1
|
Kyriakaki P, Mavrommatis A, Tsiplakou E. The Interaction of Microalgae Dietary Inclusion and Forage-to-Concentrate Ratio on the Lipid Metabolism-Related Gene Expression in Subcutaneous Adipose Tissue of Dairy Goats. Animals (Basel) 2024; 14:3291. [PMID: 39595343 PMCID: PMC11591094 DOI: 10.3390/ani14223291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Long-chain polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) have been shown to be effective in enhancing the quality of ruminant products, including meat and milk. However, under these dietary conditions, the de novo lipogenesis could be influenced, too. On the other hand, even if the forage-to-concentrate ratio (F:C) is also a key factor affecting lipid metabolism in small ruminants, there is scarce information about its interaction with dietary PUFA. This study investigates the potential of the F:C ratio as a lever to manipulate lipid metabolism in dairy goats under high dietary PUFA supplementation. For this purpose, twenty-two crossbred dairy goats [Alpine × Local (Greek) breeds] (BW = 50.6 ± 6.1 kg) at early lactation (70 ± 10 days in milk) during the age of 3-4 years old, were separated into two homogeneous subgroups (n = 11). In the first phase, each goat was fed 20 g Schizochytrium spp./day followed by either a high-forage (20 HF) or a high-grain (20 HG) diet, while in the second phase, each goat was fed 40 g Schizochytrium spp./day followed once again either a high-forage (40 HF) or a high-grain (40 HG) diet. The F:C ratio of a high-forage and high-grain diet was 60:40 and 40:60, respectively. Tail fat tissue samples were collected by biopsy on the 42nd day of each experimental phase (last day). Significant decreases (p < 0.05) in the gene expression of ACACA, CBR2, COX4I1, ELOVL5, ELOVL7, LEP, and SCD were presented in goats fed 40 g compared to those fed 20 g Schizochytrium spp., while the gene expression of ACACA, AGPAT2, AGPAT3, ELOVL5, ELOVL6, EPHX2, FASN, and SCD was decreased in high grain compared to high-forage diets. This study also indicated that with the aim to enrich goat products with PUFA by increasing their levels in the diet, lipid metabolism is negatively affected. However, a diet with higher forage inclusion can partially attenuate this condition.
Collapse
Affiliation(s)
| | | | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (P.K.); (A.M.)
| |
Collapse
|
2
|
Erez I, Serbester U. Effects of prenatal fish oil supplementation on the development and performance of female kids after weaning. PLoS One 2024; 19:e0310220. [PMID: 39259754 PMCID: PMC11389935 DOI: 10.1371/journal.pone.0310220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
This study was performed to determine the influence of fish oil, an omega-3 fatty acids source, supplemented to diets of goats throughout all stages of gestation on the growth and milk production of weaned female kids. Eighty German Fawn (75%) x Hair (25%) crossbred goats were randomly assigned to treatment (fish oil, FiO group) and control (Rumen protected fat, RPF group) groups during the first half of pregnancy. Subsequently, the FiO group was further allocated into FiO-FiO and FiO-RPF subgroups and RPF group was further divided into RPF-FiO and RPF-RPF subgroups containing 20 goats in each during the second half of pregnancy. The growth and feed intake of 41 female kids (aged 75.1 ± 6.73 days, with a mean live weight of 11.6 ± 3.00 kg) were recorded for a 98 day post-weaning, In the continuation of the study, live weight changes, milk yield and composition of young female goats from mating to the second month of lactation and the growth of female kids until weaning were studied for a total of 210 days. Maternal nutrition slightly influenced the live weight gain of female kids over a 98-day investigation period (p = 0.070). When growth performance was considered, a higher feed conversion efficiency of female offspring was determined in RPF-FiO (5.52) treatment group compare to female kids in other treatment groups (p = 0.086). However, the maternal feeding system significantly affected live weight in the RPF-FiO treatment group during the mating period (P = 0.054). Concerning the feed intake, maternal nutrition significantly affected the feed intake of female kids (p < 0.01) with the highest feed consumption in the FiO-RPF group. The findings of this study have shown that fish oil enriched diet given to goats during gestation improved daily live weight changes and total live weight gain of female kids despite the initial disadvantage after weaning. At mating time, the live weight of young female goats in the RPF-FiO treatment group, which exhibited the highest feed conversion ratio during the 98-day study, was higher than the remaining treatment groups. Maternal nutrition had no effect on milk yield or milk components in young goats during lactation. Young female goats born to dams in the FiO-RPF group showed better performance than the other groups regarding live weight performance of their offspring on 56th day postpartum.
Collapse
Affiliation(s)
- Ibrahim Erez
- Faculty of Agriculture, Department of Animal Science, Çukurova University, Adana, Turkey
| | - Ugur Serbester
- Faculty of Agriculture, Department of Animal Science, Çukurova University, Adana, Turkey
| |
Collapse
|
3
|
Brozić D, Starčević K, Vranić M, Bošnjak K, Maurić Maljković M, Mašek T. Effect of Dietary Eicosapentaenoic and Docosahexaenoic Fatty Acid Supplementation during the Last Month of Gestation on Fatty Acid Metabolism and Oxidative Status in Charolais Cows and Calves. Animals (Basel) 2024; 14:1273. [PMID: 38731277 PMCID: PMC11083410 DOI: 10.3390/ani14091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Fatty acids (FAs) are of utmost importance in the peripartal period for the development of the central nervous and immune systems of the newborn. The transport of polyunsaturated fatty acids (PUFAs) through the placenta is considered to be minimal in ruminants. Nevertheless, the cow's FAs are the main source of FAs for the calf during gestation. This research aimed to investigate the influence of low-dose eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation during late gestation on the FA metabolism of cows and their calves. A total of 20 Charolais cows during the last month of their gestation were included in the feeding trial and were divided into a control group (CON) and an experimental group (EPA + DHA). The latter received a supplement in the amount of 100 g/day (9.1 and 7.8 g/cow/day of EPA and DHA, respectively). Supplementation of low-dose EPA and DHA alters colostrum and milk fatty acid composition through the elevation of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) without affecting milk fat and protein concentrations and oxidative status. Plasma composition in cows was significantly altered, while the same effect was not detected in calf plasma. No significant change in mRNA expression was detected for the genes fatty acid synthase (FASN) and acetyl-CoA carboxylase alpha (ACACA).
