1
|
Biedrzycka M, Urbanowicz P, Brisse S, Palma F, Żabicka D, Gniadkowski M, Izdebski R. Multiple regional outbreaks caused by global and local VIM-producing Klebsiella pneumoniae clones in Poland, 2006-2019. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-05016-1. [PMID: 39708274 DOI: 10.1007/s10096-024-05016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE This study was aimed at comprehensive genomic analysis of VIM-type carbapenemase-producing Klebsiella pneumoniae species complex (KpSC) in Poland. METHODS All non-duplicate 214 VIM-producing KpSC isolates reported in Poland in 2006-2019 were short-read sequenced and re-identified by the average nucleotide identity scoring. Their clonality/phylogeny was assessed by cgMLST and SNP in comparison with genomes from international databases. Serotypes, VIM-encoding integrons, resistomes, virulomes and plasmid replicons were identified by various bioinformatic tools. Structures of plasmids and genomic islands with VIM integrons were analysed for representative long-read sequenced isolates. RESULTS The KpSC isolates were the second most prevalent VIM-positive Enterobacterales (23.1%) in Poland in 2006-2019, following Enterobacter spp. (40.1%). Their significance emerged in 2014 and then grew consequently, owing to eight regional outbreaks of K. pneumoniae sequence types (STs) ST437, ST147, ST15, ST277 and ST392. These carried different VIM integrons, mainly In238 and In916 types, located on IncFIB + IncHI2 (pNDM-MAR)-, IncA- or IncM-like plasmids, or clc-type integrative and conjugative elements. Despite relatedness of the outbreak clusters to isolates from other countries, e.g. Greece, Spain, Slovakia or Germany, most of them have apparently emerged on site by horizontal acquisition of resistance determinants from other species, including Enterobacter spp. and Pseudomonas spp. CONCLUSIONS This work shows dynamic epidemiology of VIM-producing organisms, driven by a mix of circulation of different VIM-encoding elements, and parallel clonal spread of multiple organisms.
Collapse
Affiliation(s)
- Marta Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Federica Palma
- Biological Resource Center of the Institut Pasteur, Institut Pasteur, Université Paris Cité, Paris, France
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland.
| |
Collapse
|
2
|
Fernández-Yáñez V, Ibaceta V, Torres A, Vidal RM, Schneider I, Schilling V, Toro C, Arellano C, Scavone P, Muñoz I, Del Canto F. Presence and Role of the Type 3 Fimbria in the Adherence Capacity of Enterobacter hormaechei subsp. hoffmannii. Microorganisms 2024; 12:1441. [PMID: 39065209 PMCID: PMC11279048 DOI: 10.3390/microorganisms12071441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Enterobacter hormaechei, one of the species within the Enterobacter cloacae complex, is a relevant agent of healthcare-associated infections. In addition, it has gained relevance because isolates have shown the capacity to resist several antibiotics, particularly carbapenems. However, knowledge regarding colonization and virulence mechanisms of E. hormaechei has not progressed to the same extent as other Enterobacteriaceae species as Escherichia coli or Klebsiella pneumoniae. Here, we describe the presence and role of the type 3 fimbria, a chaperone-usher assembled fimbria, which was first described in Klebsiella spp., and which has been detected in other representatives of the Enterobacteriaceae family. Eight Chilean E. cloacae isolates were examined, and among them, four E. hormaechei isolates were found to produce the type 3 fimbria. These isolates were identified as E. hormaechei subsp. hoffmannii, one of the five subspecies known. A mutant E. hormaechei subsp. hoffmannii strain lacking the mrkA gene, encoding the major structural subunit, displayed a significantly reduced adherence capacity to a plastic surface and to Caco-2 cells, compared to the wild-type strain. This phenotype of reduced adherence capacity was not observed in the mutant strains complemented with the mrkA gene under the control of an inducible promoter. Therefore, these data suggest a role of the type 3 fimbria in the adherence capacity of E. hormaechei subsp. hoffmannii. A screening in E. hormaechei genomes contained in the NCBI RefSeq Assembly database indicated that the overall presence of the type 3 fimbria is uncommon (5.94-7.37%), although genes encoding the structure were detected in representatives of the five E. hormaechei subspecies. Exploration of complete genomes indicates that, in most of the cases, the mrkABCDF locus, encoding the type 3 fimbria, is located in plasmids. Furthermore, sequence types currently found in healthcare-associated infections were found to harbor genes encoding the type 3 fimbria, mainly ST145, ST78, ST118, ST168, ST66, ST93, and ST171. Thus, although the type 3 fimbria is not widespread among the species, it might be a determinant of fitness for a subset of E. hormaechei representatives.
