1
|
Sønderskov MB, Hasselstrøm JB, Bahij R, Andersen CU. Medicinal cannabis tea contains variable doses of cannabinoids and no terpenes. Basic Clin Pharmacol Toxicol 2024; 135:334-344. [PMID: 39044312 DOI: 10.1111/bcpt.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Tea is a recommended way of administration of prescribed cannabis plant products in Denmark. We aimed to investigate the cannabinoid and terpene doses contained in different teas. We analysed tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), cannabidiolic acid (CBDA), and terpene concentrations in three repeated preparations of each type of tea, and in plant material. In standard tea, concentrations of THC were [median (min-max)] 9.5 (2.3-15), 19 (13-34), and 36 (26-57) μg/mL for products with a labelled content of 6.3%, 14%, and 22% total THC (THC + THCA), respectively. The CBD concentration in tea from a product labelled with 8% total CBD (CBD + CBDA) was 7.5 (1.9-10) μg/mL. Based on this, the recommended starting amount of 0.2 L of the different teas would contain between 0.46 and 11.3 mg THC, and 0.38 to 2.0 mg CBD. Adding creamer before, but not after boiling, increased the THC and CBD concentration 2.3-4.4 and 2.1-fold, respectively. Terpenes were detected in plant material, but not in tea. The study elucidates THC and CBD doses in different teas, which may assist the clinician's choice of cannabis product. Moreover, it underscores the need for caution as administration as tea can result in exposure to different doses, even when the same cannabis product is used.
Collapse
Affiliation(s)
- Marie Bach Sønderskov
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Rime Bahij
- Department of Green Technology, University of Southern Denmark, Odense M, Denmark
| | - Charlotte Uggerhøj Andersen
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
2
|
Kisbye LW, Rickert A, Hasselstrøm JB, Andersen CU, Lund HA, Rohde MC, Boel LWT. Enhanced autopsy triage (EA-Triage) in drug-related deaths: integrating quick toxicological analysis and postmortem computed tomography. Forensic Sci Med Pathol 2024:10.1007/s12024-024-00819-2. [PMID: 38683282 DOI: 10.1007/s12024-024-00819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
The objective was to assess the diagnostic accuracy of an enhanced autopsy triage (EA-Triage) setup consisting of postmortem computed tomography (PMCT), simulated quick toxicological analysis (sQTA), external examination, and case information in determining cause of death (COD) in persons with past or current use of illegal drugs (drug-related deaths). Information on drug-related deaths selected for medico-legal autopsy in 2020-2021 at the Department of Forensic Medicine, Aarhus University, Denmark, was analyzed retrospectively. The included cases underwent conventional autopsy, PMCT, and systematic toxicological analysis. A board-certified forensic pathologist, who was blinded to the internal examination and COD from the medico-legal autopsy, determined COD based on the EA-Triage setup. 154 cases with a median age of 40.6 years (range 17-70 years, 82% males) were included. The COD determined by medico-legal autopsy and that determined by EA-Triage matched in 113 cases (73%), including those with an unknown COD. EA-Triage and medico-legal autopsy determined unknown COD in 45 (29%) and 5 cases (3%), respectively. Excluding cases with an unknown COD, EA-Triage predicted COD in 109 cases (71%); of those, 72 (66%) had no unexplained case circumstances or suspicion of a criminal act. In these 72 cases, the CODs determined by EA-Triage and medico-legal autopsy matched in 71 cases (99%), and the sensitivity and specificity for detecting lethal intoxication were 100% and 90%, respectively. EA-Triage showed strong diagnostic accuracy for determining COD in drug-related deaths. This method may be suitable for enhancing preautopsy triage and guiding police investigations at an early stage.