Collapse
Affiliation(s)
- Diana Brozić
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marina Vranić
- Department of Field Crops, Forage and Grassland Production, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.V.); (K.B.)
| | - Krešimir Bošnjak
- Department of Field Crops, Forage and Grassland Production, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.V.); (K.B.)
| | - Maja Maurić Maljković
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
4
|
Rosa-Velazquez M, Ahn J, Lee K, Relling AE. Transcriptomic analysis of sheep hypothalamus discloses regulatory genes potentially involved in sex-dependent differences in body weight of progeny born to dams supplemented with omega-3 fatty acids or methionine during late-gestation. J Anim Sci 2024; 102:skae160. [PMID: 38864402 PMCID: PMC11245701 DOI: 10.1093/jas/skae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Fetal programming research conducted in sheep has reported sexually dimorphic responses on growth of the progeny born to in-utero methionine or omega-3 fatty acids supplementation. However, the biological mechanism behind the nutrient by sex interaction as a source of variation in offspring body weight is still unknown. A high-throughput RNA sequencing data of hypothalamus samples from 17 lambs were used in the current study to identify differentially expressed genes (DEGs) between males and females born to dams supplemented with different nutrients during late-gestation. Ewes received a basal diet without omega-3 fatty acids or methionine supplementation as the control (CONT); omega-3 fatty acids supplementation (FAS), or methionine supplementation (METS). A list of regulated genes was generated. Data were compared as CONT vs. FAS and CONT vs. METS. For CONT vs. METS, a treatment by sex interaction was found (adjusted P-value < 0.05) on 121 DEGs (112 upregulated and 9 downregulated) on female lambs born to METS compared with METS males. Importantly, with the sex interaction term, more than 100 genes were upregulated in female lamb's hypothalamuses born to METS. Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA) were performed using the DEGs from female lambs. Terms under biological process (related to morphogenesis, organism, and tissue development), cellular component (related to chromatin, extracellular components), and molecular function (involved in chromatin structure and transcription and factors linked to binding DNA) were presented (adjusted P-value < 0.05) for GO. For the IPA, the top-scoring network was developmental disorder, endocrine system development and function, and organ morphology. Only a few differences were observed in the comparison between the interaction of sex and treatment for the CONT vs. FAS comparison. The markedly increased number of DEGs substantially involved in developmental and growth processes indicates the extent to which maternal methionine supplementation causes the sexually dimorphic effects observed in the offspring.
Collapse
Affiliation(s)
| | - Jinsoo Ahn
- Department of Animal Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Kichoon Lee
- Department of Animal Science, The Ohio State University, Columbus, Ohio, United States of America
| | | |
Collapse
|
5
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
Erez İ, Serbester U. Fish oil supplementation as an omega-3 fatty acid source during gestation: effects on the performance of weaned male goat kids. Trop Anim Health Prod 2023; 55:268. [PMID: 37442852 DOI: 10.1007/s11250-023-03681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The aim of this study was to evaluate the effects of fish oil supplementation, as an omega-3 fatty acids source, to ration of does in the different periods of pregnancy on the fattening performance of kids after weaning. Eighty German Fawn × Hair crossbred does were randomly divided into two groups; half were given fish oil in the first half of pregnancy (FO group), while the other half were given saturated fat (PF (control) group). Then, the goats in the FO and PF groups were randomly divided into two subgroups, and half of the goats were fed fish oil during the second half of pregnancy (FO-FO and FO-PF groups), while the other half was fed saturated fat (PF-FO and PF-PF groups). Thus, study groups of kids were formed according to the nutrition program of the does described above. Forty-seven male kids (84.6 ± 2.44 days old; 14.5 ± 3.09 kg live weight, mean ± standard deviation) were fed for 56 days after weaning, and their weight, feed consumption, serum biochemical parameters, carcass performance, and meat quality characteristics were evaluated. Maternal nutrition significantly affected live weight gain and serum AST, glucose, total protein, and globulin concentrations (P ≤ 0.050). The live weight gain of kids in the PF-PF and PF-FO groups was higher than that in the FO-FO and FO-PF groups. Maternal nutrition tended to affect the hot and cold carcass weights of male kids (P = 0.078 and P = 0.084, respectively). In conclusion, fish oil supplementation during gestation could negatively affect the fattening performance of kids after weaning, especially the daily live weight gain, although it tended to positively affect hot and cold carcass weights.
Collapse
Affiliation(s)
- İbrahim Erez
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey.
| | - Ugur Serbester
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey
| |
Collapse
|
7
|
Rahimi-Tari M, Sadeghi AA, Motamedi-Sedeh F, Aminafshar M, Chamani M. Hematological parameters, antioxidant status, and gene expression of γ-INF and IL-1β in vaccinated lambs fed different type of lipids. Trop Anim Health Prod 2023; 55:168. [PMID: 37084030 DOI: 10.1007/s11250-023-03585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
This study was aimed to evaluate the effects of vegetable oils as calcium salt on immune responses and the expression of immune-related genes in vaccinated lambs. Twenty-four lambs (35 kg body weight, 6 months old) were assigned to four treatments with six replicates in a completely randomized design for 40 days. Four concentrates were formulated in which the calcium salts of palm oil, canola oil, corn oil, and flaxseed oil were used. On day 30 of the experiment, lambs were vaccinated by a dose of foot-and-mouth disease virus. The blood samples were collected from jugular vein 10 days after vaccination. The level of malondialdehyde and the activity of liver enzymes were the highest in lambs receiving corn oil and the lowest in lambs receiving flaxseed oil. The highest lymphocytes and the lowest neutrophil percentages were observed in lambs receiving flaxseed oil. There was a significant difference among treatments for the relative genes expression. Flaxseed oil significantly upregulated interferon-γ and corn oil upregulated interleukin-1β. The highest titer against foot-and-mouth disease virus was related to lambs receiving flaxseed oil, and the lowest titer was related to lambs that received corn oil. Flaxseed oil had more beneficial effects on immune response than other oils.
Collapse
Affiliation(s)
- Morteza Rahimi-Tari
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Farahnaz Motamedi-Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj, Iran
| | - Mehdi Aminafshar
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Shao T, McCann JC, Shike DW. Effects of Late Gestation Supplements Differing in Fatty Acid Amount and Profile to Beef Cows on Cow Performance, Steer Progeny Growth Performance through Weaning, and Relative mRNA Expression of Genes Associated with Muscle and Adipose Tissue Development. Animals (Basel) 2023; 13:ani13030437. [PMID: 36766325 PMCID: PMC9913262 DOI: 10.3390/ani13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Strategic supplementation during late gestation has the potential to alter progeny performance. Mature fall-calving Simmental × Angus cows were used to evaluate the effects of late gestation supplementation of fatty acids to beef cows on cow performance, steer progeny growth performance during pre-weaning and backgrounding periods, and relative mRNA expression of genes associated with myogenesis and adipogenesis. Cows (n = 190; 4 pasture groups of cows/treatment) grazed endophyte-infected tall fescue and were supplemented during late gestation with calcium salts of either saturated fatty acid/monounsaturated fatty acid (SFA/MUFA), polyunsaturated fatty acid (PUFA), or an isocaloric and isonitrogenous control (CON). There were no differences (p ≥ 0.11) in cow body weight (BW) or body condition scores from pre-supplementation to weaning or steer BW at birth, weaning, or at the end of the backgrounding period. Concentrations of C18:2n-6 in plasma were greater (p = 0.01) in SFA/MUFA and PUFA cows compared to CON cows during supplementation. For mRNA expression in the longissimus muscle of steer progeny from birth to weaning: PAX7 decreased to a greater (p < 0.01) extent for SFA/MUFA and PUFA steers; AGPAT1 and CPT1 increased to a greater (p ≤ 0.02) extent for CON steers. The expression of MYH7 mRNA during the pre-weaning period was greater (p = 0.01) in PUFA. In conclusion, late gestation fatty acid supplementation modified plasma relative concentrations of fatty acids for dams and progeny and modified mRNA expression of genes related to myogenesis and adipogenesis but had limited effects on progeny growth performance during pre-weaning and backgrounding periods.