Collapse
Affiliation(s)
- Valentina Fernández-Yáñez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Santiago 9170022, Chile;
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Valentina Ibaceta
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Alexia Torres
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Isidora Schneider
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380453, Chile
| | - Valeria Schilling
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380453, Chile
| | - Cecilia Toro
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Carolina Arellano
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Paola Scavone
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Ignacio Muñoz
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| |
Collapse
|
3
|
Biedrzycka M, Urbanowicz P, Żabicka D, Hryniewicz W, Gniadkowski M, Izdebski R. Country-wide expansion of a VIM-1 carbapenemase-producing Klebsiella oxytoca ST145 lineage in Poland, 2009-2019. Eur J Clin Microbiol Infect Dis 2023; 42:1449-1457. [PMID: 37857919 PMCID: PMC10651708 DOI: 10.1007/s10096-023-04682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE To elucidate the role of the Klebsiella oxytoca species complex (KoSC) in epidemiology of VIM-type MBL-producing Enterobacterales in Poland. METHODS The study comprised all 106 VIM-positive KoSC isolates collected by the Polish National Reference Centre for Susceptibility Testing during 2009-2019 from 60 institutions in 35 towns. All isolates were sequenced by Illumina MiSeq, followed by MinION sequencing of selected organisms. Genomes were subjected to bioinformatic analysis, addressing taxonomy, clonality, phylogeny and structural characterisation of key resistance determinants within their chromosomal and plasmidic loci. RESULTS Among five species identified, K. oxytoca was predominant (n = 92), followed by Klebsiella michiganensis (n = 11). MLST distinguished 18 STs, with the most prevalent Klebsiella oxytoca ST145 (n = 83). The clone segregated a lineage with the In237-like integron [blaVIM-1-aacA4 genes; n = 78], recorded in 28 cities almost all over the country. The integron was located in a ~ 49-50 kb chromosomal mosaic region with multiple other resistance genes, linked to a ~ 51 kb phage-like element. The organism might have originated from Greece, and its evolution in Poland included several events of chromosomal ~ 54-258 kb deletions, comprising the natural β-lactamase blaOXY gene. A group of other isolates of various species and clones (n = 12) carried the integron In916 on self-transmissible IncA-type plasmids, effectively spreading in Italy, France and Poland. CONCLUSION KoSC has been one of the major VIM producers in Poland, owing largely to clonal expansion of the specific K. oxytoca-In237-like lineage. Its apparently enhanced epidemic potential may create a danger on international scale.
Collapse
Affiliation(s)
- M Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - D Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
4
|
Ikhimiukor OO, Souza SSR, Akintayo IJ, Marcovici MM, Workman A, Martin IW, Andam CP. Phylogenetic lineages and antimicrobial resistance determinants of clinical Klebsiella oxytoca spanning local to global scales. Microbiol Spectr 2023; 11:e0054923. [PMID: 37676032 PMCID: PMC10581156 DOI: 10.1128/spectrum.00549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Klebsiella oxytoca is an opportunistic pathogen causing serious nosocomial infections. Knowledge about the population structure and diversity of healthcare-associated K. oxytoca from a genomic standpoint remains limited. Here, we characterized the phylogenetic relationships and genomic characteristics of 20 K. oxytoca sensu stricto isolates recovered from bloodstream infections at the Dartmouth-Hitchcock Medical Center, New Hampshire, USA from 2017 to 2021. Results revealed a diverse population consisting of 15 sequence types (STs) that together harbored 10 variants of the intrinsic beta-lactamase gene bla OXY-2, conferring resistance to penicillins. Similar sets of antimicrobial resistance (AMR) determinants reside in multiple distinct lineages, with no one lineage dominating the local population. To place the New Hampshire K. oxytoca in a broader context, we compared them to 304 publicly available genomes of clinical isolates from 18 countries. This global clinical K. oxytoca sensu stricto population is represented by over 65 STs that together harbored resistance genes against 14 antimicrobial classes, including eight bla OXY-2 variants. Three dominant STs in the global population (ST2, ST176, ST199) circulate across multiple countries and were also present in the New Hampshire population. The global K. oxytoca population is genetically diverse, but there is evidence for broad dissemination of a few lineages carrying distinct set of AMR determinants. Our findings reveal the clinical diversity of K. oxytoca sensu stricto and its importance in surveillance efforts aimed at monitoring the evolution of this drug-resistant nosocomial pathogen. IMPORTANCE The opportunistic pathogen Klebsiella oxytoca has been increasingly implicated in patient morbidity and mortality worldwide, including several outbreaks in healthcare settings. The emergence and spread of antimicrobial resistant strains exacerbate the disease burden caused by this species. Our study showed that clinical K. oxytoca sensu stricto is phylogenetically diverse, harboring various antimicrobial resistance determinants and bla OXY-2 variants. Understanding the genomic and population structure of K. oxytoca is important for international initiatives and local epidemiological efforts for surveillance and control of drug-resistant K. oxytoca.
