA, Oxford, UK
| |
Collapse
|
9
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
10
|
Diorio-Toth L, Wallace MA, Farnsworth CW, Wang B, Gul D, Kwon JH, Andleeb S, Burnham CAD, Dantas G. Intensive care unit sinks are persistently colonized with multidrug resistant bacteria and mobilizable, resistance-conferring plasmids. mSystems 2023; 8:e0020623. [PMID: 37439570 PMCID: PMC10469867 DOI: 10.1128/msystems.00206-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 07/14/2023] Open
Abstract
Contamination of hospital sinks with microbial pathogens presents a serious potential threat to patients, but our understanding of sink colonization dynamics is largely based on infection outbreaks. Here, we investigate the colonization patterns of multidrug-resistant organisms (MDROs) in intensive care unit sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. Using culture-based methods, we recovered 822 bacterial isolates representing 104 unique species and genomospecies. Genomic analyses revealed long-term colonization by Pseudomonas spp. and Serratia marcescens strains across multiple rooms. Nanopore sequencing uncovered examples of long-term persistence of resistance-conferring plasmids in unrelated hosts. These data indicate that antibiotic resistance (AR) in Pseudomonas spp. is maintained both by strain colonization and horizontal gene transfer (HGT), while HGT maintains AR within Acinetobacter spp. and Enterobacterales, independent of colonization. These results emphasize the importance of proactive, genomic-focused surveillance of built environments to mitigate MDRO spread. IMPORTANCE Hospital sinks are frequently linked to outbreaks of antibiotic-resistant bacteria. Here, we used whole-genome sequencing to track the long-term colonization patterns in intensive care unit (ICU) sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. We analyzed 822 bacterial genomes, representing over 100 different species. We identified long-term contamination by opportunistic pathogens, as well as transient appearance of other common pathogens. We found that bacteria recovered from the ICU had more antibiotic resistance genes (ARGs) in their genomes compared to matched community spaces. We also found that many of these ARGs are harbored on mobilizable plasmids, which were found shared in the genomes of unrelated bacteria. Overall, this study provides an in-depth view of contamination patterns for common nosocomial pathogens and identifies specific targets for surveillance.
Collapse
Affiliation(s)
- Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Danish Gul
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jennie H. Kwon
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, Missouri, USA
| |
Collapse
|
11
|
He X, Xu L, Dai H, Ge M, Zhu J, Fu H, Zhu S, Shao J. Genomic Characteristics of a Multidrug-Resistant ST648 Escherichia coli Isolate Co-Carrying blaKPC-2 and blaCTX-M-15 Genes Recovered from a Respiratory Infection in China. Infect Drug Resist 2023; 16:3535-3540. [PMID: 37293536 PMCID: PMC10246572 DOI: 10.2147/idr.s415846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Background The transmission of carbapenem-resistant Enterobacterales pose a significant threat to global public health, which weakens the effectiveness of most antimicrobial agents. The aim of this study is to present the genomic characteristics of a multidrug-resistant Escherichia coli, which contains both blaKPC-2 and blaCTX-M-15 genes, discovered from a respiratory infection in China. Methods The antimicrobial susceptibility of E. coli isolate 488 was measured by using the broth microdilution method. The Oxford Nanopore MinION and Illumina NovaSeq 6000 platforms were applied to determine the whole-genome sequence of this isolate. De novo assembly of short Illumina reads and long MinION reads were performed by Unicycler. In silico multilocus sequence typing (MLST), antimicrobial resistance genes and plasmid replicon types were determined using the genome sequencing data. Additionally, a pairwise core genome single nucleotide polymorphism (cgSNP) comparison between E. coli 488 and all ST648 E. coli strains retrieved from NCBI GenBank database were conducted using the BacWGSTdb 2.0 server. Results E. coli 488 was resistant to aztreonam, levofloxacin, cefepime, fosfomycin, amikacin, imipenem, cefotaxime, and meropenem. The complete genome sequence of E. coli 488 (belong to ST648) is made up of eleven contigs totaling 5,573,915 bp, including one chromosome and ten plasmids. Eight antimicrobial resistance genes were identified, including blaKPC-2 located in a 46,161 bp IncI1-type plasmid and the blaCTX-M-15 gene situated in the chromosome. Other two E. coli S617-2 and R616-1 isolates, recovered from China in 2018, are the closest relatives of E. coli 488, with only 52 SNPs difference. The genome also contains at least 57 genomic islands and several IS elements. Conclusion Our study reveals the first ST648 E. coli isolate containing both blaKPC-2 and blaCTX-M-15 in China. These results could provide valuable insights into the genetic characteristics, antimicrobial resistance mechanisms, and transmission dynamics of carbapenem-resistant Enterobacterales in clinical settings.
Collapse
Affiliation(s)
- Xianhong He
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Liwei Xu
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Hangdong Dai
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Minxia Ge
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Jufang Zhu
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Hangyu Fu
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Shuilong Zhu
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Jiayu Shao
- Department of Clinical Laboratory, The Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| |
Collapse
|
12
|
Shen C, Lv T, Huang G, Zhang X, Zheng L, Chen Y. Genomic Insights Into Molecular Characteristics and Phylogenetic Linkage Between the Cases of Carbapenem-Resistant Klebsiella pneumoniae From a Non-tertiary Hospital in China: A Cohort Study. Jundishapur J Microbiol 2023. [DOI: 10.5812/jjm-133210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains have been listed as one of the major clinical concerns. Objectives: We investigated CPKP isolates from non-tertiary hospitals to find disseminated clones and analyze extensive phenotypic and genetic diversity in this study. Methods: In this cohort study, a total of 49 CRKP isolates from 3 hospitals in the same region were collected in 2021. The prevalence and antimicrobial susceptibility patterns were analyzed. Clinical data were retrieved from electronic medical record systems. The molecular types, antimicrobial resistance (AMR) profiles, plasmid replicons, and virulence factors were analyzed. The maximum-likelihood phylogenetic tree and transmission networks were constructed using single-nucleotide polymorphisms (SNPs). Results: The median age of patients (N = 49) was 66.0 years, and 85.7% were male. The most common CRKP infection was nosocomial pneumonia (75.5%), followed by bacteremia (10.2%). More than 53% of isolates were resistant to ceftazidime-avibactam (CAZ/AVI). Forty-five isolates were successfully sequenced; the predominant carbapenem-resistant gene was blaKPC-2 (93.3%). The 30-day mortality in our cohort was 24.5%. The most dominant sequence type (ST) was ST11 (60.0%), followed by ST15 (13.3%). Whole genome sequencing (WGS) analysis exhibited dissemination of ST11 strain clones, ST420, and ST15 clones, both within and outside the given hospital. Conclusions: In this surveillance study, several dissemination chains of CRKP were discovered in the hospital and the region, as ST11 was the main epidemic clone. Our findings suggest that effective infection control practices and antimicrobial stewardship are needed in non-tertiary hospitals in China.
Collapse
|
13
|
Hadjirin NF, van Tonder AJ, Blane B, Lees JA, Kumar N, Delappe N, Brennan W, McGrath E, Parkhill J, Cormican M, Peacock SJ, Ludden C. Dissemination of carbapenemase-producing Enterobacterales in Ireland from 2012 to 2017: a retrospective genomic surveillance study. Microb Genom 2023; 9:mgen000924. [PMID: 36916881 PMCID: PMC10132065 DOI: 10.1099/mgen.0.000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/03/2022] [Indexed: 03/16/2023] Open
Abstract
The spread of carbapenemase-producing Enterobacterales (CPE) is of major public health concern. The transmission dynamics of CPE in hospitals, particularly at the national level, are not well understood. Here, we describe a retrospective nationwide genomic surveillance study of CPE in Ireland between 2012 and 2017. We sequenced 746 national surveillance CPE samples obtained between 2012 and 2017. After clustering the sequences, we used thresholds based on pairwise SNPs, and reported within-host diversity along with epidemiological data to infer recent putative transmissions. All clusters in circulating clones, derived from high-resolution phylogenies, of a species (Klebsiella pneumoniae, Escherichia coli, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter hormaechei and Citrobacter freundii) were individually examined for evidence of transmission. Antimicrobial resistance trends over time were also assessed. We identified 352 putative transmission events in six species including widespread and frequent transmissions in three species. We detected putative outbreaks in 4/6 species with three hospitals experiencing prolonged outbreaks. The bla OXA-48 gene was the main cause of carbapenem resistance in Ireland in almost all species. An expansion in the number of sequence types carrying bla OXA-48 was an additional cause of the increasing prevalence of carbapenemase-producing K. pneumoniae and E. coli.
Collapse
Affiliation(s)
- Nazreen F. Hadjirin
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke’s Hospital, Hills Rd, Cambridge, CB2 0QQ, UK
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Andries J. van Tonder
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| | - Beth Blane
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke’s Hospital, Hills Rd, Cambridge, CB2 0QQ, UK
| | - John A. Lees
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Narender Kumar
- Wellcome Trust Sanger Institute Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Niall Delappe
- National CPE Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Wendy Brennan
- National CPE Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Elaine McGrath
- National CPE Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| | - Martin Cormican
- National CPE Reference Laboratory, University Hospital Galway, Galway, Ireland
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke’s Hospital, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Catherine Ludden
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke’s Hospital, Hills Rd, Cambridge, CB2 0QQ, UK
- Wellcome Trust Sanger Institute Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
14
|
Xu C, Rao J, Xie Y, Lu J, Li Z, Dong C, Wang L, Jiang J, Chen C, Chen S. The DNA Phosphorothioation Restriction-Modification System Influences the Antimicrobial Resistance of Pathogenic Bacteria. Microbiol Spectr 2023; 11:e0350922. [PMID: 36598279 PMCID: PMC9927239 DOI: 10.1128/spectrum.03509-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Bacterial defense barriers, such as DNA methylation-associated restriction-modification (R-M) and the CRISPR-Cas system, play an important role in bacterial antimicrobial resistance (AMR). Recently, a novel R-M system based on DNA phosphorothioate (PT) modification has been shown to be widespread in the kingdom of Bacteria as well as Archaea. However, the potential role of the PT R-M system in bacterial AMR remains unclear. In this study, we explored the role of PT R-Ms in AMR with a series of common clinical pathogenic bacteria. By analyzing the distribution of AMR genes related to mobile genetic elements (MGEs), it was shown that the presence of PT R-M effectively reduced the distribution of horizontal gene transfer (HGT)-derived AMR genes in the genome, even in the bacteria that did not tend to acquire AMR genes by HGT. In addition, unique gene variation analysis based on pangenome analysis and MGE prediction revealed that the presence of PT R-M could suppress HGT frequency. Thus, this is the first report showing that the PT R-M system has the potential to repress HGT-derived AMR gene acquisition by reducing the HGT frequency. IMPORTANCE In this study, we demonstrated the effect of DNA PT modification-based R-M systems on horizontal gene transfer of AMR genes in pathogenic bacteria. We show that there is no apparent association between the genetic background of the strains harboring PT R-Ms and the number of AMR genes or the kinds of gene families. The strains equipped with PT R-M harbor fewer plasmid-derived, prophage-derived, or integrating mobile genetic element (iMGE)-related AMR genes and have a lower HGT frequency, but the degree of inhibition varies among different bacteria. In addition, compared with Salmonella enterica and Escherichia coli, Klebsiella pneumoniae prefers to acquire MGE-derived AMR genes, and there is no coevolution between PT R-M clusters and bacterial core genes.