Collapse
Affiliation(s)
- Lea Wold Kisbye
- Department of Forensic Medicine, Aarhus University, Palle Juul- Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Annika Rickert
- Department of Forensic Medicine, Aarhus University, Palle Juul- Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Jørgen Bo Hasselstrøm
- Department of Forensic Medicine, Aarhus University, Palle Juul- Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Charlotte Uggerhøj Andersen
- Department of Forensic Medicine, Aarhus University, Palle Juul- Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Henriette Askjær Lund
- Department of Forensic Medicine, Aarhus University, Palle Juul- Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Marianne Cathrine Rohde
- Department of Forensic Medicine, Aarhus University, Palle Juul- Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Lene Warner Thorup Boel
- Department of Forensic Medicine, Aarhus University, Palle Juul- Jensens Boulevard 99, Aarhus N, 8200, Denmark
| |
Collapse
|
3
|
Höfert L, Baumann S, Dreßler J, Becker S. Does the Quantification of Δ9-Tetrahydrocannabinolic Acid A in Serum/Plasma Provide Any Additional Information About Consumption Pattern from Drivers Under the Influence of Cannabis? Cannabis Cannabinoid Res 2024. [PMID: 38512708 DOI: 10.1089/can.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Introduction: Δ9-tetrahydrocannabinolic acid A (THCA-A) is one of the main ingredients of cannabis plants and is converted to the psychoactive substance Δ9-tetrahydrocannabinol (THC) by decarboxylation during heating above ∼90°C. During the consumption of cannabis, a varying proportion of THCA-A is absorbed into the body. Therefore, the quantification of THCA-A in serum/plasma might provide additional information on consumption behavior in driving under the influence of cannabis cases. Materials and Methods: In this study, an already established gas-chromatography mass-spectrometry (GC-MS) method for the quantification of THC, 11-OH-THC, and THC-COOH in serum and plasma samples was extended to include THCA-A. This validated method was then applied to 1228 routinely achieved serum/plasma samples from drivers suspected of cannabis consumption in Western Saxony. Two different grouping systems for chronic/occasional consumption, one system for acute/subacute consumption, Huestis formulas, and the cannabis influence factor (CIF) were used for evaluation. Results: Method validation showed appropriate results for forensic toxicological routine analysis. Limit of detection and lower limit of quantification (LLOQ) for THCA-A were 0.3 and 1.0 ng/mL, respectively. Reproducibility was <11% and accuracy ranged between 104% and 107%. THCA-A was stable in native samples at least for 2 weeks at room temperature or 4°C as well as 1 month at -20°C. Freeze-thaw stability for three cycles and processed sample stability over 3 days was proven. A total of 865 cases with a THC concentration above the German analytical cutoff of 1 ng/mL as well as the analytical LLOQs of 0.9 and 2.5 ng/mL for 11-OH-THC and THC-COOH, respectively, were included in further statistical analysis. In 407 (47.1%) of these samples, THCA-A was quantifiable. Different statistical analyses indicated a correlation between THCA-A and THC concentrations in cases of chronic and acute consumption. In addition, an increase of chronic and acute cases with increasing THCA-A concentrations was observed. However, no correlation between THCA-A and CIF was found. Discussion: These data show that THCA-A might be an additional indicative marker to provide information about consumption frequency and acuteness. Additional studies with known consumption frequencies and times are required to verify these findings.