Collapse
Affiliation(s)
- Odion O. Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Ifeoluwa J. Akintayo
- Institute for Infection Prevention and Hospital Epidemiology, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Michael M. Marcovici
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Adrienne Workman
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Isabella W. Martin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
5
|
Prasad SV, Fiedoruk K, Zakrzewska M, Savage PB, Bucki R. Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89. Microbiol Spectr 2023; 11:e0121523. [PMID: 37338344 PMCID: PMC10434160 DOI: 10.1128/spectrum.01215-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Ceragenins, including CSA-13, are cationic antimicrobials that target the bacterial cell envelope differently than colistin. However, the molecular basis of their action is not fully understood. Here, we examined the genomic and transcriptome responses by Enterobacter hormaechei after prolonged exposure to either CSA-13 or colistin. Resistance of the E. hormaechei 4236 strain (sequence type 89 [ST89]) to colistin and CSA-13 was induced in vitro during serial passages with sublethal doses of tested agents. The genomic and metabolic profiles of the tested isolates were characterized using a combination of whole-genome sequencing (WGS) and transcriptome sequencing (RNA-seq), followed by metabolic mapping of differentially expressed genes using Pathway Tools software. The exposure of E. hormaechei to colistin resulted in the deletion of the mgrB gene, whereas CSA-13 disrupted the genes encoding an outer membrane protein C and transcriptional regulator SmvR. Both compounds upregulated several colistin-resistant genes, such as the arnABCDEF operon and pagE, including genes coding for DedA proteins. The latter proteins, along with beta-barrel protein YfaZ and VirK/YbjX family proteins, were the top overexpressed cell envelope proteins. Furthermore, the l-arginine biosynthesis pathway and putrescine-ornithine antiporter PotE were downregulated in both transcriptomes. In contrast, the expression of two pyruvate transporters (YhjX and YjiY) and genes involved in pyruvate metabolism, as well as genes involved in generating proton motive force (PMF), was antimicrobial specific. Despite the similarity of the cell envelope transcriptomes, distinctly remodeled carbon metabolism (i.e., toward fermentation of pyruvate to acetoin [colistin] and to the glyoxylate pathway [CSA-13]) distinguished both antimicrobials, which possibly reflects the intensity of the stress exerted by both agents. IMPORTANCE Colistin and ceragenins, like CSA-13, are cationic antimicrobials that disrupt the bacterial cell envelope through different mechanisms. Here, we examined the genomic and transcriptome changes in Enterobacter hormaechei ST89, an emerging hospital pathogen, after prolonged exposure to these agents to identify potential resistance mechanisms. Interestingly, we observed downregulation of genes associated with acid stress response as well as distinct dysregulation of genes involved in carbon metabolism, resulting in a switch from pyruvate fermentation to acetoin (colistin) and the glyoxylate pathway (CSA-13). Therefore, we hypothesize that repression of the acid stress response, which alkalinizes cytoplasmic pH and, in turn, suppresses resistance to cationic antimicrobials, could be interpreted as an adaptation that prevents alkalinization of cytoplasmic pH in emergencies induced by colistin and CSA-13. Consequently, this alteration critical for cell physiology must be compensated via remodeling carbon and/or amino acid metabolism to limit acidic by-product production.
Collapse
Affiliation(s)
- Suhanya V. Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Izdebski R, Biedrzycka M, Urbanowicz P, Żabicka D, Gniadkowski M. Genome-Based Epidemiologic Analysis of VIM/IMP Carbapenemase-Producing Enterobacter spp., Poland. Emerg Infect Dis 2023; 29:1618-1626. [PMID: 37486192 PMCID: PMC10370858 DOI: 10.3201/eid2908.230199] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
We sequenced all nonduplicate 934 VIM/IMP carbapenemase-producing Enterobacterales (CPE) reported in Poland during 2006-2019 and found ≈40% of the isolates (n = 375) were Enterobacter spp. During the study period, incidence of those bacteria gradually grew in nearly the entire country. The major factor affecting the increase was clonal spread of several E. hormaechei lineages responsible for multiregional and interregional outbreaks (≈64% of all isolates), representing mainly the pandemic sequence type (ST) 90 or the internationally rare ST89 and ST121 clones. Three main VIM-encoding integron types efficiently disseminated across the clone variants (subclones) with various molecular platforms. Those variants were predominantly Pseudomonas aeruginosa-derived In238-like elements, present with IncHI2+HI2A, IncFII+FIA, IncFIB, or IncN3 plasmids, or chromosomal genomic islands in 30 Enterobacter STs. Another prevalent type, found in 34 STs, were In916-like elements, spreading in Europe recently with a lineage of IncA-like plasmids.
Collapse
|
7
|
Yeh TK, Lin HJ, Liu PY, Wang JH, Hsueh PR. Antibiotic resistance in Enterobacter hormaechei. Int J Antimicrob Agents 2022; 60:106650. [DOI: 10.1016/j.ijantimicag.2022.106650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
|
8
|
Urbanowicz P, Izdebski R, Biedrzycka M, Literacka E, Hryniewicz W, Gniadkowski M. Genomic Epidemiology of MBL-Producing Pseudomonas putida Group Isolates in Poland. Infect Dis Ther 2022; 11:1725-1740. [PMID: 35689153 PMCID: PMC9334476 DOI: 10.1007/s40121-022-00659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Pseudomonas putida group are described as low-incidence opportunistic pathogens, but also as a significant reservoir of antimicrobial resistance (AMR) genes, including those of metallo-β-lactamases (MBLs). Our objective was the molecular and genomic characterization of MBL-producing P. putida (MPPP) group isolates from Poland, focusing on population structures, successful genotypes and MBL-encoding integrons. Methods During a country-wide MBL surveillance in Pseudomonas spp., 59 non-duplicate MPPP isolates were collected from 36 hospitals in 23 towns from 2003 to 2016. All of the isolates were subjected to whole-genome sequencing (WGS), followed by species identification, multi-locus sequence typing (MLST), single-nucleotide polymorphism (SNP)-based phylogenetic/clonality analysis, resistome determination, and susceptibility testing. Results The study collection comprised 12 species, of which P. alloputida (n = 19), P. monteilii (n = 15), and P. asiatica (n = 11) prevailed, while the others were P. kurunegalensis, P. putida, P. soli, P. mosselii, P. juntendi, and four potentially new species. MLST classified the isolates into 23 sequence types (STs) of which 21 were new, with three main clones, namely P. alloputida ST69, P.monteilii ST95 and P. asiatica ST15. The isolates produced VIM-like MBLs only, largely VIM-2 (n = 40), encoded by 24 different class 1 integrons (ten new), a number of which occurred also in P. aeruginosa and/or Enterobacterales in Poland. The plasmid pool was dominated by IncP-9, IncP-2, and pMOS94-like types. Multiple isolates were extensively drug-resistant. Conclusions This study, being one of the most comprehensive analyses of MPPP so far, has shown high diversity of the isolates in general, with three apparently international lineages, each internally diversified by MBL-encoding structures. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-022-00659-z.