Collapse
Affiliation(s)
- Congrui Xu
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jing Rao
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yuqing Xie
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jiajun Lu
- Information Engineering Institute, Wuchang Institute of Technology, Wuhan, China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Lianrong Wang
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jinghong Jiang
- Department of Obstetrics & Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chao Chen
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shi Chen
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
Kothari A, Kumar P, Gaurav A, Kaushal K, Pandey A, Yadav SRM, Jain N, Omar BJ. Association of antibiotics and heavy metal arsenic to horizontal gene transfer from multidrug-resistant clinical strains to antibiotic-sensitive environmental strains. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130260. [PMID: 36327832 DOI: 10.1016/j.jhazmat.2022.130260] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The emergence of multidrug-resistant bacteria is currently posing a significant threat to global public health. By testing for resistance to different antibiotic classes, we discovered that the majority of clinical bacteria are multidrug-resistant. These clinical multidrug-resistant species have antibiotic resistance genes on their plasmids that can be horizontally transferred to various antibiotic susceptible environmental bacterial species, resulting in antibiotic-resistant transconjugates. Furthermore, we discovered that the presence of an optimal concentration of antibiotics or heavy metal (arsenic) facilitates horizontal gene transfer through the formation of transconjugants. Notably, the addition of a conjugation inhibitor (2-hexadecynoic acid, a synthetic fatty acid) completely blocked the formation of antibiotic or arsenic-induced transconjugants. We discovered a high level of arsenic in water from the Shukratal region, Uttarakhand, India, which corresponded to a high serum level of arsenic in clinically infected individuals from the Shukratal region compared to other locations in Uttarakhand. Importantly, bacterial strains isolated from infected people who drink water from the Shukratal region with high arsenic levels were found to be more antibiotic-resistant than strains isolated from other sites. We discovered that bacterial strains isolated from individuals with high serum arsenic levels are significantly more resistant to antibiotics than individuals with low serum arsenic levels within the Shurkratal. This research sheds light on imminent threats to global health in which improper clinical, industrial, and other waste disposal, increased antibiotic concentrations in the environment, and increased human interference can easily transform commensal and pathogenic bacteria found in environmental niches into life-threatening multidrug-resistant superbugs.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Prashant Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India
| | | | - Karanvir Kaushal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Atul Pandey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Neeraj Jain
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh 249203, India; Division of Cancer Biology, Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India.
| |
Collapse
|
16
|
Juhas M. Multidrug-Resistant Bacteria. BRIEF LESSONS IN MICROBIOLOGY 2023:65-77. [DOI: 10.1007/978-3-031-29544-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Wang Q, Chen M, Ou Q, Zheng L, Chen X, Mao G, Fang J, Jin D, Tang X. Carbapenem-resistant hypermucoviscous Klebsiella pneumoniae clinical isolates from a tertiary hospital in China: Antimicrobial susceptibility, resistance phenotype, epidemiological characteristics, microbial virulence, and risk factors. Front Cell Infect Microbiol 2022; 12:1083009. [PMID: 36619764 PMCID: PMC9811262 DOI: 10.3389/fcimb.2022.1083009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hypervirulent and multidrug-resistant Klebsiella pneumoniae poses a significant threat to public health. We aimed to determine the common carbapenemase genotypes and the carriage patterns, main antibiotic resistance mechanisms, and in vitro susceptibility of clinical isolates of carbapenem-resistant K. pneumoniae (CRKP) to ceftazidime/avibactam (CZA) for the reasonable selection of antimicrobial agents and determine whether hypermucoviscous (HMV) phenotype and virulence-associated genes are key factors for CRKP colonization and persistence. Antibiotics susceptibility of clinical CRKP isolates and carbapenemase types were detected. CRKP isolates were identified as hypermucoviscous K. pneumoniae (HMKP) using the string test, and detection of virulence gene was performed using capsular serotyping. The bla KPC-2, bla NDM, bla IMP, and/or bla OXA-48-like were detected in 96.4% (402/417) of the isolates, and the bla KPC-2 (64.7%, 260/402) was significantly higher (P<0.05) than those of bla NDM (25.1%), bla OXA-48-like (10.4%), and bla IMP (4.2%). Carriage of a single carbapenemase gene was observed in 96.3% of the isolates, making it the dominant antibiotic resistance genotype carriage pattern (P < 0.05). Approximately 3.7% of the isolates carried two or more carbapenemase genotypes, with bla KPC-2 + bla NDM and bla NDM + bla IMP being the dominant multiple antibiotic resistance genotype. In addition, 43 CRKP isolates were identified as HMKP, with a prevalence of 10.3% and 2.7% among CRKP and all K. pneumoniae isolates, respectively. Most clinical CRKP isolates were isolated from elderly patients, and carbapenemase production was the main mechanism of drug resistance. Tigecycline and polymyxin B exhibited exceptional antimicrobial activity against CRKP isolates in vitro. Furthermore, bla KPC-2, bla NDM, and bla OXA-48-like were the main carbapenemase genes carried by the CRKP isolates. CZA demonstrated excellent antimicrobial activity against isolates carrying the single bla KPC-2 or bla OXA-48-like genotype. Capsular serotype K2 was the main capsular serotype of the carbapenem-resistant HMKP isolates. Survival rates of Galleria mellonella injected with K. pneumoniae 1-7 were 20.0, 16.7, 6.7, 23.3, 16.7, 3.3, and 13.3, respectively. Therefore, worldwide surveillance of these novel CRKP isolates and carbapenem-resistant HMKP isolates as well as the implementation of stricter control measures are needed to prevent further dissemination in hospital settings.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengyuan Chen
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qian Ou
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Zheng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuejing Chen
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guofeng Mao
- Department of Clinical Laboratory, Shaoxing People’s Hospital, Shaoxing, China
| | - Jiaqi Fang
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China,Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| | - Xiaofang Tang
- Department of Cadre Health Care, Zhejiang Hospital, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| |
Collapse
|
18
|
Santos-Marques C, Ferreira H, Gonçalves Pereira S. Infection prevention and control strategies against carbapenem resistant Enterobacteriaceae - a systematic review. J Infect Prev 2022; 23:167-185. [PMID: 37256160 PMCID: PMC10226056 DOI: 10.1177/17571774211066762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/17/2021] [Indexed: 09/20/2023] Open
Abstract
Background Antimicrobial resistance is exponentially worsening, and the spread of prevalent carbapenem resistant Enterobacteriaceae (CRE) is a major contributor to this global concern. Infection prevention and control strategies are increasingly consolidated key tools to control this worldwide problem. Aim To identify, collect and analyse available evidence regarding the impact of infection prevention and control strategies on prevalent CRE dissemination. Methods Pubmed®, Scopus® and Web of Science® were searched systematically for articles published between 1th January 2017 and 30th June 2020, guided by the research question 'What are the most effective and efficient strategies to prevent and control infection/colonisation caused by Carbapenem resistant Escherichia coli and Carbapenem resistant Klebsiella pneumoniae?'. Findings Eleven thousand six hundred and thirty-five publications were found, but after applying the inclusion and exclusion criteria, only 30 were selected. The majority of reviewed studies (n = 24) were performed in outbreak situations, 26 studies occurred in acute care units and of those, 17 in intensive care units . From the set of implemented infection prevention and control measures, in 29 studies surveillance cultures were applied, in 23 studies patients were isolated or cohorted and, in general, all described the implementation of standard and contact precaution measures. Conclusion This systematic review underlines the importance of infection prevention and control strategies in CRE dissemination, standing out the need of further studies outside outbreak and intensive care units contexts. Investment increments and training and educating of all involved are also important contributors to shift this problem, but still with relevant gaps in their implementation, in all types of care units, that need to be addressed.
Collapse
Affiliation(s)
- Catarina Santos-Marques
- Center for Innovative Care and
Health Technology – ciTechCare, Polytechnic of Leiria, Portugal
- Microbiology Laboratory, Biological
Sciences Department, Faculty of Pharmacy of University of Porto, Portugal
- Research Unit on Applied Molecular
Biosciences – UCIBIO, Portugal
| | - Helena Ferreira
- Microbiology Laboratory, Biological
Sciences Department, Faculty of Pharmacy of University of Porto, Portugal
- Research Unit on Applied Molecular
Biosciences – UCIBIO, Portugal
| | - Sónia Gonçalves Pereira
- Center for Innovative Care and
Health Technology – ciTechCare, Polytechnic of Leiria, Portugal
| |
Collapse
|
19
|
Nwafia IN, Ike AC, Orabueze IN, Nwafia WC. Carbapenemase producing Enterobacteriaceae: Environmental reservoirs as primary targets for control and prevention strategies. Niger Postgrad Med J 2022; 29:183-191. [PMID: 35900453 DOI: 10.4103/npmj.npmj_95_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) have become one of the greatest public health challenges globally. In the past decade, antimicrobial resistance (AMR) was viewed as a clinical problem in many parts of the world; hence, the role and magnitude of the contribution of the environment were not well appreciated. This review article was done with online published articles extracted from different databases using search terms related to the work. Evidence has shown that there exists the presence of carbapenemase genes in the environment, consequently fuelling the dissemination with alarming consequences. CPE when acquired causes life-threatening infections in humans. The health and economic impact of these infections are numerous, including treatment failure due to limited therapeutic options which hamper the containment of infectious diseases, further contaminating the environment and worsening the public health challenge. It is a well-known fact that the rate of emergence of resistant genes has outpaced the production of new antimicrobial agents, so it is pertinent to institute effective environmental measures to combat the spread of AMR organisms before it will completely gain a foothold and take us back to 'the pre-antibiotic era'. Environmental sources and reservoirs of resistant genes should therefore be amongst the primary targets for the control and prevention of the spread of resistant genes in the environment. This calls for the effective implementation of the 'one health' strategy with stakeholders committed to the design and enforcement of environmental mitigation policies and guidelines.