Collapse
Affiliation(s)
- Lisa Höfert
- Department Forensic Toxicology, Faculty of Medicine, Institute of Forensic Medicine, Leipzig University, Leipzig, Germany
| | - Sven Baumann
- Department Forensic Toxicology, Faculty of Medicine, Institute of Forensic Medicine, Leipzig University, Leipzig, Germany
| | - Jan Dreßler
- Department Forensic Toxicology, Faculty of Medicine, Institute of Forensic Medicine, Leipzig University, Leipzig, Germany
| | - Susen Becker
- Department Forensic Toxicology, Faculty of Medicine, Institute of Forensic Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
4
|
Zancanaro F, Tedeschi G, Zamengo L, Frasson S, Frison G. Determination of cannabinoids in 50 μL whole blood samples by online extraction using turbulent flow chromatography and LC-HRAM-Orbitrap-MS: Application on driving under the influence of drugs cases. Drug Test Anal 2024; 16:210-220. [PMID: 37343943 DOI: 10.1002/dta.3532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
The analysis of cannabinoids in whole blood is usually done by traditional mass spectrometry (MS) techniques, after offline cleanup or derivatization steps which can be lengthy, laborious, and expensive. We present a simple, fast, highly specific, and sensitive method for the determination of Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), 11-hydroxy-Δ9 -tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Δ9 -tetrahydrocannabinol (THC-COOH) in 50 μL whole blood samples. After the addition of deuterated internal standards (IS) and a simple protein precipitation step, an online extraction of sample supernatants using turbulent flow chromatography (TurboFlow-Thermo Scientific) was carried out. Analytes were separated on a C18 analytical column and detected by LC-HRAM-Orbitrap-MS using a Thermo Scientific Q Exactive Focus MS system. MS detection was performed in polarity switching and selected ion monitoring (SIM) modes using five specific acquisition windows, at a resolution of 70,000 (FWHM). Total run time was about 10 min including preanalytical steps. Method validation was carried out by determining limit of detection (LOD), lower limit of quantitation (LLOQ), linearity range, analytical accuracy, intra-assay and interassay precision, carry-over, matrix effect, extraction recovery, and selectivity, for all analytes. Measurement uncertainties were also evaluated, and a decision rule was set with confidence for forensic purposes. The method may become suitable for clinical and forensic toxicology applications, taking advantage of the small matrix volume required, the simple and cost-effective sample preparation procedure, and the fast analytical run time. Performances were monitored over a long-term period and tested on 7620 driving under the influence of drugs (DUID) samples, including 641 positive samples.
Collapse
Affiliation(s)
- Flavio Zancanaro
- Laboratory of Clinical and Forensic Toxicology, DMPO Department, AULSS 3 Serenissima, Venice, Italy
| | - Gianpaola Tedeschi
- Laboratory of Clinical and Forensic Toxicology, DMPO Department, AULSS 3 Serenissima, Venice, Italy
| | - Luca Zamengo
- Laboratory of Clinical and Forensic Toxicology, DMPO Department, AULSS 3 Serenissima, Venice, Italy
| | - Samuela Frasson
- Laboratory of Clinical and Forensic Toxicology, DMPO Department, AULSS 3 Serenissima, Venice, Italy
| | - Giampietro Frison
- Laboratory of Clinical and Forensic Toxicology, DMPO Department, AULSS 3 Serenissima, Venice, Italy
| |
Collapse
|
5
|
Hansen JS, Boix F, Hasselstrøm JB, Sørensen L, Kjolby M, Gustavsen S, Hansen R, Petersen T, Sellebjerg F, Kasch H, Rasmussen PV, Finnerup NB, Sædder EA, Svendsen KB. Pharmacokinetics and pharmacodynamics of cannabis-based medicine in a patient population included in a randomized, placebo-controlled, clinical trial. Clin Transl Sci 2024; 17:e13685. [PMID: 38054364 PMCID: PMC10772478 DOI: 10.1111/cts.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Information on the pharmacokinetics (PK) and pharmacodynamics (PD) of orally administered cannabis-based medicine (CBM) in capsule formulation in patient populations is sparse. In this exploratory study, we aimed to evaluate the PK and PD in a probable steady state of CBM in neuropathic pain and spasticity in a population of patients with multiple sclerosis (MS). Of 134 patients participating in a randomized, double-blinded, placebo-controlled, trial, 23 patients with MS (17 female) mean age 52 years (range 21-67) were enrolled in this substudy. They received oral capsules containing Δ9 -tetrahydrocannabinol (THC, n = 4), cannabidiol (CBD, n = 6), a combination (THC&CBD, n = 4), or placebo (n = 9). Maximum doses were 22.5 mg (THC) and 45 mg (CBD) a day divided into three administrations. PD parameters were evaluated for pain and spasticity. Blood samples were analyzed using an ultra-high-performance liquid chromatography-tandem mass spectrometer after protein precipitation and phospholipid removal. PK parameters were estimated using computerized modeling. The variation in daily dose and PK between individuals was considerable in a steady state, yet comparable with previous reports from healthy controls. Based on a simulation of the best model, the estimated PK parameters (mean) for THC (5 mg) were Cmax 1.21 ng/mL, Tmax 2.68 h, and half-life 2.75 h, and for CBD (10 mg) were Cmax 2.67 ng/mL, Tmax 0.10 h, and half-life 4.95 h, respectively. No effect was found on the PD parameters, but the placebo response was considerable. More immediate adverse events were registered in the active treatment groups compared with the placebo group.