Collapse
Affiliation(s)
- Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Marta Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Elżbieta Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725, Warsaw, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725, Warsaw, Poland
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| |
Collapse
|
9
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1561-1569. [DOI: 10.1093/jac/dkac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
|
10
|
Klebsiella oxytoca Complex: Update on Taxonomy, Antimicrobial Resistance, and Virulence. Clin Microbiol Rev 2021; 35:e0000621. [PMID: 34851134 DOI: 10.1128/cmr.00006-21] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Klebsiella oxytoca is actually a complex of nine species-Klebsiella grimontii, Klebsiella huaxiensis, Klebsiella michiganensis, K. oxytoca, Klebsiella pasteurii, Klebsiella spallanzanii, and three unnamed novel species. Phenotypic tests can assign isolates to the complex, but precise species identification requires genome-based analysis. The K. oxytoca complex is a human commensal but also an opportunistic pathogen causing various infections, such as antibiotic-associated hemorrhagic colitis (AAHC), urinary tract infection, and bacteremia, and has caused outbreaks. Production of the cytotoxins tilivalline and tilimycin lead to AAHC, while many virulence factors seen in Klebsiella pneumoniae, such as capsular polysaccharides and fimbriae, have been found in the complex; however, their association with pathogenicity remains unclear. Among the 5,724 K. oxytoca clinical isolates in the SENTRY surveillance system, the rates of nonsusceptibility to carbapenems, ceftriaxone, ciprofloxacin, colistin, and tigecycline were 1.8%, 12.5%, 7.1%, 0.8%, and 0.1%, respectively. Resistance to carbapenems is increasing alarmingly. In addition to the intrinsic blaOXY, many genes encoding β-lactamases with varying spectra of hydrolysis, including extended-spectrum β-lactamases, such as a few CTX-M variants and several TEM and SHV variants, have been found. blaKPC-2 is the most common carbapenemase gene found in the complex and is mainly seen on IncN or IncF plasmids. Due to the ability to acquire antimicrobial resistance and the carriage of multiple virulence genes, the K. oxytoca complex has the potential to become a major threat to human health.
Collapse
|
11
|
Hickey C, Nguyen S, Anes J, Hurley D, Donoghue O, Fanning S, Schaffer K. Differences in antimicrobial susceptibility testing complicating management of IMP carbapenemase-producing Enterobacterales infection. J Glob Antimicrob Resist 2021; 27:284-288. [PMID: 34775131 DOI: 10.1016/j.jgar.2021.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 09/02/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES IMP-type carbapenemases are rarely detected in Europe and limited information is available to guide the treatment of infections caused by carbapenemase-producing Enterobacterales (CPE) producing these carbapenemases. Accurate antimicrobial susceptibility testing (AST) results are essential for optimal antibiotic management. Here we report discrepancies in AST of IMP-producing Enterobacterales (IMP-CPE) complicating the management of severe sepsis. METHODS Antimicrobial susceptibilities were analysed by in-house VITEK® 2, Etest and broth microdilution (BMD). Carbapenemase-encoding genes were detected by PCR. Whole-genome sequencing (WGS) was performed using an Illumina MiSeq platform. RESULTS Minimum inhibitory concentrations (MICs) determined by VITEK® 2 for Enterobacter hormaechei and Klebsiella oxytoca blood culture isolates were ≥16 mg/L for meropenem and ≤0.5 mg/L for ertapenem. In contrast, Etest analysis and BMD returned MICs of 2 mg/L and 1 mg/L, respectively. Both isolates tested positive for IMP carbapenemase-encoding genes by PCR. WGS revealed that both isolates carried the same blaIMP-4 gene. Based on VITEK® 2 susceptibilities, initial treatment was with tigecycline and amikacin. After subsequent deterioration, the patient was successfully treated with ertapenem and amikacin. CONCLUSION This case highlights that automated AST by VITEK® 2 can over-report meropenem resistance for IMP carbapenemase-producers compared with Etest and BMD. Clinicians need to be cautious deciding against carbapenem treatment based on VITEK® 2 susceptibility testing results for IMP-positive Enterobacterales. Tigecycline was inferior to carbapenem treatment for pyelonephritis caused by isolates expressing IMP carbapenemases, however specific evidence guiding the treatment of these infections is lacking.