Collapse
Affiliation(s)
- Ifeyinwa Nkeiruka Nwafia
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka; Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Anthony Chibuogwu Ike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ibuchukwu Nkeonyenasoya Orabueze
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka; Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Walter Chukwuma Nwafia
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| |
Collapse
|
20
|
Meng M, Li Y, Yao H. Plasmid-Mediated Transfer of Antibiotic Resistance Genes in Soil. Antibiotics (Basel) 2022; 11:antibiotics11040525. [PMID: 35453275 PMCID: PMC9024699 DOI: 10.3390/antibiotics11040525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Due to selective pressure from the widespread use of antibiotics, antibiotic resistance genes (ARGs) are found in human hosts, plants, and animals and virtually all natural environments. Their migration and transmission in different environmental media are often more harmful than antibiotics themselves. ARGs mainly move between different microorganisms through a variety of mobile genetic elements (MGEs), such as plasmids and phages. The soil environment is regarded as the most microbially active biosphere on the Earth’s surface and is closely related to human activities. With the increase in human activity, soils are becoming increasingly contaminated with antibiotics and ARGs. Soil plasmids play an important role in this process. This paper reviews the current scenario of plasmid-mediated migration and transmission of ARGs in natural environments and under different antibiotic selection pressures, summarizes the current methods of plasmid extraction and analysis, and briefly introduces the mechanism of plasmid splice transfer using the F factor as an example. However, as the global spread of drug-resistant bacteria has increased and the knowledge of MGEs improves, the contribution of soil plasmids to resistance gene transmission needs to be further investigated. The prevalence of multidrug-resistant bacteria has also made the effective prevention of the transmission of resistance genes through the plasmid-bacteria pathway a major research priority.
Collapse
Affiliation(s)
- Miaoling Meng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- Correspondence: ; Tel.: +86-0574-8678-4812
| |
Collapse
|
21
|
Cao Z, Yue C, Kong Q, Liu Y, Li J. Risk Factors for a Hospital-Acquired Carbapenem-Resistant Klebsiella pneumoniae Bloodstream Infection: A Five-Year Retrospective Study. Infect Drug Resist 2022; 15:641-654. [PMID: 35241916 PMCID: PMC8887613 DOI: 10.2147/idr.s342103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose This study aimed to describe trends in Klebsiella pneumoniae (KP) resistance in bloodstream infections (BSI) and to identify risk factors for a hospital-acquired carbapenem-resistant Klebsiella pneumoniae (CRKP) BSI and 28-day mortality from a hospital-acquired KP BSI. Patients and Methods We recorded the results of antimicrobial susceptibility testing of 396 KP-positive blood cultures from January 2016 to December 2020. A total of 277 patients with a KP BSI were included in this study, of which 171 had a hospital-acquired infection and 84 had a hospital-acquired CRKP BSI. Multivariate logistic regression analysis was used to identify risk factors for a hospital-acquired CRKP BSI and 28-day mortality from a hospital-acquired KP BSI. Results The proportion of hospital-acquired infections among KP BSI patients increased from 53.1% in 2016 to 72.8% in 2020. The detection rate of CRKP among KP BSI patients increased from 18.8% in 2016 to 37.7% in 2020. Multivariate logistic regression showed that β-lactam/β-lactamase inhibitor combinations (BLBLIs) exposure (P = 0.022, OR 2.863), carbapenems exposure (P = 0.007, OR 3.831) and solid organ transplantation (P <0.001, OR 19.454) were independent risk factors for a hospital-acquired CRKP BSI. Risk factors for a 28-day mortality from hospital-acquired KP BSI were CRKP BSI (P =0.009, OR 5.562), septic shock (P =0.002, OR 4.862), mechanical ventilation>96 hours (P =0.020, OR 8.765), and platelet counts <100×109/L (P =0.003, OR 4.464). Conclusion The incidence of hospital-acquired KP BSI continues to rise and the proportion of CRKP BSI is also increasing. We believe that the use of the BLBLIs needs to be carefully evaluated in hospital-acquired infection. Hospital-acquired KP BSI Patients with CRKP BSI, septic shock, mechanical ventilation and deficiency of platelets are more likely to have a poor prognosis.
Collapse
Affiliation(s)
- Zubai Cao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Chengcheng Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Qinxiang Kong
- Department of Infectious Diseases, The Chaohu Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Anhui Center for Surveillance of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Anhui Center for Surveillance of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Correspondence: Jiabin Li Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Jixi road 218, Hefei, Anhui, 230022, People’s Republic of ChinaTel +86-551-62922713Fax +86-551-62922281 Email
| |
Collapse
|
22
|
Adelman MW, Bower CW, Grass JE, Ansari UA, Soda EA, See I, Lutgring JD, Jacob JT. Distinctive Features of Ertapenem-Mono-Resistant Carbapenem-Resistant Enterobacterales in the United States: A Cohort Study. Open Forum Infect Dis 2022; 9:ofab643. [PMID: 35036469 PMCID: PMC8754373 DOI: 10.1093/ofid/ofab643] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 11/26/2022] Open
Abstract
Background Carbapenem-resistant Enterobacterales (CRE) are highly antibiotic-resistant bacteria. Whether CRE resistant only to ertapenem among carbapenems (ertapenem “mono-resistant”) represent a unique CRE subset with regards to risk factors, carbapenemase genes, and outcomes is unknown. Methods We analyzed surveillance data from 9 CDC Emerging Infections Program (EIP) sites. A case was the first isolation of a carbapenem-resistant Enterobacter cloacae complex, Escherichia coli, Klebsiella aerogenes, K. oxytoca, K. pneumoniae, or K. variicola from a normally sterile site or urine in an EIP catchment area resident in 2016–2017. We compared risk factors, carbapenemase genes, antibiotic susceptibility, and mortality of ertapenem “mono-resistant” cases to “other” CRE cases (resistant to ≥1 carbapenem other than ertapenem) and analyzed risk factors for mortality. Results Of 2009 cases, 1249 (62.2%) were ertapenem-mono-resistant and 760 (37.8%) were other CRE. Ertapenem-mono-resistant CRE cases were more frequently ≥80 years old (29.1% vs 19.5%; P < .0001) and female (67.9% vs 59.0%; P < .0001). Ertapenem-mono-resistant isolates were more likely to be Enterobacter cloacae complex (48.4% vs 15.4%; P < .0001) but less likely to be isolated from a normally sterile site (7.1% vs 11.7%; P < .01) or to have a carbapenemase gene (2.4% vs 47.4%; P < .0001). Ertapenem-mono-resistance was not associated with 90-day mortality in logistic regression models. Carbapenemase-positive isolates were associated with mortality (odds ratio, 1.93; 95% CI, 1.30–2.86). Conclusions Ertapenem-mono-resistant CRE rarely have carbapenemase genes and have distinct clinical and microbiologic characteristics from other CRE. These findings may inform antibiotic choice and infection prevention practices, particularly when carbapenemase testing is not available.
Collapse
Affiliation(s)
- Max W Adelman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Georgia Emerging Infections Program, Decatur, Georgia, USA
| | - Chris W Bower
- Georgia Emerging Infections Program, Decatur, Georgia, USA.,Atlanta VA Medical Center, Decatur, Georgia, USA.,Foundation for Atlanta Veterans Education and Research, Decatur, Georgia, USA
| | - Julian E Grass
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Uzma A Ansari
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elizabeth A Soda
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Isaac See
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joseph D Lutgring
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jesse T Jacob
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Georgia Emerging Infections Program, Decatur, Georgia, USA.,Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA.,Emory Antibiotic Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Detection of NDM-1/5 and OXA-48 co-producing XDR hyper-virulent Klebsiella pneumoniae in Northern Italy. J Glob Antimicrob Resist 2022; 28:146-150. [PMID: 35017071 DOI: 10.1016/j.jgar.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Using a hybrid long reads sequencing approach, we aimed to fully characterize four hypervirulent extensively drug resistant (XDR) isolates of Klebsiella pneumoniae, one of which represented the first strain isolated in Italy co-expressing NDM-1/5 and OXA-48 carbapenemases. METHODS Whole Genome Sequencing (WGS) was performed using Illumina and Oxford Nanopore Technology platforms. An assembly pipeline was used to recover the structures of both chromosome and plasmids. RESULTS Multi-locus sequence typing (MLST) showed that these strains belonged to high-risk sequence types (ST) not commonly circulating in Italy (ST 383, ST147, and ST15). The hybrid sequencing approach allowed to characterize three multi-drug resistance plasmids, which demonstrated high homology with previously sequenced ones, that were simultaneously detected in one ST383 strain, carrying respectively blaNDM-1, blaNDM-5, and blaOXA48. CONCLUSIONS This is the first report in Italy of new hyper-virulent XDR Klebsiella pneumoniae clones characterized by co-production of OXA-48, NDM-1 and NDM-5. The discovery of new high-risk clonality housing multiple mobile elements is a growing problem that poses a great challenge for public health.
Collapse
|
24
|
Chen D, Xiao L, Hong D, Zhao Y, Hu X, Shi S, Chen F. Epidemiology of resistance of carbapenemase-producing Klebsiella pneumoniae to ceftazidime-avibactam in a Chinese hospital. J Appl Microbiol 2022; 132:237-243. [PMID: 34053144 PMCID: PMC9290937 DOI: 10.1111/jam.15166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/04/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
AIMS Klebsiella pneumoniae has been reported to develop increased antibiotic resistance. Ceftazidime-avibactam (CZA) is a novel antibiotic with activity against serine-lactamase. Here, we investigated the sensitivity of carbapenem-resistant K. pneumoniae (CRKP) to CZA and the mechanisms of drug resistance in our hospital. METHODS AND RESULTS Patient characteristics were obtained from medical records. K. pneumoniae and its antibiotic susceptibility were determined using the Vitek-2 Compact instrument. The antibiotic resistance genes KPC, NDM, OXA-48, VIM, IMP, CIM, SPM, TMB, SMB, SIM, AIM and DIM were detected using real-time PCR. Multilocus sequence typing was used for genetic RELATEDNESS analysis. In total, 121 CRKP strains were isolated from patients in the intensive care unit (51·2%), senior ward (12·4%) and neurosurgery department (10%). With an average age of 72·5 years, most patients were in care for respiratory (34·7%), brain (20·7%), digestive tract (13·2%) and cardiovascular (8·3%) diseases. Specimens were predominantly obtained from sputum (39·67%), urine (29·75%) and blood (6·61%). CONCLUSION Of 23 CZA-resistant CRKP strains (19·01%), ST11 being the most common at 56·52%, 11 NDM-1-positive (47·83%) and four NDM-5-positive (17·39%) strains were detected. SIGNIFICANCE AND IMPACT OF THE STUDY Our study indicates that CZA resistance occurs in ~19·01% CRKP strains and that blaNDM-1 and blaNDM-5 might be critical for resistance.