Collapse
|
9
|
Roque-Jiménez JA, Oviedo-Ojeda MF, Whalin M, Lee-Rangel HA, Relling AE. Ewe early gestation supplementation with eicosapentaenoic and docosahexaenoic acids affects the liver, muscle, and adipose tissue fatty acid profile and liver mRNA expression in the offspring. J Anim Sci 2023; 101:skad144. [PMID: 37158288 PMCID: PMC10263116 DOI: 10.1093/jas/skad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Our objectives were to assess the effects of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) supplementation to pregnant ewes during the first third of gestation on their offspring's liver, adipose, and muscle tissues fatty acid (FA) profile and liver mRNA expression after a finishing period receiving diets with different FA profiles. Twenty-four post-weaning lambs, blocked by sex and body weight, were used in a 2 × 2 factorial arrangement of treatments. The first factor was dam supplementation (DS) in the first third of gestation with 1.61% of Ca salts of palm fatty acid distillate (PFAD) or Ca salts enriched with EPA-DHA. Ewes were exposed to rams with marking paint harnesses during the breeding. Ewes started DS at the day of mating, considered day 1 of conception. Twenty-eight days after mating, ultrasonography was used to confirm pregnancy, and nonpregnant ewes were removed from the groups. After weaning, the offspring lambs were supplemented (LS, second main factor) with two different FA sources (1.48% of PFAD or 1.48% of EPA-DHA) during the growing and fattening phase. Lambs were fed the LS diet for 56 d and sent to slaughter, where the liver, muscle, and adipose tissue samples were collected for FA analysis. Liver samples were collected for relative mRNA expression for genes associated with FA transport and metabolism. The data were analyzed as a mixed model in SAS (9.4). In the liver, the amount of C20:5 and C22:6 (P < 0.01) increased in lambs with LS-EPA-DHA, while some C18:1 cis FA isomers were greater in the lambs from DS-PFAD. In muscle, amounts of C22:1, C20:5, and C22:5 increased (P < 0.05) in lambs born from DS-EPA-DHA. The adipose tissue amounts of C20:5, C22:5, and C22:6 were greater (P < 0.01) in lambs from LS-EPA-DHA. Interactions (DS × LS; P < 0.05) were observed for DNMT3β, FABP-1, FABP-5, SCD, and SREBP-1; having greater mRNA expression in liver tissue of LS-EPA-DHA, DS-PFAD and LS-PFAD, DS-EPA-DHA lambs compared with the lambs in the other two treatments. Liver ELOVL2 mRNA relative expression (P < 0.03) was greater in the offspring of DS-PFAD. Relative mRNA expression (P < 0.05) of GLUT1, IGF-1, LPL, and PPARγ increased in the liver from LS-EPA-DHA lambs. Dam supplementation during early gestation using with different FA sources changed the lipid FA profile in MT, LT, and SAT during the finishing period depending on the tissue and type of FA source administered during the growing phase.
Collapse
Affiliation(s)
- José A Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Mario F Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Megan Whalin
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | - Héctor A Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| |
Collapse
|
10
|
Pre-Partum Supplementation with Polyunsaturated Fatty Acids on Colostrum Characteristics and Lamb Immunity and Behavior after a Mild Post-Weaning Aversive Handling Period. Animals (Basel) 2022; 12:ani12141780. [PMID: 35883327 PMCID: PMC9311828 DOI: 10.3390/ani12141780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
We studied the effect of pre-natal supplementation with n-3 α-linolenic acid (ALA) combined with a tannin-rich forage on colostrum composition and immunological quality and whether these changes had advantageous effects on lambs’ survival and stress reaction to a post-weaning stressor. Forty-eight Latxa ewes were fed during the last five weeks of pregnancy with two experimental diets: a control diet based on a neutral concentrate and forage (tall fescue hay; CO-FES), and a supplemented diet based on polyunsaturated (PUFA)-rich concentrate and tanniferous forage (sainfoin; ALA-SAIN). After parturition, twenty ewes had their blood and colostrum sampled, and their lambs were monitored until post-weaning. Lambs were afterwards subjected to (i) an aversive handling period (AHP) followed by a behavioral assessment and (ii) inflammatory and lymphocyte proliferation challenge. Feeding ALA-SAIN resulted in changes in colostrum fatty acid composition, specifically higher α-linoleic acid (p < 0.001), conjugate linoleic acid (p = 0.005), vaccenic acid (p = 0.006) and long-chain n-3 PUFA (p = 0.004). Pre-partum nutrition did not affect lamb immunoglobulin (Ig) G apparent efficacy absorption, but circulating IgG tended to be higher (p = 0.054) in ALA-SAIN lambs. ALA-SAIN lambs interacted more frequently with other lambs (p = 0.002), whereas ALA-SAIN females spent more time closer to other lambs (p < 0.001). Plasma cortisol was higher (p = 0.047) and plasma interleukin (IL)-2 lower (p = 0.003) in CO-FES lambs. This research highlights the importance of prenatal nutrition on the immune system stimulation and lambs’ behavior as a strategy to improve lambs’ health and welfare during early life.
Collapse
|
11
|
Rosa-Velazquez M, Pinos-Rodriguez JM, Parker AJ, Relling AE. Maternal supply of a source of omega-3 fatty acids and methionine during late gestation on the offspring's growth, metabolism, carcass characteristic, and liver's mRNA expression in sheep. J Anim Sci 2022; 100:skac032. [PMID: 35137115 PMCID: PMC9037365 DOI: 10.1093/jas/skac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
The objective of the present experiment was to evaluate the effect of maternal supplementation with fatty acids (FAs) and methionine (Met) during late gestation on offspring growth, energy metabolism, plasma resolvin (RvD1) concentration, carcass characteristics, and hepatic mRNA expression. Ewes (5 pens/treatment; 3 ewes/pen) blocked by body weight (BW) were assigned to one of four treatments from day 100 of gestation until lambing. The treatments were: basal diet (NS) without FAs or Met supplementation; FA supplementation (FS; 1.01 % of Ca salts, containing n-3 FA); Met supplementation (MS; 0.1 % of rumen-protected methionine); and FS and MS (FS-MS). At birth (day 0), ewes and lambs were placed in a common pen. On day 60, lambs were weaned, sorted by sex, blocked by BW, and placed on a common finishing diet for 54 d (FP). A lamb per pen was used for a glucose tolerance test (GTT) after the FP. Carcass characteristics were recorded on day 56. Lamb data were analyzed as a randomized complete block design with a 2 × 2 × 2 factorial arrangement, with repeated measurements when needed (SAS 9.4). At weaning, lambs born to MS- or FS-fed ewes were heavier than lambs born from FS-MS ewes (FS × MS × Time; P = 0.02). A marginal significant FS × MS interaction (P = 0.09) was also observed on RvD1; lambs born to ewes in the NS and FS-MS treatments showed a lower RvD1 plasma concentration when compared with lambs born to FS- or MS-fed ewes. Lambs born to dams fed FA showed an increase (P = 0.05) in liver COX-2 mRNA relative expression. Lambs born to ewes supplemented with Met showed an increase (P = 0.03) in liver FABP4 mRNA expression. An FS × MS × Time interaction (P = 0.07) was observed in plasma glucose during the GTT; lambs born from FS-fed ewes showed lower plasma glucose concentration than lambs born to Met-supplemented ewes at 2 min after bolus administration. During the GTT, a marginal significant effect (P = 0.06) was observed for the lamb average insulin concentration due to maternal Met supplementation during late gestation, where these lambs had the lowest plasma concentration. Contrary to our hypothesis, the interaction of FA and Met supplementation during late gestation did not show a greater positive effect on offspring postnatal growth and metabolism. However, the individual supplementation of each nutrient has an effect on offspring development with a concomitant change in markers involved in the inflammatory response and energy metabolism.