Collapse
Affiliation(s)
- C Hickey
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Department of Clinical Microbiology, St Vincent's University Hospital, Elm Park, Dublin D04 T6F4, Ireland
| | - S Nguyen
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - J Anes
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - D Hurley
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - O Donoghue
- Department of Clinical Microbiology, St Vincent's University Hospital, Elm Park, Dublin D04 T6F4, Ireland
| | - S Fanning
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - K Schaffer
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Department of Clinical Microbiology, St Vincent's University Hospital, Elm Park, Dublin D04 T6F4, Ireland.
| |
Collapse
|
12
|
Brovedan MA, Marchiaro PM, Díaz MS, Faccone D, Corso A, Pasteran F, Viale AM, Limansky AS. Pseudomonas putida group species as reservoirs of mobilizable Tn402-like class 1 integrons carrying bla VIM-2 metallo-β-lactamase genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105131. [PMID: 34748986 DOI: 10.1016/j.meegid.2021.105131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
The Pseudomonas putida group (P. putida G) is composed of at least 21 species associated with a wide range of environments, including the clinical setting. Here, we characterized 13 carbapenem-resistant P. putida G clinical isolates bearing class 1 integrons/transposons (class 1 In/Tn) carrying blaVIM-2 metallo-β-lactamase gene cassettes obtained from hospitals of Argentina. Multilocus sequencing (MLSA) and phylogenetic analyses based on 16S rDNA, gyrB and rpoD sequences distinguished 7 species among them. blaVIM-2 was found in three different cassette arrays: In41 (blaVIM-2-aacA4), In899 (only blaVIM-2), and In528 (dfrB1-aacA4-blaVIM-2). In41 and In899 were associated with complete tniABQC transposition modules and IRi/IRt boundaries characteristic of the Tn5053/Tn402 transposons, which were designated Tn6335 and Tn6336, respectively. The class 1 In/Tn element carrying In528, however, exhibited a defective tni module bearing only the tniC (transposase) gene, associated with a complete IS6100 bounded with two oppositely-oriented IRt end regions. In some P. putida G isolates including P. asiatica, P. juntendi, P. putida G/II, and P. putida G/V, Tn6335/Tn6336 were carried by pLD209-type conjugative plasmids capable of self-mobilization to P. aeruginosa or Escherichia coli. In other isolates of P. asiatica, P. putida G/II, and P. monteiliieilii, however, these blaVIM-2-containing class 1 In/Tn elements were found inserted into the res regions preceding the tnpR (resolvase) gene of particular Tn21 subgroup members of Tn3 transposons. The overall results reinforce the notion of P. putida G members as blaVIM-2 reservoirs, and shed light on the mechanisms of dissemination of carbapenem resistance genes to other pathogenic bacteria in the clinical setting.
Collapse
Affiliation(s)
- Marco A Brovedan
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Patricia M Marchiaro
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María S Díaz
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Pasteran
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro M Viale
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Adriana S Limansky
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
13
|
Celejewski-Marciniak P, Wolinowska R, Wróblewska M. Molecular Characterization of Class 1, 2 and 3 Integrons in Serratia spp. Clinical Isolates in Poland - Isolation of a New Plasmid and Identification of a Gene for a Novel Fusion Protein. Infect Drug Resist 2021; 14:4601-4610. [PMID: 34764657 PMCID: PMC8575446 DOI: 10.2147/idr.s325943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Gram-negative rods of the genus Serratia play an increasing role as etiological agents of healthcare-associated infections (HAI) in humans. These bacteria are characterized by natural and acquired resistance to several groups of antibacterial agents. The aim of the study was to characterize class 1, 2 and 3 integrons in the clinical isolates of Serratia spp. in Poland. Methods The study comprised 112 clinical strains of Serratia, isolated from patients hospitalized in Poland in 2010-2012. Identification of strains was confirmed using MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) system. Detection of class 1, 2 and 3 integrase DNA sequence was performed by multiplex-PCR. Amplicons obtained in the PCR reactions were purified and then sequenced bidirectionally. Results Among the analyzed strains, Serratia marcescens was a predominant species (103/112, 92.0%). All three classes of integrase DNA sequence were detected in the analyzed strains of Serratia spp. DNA sequence of class 3 integron, besides integrase gene, revealed three gene cassettes (dfrB3, bla GES-7,bla OXA/aac(6')-Ib-cr). BLAST analysis of DNA sequence revealed that class 3 integron was carried on 9448 bp plasmid which was named pPCMI3 - whole sequence of its DNA was submitted to GenBank NCBI (National Center for Biotechnology Information) - NCBI MH569711. Conclusion In this study, we identified a new plasmid pPCMI3 harboring class 3 integron. This is the first report of a gene oxa/aac(6')-Ib-cr coding for a novel fusion protein, which consists of OXA β-lactamase and acetyltransferase aac(6')-Ib-cr. In the analyzed strains, class 1 and 2 integrons were also detected. Among the strains with class 1 integron, nine contained cassette array 5'CS-aadA2-ORF-dfrA12-3'CS, and two - cassette array 5'CS-aacC1-ORF-ORF-aadA1-3'CS, which were not previously reported in Serratia spp.