Collapse
Affiliation(s)
- D. Chen
- Shengli Clinical Medical CollegeFujian Medical UniversityFuzhouChina
- Clinical Microbiology LaboratoryFujian Provincial HospitalFuzhouChina
| | - L. Xiao
- Department of Respiratory MedicineThe Affiliated Hospital (Group) of Putian UniversityPutianChina
| | - D. Hong
- Shengli Clinical Medical CollegeFujian Medical UniversityFuzhouChina
- Department of Critical Care MedicineFujian Provincial HospitalFuzhouChina
| | - Y. Zhao
- Shengli Clinical Medical CollegeFujian Medical UniversityFuzhouChina
| | - X. Hu
- Shengli Clinical Medical CollegeFujian Medical UniversityFuzhouChina
- Clinical Microbiology LaboratoryFujian Provincial HospitalFuzhouChina
| | - S. Shi
- Shengli Clinical Medical CollegeFujian Medical UniversityFuzhouChina
- Department of Critical Care MedicineFujian Provincial HospitalFuzhouChina
| | - F. Chen
- Shengli Clinical Medical CollegeFujian Medical UniversityFuzhouChina
- Clinical Microbiology LaboratoryFujian Provincial HospitalFuzhouChina
| |
Collapse
|
25
|
Piccirilli A, Cherubini S, Azzini AM, Tacconelli E, Lo Cascio G, Maccacaro L, Bazaj A, Naso L, Amicosante G, Perilli M. Whole-Genome Sequencing (WGS) of Carbapenem-Resistant K. pneumoniae Isolated in Long-Term Care Facilities in the Northern Italian Region. Microorganisms 2021; 9:microorganisms9091985. [PMID: 34576880 PMCID: PMC8465262 DOI: 10.3390/microorganisms9091985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
K. pneumoniae (KPN) is one of the widest spread bacteria in which combined resistance to several antimicrobial groups is frequent. The most common β-lactamases found in K. pneumoniae are class A carbapenemases, both chromosomal-encoded (i.e., NMCA, IMI-1) and plasmid-encoded (i.e., GES-enzymes, IMI-2), VIM, IMP, NDM, OXA-48, and extended-spectrum β-lactamases (ESBLs) such as CTX-M enzymes. In the present study, a total of 68 carbapenem-resistant KPN were collected from twelve long-term care facilities (LTCFs) in the Northern Italian region. The whole-genome sequencing (WGS) of each KPN strain was determined using a MiSeq Illumina sequencing platform and analysed by a bacterial analysis pipeline (BAP) tool. The WGS analysis showed the prevalence of ST307, ST512, and ST37 as major lineages diffused among the twelve LTCFs. The other lineages found were: ST11, ST16, ST35, ST253, ST273, ST321, ST416, ST1519, ST2623, and ST3227. The blaKPC-2, blaKPC-3, blaKPC-9, blaSHV-11, blaSHV-28, blaCTX-M-15, blaOXA-1, blaOXA-9, blaOXA-23, qnrS1, qnrB19, qnrB66, aac(6′)-Ib-cr, and fosA were the resistance genes widespread in most LTCFs. In this study, we demonstrated the spreading of thirteen KPN lineages among the LTCFs. Additionally, KPC carbapenemases are the most widespread β-lactamase.
Collapse
Affiliation(s)
- Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
| | - Sabrina Cherubini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
| | - Anna Maria Azzini
- Infectious Disease Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.M.A.); (E.T.)
| | - Evelina Tacconelli
- Infectious Disease Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.M.A.); (E.T.)
| | - Giuliana Lo Cascio
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
- Microbiology and Virology Unit, AUSL Piacenza, 29121 Piacenza, Italy
| | - Laura Maccacaro
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
| | - Alda Bazaj
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
| | - Laura Naso
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
| | | | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
- Correspondence:
| |
Collapse
|
26
|
Novel strains of Klebsiella africana and Klebsiella pneumoniae in Australian fruit bats (Pteropus poliocephalus). Res Microbiol 2021; 172:103879. [PMID: 34506927 DOI: 10.1016/j.resmic.2021.103879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
Over the past decade human associated multidrug resistant (MDR) and hypervirulent Klebsiella pneumoniae lineages have been increasingly detected in wildlife. This study investigated the occurrence of K. pneumoniae species complex (KpSC) in grey-headed flying foxes (GHFF), an Australian fruit bat. Thirty-nine KpSC isolates were cultured from 275 GHFF faecal samples (14.2%), comprising K. pneumoniae (n = 30), Klebsiella africana (n = 8) and Klebsiella variicola subsp. variicola (n = 1). The majority (79.5%) of isolates belonged to novel sequence types (ST), including two novel K. africana STs. This is the first report of K. africana outside of Africa and in a non-human host. A minority (15.4%) of GHFF KpSC isolates shared STs with human clinical K. pneumoniae strains, of which, none belonged to MDR clonal lineages that cause frequent nosocomial outbreaks, and no isolates were characterised as hypervirulent. The occurrence of KpSC isolates carrying acquired antimicrobial resistance genes in GHFF was low (1.1%), with three K. pneumoniae isolates harbouring both fluoroquinolone and trimethoprim resistance genes. This study indicates that GHFF are not reservoirs for MDR and hypervirulent KpSC strains, but they do carry novel K. africana lineages. Health risks associated with KpSC carriage by GHFF are deemed low for the public and GHFF.
Collapse
|
27
|
Genomic Epidemiology of Carbapenemase-Producing Enterobacterales at a Hospital System in Toronto, Ontario, Canada, 2007 to 2018. Antimicrob Agents Chemother 2021; 65:e0036021. [PMID: 34060902 DOI: 10.1128/aac.00360-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
At a hospital system (H1) in Ontario, Canada, we investigated whether whole-genome sequencing (WGS) altered initial epidemiological interpretation of carbapenemase-producing Enterobacterales (CPE) transmission. We included patients with CPE colonization/infection identified by population-based surveillance from October 2007 to August 2018 who received health care at H1 in the year before/after CPE detection. H1 reported epidemiological transmission clusters. We combined single nucleotide variant (SNV) analysis, plasmid characterization, and epidemiological data. Eighty-five patients were included. H1 identified 7 epidemiological transmission clusters, namely, A to G, involving 24/85 (28%) patients. SNV analysis confirmed transmission clusters C, D, and G and identified two additional cases belonging to cluster A. One was a travel-related case that was the likely index case (0 to 6 SNVs from other isolates); this case stayed on the same unit as the initially presumed index case 4 months prior to detection of the initially presumed index case on another unit. The second additional case occupied a room previously occupied by 5 cluster A cases. Plasmid sequence analysis excluded a case from cluster A and identified clusters E and F as possibly two parts of a single cluster. SNV analysis also identified a case without direct epidemiologic links that was 18 to 21 SNVs away from cluster B, suggesting possible undetected interhospital transmission. SNV and plasmid sequence analysis identified cases belonging to transmission clusters that conventional epidemiology missed and excluded other cases. Implementation of routine WGS to complement epidemiological transmission investigations has the potential to improve prevention and control of CPE in hospitals.
Collapse
|
28
|
Gobeille Paré S, Mataseje LF, Ruest A, Boyd DA, Lefebvre B, Trépanier P, Longtin J, Dolce P, Mulvey MR. Arrival of the rare carbapenemase OXA-204 in Canada causing a multispecies outbreak over 3 years. J Antimicrob Chemother 2021; 75:2787-2796. [PMID: 32766684 DOI: 10.1093/jac/dkaa279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate a persistent multispecies OXA-204 outbreak occurring simultaneously in multiple distant hospitals in the province of Quebec, Canada. METHODS OXA-204 carbapenemase-producing Enterobacterales (CPE) isolated from multiple hospitals between January 2016 and October 2018 were included in the study. An epidemiological inquiry was conducted in order to elucidate possible transmission routes and a putative source. Isolates were characterized by standardized antibiotic susceptibility testing and by WGS, using Illumina short-read data and MinION long-read data. RESULTS The outbreak comprised 65 patients and 82 isolates from four hospital sites. Most patients were ≥65 years old, had multiple comorbidities and had received antibiotics recently. The infection to colonization ratio was 1:20. No persistent environmental reservoir was identified. The most frequent organism was Citrobacter freundii (n = 78), followed by Klebsiella spp. (n = 3) and Escherichia coli (n = 1). WGS analysis showed 77/78 C. freundii isolates differing by 0-26 single nucleotide variants (SNVs). Results of WGS analysis showed blaOXA-204 was present on three plasmids types (IncX1, IncA/C2 and IncFII/FIB/A/C2) and on a prophage. All C. freundii isolates harboured multiple copies of blaOXA-204, both on the chromosome and a plasmid. Plasmid IncFII/FIB/A/C2 was observed in all three species. CONCLUSIONS Transfer of OXA-204 plasmids likely occurred between species within the same patient, highlighting the plasticity of these plasmids and potential for widespread dissemination. OXA-204 carbapenemase has been introduced into Quebec and has rapidly disseminated. Although the infection to colonization ratio was low in this outbreak, this carbapenemase has been associated with severe infection elsewhere.
Collapse
Affiliation(s)
- Sarah Gobeille Paré
- Medical Microbiology and Infectious Diseases Department, CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, Canada
| | - Laura F Mataseje
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Canada
| | - Annie Ruest
- Medical Microbiology and Infectious Diseases Department, CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, Canada
| | - David A Boyd
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Canada
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Ste-Anne de Bellevue, Canada
| | - Pascale Trépanier
- Medical Microbiology and Infectious Diseases Department, CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, Canada
| | - Jean Longtin
- Laboratoire de santé publique du Québec, Ste-Anne de Bellevue, Canada
| | | | - Michael R Mulvey
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Canada
| |
Collapse
|
29
|
Distinguishing bla KPC Gene-Containing IncF Plasmids from Epidemiologically Related and Unrelated Enterobacteriaceae Based on Short- and Long-Read Sequence Data. Antimicrob Agents Chemother 2021; 65:AAC.00147-21. [PMID: 33820769 DOI: 10.1128/aac.00147-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Limited information is available on whether bla KPC-containing plasmids from isolates in a hospital outbreak can be differentiated from epidemiologically unrelated bla KPC-containing plasmids based on sequence data. This study aimed to evaluate the performance of three approaches to distinguish epidemiologically related from unrelated bla KPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids. Epidemiologically related isolates were subjected to short- and long-read whole-genome sequencing. A hybrid assembly was performed, and plasmid sequences were extracted from the assembly graph. Epidemiologically unrelated plasmid sequences were extracted from GenBank. Pairwise comparisons of epidemiologically related and unrelated plasmids based on SNPs using snippy and of phylogenetic distance using Roary and using a similarity index that penalizes size differences between plasmids (Stoesser index) were performed. The percentage of pairwise comparisons misclassified as genetically related or as clonally unrelated was determined using different genetic thresholds for genetic relatedness. The ranges of number of SNPs, Roary phylogenetic distance, and Stoesser index overlapped between the epidemiologically related and unrelated plasmids. When a genetic similarity threshold that classified 100% of epidemiologically related plasmid pairs as genetically related was used, the percentages of plasmids misclassified as epidemiologically related ranged from 6.7% (Roary) to 20.8% (Stoesser index). Although epidemiologically related plasmids can be distinguished from unrelated plasmids based on genetic differences, bla KPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids show a high degree of sequence similarity. The phylogenetic distance as determined using Roary showed the highest degree of discriminatory power between the epidemiologically related and unrelated plasmids.