Collapse
Affiliation(s)
- Milca Rosa-Velazquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA
| | | | - Anthony J Parker
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA
| | - Alejandro E Relling
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
12
|
Nudda A, Bee G, Correddu F, Lunesu MF, Cesarani A, Rassu SPG, Pulina G, Battacone G. Linseed supplementation during uterine and early post-natal life markedly affects fatty acid profiles of brain, liver and muscle of lambs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2038039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anna Nudda
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Giuseppe Bee
- Agroscope, Institute for Livestock Sciences ILS, Posieux, 1725, Switzerland
| | - Fabio Correddu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Mondina Francesca Lunesu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Salvatore Pier Giacomo Rassu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Giuseppe Pulina
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Gianni Battacone
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| |
Collapse
|
13
|
Macías-Cruz U, Vicente-Pérez R, Correa-Calderon A, Mellado M, Meza-Herrera CA, Arechiga CF, Avendaño-Reyes L. n-6 Polyunsaturated fatty acids in the feeding of late gestation hair ewes: the effects on thermoregulation, growth, and metabolism of heat-stressed growing lambs. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:2077-2086. [PMID: 34226974 DOI: 10.1007/s00484-021-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The objective was to determine the effects of feeding soybean oil (SBO), an ingredient rich in n-6 polyunsaturated fatty acids (PUFA), to late gestation hair ewes on physiological responses, feedlot performance, and serum metabolite and electrolyte concentrations of their growing ewe lambs under outdoor heat stress conditions. Twenty-four Dorper × Pelibuey ewe lambs weaned (body weight = 21.5 ± 0.2 kg, age= 2 months, and multiple birth) born from ewes fed 0, 30, or 60 mg of SBO/kg dry matter (DM) during late gestation were selected (n = 8/treatment) to conduct a 30-day feeding trial during the summer season of a desert region (temperature = 34 °C and temperature-humidity index = 35 units). While rectal temperature was unaffected in any daytime, respiratory rate in the afternoon quadratically increased (P = 0.05) as the SBO levels increased from 0 to 60 mg/kg DM in the maternal diet. Final weight, average daily gain, and feed efficiency linearly increased (P = 0.04) with increasing levels of SBO. Body surface temperatures and serum concentration of glucose, cholesterol, triglyceride, total protein, urea, sodium, potassium, and chlorine did not vary by the SBO inclusion in the maternal diet. In conclusion, feeding late gestation hair ewes with source rich in n-6 PUFA appears to be an effective maternal nutritional strategy to improve post-weaning growth without compromising the thermoregulatory ability of their growing offspring under a heat stress environment.
Collapse
Affiliation(s)
- Ulises Macías-Cruz
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, Baja California, 21705, México
| | - Ricardo Vicente-Pérez
- Departamento de Producción Agrícola CUCSUR, Universidad de Guadalajara, Autlán de Navarro, Jalisco, 48900, México
| | - Abelardo Correa-Calderon
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, Baja California, 21705, México
| | - Miguel Mellado
- Departamento de Nutrición Animal, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, 25315, México
| | - Cesar A Meza-Herrera
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Bermejillo, Durango, 35230, México
| | - Carlos F Arechiga
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, Calera, Zacatecas, 98500, México
| | - Leonel Avendaño-Reyes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, Baja California, 21705, México.
| |
Collapse
|
14
|
Shao T, Ireland FA, McCann JC, Shike DW. Effects of supplements differing in fatty acid profile to late gestational beef cows on cow performance, calf growth performance, and mRNA expression of genes associated with myogenesis and adipogenesis. J Anim Sci Biotechnol 2021; 12:67. [PMID: 34120653 PMCID: PMC8201839 DOI: 10.1186/s40104-021-00588-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background Maternal nutrition during gestation affects fetal development, which has long-term programming effects on offspring postnatal growth performance. With a critical role in protein and lipid metabolism, essential fatty acids can influence the development of muscle and adipose tissue. The experiment investigated the effects of late gestation supplements (77 d prepartum), either rich in saturated and monounsaturated fatty acids (CON; 155 g/cow/d EnerGII) or polyunsaturated fatty acids (PUFA; 80 g/cow/d Strata and 80 g/cow/d Prequel), on cow performance and subsequent calf growth performance as well as mRNA expression in longissimus muscle (LM) and subcutaneous adipose tissue at birth and weaning. Results There was no difference (P ≥ 0.34) in cow body weight (BW) or body condition score from pre-supplementation through weaning. Relative concentrations of C18:3n-3 and C20:4n-6 decreased (P ≤ 0.05) to a greater extent from mid-supplementation to calving for PUFA compared with CON cows. Cow plasma C20:0, C20:5n-3, and C22:6n-3 were increased (P ≤ 0.01) in PUFA during supplementation period. At birth, PUFA steers had greater (P = 0.01) plasma C20:5n-3. No differences (P ≥ 0.33) were detected in steer birth BW or dam milk production, however, CON steers tended (P = 0.06) to have greater pre-weaning average daily gain and had greater (P = 0.05) weaning BW compared with PUFA. For mRNA expression in steers: MYH7 and C/EBPβ in LM increased (P ≤ 0.04) to a greater extent from birth to weaning for PUFA compared with CON; MYF5 in LM and C/EBPβ in adipose tissue tended (P ≤ 0.08) to decrease more from birth to weaning for CON compared with PUFA; SCD in PUFA adipose tissue tended (P = 0.08) to decrease to a greater extent from birth to weaning than CON. In addition, maternal PUFA supplementation tended (P = 0.08) to decrease MYOG mRNA expression in LM and decreased (P = 0.02) ZFP423 in adipose tissue during the pre-weaning stage. Conclusions Late gestation PUFA supplementation decreased pre-weaning growth performance of the subsequent steer progeny compared with CON supplementation, which could have been a result of downregulated mRNA expression of myogenic genes during pre-weaning period. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00588-w.