Collapse
Affiliation(s)
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wróblewska
- Department of Dental Microbiology, Medical University of Warsaw, Warsaw, Poland.,Department of Microbiology, Central Clinical Hospital, University Clinical Centre, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Miltgen G, Garrigos T, Cholley P, Deleume M, Allou N, Allyn J, Wilkinson DA, Lugagne N, Belmonte O, Bertrand X, Hocquet D, Mavingui P. Nosocomial cluster of carbapenemase-producing Enterobacter cloacae in an intensive care unit dedicated COVID-19. Antimicrob Resist Infect Control 2021; 10:151. [PMID: 34674756 PMCID: PMC8529563 DOI: 10.1186/s13756-021-01022-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Concomitant prevention of SARS-CoV-2 and extensively drug-resistant bacteria transmission is a difficult challenge in intensive care units dedicated to COVID-19 patients. We report a nosocomial cluster of four patients carrying NDM-1 plasmid-encoded carbapenemase-producing Enterobacter cloacae. Two main factors may have contributed to cross-transmission: misuse of gloves and absence of change of personal protective equipment, in the context of COVID-19-associated shortage. This work highlights the importance of maintaining infection control measures to prevent CPE cross-transmission despite the difficult context and that this type of outbreak can potentially involve several species of Enterobacterales.
Collapse
Affiliation(s)
- Guillaume Miltgen
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France. .,UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France.
| | - Thomas Garrigos
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France
| | - Pascal Cholley
- Service d'Hygiène Hospitalière, CHU Jean Minjoz, Besançon, France.,UMR CNRS 6249 Chrono-Environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Marine Deleume
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France
| | - Nicolas Allou
- Service de Réanimation Polyvalente, CHU Félix Guyon, Saint-Denis, La Réunion, France
| | - Jérôme Allyn
- Service de Réanimation Polyvalente, CHU Félix Guyon, Saint-Denis, La Réunion, France
| | - David A Wilkinson
- UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Nathalie Lugagne
- Service d'hygiène hospitalière, CHU Félix Guyon, Saint-Denis, La Réunion, France
| | - Olivier Belmonte
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France
| | - Xavier Bertrand
- Service d'Hygiène Hospitalière, CHU Jean Minjoz, Besançon, France.,UMR CNRS 6249 Chrono-Environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Didier Hocquet
- Service d'Hygiène Hospitalière, CHU Jean Minjoz, Besançon, France.,UMR CNRS 6249 Chrono-Environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Patrick Mavingui
- UMR PIMIT, Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
15
|
Urbanowicz P, Izdebski R, Baraniak A, Żabicka D, Hryniewicz W, Gniadkowski M. Molecular and genomic epidemiology of VIM/IMP-like metallo-β-lactamase-producing Pseudomonas aeruginosa genotypes in Poland. J Antimicrob Chemother 2021; 76:2273-2284. [PMID: 34179963 DOI: 10.1093/jac/dkab188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To identify key factors of the expansion of metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) in Poland, focusing on the role of clonal epidemic(s). METHODS MPPA isolates were typed by PFGE, followed by MLST. blaVIM/IMP MBL genes were amplified and sequenced within class 1 integrons. Their location was assessed by S1 nuclease-hybridization assays. Short-read WGS was performed, and genomes were subjected to SNP-based phylogenetic and resistome analyses. RESULTS Of 1314 MPPA isolates collected in 2005-15 from 212 hospitals, 454 representatives were selected. The isolates belonged to 120 pulsotypes and 52 STs, of which ST235 (∼31%), ST111 (∼17%), ST273 (∼16%) and ST654 (∼9%) prevailed, followed by ST244, ST17, ST395, ST175 and ST1567. The isolates produced seven VIM variants (97.5%) and four IMPs encoded by 46 integrons, most of which were observed only or mainly in Poland. Around 60% of the isolates resulted from (inter)regional clonal outbreaks of 10 individual ST235, ST111, ST273 and ST654 genotypes. The phylogenetic analysis of 163 genomes revealed heterogeneity of ST235 and ST111 populations, arising from transnational circulation and on-site differentiation of several clades/branches. Contrarily, ST273 and ST654 formed relatively homogeneous and apparently Poland-specific lineages, and a unique ST273 genotype with integron In249 was the most expansive organism. CONCLUSIONS Together with a previous report on self-transmissible In461-carrying IncP-2-type plasmids, this study revealed the molecular/genomic background of the rapid MPPA increase in Poland in 2001-15, evidencing multi-clonal spread as its leading factor. Numerous novel/specific MPPA characteristics were identified.