Collapse
|
30
|
Fasciana T, Ciammaruconi A, Gentile B, Di Carlo P, Virruso R, Tricoli MR, Palma DM, Pitarresi GL, Lista F, Giammanco A. Draft Genome Sequence and Biofilm Production of a Carbapenemase-Producing Klebsiella pneumoniae (KpR405) Sequence Type 405 Strain Isolated in Italy. Antibiotics (Basel) 2021; 10:antibiotics10050560. [PMID: 34064924 PMCID: PMC8150785 DOI: 10.3390/antibiotics10050560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is essential to diagnose severe infections in patients. In clinical routine practice, K. pneumoniae is frequently identified and characterized for outbreak investigation. Pulsed-field gel electrophoresis or multilocus sequence typing could be used, but, unfortunately, these methods are time-consuming, laborious, expensive, and do not provide any information about the presence of resistance and virulence genes. In recent years, the decreasing cost of next-generation sequencing and its easy use have led to it being considered a useful method, not only for outbreak surveillance but also for rapid identification and evaluation, in a single step, of virulence factors and resistance genes. Carbapenem-resistant strains of K. pneumoniae have become endemic in Italy, and in these strains the ability to form biofilms, communities of bacteria fixed in an extracellular matrix, can defend the pathogen from the host immune response as well as from antibiotics, improving its persistence in epithelial tissues and on medical device surfaces.
Collapse
Affiliation(s)
- Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (P.D.C.); (A.G.)
- Correspondence:
| | - Andrea Ciammaruconi
- Scientific Department, Army Medical Center, 184 Rome, Italy; (A.C.); (B.G.); (F.L.)
| | - Bernardina Gentile
- Scientific Department, Army Medical Center, 184 Rome, Italy; (A.C.); (B.G.); (F.L.)
| | - Paola Di Carlo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (P.D.C.); (A.G.)
| | - Roberta Virruso
- Unita Operativa Complessa of Microbiology, Virology and Parassitology, A.O.U.P. “Paolo Giaccone”, 90127 Palermo, Italy; (R.V.); (M.R.T.); (G.L.P.)
| | - Maria Rita Tricoli
- Unita Operativa Complessa of Microbiology, Virology and Parassitology, A.O.U.P. “Paolo Giaccone”, 90127 Palermo, Italy; (R.V.); (M.R.T.); (G.L.P.)
| | - Daniela Maria Palma
- II Intensive Care Unit, ARNAS “Civico, Di Cristina and Benfratelli”, 90127 Palermo, Italy;
| | - Giovanna Laura Pitarresi
- Unita Operativa Complessa of Microbiology, Virology and Parassitology, A.O.U.P. “Paolo Giaccone”, 90127 Palermo, Italy; (R.V.); (M.R.T.); (G.L.P.)
| | - Florigio Lista
- Scientific Department, Army Medical Center, 184 Rome, Italy; (A.C.); (B.G.); (F.L.)
| | - Anna Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (P.D.C.); (A.G.)
| |
Collapse
|
31
|
Carriage of two carbapenem-resistance genes in Pseudomonas aeruginosa isolated from hospital-acquired infections in children from Costa Rica: the importance of local epidemiology. Antimicrob Resist Infect Control 2021; 10:71. [PMID: 33910633 PMCID: PMC8082860 DOI: 10.1186/s13756-021-00942-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background The assessment of Hospital-acquired infections due to multidrug-resistant bacteria involves the use of a variety of commercial and laboratory-developed tests to detect antimicrobial resistance genes in bacterial pathogens; however, few are evaluated for use in low- and middle-income countries. Methods We used whole-genome sequencing, rapid commercial molecular tests, laboratory-developed tests and routine culture testing. Results We identified the carriage of the metallo-β-lactamase blaVIM-2 and blaIMP-18 alleles in Carbapenem-Resistant Pseudomonas aeruginosa infections among children in Costa Rica. Conclusions The blaIMP-18 allele is not present in the most frequently used commercial tests; thus, it is possible that the circulation of this resistance gene may be underdiagnosed in Costa Rica.
Collapse
|
32
|
Loqman S, Soraa N, Diene SM, Rolain JM. Dissemination of Carbapenemases (OXA-48, NDM and VIM) Producing Enterobacteriaceae Isolated from the Mohamed VI University Hospital in Marrakech, Morocco. Antibiotics (Basel) 2021; 10:antibiotics10050492. [PMID: 33925772 PMCID: PMC8145435 DOI: 10.3390/antibiotics10050492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
The emergence and spread of carbapenem-resistant Enterobacteriaceae (CRE) represent a major clinical problem and raise serious health concerns. The present study aimed to investigate and ascertain the occurrence of CRE among hospitalized patients of Mohamed VI University Hospital, Marrakech, Morocco. Biological samples were collected over a one-year period (2018). The bacterial isolates were identified by MALDI-TOF-MS. Antibiotic susceptibility testing was performed using disc diffusion and Etest. The modified Hodge test and combined disc diffusion test were used for phenotypic detection. CRE hydrolyzing enzyme encoding genes: blaOXA-48, blaKPC, blaIMP, blaVIM, and blaNDM were characterized by PCR and DNA sequencing. In total, 131 non-duplicate CRE clinical strains resistant to Ertapenem were isolated out of 1603 initial Enterobacteriaceae. Klebsiella pneumoniae was the most common species (59%), followed by Enterobacter cloacae (24%), E. coli (10%), Citrobacter freundii (3%), Klebsiellaoxycota (2%), Serratia marcescens (1%), and Citrobacter braakii (1%). Of these, 56.49%, 21.37%, 15.27%, 3.38%, and 3.05% were collected from blood, urine, pus, catheters and respiratory samples, respectively. Approximately 85.5% (112/131) of the isolates were carbapenemase producers (40 blaOXA-48, 27 blaNDM, 38 blaOXA-48 + blaNDM and 7 blaVIM). All metallo-β-lactamases isolates were NDM-1 and VIM-1 producers. This is the first documentation of blaOXA-48 genes from C. freundii and C. braakii in Morocco.
Collapse
Affiliation(s)
- Souad Loqman
- Laboratoire de Lutte Contre les Maladies Infectieuses, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco;
- Laboratoire de Microbiologie, CHU Mohammed VI, Av Ibn Sina Amerchich, BP 2360, Marrakech 40000, Morocco
- Correspondence: ; Tel.: +212-6-6105-0497
| | - Nabila Soraa
- Laboratoire de Lutte Contre les Maladies Infectieuses, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco;
- Laboratoire de Microbiologie, CHU Mohammed VI, Av Ibn Sina Amerchich, BP 2360, Marrakech 40000, Morocco
| | - Seydina M. Diene
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Mediterranée Infection, 13385 Marseille, France; (S.M.D.); (J.-M.R.)
| | - Jean-Marc Rolain
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Mediterranée Infection, 13385 Marseille, France; (S.M.D.); (J.-M.R.)
| |
Collapse
|
33
|
Toledano-Tableros JE, Gayosso-Vázquez C, Jarillo-Quijada MD, Fernández-Vázquez JL, Morfin-Otero R, Rodríguez-Noriega E, Giono-Cerezo S, Gutkind G, Di Conza J, Santos-Preciado JI, Alcántar-Curiel MD. Dissemination of bla NDM- 1 Gene Among Several Klebsiella pneumoniae Sequence Types in Mexico Associated With Horizontal Transfer Mediated by IncF-Like Plasmids. Front Microbiol 2021; 12:611274. [PMID: 33841344 PMCID: PMC8027308 DOI: 10.3389/fmicb.2021.611274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Nosocomial infections caused by multidrug-resistant (MDR) Klebsiella pneumoniae are a major health problem worldwide. The aim of this study was to describe NDM-1-producing K. pneumoniae strains causing bacteremia in a tertiary referral hospital in Mexico. MDR K. pneumoniae isolates were screened by polymerase chain reaction for the presence of resistance genes. In resistant isolates, plasmids were identified and conjugation assays were performed. Clonal diversity and the sequence types were determined by pulsed-field gel electrophoresis and multilocus sequence typing. A total of 80 K. pneumoniae isolates were collected from patients with bacteremia over a 1-year period. These isolates showed a level of resistance of 59% (47/80) to aztreonam, 56-60% (45-48/80) to cephalosporins, 54% (43/80) to colistin and 12.5% (10/80) to carbapenems. The carbapenem resistant isolates were bla NDM- 1 carriers and negative for bla KPC, bla NDM, bla IMP, bla VIM and bla OXA- 48 -like carbapenemases genes. Conjugative plasmids IncFIIA and IncF group with sizes of 82-195 kbp were carriers of bla NDM- 1, bla CTX-M- 15, bla TEM- 1, aac(6')-Ib and/or aac(3')-IIa. Clonal variability and nine different multilocus sequence types were detected (ST661, ST683, ST1395, ST2706, ST252, ST1198, ST690, ST1535, and ST3368) for the first time in the isolates carrying bla NDM- 1 in Mexico. This study demonstrates that bla NDM- 1 has remained within this hospital in recent years and suggests that it is currently the most prevalent carbapenemase among K. pneumoniae MDR strains causing bacteremia in Mexico. The horizontal transfer of bla NDM- 1 gene through IncF-like plasmids among different clones demonstrates the dissemination pathway of antimicrobial resistance and underscore the need for strong and urgent joint measures to control the spread of NDM-1 carbapenemase in the hospital.