Collapse
Affiliation(s)
- Taoqi Shao
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Frank A Ireland
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
15
|
Oviedo-Ojeda MF, Roque-Jiménez JA, Whalin M, Lee-Rangel HA, Relling AE. Effect of supplementation with different fatty acid profile to the dam in early gestation and to the offspring on the finishing diet on offspring growth and hypothalamus mRNA expression in sheep. J Anim Sci 2021; 99:6153448. [PMID: 33640974 DOI: 10.1093/jas/skab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Supplementation with omega-3 and omega-9 fatty acids (FA) during late gestation regulates offspring development; however, their effect in the first third of gestation is unknown in sheep. The objective of this experiment was to evaluate the effects of the maternal supplementation with an enriched source of monounsaturated FA (MUFA) or an enriched source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) during the first third of gestation on productive performance on ewes and offspring, and hypothalamic neuropeptides on offspring. Seventy-nine post-weaning lambs, born of sheep supplemented in the first third of gestation with 1.61% Ca salts rich with MUFA or EPA+DHA (dam supplementation, DS), were distributed in a 2×2 factorial arrangement of treatments to finishing diets containing 1.48% of Ca salts of MUFA or EPA+DHA (lamb supplementation, LS). The finishing period of the offspring lasted for 56 d. During the finishing period dry matter intake (DMI, daily) and body weight (BW) were recorded. Plasma was collected for metabolites analysis. Twenty-four lambs were slaughtered, and hypothalamus was collected for mRNA expression of hormone receptors, neuropeptides, and lipid transport genes. The data were analyzed with a mixed model in SAS (9.4) using repeated measurements, when needed. There was a DS×LS interaction for BW (P = 0.10) where LS with EPA+DHA born from DS with MUFA were heavier than the other 3 treatments. Lambs born from DS with MUFA have a greater DMI (P < 0.01) than the offspring born from DS with EPA+DHA. Lambs born from MUFA supplemented dams had a greater (P ≤ 0.05) hypothalamus mRNA expression for cocaine and amphetamine regulated transcript, growth hormone receptor, metastasis suppressor 1, leptin receptor, pro-opiomelanocortin, and Neuropeptide Y. These results indicate that growth depends not on the type of FA during the finishing phase but the interaction of different sources of FA ad different stages. Also, supplementation with FA during early pregnancy changes productive performance and neuropeptides' mRNA expression of lambs independently of the finishing diet.
Collapse
Affiliation(s)
- Mario Francisco Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA.,Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - José Alejandro Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA.,Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Megan Whalin
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | - Héctor Aarón Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Alejandro Enrique Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| |
Collapse
|
16
|
Roque-Jiménez JA, Rosa-Velázquez M, Pinos-Rodríguez JM, Vicente-Martínez JG, Mendoza-Cervantes G, Flores-Primo A, Lee-Rangel HA, Relling AE. Role of Long Chain Fatty Acids in Developmental Programming in Ruminants. Animals (Basel) 2021; 11:ani11030762. [PMID: 33801880 PMCID: PMC8001802 DOI: 10.3390/ani11030762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The objective of the current review is to provide a broad perspective on developmental program aspects of dietary n-3 FA supplementation in ruminants during pre-conception, conception, pregnancy, early life, including its effects on production, lipid metabolism, and health of the offspring. Offspring growth and metabolism could change depending on the FA profile and the stage of gestation when the dam is supplemented. Despite this extended review we are highlighting areas that we consider that there is a lack of information. Abstract Nutrition plays a critical role in developmental programs. These effects can be during gametogenesis, gestation, or early life. Omega-3 polyunsaturated fatty acids (PUFA) are essential for normal physiological functioning and for the health of humans and all domestic species. Recent studies have demonstrated the importance of n-3 PUFA in ruminant diets during gestation and its effects on pre-and postnatal offspring growth and health indices. In addition, different types of fatty acids have different metabolic functions, which affects the developmental program differently depending on when they are supplemented. This review provides a broad perspective of the effect of fatty acid supplementation on the developmental program in ruminants, highlighting the areas of a developmental program that are better known and the areas that more research may be needed.
Collapse
Affiliation(s)
- José Alejandro Roque-Jiménez
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (H.A.L.-R.)
| | - Milca Rosa-Velázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Juan Manuel Pinos-Rodríguez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Jorge Genaro Vicente-Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | | | - Argel Flores-Primo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Héctor Aarón Lee-Rangel
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (H.A.L.-R.)
| | - Alejandro E. Relling
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
- Correspondence: ; Tel.: +1-330-263-3900
| |
Collapse
|
17
|
Rosa-Velazquez M, Jaborek JR, Pinos-Rodriguez JM, Relling AE. Maternal Supply of Fatty Acids during Late Gestation on Offspring's Growth, Metabolism, and Carcass Characteristics in Sheep. Animals (Basel) 2021; 11:719. [PMID: 33800817 PMCID: PMC8001004 DOI: 10.3390/ani11030719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Lambs born from dams supplemented with different sources of fatty acids (FA) during late gestation have a different growth rate and plasma glucose concentration. The main objectives of this experiment were to evaluate the effect of supplementing different sources of FA during late gestation on offspring plasma metabolite concentrations, growth, and on a glucose tolerance test (GTT) during the finishing phase. Fifty-four lambs (18 pens, 3 lambs/pen) were born from ewes supplemented during late gestation with one of three treatments: (1) no FA (NF); (2) a source of monounsaturated FA (PDS, 1.01% of Ca salts); or (3) a source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (EDS, 1.01% of Ca salts containing). At birth (day 0), supplementation ceased, and all ewes and lambs were placed in a common pen. On day 60, lambs were weaned, grouped by sex, blocked by body weight (BW), and placed on a common finishing diet for 54 days (FP). One lamb per pen was used for the GTT after the FP. There was a tendency for FA × Sex × Day interaction (p = 0.08) on lamb growth during the finishing period, with PDS females being heavier than PDS males, while EDS males were heavier than EDS females at day 60. There was a tendency for FA × Sex interaction (p = 0.06) for plasma insulin concentration for the GTT. Plasma insulin concentration of wethers increased as FA unsaturation degree increased during the GTT; the opposite happened with the plasma insulin concentration of female lambs. In conclusion, FA supplementation during late gestation tended to modified growth and insulin response to a GTT; these changes differed with the degree of FA unsaturation of the supplement and lamb sex.
Collapse
Affiliation(s)
- Milca Rosa-Velazquez
- Facultad de Medicina Veterinaria Zootecnia, Universidad Veracruzana, 91710 Veracruz, Mexico; (M.R.-V.); (J.M.P.-R.)
- Department of Animal Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster 44691, OH, USA;
| | - Jerad R. Jaborek
- Department of Animal Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster 44691, OH, USA;
| | - Juan Manuel Pinos-Rodriguez
- Facultad de Medicina Veterinaria Zootecnia, Universidad Veracruzana, 91710 Veracruz, Mexico; (M.R.-V.); (J.M.P.-R.)