Collapse
Affiliation(s)
- P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, 00-725, Warsaw, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, 00-725, Warsaw, Poland
| | - A Baraniak
- Department of Molecular Microbiology, National Medicines Institute, 00-725, Warsaw, Poland
| | - D Żabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725, Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725, Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, 00-725, Warsaw, Poland
| |
Collapse
|
16
|
Li R, Peng K, Xiao X, Liu Y, Peng D, Wang Z. Emergence of a multidrug resistance efflux pump with carbapenem resistance gene blaVIM-2 in a Pseudomonas putida megaplasmid of migratory bird origin. J Antimicrob Chemother 2021; 76:1455-1458. [PMID: 33758948 DOI: 10.1093/jac/dkab044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/28/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Tigecycline and carbapenems are regarded as vital antimicrobials to treat serious bacterial infections. Co-occurrence of resistance genes conferring resistance to both tigecycline and carbapenems in Pseudomonas spp. was not investigated. OBJECTIVES To characterize a megaplasmid co-harbouring tmexCD1-toprJ1 and blaVIM-2 in Pseudomonas putida of migratory bird origin. METHODS One tigecycline- and carbapenem-resistant strain was isolated and characterized by antimicrobial susceptibility testing, conjugation assay, WGS and bioinformatics analysis. RESULTS The strain P. putida ZXPA-20 resistant to meropenem and tigecycline was positive for blaVIM-2 and tmexCD1-toprJ1 genes. The gene blaVIM-2 was inserted into the backbone of the megaplasmid pZXPA-20 within a Tn5090-like structure. The genetic context of tmexCD1-toprJ1 in the megaplasmid was identical to many chromosomal tmexCD1-toprJ1 of Pseudomonas species. Plasmid-mediated tmexCD1-toprJ1 gene cluster in Pseudomonas spp. was more common than that in Klebsiella pneumoniae. To the best of our knowledge, this is the first report of co-occurrence of blaVIM-2 and tmexCD1-toprJ1 in one plasmid. CONCLUSIONS Emergence of plasmid-mediated carbapenem and tigecycline resistance genes in P. putida from migratory birds highlighted the importance of surveillance of novel mobile resistance genes in migratory birds, which may play a vital role in global transmission of novel resistance genes.
Collapse
Affiliation(s)
- Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Kai Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Province, P. R. China
| |
Collapse
|
17
|
Ochońska D, Klamińska-Cebula H, Dobrut A, Bulanda M, Brzychczy-Włoch M. Clonal Dissemination of KPC-2, VIM-1, OXA-48-Producing Klebsiella pneumoniae ST147 in Katowice, Poland. Pol J Microbiol 2021; 70:107-116. [PMID: 33815532 PMCID: PMC8008758 DOI: 10.33073/pjm-2021-010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/14/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an important bacterium of nosocomial infections. In this study, CRKP strains, which were mainly isolated from fecal samples of 14 patients in three wards of the hospital in the Silesia Voivodship, rapidly increased from February to August 2018. Therefore, we conducted microbiological and molecular studies of the CRKP isolates analyzed. Colonized patients had critical underlying diseases and comorbidities; one developed bloodstream infection, and five died (33.3%). Antibiotic susceptibilities were determined by the E-test method. A disc synergy test confirmed carbapenemase production. CTX-Mplex PCR evaluated the presence of resistance genes blaCTX-M-type, blaCTX-M-1, blaCTX-M-9, and the genes blaSHV, blaTEM, blaKPC-2, blaNDM-1, blaOXA-48, blaIMP, and blaVIM-1 was detected with the PCR method. Clonality was evaluated by Multi Locus Sequence Typing (MLST) and Pulsed Field Gel Electrophoresis (PFGE). Six (40%) strains were of XDR (Extensively Drug-Resistant) phenotype, and nine (60%) of the isolates exhibited MDR (Multidrug-Resistant) phenotype. The range of carbapenem minimal inhibitory concentrations (MICs, μg/mL) was as follows doripenem (16 to >32), ertapenem (> 32), imipenem (4 to > 32), and meropenem (> 32). PCR and sequencing confirmed the blaCTX-M-15, blaKPC-2, blaOXA-48, and blaVIM-1 genes in all strains. The isolates formed one large PFGE cluster (clone A). MLST assigned them to the emerging high-risk clone of ST147 (CC147) pandemic lineage harboring the blaOXA-48 gene. This study showed that the K. pneumoniae isolates detected in the multi-profile medical centre in Katowice represented a single strain of the microorganism spreading in the hospital environment.