Collapse
Affiliation(s)
- José Eduardo Toledano-Tableros
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencia Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Catalina Gayosso-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ma Dolores Jarillo-Quijada
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Luis Fernández-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara “Fray Antonio Alcalde” e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara “Fray Antonio Alcalde” e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Silvia Giono-Cerezo
- Departamento de Microbiología, Escuela Nacional de Ciencia Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriel Gutkind
- Laboratorio de Resistencia Bacteriana, Facultad de Farmacia y Bioquímica de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Di Conza
- Laboratorio de Resistencia Bacteriana, Facultad de Farmacia y Bioquímica de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Ignacio Santos-Preciado
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Dolores Alcántar-Curiel
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
34
|
A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist 2021; 25:26-34. [PMID: 33667703 DOI: 10.1016/j.jgar.2021.02.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hypervirulence and carbapenem resistance have emerged as two distinct evolutionary directions for Klebsiella pneumoniae, which pose a great threat in clinical settings. Multiple virulence factors contribute to hypervirulence, and the mechanisms of carbapenem resistance are complicated. However, more and more K. pneumoniae strains have been identified in recent years integrating both phenotypes, resulting in devastating clinical outcomes. Hypervirulent and carbapenem-resistant K. pneumoniae (CR-hvKP) emerged in the early 2010s and thereafter have become increasingly prevalent. CR-hvKP are primarily prevalent in Asia, especially China, but are reported all over the world. Mechanisms for the emergence of CR-hvKP can be summarised by three patterns: (i) carbapenem-resistant K. pneumoniae (CRKP) acquiring a hypervirulent phenotype; (ii) hypervirulent K. pneumoniae (hvKP) acquiring a carbapenem-resistant phenotype; and (iii) K. pneumoniae acquiring both a carbapenem resistance and hypervirulence hybrid plasmid. With their global dissemination, continued surveillance of the emergence of CR-hvKP should be more highly prioritised.
Collapse
|
35
|
Gibbon MJ, Couto N, David S, Barden R, Standerwick R, Jagadeesan K, Birkwood H, Dulyayangkul P, Avison MB, Kannan A, Kibbey D, Craft T, Habib S, Thorpe HA, Corander J, Kasprzyk-Hordern B, Feil EJ. A high prevalence of blaOXA-48 in Klebsiella ( Raoultella) ornithinolytica and related species in hospital wastewater in South West England. Microb Genom 2021; 7:mgen000509. [PMID: 33416467 PMCID: PMC8190614 DOI: 10.1099/mgen.0.000509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022] Open
Abstract
Klebsiella species occupy a wide range of environmental and animal niches, and occasionally cause opportunistic infections that are resistant to multiple antibiotics. In particular, Klebsiella pneumoniae (Kpne) has gained notoriety as a major nosocomial pathogen, due principally to the rise in non-susceptibility to carbapenems and other beta-lactam antibiotics. Whilst it has been proposed that the urban water cycle facilitates transmission of pathogens between clinical settings and the environment, the level of risk posed by resistant Klebsiella strains in hospital wastewater remains unclear. We used whole genome sequencing (WGS) to compare Klebsiella species in contemporaneous samples of wastewater from an English hospital and influent to the associated wastewater treatment plant (WWTP). As we aimed to characterize representative samples of Klebsiella communities, we did not actively select for antibiotic resistance (other than for ampicillin), nor for specific Klebsiella species. Two species, Kpne and K. (Raoultella) ornithinolytica (Korn), were of equal dominance in the hospital wastewater, and four other Klebsiella species were present in low abundance in this sample. In contrast, despite being the species most closely associated with healthcare settings, Kpne was the dominant species within the WWTP influent. In total, 29 % of all isolates harboured the blaOXA-48 gene on a pOXA-48-like plasmid, and these isolates were almost exclusively recovered from the hospital wastewater. This gene was far more common in Korn (68 % of isolates) than in Kpne (3.4 % of isolates). In general plasmid-borne, but not chromosomal, resistance genes were significantly enriched in the hospital wastewater sample. These data implicate hospital wastewater as an important reservoir for antibiotic-resistant Klebsiella, and point to an unsuspected role of species within the Raoultella group in the maintenance and dissemination of plasmid-borne blaOXA-48. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Marjorie J. Gibbon
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Natacha Couto
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sophia David
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | - Hollie Birkwood
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Punyawee Dulyayangkul
- University of Bristol, School of Cellular and Molecular Medicine, University Walk, Bristol BS8 1TD, UK
| | - Matthew B. Avison
- University of Bristol, School of Cellular and Molecular Medicine, University Walk, Bristol BS8 1TD, UK
| | - Andrew Kannan
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Dan Kibbey
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Tim Craft
- Department of R&D, Royal United Hospitals Bath, NHS Foundation Trust, Bath BA1 3NG, UK
| | - Samia Habib
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Harry A. Thorpe
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
| | - Jukka Corander
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | - Edward J. Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
36
|
Boonyasiri A, Jauneikaite E, Brinkac LM, Greco C, Lerdlamyong K, Tangkoskul T, Nguyen K, Thamlikitkul V, Fouts DE. Genomic and clinical characterisation of multidrug-resistant carbapenemase-producing ST231 and ST16 Klebsiella pneumoniae isolates colonising patients at Siriraj hospital, Bangkok, Thailand from 2015 to 2017. BMC Infect Dis 2021; 21:142. [PMID: 33541274 PMCID: PMC7859894 DOI: 10.1186/s12879-021-05790-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infections caused by carbapenemase-producing Enterobacteriaceae (CPE) have continually grown as a global public health threat, with significant mortality rates observed across the world. We examined the clinical data from patients with CPE infections and their outcomes, concentrating on Klebsiella pneumoniae isolates. We analysed the clinical information, performed antimicrobial susceptibility testing, and conducted molecular epidemiological and genomic analyses on the isolates to identify patterns in the data. METHODS The clinical characteristics of 33 hospitalised patients with confirmed CPE, including patient-related factors associated with the development of CPE infections, were examined. Patients were divided according to whether they were "colonised" or "infected" with CPE and by the timing and frequency of their rectal swab collections, from which 45 swabs were randomly selected for analysis. CPE isolates were purified, and antimicrobial susceptibility tests performed. Whole genome sequences of these isolates were determined and analysed to compute bacterial multilocus sequence types and plasmid replicon types, infer phylogenetic relationships, and identify antimicrobial resistance and virulence genes. RESULTS Altogether, 88.9% (40/45) of the CPE isolates were K. pneumoniae. The most abundant carbapenemase gene family in the K. pneumoniae isolates (33/39) was blaOXA-232, with blaNDM-1 additionally identified in 19 of them. All CPE isolates carrying either blaOXA-232 or blaNDM-1 were resistant to meropenem, but only 40 from 45 were susceptible to colistin. Among the CPE-infected patients (n = 18) and CPE-colonised patients who developed CPE infections during the study (n = 3), all but one received standard colistin-based combination therapy. Phylogenetic analysis revealed the polyclonal spread of carbapenemase-producing K. pneumoniae (CPKP) within the patient population, with the following two major subclades identified: ST16 (n = 15) and ST231 (n = 14). CPKP-ST231 had the highest virulence score of 4 and was associated with primary bacteraemia. The siderophores yersiniabactin and aerobactin, considered to be important virulence factors, were only identified in the CPKP-ST231 genomes. CONCLUSIONS This study has revealed the genomic features of colonising CPE isolates, focusing on antimicrobial resistance and virulence determinants. This type of multi-layered analysis can be further exploited in Thailand and elsewhere to modify the regimes used for empirical antibiotic treatment and improve the management strategies for CPE infections in hospitalised patients.
Collapse
Affiliation(s)
- Adhiratha Boonyasiri
- Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand. .,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College, London, UK.
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College, London, UK.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, UK
| | - Lauren M Brinkac
- J. Craig Venter Institute, Rockville, MD, USA.,Noblis, Reston, VA, USA
| | - Chris Greco
- J. Craig Venter Institute, Rockville, MD, USA
| | - Kanokorn Lerdlamyong
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Teerawit Tangkoskul
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Visanu Thamlikitkul
- Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
37
|
Di Domenico EG, Cavallo I, Sivori F, Marchesi F, Prignano G, Pimpinelli F, Sperduti I, Pelagalli L, Di Salvo F, Celesti I, Paluzzi S, Pronesti C, Koudriavtseva T, Ascenzioni F, Toma L, De Luca A, Mengarelli A, Ensoli F. Biofilm Production by Carbapenem-Resistant Klebsiella pneumoniae Significantly Increases the Risk of Death in Oncological Patients. Front Cell Infect Microbiol 2020; 10:561741. [PMID: 33363047 PMCID: PMC7759150 DOI: 10.3389/fcimb.2020.561741] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a prominent cause of nosocomial infections associated with high rates of morbidity and mortality, particularly in oncological patients. The hypermucoviscous (HMV) phenotype and biofilm production are key factors for CRKP colonization and persistence in the host. This study aims at exploring the impact of CRKP virulence factors on morbidity and mortality in oncological patients. A total of 86 CRKP were collected between January 2015 and December 2019. Carbapenem resistance-associated genes, antibiotic susceptibility, the HMV phenotype, and biofilm production were evaluated. The median age of the patients was 71 years (range 40–96 years). Clinically infected patients were 53 (61.6%), while CRKP colonized individuals were 33 (38.4%). The most common infectious manifestations were sepsis (43.4%) and pneumonia (18.9%), while rectal surveillance swabs were the most common site of CRKP isolation (81.8%) in colonized patients. The leading mechanism of carbapenem resistance was sustained by the KPC gene (96.5%), followed by OXA-48 (2.3%) and VIM (1.2%). Phenotypic CRKP characterization indicated that 55.8% of the isolates were strong biofilm-producers equally distributed between infected (54.2%) and colonized (45.8%) patients. The HMV phenotype was found in 22.1% of the isolates, which showed a significant (P<0.0001) decrease in biofilm production as compared to non-HMV strains. The overall mortality rate calculated on the group of infected patients was 35.8%. In univariate analysis, pneumoniae significantly correlated with death (OR 5.09; CI 95% 1.08–24.02; P=0.04). The non-HMV phenotype (OR 4.67; CI 95% 1.13–19.24; P=0.03) and strong biofilm-producing strains (OR 5.04; CI95% 1.39–18.25; P=0.01) were also associated with increased CRKP infection-related mortality. Notably, the multivariate analysis showed that infection with strong biofilm-producing CRKP was an independent predictor of mortality (OR 6.30; CI 95% 1.392–18.248; P=0.004). CRKP infection presents a high risk of death among oncological patients, particularly when pneumoniae and sepsis are present. In infected patients, the presence of strong biofilm-producing CRKP significantly increases the risk of death. Thus, the assessment of biofilm production may provide a key element in supporting the clinical management of high-risk oncological patients with CRKP infection.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesco Marchesi
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Grazia Prignano
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Isabella Sperduti
- Biostatistical Unit-Clinical Trials Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorella Pelagalli
- Anesthesiology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiola Di Salvo
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Celesti
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Silvia Paluzzi
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Carmelina Pronesti
- Hospital Infection Control Committee, Istituti Fisioterapici Ospitalieri-IFO, Rome, Italy
| | - Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, Sapienza, University of Rome Sapienza, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Assunta De Luca
- Quality, Accreditation and Risk Management Unit, Istituti Fisioterapici Ospitalieri-IFO, Rome, Italy
| | - Andrea Mengarelli
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabrizio Ensoli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
38
|
Decano AG, Tran N, Al-Foori H, Al-Awadi B, Campbell L, Ellison K, Mirabueno LP, Nelson M, Power S, Smith G, Smyth C, Vance Z, Woods C, Rahm A, Downing T. Plasmids shape the diverse accessory resistomes of Escherichia coli ST131. Access Microbiol 2020; 3:acmi000179. [PMID: 33997610 PMCID: PMC8115979 DOI: 10.1099/acmi.0.000179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. Escherichia coli is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic E. coli (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal E. coli and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial pil operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.