| | - Alejandro Enrique Relling
- Department of Animal Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster 44691, OH, USA;
| |
Collapse
|
18
|
Uken KL, Schäff CT, Vogel L, Gnott M, Dannenberger D, Görs S, Tuchscherer A, Tröscher A, Liermann W, Hammon HM. Modulation of colostrum composition and fatty acid status in neonatal calves by maternal supplementation with essential fatty acids and conjugated linoleic acid starting in late lactation. J Dairy Sci 2021; 104:4950-4969. [PMID: 33589265 DOI: 10.3168/jds.2020-19627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023]
Abstract
Sufficient maternal supply of essential fatty acids (EFA) to neonatal calves is critical for calf development. In the modern dairy cow, EFA supply has shifted from α-linolenic acid (ALA) to linoleic acid (LA) due to the replacement of pasture feeding by corn silage-based diets. As a consequence of reduced pasture feeding, conjugated linoleic acid (CLA) provision by rumen biohydrogenation was also reduced. The present study investigated the fatty acid (FA) status and performance of neonatal calves descended from dams receiving corn silage-based diets and random supplementation of either 76 g/d coconut oil (CTRL; n = 9), 78 g/d linseed oil and 4 g/d safflower oil (EFA; n-6/n-3 FA ratio = 1:3; n = 9), 38 g/d Lutalin (BASF SE, Ludwigshafen, Germany) providing 27% cis-9,trans-11 and trans-10,cis-12 CLA, respectively (CLA; n = 9), or a combination of EFA and CLA (EFA+CLA; n = 11) in the last 9 wk before parturition and following lactation. The experimental period comprised the first 5 d of life, during which calves received colostrum and transition milk from their own dam. The nutrient compositions of colostrum and transition milk were analyzed. Plasma samples were taken after birth and before first colostrum intake and on d 5 of life for FA analyses of the total plasma fat and lipid fractions. Maternal EFA and CLA supplementation partly affected colostrum and transition milk composition but did not change the body weights of calves. Most EFA in calves were found in the phospholipid (PL) and cholesterol ester (CE) fractions of the plasma fat. Maternal EFA supplementation increased the percentage of ALA in all lipid fractions of EFA and EFA+CLA compared with CTRL and CLA calves on d 1 and 5, and the increase was much greater on d 5 than on d 1. The LA concentration increased from d 1 to 5 in the plasma fat and lipid fractions of all groups. The concentrations of docosapentaenoic acid, docosahexaenoic acid, and arachidonic acid in plasma fat were higher on d 1 than on d 5, and the percentage of n-3 metabolites was mainly increased in PL if dams received EFA. The percentage of cis-9,trans-11 CLA was higher in the plasma fat of EFA+CLA than CTRL calves after birth. By d 5, the percentages of both CLA isomers increased, leading to higher proportions in plasma fat of CLA and EFA+CLA than in CTRL and EFA calves. Elevated cis-9,trans-11 CLA enrichment was observed on d 5 in PL, CE, and triglycerides of CLA-treated calves, whereas trans-10,cis-12 CLA could not be detected in individual plasma fractions. These results suggest that an altered maternal EFA and CLA supply can reach the calf via the placenta and particularly via the intake of colostrum and transition milk, whereas the n-3 and n-6 FA metabolites partly indicated a greater transfer via the placenta. Furthermore, the nutrient supply via colostrum and transition milk might be partly modulated by an altered maternal EFA and CLA supply but without consequences on calf performance during the first 5 d of life.
Collapse
Affiliation(s)
- K L Uken
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C T Schäff
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - L Vogel
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - M Gnott
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - D Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - S Görs
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | | | - W Liermann
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
19
|
Rosa Velazquez M, Batistel F, Pinos Rodriguez JM, Relling AE. Effects of maternal dietary omega-3 polyunsaturated fatty acids and methionine during late gestation on fetal growth, DNA methylation, and mRNA relative expression of genes associated with the inflammatory response, lipid metabolism and DNA methylation in placenta and offspring's liver in sheep. J Anim Sci Biotechnol 2020; 11:111. [PMID: 33292515 PMCID: PMC7672917 DOI: 10.1186/s40104-020-00513-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Omega-3 PUFA or methionine (Met) supply during gestation alters offspring physiology. However, the effect of both nutrients on fetal development has not been explored. Our objective was to determine the effects of supplementation of these two nutrients during late gestation on fetal growth, DNA methylation, and mRNA expression of genes associated with the inflammatory response, and DNA methylation. Ewes (n = 5/treatment) were fed from day 100 to 145 of gestation one of the following treatments: 1) basal diet (NS) without fatty acids (FS) or methionine (MS) supplementation; 2) FS (10 g/kg Ca salts, source omega-3 PUFA); 3) MS (1 g/kg rumen protected methionine); and 4) FS and MS (FS-MS). On day 145, ewes were euthanized, and data from dams and fetus was recorded. Placenta (cotyledon), fetal liver, and blood samples were collected. RESULTS A treatments interaction on fetal liver weight, ewe body weight and body condition score (BCS) was observed; FS-MS were heavier (P < 0.01) than FS and MS, and FS-MS ewes had a better (P = 0.02) BCS than NS. Methionine increased (P = 0.03) ewe plasma glucose concentration. Fetal liver global DNA methylation increased (P < 0.01) in FS and MS. Dietary treatments modify the mRNA relative expression on some of the genes evaluated. In the fetal liver, FS increased (P = 0.04) the mRNA relative expression of arachidonate-5-lipoxygenase-activating-protein and tended to decrease (P = 0.06) methionine-adenosyltransferase-1A. Moreover, MS decreased (P = 0.04) DNA-methyltransferase-1 and tended to decrease (P = 0.08) free-fatty-acid-receptor-1 mRNA relative expression. Furthermore, FS-MS decreased mRNA relative expression of tumor-necrosis-factor-alpha (P = 0.05), peroxisome-proliferator-activated-receptor-delta (P = 0.03) and gamma (P = 0.04), tended to decrease (P ≤ 0.09) interleukin-6, fatty-acid-transport-protein-1, and delta-5-desaturase, and increased adenosylhomocysteinase (P = 0.04) mRNA relative expression. In cotyledon, FS tended to decrease fatty acid binding protein 4 (P = 0.09) mRNA relative expression. CONCLUSION Omega-3 PUFA and Met supplementation improves dam's performance in late gestation, which was positively correlated with an increase in offspring's liver development. Moreover, FS-MS decreased mRNA relative expression of proinflammatory cytokines, and lipogenic genes, and increased the expression on an enzyme that has an important role in methylation.
Collapse
Affiliation(s)
- Milca Rosa Velazquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, 91710, Veracruz, Mexico.,Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 114 Gerlaugh Hall, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Fernanda Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | | | - Alejandro Enrique Relling
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 114 Gerlaugh Hall, 1680 Madison Ave, Wooster, OH, 44691, USA.
| |
Collapse
|
20
|
Brandão AP, Cooke RF, Schubach KM, Rett B, Souza OA, Schachtschneider CL, Perry GA, Arispe SA, Jump DB, Pohler KG, Bohnert DW, Marques RS. Supplementing Ca salts of soybean oil to late-gestating beef cows: impacts on performance and physiological responses of the offspring. J Anim Sci 2020; 98:5892292. [PMID: 32790838 DOI: 10.1093/jas/skaa247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/29/2020] [Indexed: 01/22/2023] Open
Abstract
This experiment compared the performance and physiological responses of the offspring from cows supplemented with Ca salts of soybean oil (CSSO) or prilled saturated fat (CON) during late gestation. Nonlactating, pregnant, multiparous Angus × Hereford cows (n = 104) that conceived during the same fixed-time artificial insemination protocol were assigned to this experiment. Cows were ranked by pregnancy sire (one of two sires), body weight (BW), and body condition score (BCS) on day -15 of the experiment (day 180 of gestation). Cows were then assigned to receive (dry matter basis) 415 g of soybean meal per cow daily in addition to: 1) 195 g/cow daily of CSSO (n = 52) or 2) 170 g/cow daily of CON (n = 52). Cows were maintained in two pastures (26 cows/treatment per pasture) and received daily 12.7 kg/cow (dry matter basis) of grass-alfalfa hay from day -15 to calving. Cows were segregated into 1 of 24 feeding pens three times weekly and received treatments individually from day 0 to calving. Calves were weaned on day 290 of the experiment, preconditioned for 35 d (day 291 to 325), and transferred to a feedyard, where they remained until slaughter (day 514). Cows receiving CSSO and their calves had greater (P < 0.01) plasma concentrations of linoleic acid and total ω-6 PUFA compared with CON after calving. Concentrations of immunoglobulin G in the colostrum and in calf plasma 24 h after birth were greater (P ≤ 0.02) in CSSO vs. CON cattle. Calves from CSSO cows had greater (P ≤ 0.05) expression of adipogenic (adipocyte fatty acid-binding protein and stearoyl-CoA desaturase) and myogenic (myogenic differentiation 1 and myogenin) genes in the longissimus muscle (LM) compared with CON. No treatment differences in birth BW, weaning BW, and final preconditioning BW were noted (P ≥ 0.36). Average daily gain and final BW in the feedyard were greater (P ≤ 0.05) in steers from CSSO cows compared with CON. The incidence of calves diagnosed with BRD that required a second antimicrobial treatment was less (P = 0.03) in calves from CSSO cows, resulting in reduced (P = 0.05) need of treatments to regain health compared with CON. Upon slaughter, LM area was greater (P = 0.03) in calves from CSSO cows compared with CON. Collectively, these results are indicative of programming effects on postnatal offspring growth and health resultant from CSSO supplementation to late-gestating cows. Hence, supplementing CSSO to beef cows during pregnancy might be a feasible alternative to optimize offspring productivity and welfare.