Collapse
Affiliation(s)
- Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Hanna Klamińska-Cebula
- Department of Bacteriology, Leszek Giec Upper-Silesian Medical Centre of the Silesian Medical University in Katowice, Katowice, Poland
| | - Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Małgorzata Bulanda
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
18
|
Vrancianu CO, Gheorghe I, Dobre EG, Barbu IC, Cristian RE, Popa M, Lee SH, Limban C, Vlad IM, Chifiriuc MC. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int J Mol Sci 2020; 21:E8527. [PMID: 33198306 PMCID: PMC7697847 DOI: 10.3390/ijms21228527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, β-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of β-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop β-lactamase inhibitors (BLIs) capable of restoring the activity of β-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of β-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Elena-Georgiana Dobre
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Ilda Czobor Barbu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania;
| | - Marcela Popa
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Sang Hee Lee
- Department of Biological Sciences, Myongji University, 03674 Myongjiro, Yongin 449-728, Gyeonggido, Korea;
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin 17058, Gyeonggido, Korea
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
- Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|
19
|
Baraniak A, Machulska M, Żabicka D, Literacka E, Izdebski R, Urbanowicz P, Bojarska K, Herda M, Kozińska A, Hryniewicz W, Gniadkowski M. Towards endemicity: large-scale expansion of the NDM-1-producing Klebsiella pneumoniae ST11 lineage in Poland, 2015-16. J Antimicrob Chemother 2020; 74:3199-3204. [PMID: 31406993 DOI: 10.1093/jac/dkz315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES In 2015 and 2016 Poland recorded rapid proliferation of New Delhi MBL (NDM)-producing Enterobacterales, with at least 470 and 1780 cases, respectively. We addressed the roles of the Klebsiella pneumoniae ST11 NDM-1 outbreak genotype, already spreading in 2012-14, and of newly imported organisms in this increase. METHODS The study included 2136 NDM-positive isolates identified between April 2015 and December 2016, following transfer of patients with K. pneumoniae ST147 NDM-1 from Tunisia to Warsaw in March 2015. The isolates were screened by PCR mapping for variants of blaNDM-carrying Tn125-like elements. Selected isolates were typed by PFGE and MLST. NDM-encoding plasmids were analysed by nuclease S1/hybridization, transfer assays, PCR-based replicon typing and PCR mapping. RESULTS The organisms were mainly K. pneumoniae containing the Tn125A variant of the ST11 epidemic lineage (n = 2094; ∼98%). Their representatives were of the outbreak pulsotype and ST11, and produced NDM-1, encoded by specific IncFII (pKPX-1/pB-3002cz)-like plasmids. The isolates were recovered in 145 healthcare centres in 13/16 administrative regions, predominantly the Warsaw area. The 'Tunisian' genotype K. pneumoniae ST147 NDM-1 Tn125F comprised 18 isolates (0.8%) from eight institutions. The remaining 24 isolates, mostly K. pneumoniae and Escherichia coli of diverse STs, produced NDM-1 or NDM-5 specified by various Tn125 derivatives and plasmids. CONCLUSIONS The K. pneumoniae ST11 NDM-1 outbreak has dramatically expanded in Poland since 2012, which may bring about a countrywide endemic situation in the near future. In addition, the so-far limited K. pneumoniae ST147 NDM-1 outbreak plus multiple NDM imports from different countries were observed in 2015-16.
Collapse
Affiliation(s)
- A Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - M Machulska
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - D Żabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - E Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - K Bojarska
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - M Herda
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - A Kozińska
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | | |
Collapse
|
20
|
Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clin Microbiol Rev 2019; 32:e00002-19. [PMID: 31315895 PMCID: PMC6750132 DOI: 10.1128/cmr.00002-19] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genus Enterobacter is a member of the ESKAPE group, which contains the major resistant bacterial pathogens. First described in 1960, this group member has proven to be more complex as a result of the exponential evolution of phenotypic and genotypic methods. Today, 22 species belong to the Enterobacter genus. These species are described in the environment and have been reported as opportunistic pathogens in plants, animals, and humans. The pathogenicity/virulence of this bacterium remains rather unclear due to the limited amount of work performed to date in this field. In contrast, its resistance against antibacterial agents has been extensively studied. In the face of antibiotic treatment, it is able to manage different mechanisms of resistance via various local and global regulator genes and the modulation of the expression of different proteins, including enzymes (β-lactamases, etc.) or membrane transporters, such as porins and efflux pumps. During various hospital outbreaks, the Enterobacter aerogenes and E. cloacae complex exhibited a multidrug-resistant phenotype, which has stimulated questions about the role of cascade regulation in the emergence of these well-adapted clones.
Collapse
Affiliation(s)
- Anne Davin-Regli
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| | - Jean-Philippe Lavigne
- Department of Microbiology, U1047, INSERM, University Montpellier and University Hospital Nîmes, Nîmes, France
| | - Jean-Marie Pagès
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| |
Collapse
|
21
|
Cahill N, O'Connor L, Mahon B, Varley Á, McGrath E, Ryan P, Cormican M, Brehony C, Jolley KA, Maiden MC, Brisse S, Morris D. Hospital effluent: A reservoir for carbapenemase-producing Enterobacterales? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:618-624. [PMID: 30974353 PMCID: PMC6525273 DOI: 10.1016/j.scitotenv.2019.03.428] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 05/03/2023]
Abstract
Antimicrobial resistance is a major public health concern. Carbapenemase-producing Enterobacterales (CPE) represent a significant health threat as some strains are resistant to almost all available antibiotics. The aim of this research was to examine hospital effluent and municipal wastewater in an urban area in Ireland for CPE. Samples of hospital effluent (n = 5), municipal wastewater before (n = 5) and after (n = 4) the hospital effluent stream joined the municipal wastewater stream were collected over a nine-week period (May-June 2017). All samples were examined for CPE by direct plating onto Brilliance CRE agar. Isolates were selected for susceptibility testing to 15 antimicrobial agents in accordance with EUCAST criteria. Where relevant, isolates were tested for carbapenemase-encoding genes by real-time PCR. CPE were detected in five samples of hospital effluent, one sample of pre-hospital wastewater and three samples of post-hospital wastewater. Our findings suggest hospital effluent is a major contributor to CPE in municipal wastewater. Monitoring of hospital effluent for CPE could have important applications in detection and risk management of unrecognised dissemination of CPE in both the healthcare setting and the environment.
Collapse
Affiliation(s)
- Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland.
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Bláthnaid Mahon
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Áine Varley
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Elaine McGrath
- Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Phelim Ryan
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland; Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Carina Brehony
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Martin C Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|