Collapse
Affiliation(s)
- Arun Gonzales Decano
- School of Biotechnology, Dublin City University, Ireland.,Present address: School of Medicine, University of St., Andrews, UK
| | - Nghia Tran
- School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Ireland
| | | | | | | | - Kevin Ellison
- School of Biotechnology, Dublin City University, Ireland
| | - Louisse Paolo Mirabueno
- School of Biotechnology, Dublin City University, Ireland.,Present address: National Institute of Agricultural Botany - East Malling Research, Kent, UK
| | - Maddy Nelson
- School of Biotechnology, Dublin City University, Ireland
| | - Shane Power
- School of Biotechnology, Dublin City University, Ireland
| | | | - Cian Smyth
- School of Biotechnology, Dublin City University, Ireland.,Present address: Dept of Biology, Maynooth University, Dublin, Ireland
| | - Zoe Vance
- School of Genetics & Microbiology, Trinity College Dublin, Ireland
| | | | - Alexander Rahm
- School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Ireland.,Present address: GAATI Lab, Université de la Polynésie Française, Puna'auia, French Polynesia
| | - Tim Downing
- School of Biotechnology, Dublin City University, Ireland
| |
Collapse
|
39
|
David S, Cohen V, Reuter S, Sheppard AE, Giani T, Parkhill J, Rossolini GM, Feil EJ, Grundmann H, Aanensen DM. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2020; 117:25043-25054. [PMID: 32968015 PMCID: PMC7587227 DOI: 10.1073/pnas.2003407117] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular and genomic surveillance systems for bacterial pathogens currently rely on tracking clonally evolving lineages. By contrast, plasmids are usually excluded or analyzed with low-resolution techniques, despite being the primary vectors of antibiotic resistance genes across many key pathogens. Here, we used a combination of long- and short-read sequence data of Klebsiella pneumoniae isolates (n = 1,717) from a European survey to perform an integrated, continent-wide study of chromosomal and plasmid diversity. This revealed three contrasting modes of dissemination used by carbapenemase genes, which confer resistance to last-line carbapenems. First, blaOXA-48-like genes have spread primarily via the single epidemic pOXA-48-like plasmid, which emerged recently in clinical settings and spread rapidly to numerous lineages. Second, blaVIM and blaNDM genes have spread via transient associations of many diverse plasmids with numerous lineages. Third, blaKPC genes have transmitted predominantly by stable association with one successful clonal lineage (ST258/512) yet have been mobilized among diverse plasmids within this lineage. We show that these plasmids, which include pKpQIL-like and IncX3 plasmids, have a long association (and are coevolving) with the lineage, although frequent recombination and rearrangement events between them have led to a complex array of mosaic plasmids carrying blaKPC Taken altogether, these results reveal the diverse trajectories of antibiotic resistance genes in clinical settings, summarized as using one plasmid/multiple lineages, multiple plasmids/multiple lineages, and multiple plasmids/one lineage. Our study provides a framework for the much needed incorporation of plasmid data into genomic surveillance systems, an essential step toward a more comprehensive understanding of resistance spread.
Collapse
Affiliation(s)
- Sophia David
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, CB10 1SA Cambridge, United Kingdom;
| | - Victoria Cohen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, CB10 1SA Cambridge, United Kingdom
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Medical Centre, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna E Sheppard
- Modernizing Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DU, United Kingdom
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, CB3 0ES Cambridge, United Kingdom
| | | | | | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Edward J Feil
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Hajo Grundmann
- Institute for Infection Prevention and Hospital Epidemiology, Medical Centre, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, CB10 1SA Cambridge, United Kingdom;
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, Oxford University, Oxford OX3 7LF, United Kingdom
| |
Collapse
|
40
|
Flores C, Bianco K, de Filippis I, Clementino MM, Romão CMC. Genetic Relatedness of NDM-Producing Klebsiella pneumoniae Co-Occurring VIM, KPC, and OXA-48 Enzymes from Surveillance Cultures from an Intensive Care Unit. Microb Drug Resist 2020; 26:1219-1226. [DOI: 10.1089/mdr.2019.0483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Claudia Flores
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, Brazil
| | - Kayo Bianco
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, Brazil
| | - Ivano de Filippis
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, Brazil
| | | | - Célia Maria C.P.A. Romão
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Furlan JPR, Savazzi EA, Stehling EG. Genomic insights into multidrug-resistant and hypervirulent Klebsiella pneumoniae co-harboring metal resistance genes in aquatic environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110782. [PMID: 32497817 DOI: 10.1016/j.ecoenv.2020.110782] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Klebsiella pneumoniae is one of the most important pathogens related to hospital-acquired infections. The incidence of infections by hypervirulent K. pneumoniae (hvKp), especially community-acquired infections, has been increasing in recent decades. The occurrence of multidrug-resistant (MDR) hvKp has been increasingly reported worldwide decreasing the treatment options, which is a concern. Aquatic environments have been considered a reservoir of MDR pathogens, which contribute to the spread of MDR pathogens. Therefore, this study aimed to characterize MDR-hvKp strains obtained from public aquatic environments using whole genome sequencing in Brazil. Resistome analysis showed ARGs to β-lactams, quinolones, tetracyclines, sulfonamides, and fosfomycin as well as several metal resistance genes. Virulome analysis showed several virulence genes. Besides, genomic islands, CRISPR and prophage-related sequences were also detected. MLST analysis revealed the presence of two novel sequences types (STs) belonging to different clonal complexes (CCs) [ST4415 (CC515) and ST4416 (CC2654)], and one already described [ST661 (CC661)]. The presence of MDR-hvKp lineages in water sources belonging to STs and CCs associated with humans and animals shows the ability of these pathogens to spread to different aquatic environments. This study reports for the first time two novel STs of MDR-hvKp as well as the presence of a rare ST661 closely related to outbreaks in aquatic environments, and contributes to surveillance studies and MDR-hvKp monitoring worldwide.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
42
|
Fecal carriage and molecular epidemiologic characteristics of carbapenemase-producing Enterobacterales in primary care hospital in a Japanese city. J Infect Chemother 2020; 26:928-932. [DOI: 10.1016/j.jiac.2020.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 11/18/2022]
|
43
|
Prussing C, Snavely EA, Singh N, Lapierre P, Lasek-Nesselquist E, Mitchell K, Haas W, Owsiak R, Nazarian E, Musser KA. Nanopore MinION Sequencing Reveals Possible Transfer of bla KPC-2 Plasmid Across Bacterial Species in Two Healthcare Facilities. Front Microbiol 2020; 11:2007. [PMID: 32973725 PMCID: PMC7466660 DOI: 10.3389/fmicb.2020.02007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
Carbapenemase-producing Enterobacteriaceae are a major threat to global public health. Klebsiella pneumoniae carbapenemase (KPC) is the most commonly identified carbapenemase in the United States and is frequently found on mobile genetic elements including plasmids, which can be horizontally transmitted between bacteria of the same or different species. Here we describe the results of an epidemiological investigation of KPC-producing bacteria at two healthcare facilities. Using a combination of short-read and long-read whole-genome sequencing, we identified an identical 44 kilobase plasmid carrying the bla KPC-2 gene in four bacterial isolates belonging to three different species (Citrobacter freundii, Klebsiella pneumoniae, and Escherichia coli). The isolates in this investigation were collected from patients who were epidemiologically linked in a region in which KPC was uncommon, suggesting that the antibiotic resistance plasmid was transmitted between these bacterial species. This investigation highlights the importance of long-read sequencing in investigating the relatedness of bacterial plasmids, and in elucidating potential plasmid-mediated outbreaks caused by antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Catharine Prussing
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Emily A. Snavely
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Navjot Singh
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | | | - Kara Mitchell
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Wolfgang Haas
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Rita Owsiak
- Maine Center for Disease Control and Prevention, Department of Health and Human Services, Augusta, ME, United States
| | - Elizabeth Nazarian
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Kimberlee A. Musser
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| |
Collapse
|
44
|
Ellaby N, Doumith M, Hopkins KL, Woodford N, Ellington MJ. Emergence of diversity in carbapenemase-producing Escherichia coli ST131, England, January 2014 to June 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 31530344 PMCID: PMC6749775 DOI: 10.2807/1560-7917.es.2019.24.37.1800627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Escherichia coli ST131, a global, high-risk clone, comprises fluoroquinolone resistance (FQ-R) mutations and CTX-M extended-spectrum beta-lactamases associated with the fimH30-encoding clades, C1 and C2. Further carbapenem resistance development in ST131 is a public health concern. Aim This observational study aimed to probe the diversity of carbapenemase-producing E. coli (CP E. coli) ST131 across England. Methods ST131 isolates were identified using whole-genome sequencing (WGS) data generated for all non-duplicate CP E. coli from human samples submitted to the national reference laboratory from January 2014 to June 2016. Antimicrobial resistance (AMR) gene content and single nucleotide polymorphism (SNP) data were compared against a published ST131 phylogeny and analysed alongside patient metadata. Results Thirty-nine genetically diverse ST131 CP E. coli, from eight of nine regions, represented 10% of CP E. coli isolates sequenced. Ten and eight isolates were from the FQ-susceptible (FQ-S) clades A and B, while eight and 15 isolates belonged to the FQ-R clades C1 or C2, respectively. Seven distinct carbapenemases were identified: KPC-2 (21 isolates, 6 regions) frequently occurred among clade C2 isolates (n = 10). OXA-48-producers (10 isolates, 3 regions) were often from clade A (n = 5). NDM-1 (n = 4), NDM-5 (n = 1), VIM-1 (n = 1), VIM-4 (n = 1) and OXA-181 (n = 1) were also identified. Clade C2 isolates encoded more AMR genes than those from clades A (p = 0.02), B (p = 9.6 x 10−3) or C1 (p = 0.03). Conclusion When compared with its global predominance among ESBL-E. coli, ST131 represented a fraction of the CP E. coli received, belonging to diverse clades and encoding diverse carbapenemases. The greater accumulation of resistance genes in clade C2 isolates highlights the need for ongoing monitoring of this high-risk lineage.