Collapse
Affiliation(s)
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Kelsey M Schubach
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Bruna Rett
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Osvaldo A Souza
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - George A Perry
- Texas AgriLife Research, Texas A&M University System, Overton, TX
| | - Sergio A Arispe
- Malheur County Extension Office, Oregon State University, Ontario, OR
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Ky G Pohler
- Department of Animal Science, Texas A&M University, College Station, TX
| | - David W Bohnert
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR
| | - Rodrigo S Marques
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| |
Collapse
|
21
|
|
22
|
Coleman DN, Carranza Martin AC, Jin Y, Lee K, Relling AE. Prepartum fatty acid supplementation in sheep. IV. Effect of calcium salts with eicosapentaenoic acid and docosahexaenoic acid in the maternal and finishing diet on lamb liver and adipose tissue during the lamb finishing period1. J Anim Sci 2019; 97:3071-3088. [PMID: 31063536 DOI: 10.1093/jas/skz154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/04/2019] [Indexed: 01/19/2023] Open
Abstract
The objective of this study was to evaluate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation to ewes during late gestation on finishing lamb liver and adipose tissue fatty acid (FA) profile and gene expression. Lambs born from ewes supplemented with Ca salts of EPA + DHA, or palm FA distillate (PFAD) high in palmitic and oleic acid at 0.39% DM during the last 50 d of gestation were used. Lambs were weaned at 61 d of age and adapted to a high concentrate diet for 1.5 mo. After adaptation, 74 lambs (28 pens) were blocked by sex and BW and used in a 2 × 2 factorial arrangement of treatments using the factors of dam supplementation (DS) and lamb supplementation (LS) of Ca salts of EPA + DHA or PFAD at 1.48% DM. Lambs were slaughtered after 42 d and liver and adipose tissue collected for FA and gene expression analysis. Liver concentrations of EPA and DHA were greater (P < 0.01) with LS of EPA + DHA vs. PFAD during the finishing period. In adipose tissue, a lamb × dam interaction was observed for EPA (P = 0.02) and DHA (P = 0.04); LS of EPA + DHA increased EPA and DHA, but the increase was greatest in lambs born from ewes supplemented with PFAD. No lamb × dam treatment interactions were observed for gene expression in liver tissue (P > 0.10). Hepatic mRNA abundance of hormone-sensitive lipase (HSL; P = 0.01) was greater in lambs born from EPA + DHA ewes vs. lambs from PFAD ewes. mRNA expression of stearoyl-CoA desaturase (P < 0.01), fatty acid synthase (P = 0.01), Δ5-desaturase (P < 0.01), and Δ6-desaturase (P < 0.01) were decreased in liver of EPA + DHA lambs. A significant lamb × dam diet interaction was observed for elongation of very long chain fatty acid 2 in adipose tissue (P = 0.01); lambs supplemented with the same FA as their dams had lower expression. Expression of HSL tended (P = 0.08) to be decreased in adipose of EPA + DHA lambs born from EPA + DHA ewes. The changes in mRNA expression suggest that lipogenesis decreased, and lipolysis increased in lamb liver with EPA + DHA vs. PFAD supplementation during the finishing period. In adipose tissue, changes suggest that lipogenesis decreased in lambs born from EPA + DHA supplemented dams and supplemented with EPA + DHA during the finishing period. In addition, these results suggest an interaction between supplementation of FA to dams during late gestation on lamb response of adipose tissue, but not liver, to FA supplementation during the finishing period.
Collapse
Affiliation(s)
- Danielle N Coleman
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH
| | - Ana C Carranza Martin
- IGEVET - Instituto de Genética Veterinaria Prof. Fernando N. Dulout (UNLP-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (1900), La Plata, Buenos Aires, Argentina
| | | | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH
| |
Collapse
|
23
|
Nickles KR, Hamer L, Coleman DN, Relling AE. Supplementation with eicosapentaenoic and docosahexaenoic acids in late gestation in ewes changes adipose tissue gene expression in the ewe and growth and plasma concentration of ghrelin in the offspring1. J Anim Sci 2019; 97:2631-2643. [PMID: 31073599 DOI: 10.1093/jas/skz141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Omega-3 long chain fatty acids have a positive impact on production. When consumed during late gestation, it might have fetal programming effects on the fetus, which will have lifelong impacts on development and production. The objectives of the present study were to evaluate the effect of increasing doses of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the diet of ewes in the last third of gestation on their body weight (BW), subcutaneous adipose tissue relative mRNA abundance of genes associated with adipose tissue metabolism, and growth performance and plasma metabolites and hormones of their offspring during the finishing phase. Ewes (n = 72) were blocked by BW and allotted to pens (8 per treatment) with 3 ewes per pen. Ewes were supplemented with an EPA and DHA source (Strata G113) at concentrations of 0, 1, or 2% of dry matter intake during the last 50 d of gestation. At lambing, all ewes were penned together and offered the same diet. After weaning at 60 d of age, lambs were blocked by BW and sex and fed for 56 d. All lambs were fed the same pellet diet (61.09% ground corn, 24.08% soy hulls, 11.09% soybean meal, 1.48% Ca salt of palm oil, and 2.26% mixed mineral vitamin), and were weighed every 14 d until the end of the trial. Blood samples were collected on the weight sampling days. Dry matter intake and refusals were weighed daily. Data were analyzed as a randomized complete block design with repeated measurements (SAS 9.4). Polynomial contrast (linear-L and quadratic-Q) was used for mean separation. There were no differences in ewe body condition score, milk production, milk fat, or milk protein, but there was a trend for increased (L, P = 0.06) lactose concentration, and also differences in DGAT1 (L, P = 0.04), Δ5-desaturase (Q, P = 0.06) and Δ6-desaturase (Q, P = 0.07), PPARα (Q, P = 0.03), ELOVL2 and 5 (Q, P < 0.07), FABP4 (Q, P = 0.04), FATP1 (Q, P = 0.06), leptin (Q, P = 0.02), and resistin (L, P = 0.05). Feeding pregnant ewes an increased amount of EPA and DHA in late gestation increased final BW (L, P = 0.01), ADG (L, P = 0.04; Q, P = 0.01), DMI (Q, P ≤ 0.01), plasma glucose concentration (L, P = 0.04), and trended to decrease ghrelin concentrations (L, P = 0.07) in offspring during the finishing period. Dam supplementation did not affect G:F, nor plasma NEFA concentration (P ≥ 0.53) of lambs. Therefore, increasing supplementation of EPA and DHA in pregnant ewes has an impact on offspring performance, increasing DMI, ADG, and BW.