Collapse
Affiliation(s)
- Nicholas Ellaby
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Michel Doumith
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Matthew J Ellington
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
45
|
Mitchell SL, Simner PJ. Next-Generation Sequencing in Clinical Microbiology: Are We There Yet? Clin Lab Med 2020; 39:405-418. [PMID: 31383265 DOI: 10.1016/j.cll.2019.05.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Next-generation sequencing (NGS) applications have been transitioning from research tools to diagnostic methods and are becoming more commonplace in clinical microbiology laboratories. These applications include (1) whole-genome sequencing, (2) targeted next-generation sequencing methods, and (3) metagenomic next-generation sequencing. The introduction of these methods into the clinical microbiology laboratory has led to the theoretic question of "Will NGS-based methods supplant traditional methods for strain typing, identification, and antimicrobial susceptibility prediction?" The authors address this question and discuss where we are at now with clinical NGS applications for infectious diseases, what does the future hold, and at what cost?
Collapse
Affiliation(s)
- Stephanie L Mitchell
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Main Hospital, Floor B, #269, Pittsburgh, PA 15224, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Meyer B1-193, 600 North Wolfe Street, Baltimore, MD 21287-7093, USA.
| |
Collapse
|
46
|
Within-patient plasmid dynamics in Klebsiella pneumoniae during an outbreak of a carbapenemase-producing Klebsiella pneumoniae. PLoS One 2020; 15:e0233313. [PMID: 32421705 PMCID: PMC7233586 DOI: 10.1371/journal.pone.0233313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Knowledge of within-patient dynamics of resistance plasmids during outbreaks is important for understanding the persistence and transmission of plasmid-mediated antimicrobial resistance. During an outbreak of a Klebsiella pneumoniae carbapenemase-producing (KPC) K. pneumoniae, the plasmid and chromosomal dynamics of K. pneumoniae within-patients were investigated. METHODS During the outbreak, all K. pneumoniae isolates of colonized or infected patients were collected, regardless of their susceptibility pattern. A selection of isolates was short-read and long-read sequenced. A hybrid assembly of the short-and long-read sequence data was performed. Plasmid contigs were extracted from the hybrid assembly, annotated, and within patient plasmid comparisons were performed. RESULTS Fifteen K. pneumoniae isolates of six patients were short-read whole-genome sequenced. Whole-genome multi-locus sequence typing revealed a maximum of 4 allele differences between the sequenced isolates. Within patients 1 and 2 the resistance gene- and plasmid replicon-content did differ between the isolates sequenced. Long-read sequencing and hybrid assembly of 4 isolates revealed loss of the entire KPC-gene containing plasmid in the isolates of patient 2 and a recombination event between the plasmids in the isolates of patient 1. This resulted in two different KPC-gene containing plasmids being simultaneously present during the outbreak. CONCLUSION During a hospital outbreak of a KPC-producing K. pneumoniae isolate, plasmid loss of the KPC-gene carrying plasmid and plasmid recombination was detected within the isolates from two patients. When investigating outbreaks, one should be aware that plasmid transmission can occur and the possibility of within- and between-patient plasmid variation needs to be considered.
Collapse
|
47
|
Molecular Typing, Characterization of Antimicrobial Resistance, Virulence Profiling and Analysis of Whole-Genome Sequence of Clinical Klebsiella pneumoniae Isolates. Antibiotics (Basel) 2020; 9:antibiotics9050261. [PMID: 32429555 PMCID: PMC7277670 DOI: 10.3390/antibiotics9050261] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is one of the most important pathogens concerned with multidrug resistance in healthcare-associated infections. The treating of infections caused by this bacterium is complicated due to the emergence and rapid spreading of carbapenem-resistant strains, which are associated with high mortality rates. Recently, several hypervirulent and carbapenemase-producing isolates were reported that make the situation even more complicated. In order to better understand the resistance and virulence mechanisms, and, in turn, to develop effective treatment strategies for the infections caused by multidrug-resistant K. pneumoniae, more comprehensive genomic and phenotypic data are required. Here, we present the first detailed molecular epidemiology report based on second and third generation (long-read) sequencing for the clinical isolates of K. pneumoniae in the Russian Federation. The data include three schemes of molecular typing, phenotypic and genotypic antibiotic resistance determination, as well as the virulence and plasmid profiling for 36 K. pneumoniae isolates. We have revealed 2 new multilocus sequence typing (MLST)-based sequence types, 32 multidrug-resistant (MDR) isolates and 5 colistin-resistant isolates in our samples. Three MDR isolates belonged to a very rare ST377 type. The whole genome sequences and additional data obtained will greatly facilitate further investigations in the field of antimicrobial resistance studies.
Collapse
|
48
|
A Retrospective Whole-Genome Sequencing Analysis of Carbapenem and Colistin-Resistant Klebsiella Pneumoniae Nosocomial Strains Isolated during an MDR Surveillance Program. Antibiotics (Basel) 2020; 9:antibiotics9050246. [PMID: 32408565 PMCID: PMC7277725 DOI: 10.3390/antibiotics9050246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Multidrug-resistant Klebsiella pneumoniae (MDR Kp), in particular carbapenem-resistant Kp (CR-Kp), has become endemic in Italy, where alarming data have been reported on the spread of colistin-resistant CR-Kp (CRCR-Kp). During the period 2013–2014, 27 CRCR-Kp nosocomial strains were isolated within the Modena University Hospital Policlinico (MUHP) multidrug resistance surveillance program. We retrospectively investigated these isolates by whole-genome sequencing (WGS) analysis of the resistome, virulome, plasmid content, and core single nucleotide polymorphisms (cSNPs) in order to gain insights into their molecular epidemiology. The in silico WGS analysis of the resistome revealed the presence of genes, such as blaKPC, related to the phenotypically detected resistances to carbapenems. Concerning colistin resistance, the plasmidic genes mcr1–9 were not detected, while known and new genetic variations in mgrB, phoQ, and pmrB were found. The virulome profile revealed the presence of type-3 fimbriae, capsular polysaccharide, and iron acquisition system genes. The detected plasmid replicons were classified as IncFIB(pQil), IncFIB(K), ColRNAI, IncX3, and IncFII(K) types. The cSNPs genotyping was consistent with the multi locus sequence typing (MLST) and with the distribution of mutations related to colistin resistance genes. In a nosocomial drug resistance surveillance program, WGS proved to be a useful tool for elucidating the spread dynamics of CRCR-Kp nosocomial strains and could help to limit their diffusion.
Collapse
|
49
|
Genomic Epidemiology of Complex, Multispecies, Plasmid-Borne bla KPC Carbapenemase in Enterobacterales in the United Kingdom from 2009 to 2014. Antimicrob Agents Chemother 2020; 64:AAC.02244-19. [PMID: 32094139 DOI: 10.1128/aac.02244-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/21/2020] [Indexed: 01/29/2023] Open
Abstract
Carbapenem resistance in Enterobacterales is a public health threat. Klebsiella pneumoniae carbapenemase (encoded by alleles of the bla KPC family) is one of the most common transmissible carbapenem resistance mechanisms worldwide. The dissemination of bla KPC historically has been associated with distinct K. pneumoniae lineages (clonal group 258 [CG258]), a particular plasmid family (pKpQIL), and a composite transposon (Tn4401). In the United Kingdom, bla KPC has represented a large-scale, persistent management challenge for some hospitals, particularly in North West England. The dissemination of bla KPC has evolved to be polyclonal and polyspecies, but the genetic mechanisms underpinning this evolution have not been elucidated in detail; this study used short-read whole-genome sequencing of 604 bla KPC-positive isolates (Illumina) and long-read assembly (PacBio)/polishing (Illumina) of 21 isolates for characterization. We observed the dissemination of bla KPC (predominantly bla KPC-2; 573/604 [95%] isolates) across eight species and more than 100 known sequence types. Although there was some variation at the transposon level (mostly Tn4401a, 584/604 [97%] isolates; predominantly with ATTGA-ATTGA target site duplications, 465/604 [77%] isolates), bla KPC spread appears to have been supported by highly fluid, modular exchange of larger genetic segments among plasmid populations dominated by IncFIB (580/604 isolates), IncFII (545/604 isolates), and IncR (252/604 isolates) replicons. The subset of reconstructed plasmid sequences (21 isolates, 77 plasmids) also highlighted modular exchange among non-bla KPC and bla KPC plasmids and the common presence of multiple replicons within bla KPC plasmid structures (>60%). The substantial genomic plasticity observed has important implications for our understanding of the epidemiology of transmissible carbapenem resistance in Enterobacterales for the implementation of adequate surveillance approaches and for control.
Collapse
|
50
|
Hilliquin D, Lomont A, Zahar JR. Cohorting for preventing the nosocomial spread of Carbapenemase-Producing Enterobacterales, in non-epidemic settings: is it mandatory? J Hosp Infect 2020; 105:S0195-6701(20)30197-3. [PMID: 32315668 DOI: 10.1016/j.jhin.2020.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Worldwide dissemination of Carbapenemase-Producing Enterobacterales (CPE) has led to national and international guidance recommending the implementation of cohorting in healthcare settings (HS). However, in view of recent data regarding the spread of Extended-spectrum Beta-lactamase-producing Enterobacterales, we may wonder about the usefulness of this measure in a non-outbreak settings; here, individual contact isolation may be sufficient to control the risk of dissemination. AIM/METHODS We conducted a narrative review of the literature and discussed the role of cohorting. FINDINGS CPE are responsible for outbreaks in HS, which are considered the epicentre of spread of resistance strains. CPE are responsible for adverse effects such as increases in hospital stay and costs, less therapeutic options and thus higher risk of clinical failures and mortality. Environment and materials have also been described contaminated with CPE and can be the source of outbreak. Even if guidelines and publications have supported implementation of cohorting, there are no randomized studies demonstrating the mandatory nature of this measure. Most studies are descriptive and cohorting is usually one of several other measures to control outbreaks. Cohorting is not adapted to all HS, which requires human and material resources. Other measures must be strengthened such as compliance of hand hygiene, antibiotic stewardship and surveillance of contact patients. Individual risk factors of acquisition should also be evaluated. CONCLUSION Local epidemiology and resources must be assessed before implementing cohorting.
Collapse
Affiliation(s)
- Delphine Hilliquin
- Unité d'hygiène et d'épidémiologie, Hôpital Édouard Herriot, GH Centre, Hospices civils de Lyon, France; Université Lyon 1 Claude Bernard, Lyon, France.
| | - Alexandra Lomont
- Service de Microbiologie Clinique, Unité de contrôle et prévention du risque infectieux, GH Paris Seine Saint-Denis, AP-HP, Bobigny, France; IAME, Inserm 1137, Université Sorbonne Paris Nord - Paris 13, France
| | - Jean-Ralph Zahar
- Service de Microbiologie Clinique, Unité de contrôle et prévention du risque infectieux, GH Paris Seine Saint-Denis, AP-HP, Bobigny, France; IAME, Inserm 1137, Université Sorbonne Paris Nord - Paris 13, France
| |
Collapse
|