Collapse
Affiliation(s)
- Kirsten R Nickles
- Department of Animal Sciences, The Ohio State University, Wooster, OH
| | - Lauren Hamer
- Department of Animal Sciences, The Ohio State University, Wooster, OH
| | | | | |
Collapse
|
24
|
Carranza Martin AC, Coleman DN, Garcia LG, Furnus CC, Relling AE. Prepartum fatty acid supplementation in sheep. III. Effect of eicosapentaenoic acid and docosahexaenoic acid during finishing on performance, hypothalamus gene expression, and muscle fatty acids composition in lambs. J Anim Sci 2019; 96:5300-5310. [PMID: 30239813 DOI: 10.1093/jas/sky360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022] Open
Abstract
The objectives of this study were to evaluate the effect of feeding an enriched diet with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to finishing lambs born from ewes supplemented either with or without EPA and DHA during late gestation on productive performance, muscle fatty acid (FA), and hypothalamus mRNA concentration of metabolic genes and hormone receptors. Lambs born from dams fed during the last 50 d of gestation either with a control diet containing 0.39% Ca salts of palmitic fatty acid distillate (C) or Ca salts enriched with EPA and DHA (PFA) were used. After weaning lambs (n = 70) were blocked by weight (BW) and used in a 2 × 2 factorial into 2 finishing diets containing 1.5% of C or PFA. The 2 factors were the ewe diet and the finishing diet. Lambs (37.9 ± 0.4 kg) were weighed and blood sampled for glucose and NEFA measurements at days 1, 14, 28, and 42. Dry matter intake (DMI) was measured daily. At day 43, 14 females and 14 males were slaughtered, and hot carcass weight, body wall thickness, rib eye area, and FA composition of Longissumus thoracis muscle were evaluated. Female hypothalamuses were obtained and mRNA concentration of hormone receptors, neuropeptides, and their receptors was measured. Lambs born from PFA dams were heavier (P < 0.01). There was a time × finishing diet interaction for BW (P = 0.03), and lambs fed C had a greater BW. Lambs fed C had an increase in DMI (P < 0.01). There were no significant differences in plasma glucose and NEFA concentration (P > 0.1). Lambs born from PFA dams had a greater concentration of C22:0 (P < 0.03). Lambs fed C had higher concentrations of C18:1c15 (P < 0.01), C17:0 (P < 0.09), C18:0 (P < 0.09), and n6/n3 (P < 0.01). Lambs fed PFA had greater concentration (P < 0.05) of C16:1, C22:1, C20:5, C22:5, C22:6, total n3 FA, and total EPA and DHA. There was a significant dam × finishing diet interaction (P ≤ 0.08) on mRNA concentration for MCR3, CCK-R, Cort-R, and CART. Lambs, which had the same treatment as their dams, showed lower overall mRNA concentration than those with different treatments between them and their dams. Lambs born from PFA ewes had lower concentration of MCR4 mRNA (P = 0.09) than C. Agouti-related peptides mRNA concentration was lower in lambs fed PFA (P = 0.06) than C. In conclusion, changes on lamb performance, muscle fatty acid composition, and metabolic neuropeptides depend not only on the lamb diet, but also on the dam diet during late gestation.
Collapse
Affiliation(s)
- Ana Cristina Carranza Martin
- IGEVET - Instituto de Genética Veterinaria Prof. Fernando N. Dulout (UNLP-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (1900), La Plata, Buenos Aires, Argentina.,Department of Animal Sciences, Ohio State University, Wooster, OH
| | | | | | - Cecilia C Furnus
- IGEVET - Instituto de Genética Veterinaria Prof. Fernando N. Dulout (UNLP-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (1900), La Plata, Buenos Aires, Argentina
| | | |
Collapse
|
25
|
Coleman DN, Murphy KD, Relling AE. Prepartum fatty acid supplementation in sheep. II. Supplementation of eicosapentaenoic acid and docosahexaenoic acid during late gestation alters the fatty acid profile of plasma, colostrum, milk and adipose tissue, and increases lipogenic gene expression of adipose tissue. J Anim Sci 2018; 96:1181-1204. [PMID: 29365116 DOI: 10.1093/jas/skx013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
The objectives of this study were as follows: 1) to establish whether feeding a source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to ewes during late gestation changes the fatty acid profile of colostrum, milk, ewe adipose tissue, and plasma and subsequently lamb plasma and red blood cells (RBC), and 2) to investigate the effects of EPA and DHA on mRNA expression in ewe adipose tissue. Eighty-four gestating ewes (28 pens, three per pen) were blocked by lambing day and assigned to a diet with an addition of fat at 0.39% of the DM during the last 50 d of gestation using Ca salts of a palm fatty acid distillate (PFAD) high in palmitic and oleic acids or EPA + DHA. Blood samples were taken from ewes on days 20, 1 (parturition), and 30 and from lambs on days 1 and 30 for plasma fatty acid analysis. Fatty analysis of lamb RBC was performed on day 1. Colostrum samples were taken at lambing and milk samples on day 30 for fatty acid analysis. Subcutaneous adipose tissue biopsies were taken from one ewe per pen on day 20 for fatty acid analysis and gene expression analysis of 27 genes. Treatment × day interactions (P < 0.10) were observed for several isomers of C18:1, with concentrations that were greater in plasma of EPA + DHA ewes on day 20, but were not different on day 1 or 30. Plasma concentrations of EPA tended to be greater (P = 0.07), whereas DHA was greater (P < 0.001) in EPA + DHA ewes compared with PFAD ewes. There was no difference in EPA or DHA in adipose tissue with EPA + DHA vs. PFAD supplementation (P > 0.10). Concentrations of fatty acids with 6 to 10 carbons were significantly increased (P < 0.05) in colostrum and milk of EPA + DHA ewes. There was a treatment × day interaction with EPA + DHA ewes yielding greater EPA (P = 0.03) and DHA (P = 0.04) concentrations than PFAD in colostrum, but not in milk. Treatment × day interactions (P < 0.05) were observed for several C18:1 isomers with concentrations that were greater in EPA + DHA ewe colostrum, but were not different between treatments in milk. In lamb plasma and RBC, EPA and DHA were not different between treatments (P > 0.10). The expression of fatty acid synthase and leptin was significantly increased (P < 0.05), whereas the expression of diacylglycerol acyltransferase 2 tended to be increased (P = 0.08) by supplementation of EPA + DHA vs. PFAD. These results suggest that supplementation with EPA and DHA to ewes during late gestation alters the fatty acid profile of plasma, colostrum, and milk and may increase lipogenesis.
Collapse
Affiliation(s)
- Danielle Nicole Coleman
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH
| | | | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH
| |
Collapse
|