Collapse
Affiliation(s)
- Julie Schjødtz Hansen
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Division of Laboratory MedicineOslo University HospitalOsloNorway
| | | | | | - Mads Kjolby
- Department of Clinical PharmacologyAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Stefan Gustavsen
- Danish Multiple Sclerosis Center, Department of NeurologyCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | | | - Thor Petersen
- Department of NeurologyHospital of Southern Jutland and Research Unit in NeurologyAabenraaDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of NeurologyCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | - Helge Kasch
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Nanna Brix Finnerup
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Danish Pain Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Eva Aggerholm Sædder
- Department of Clinical PharmacologyAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Kristina Bacher Svendsen
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
6
|
Proença P, Teixeira HM, Martinho B, Monteiro C, Franco J, Corte-Real F. LC-MS-MS-MS3 for the determination and quantification of ∆9-tetrahydrocannabinol and metabolites in blood samples. J Anal Toxicol 2023; 47:606-614. [PMID: 37494426 DOI: 10.1093/jat/bkad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Due to the high prevalence of cannabinoids in forensic toxicology analysis, it is crucial to have an efficient method that allows the use of a small sample amount and that requires a minimal sample preparation for the determination and quantification of low concentrations. A simple, highly selective and high throughput liquid chromatography-tandem mass spectrometry methodology (LC-MS-MS-MS3) was developed for the determination and quantification of ∆9-tetrahydrocannabinol (THC), 11-hydroxy-∆9- tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH) in blood samples. Chromatographic analysis of THC, THC-OH and THC-COOH and their deuterated internal standards was preceded by protein precipitation (PPT) of 0.1 mL of blood samples with acetonitrile. Chromatographic separation was achieved by use of an Acquity UPLC® HHS T3 (100 mm × 2.1 mm i.d., 1.8 μm) reversed-phase column, using a gradient elution of 2 mM aqueous ammonium formate, 0.1% formic acid and methanol at a flow rate of 0.4 mL/min, with a run time of 10 min. For the MS-MS-MS3 analysis, a SCIEX QTRAP® 6500+ triple quadrupole linear ion trap mass spectrometer was used via electrospray ionization (ESI), operated in multiple reaction monitoring (MRM) and linear ion trap mode (MS3). The method was validated in accordance with internationally accepted criteria and guidelines, and proved to be selective and linear between 0.5 and 100 ng/mL (r2 > 0.995). The lower limits of quantification (LLOQ) corresponded to the lowest concentrations used for the calibration curves. The coefficients of variation obtained for accuracy and precision were <15%. The mean recoveries were between 88.0% and 117.2% for the studied concentration levels (1 ng/mL, 5 ng/mL and 50 ng/mL). No significant interfering compounds, matrix effects or carryover were observed. The validated method provides a sensitive, efficient and robust procedure for the quantification of cannabinoids in blood, using LC-MS-MS-MS3 and a sample volume of 0.1 mL. This work is also a proof of concept for using LC-MS3 technique to determine drugs in biological samples.
Collapse
Affiliation(s)
- Paula Proença
- Forensic Chemistry and Toxicology Laboratory, National Institute of Legal Medicine and Forensic Sciences, Polo das Ciências da Saúde (Polo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - Helena M Teixeira
- Forensic Chemistry and Toxicology Laboratory, National Institute of Legal Medicine and Forensic Sciences, Polo das Ciências da Saúde (Polo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
- Faculty of Medicine, University of Coimbra, Polo das Ciências da Saúde (Polo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - Beatriz Martinho
- Forensic Chemistry and Toxicology Laboratory, National Institute of Legal Medicine and Forensic Sciences, Polo das Ciências da Saúde (Polo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - Carla Monteiro
- Forensic Chemistry and Toxicology Laboratory, National Institute of Legal Medicine and Forensic Sciences, Polo das Ciências da Saúde (Polo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - João Franco
- Forensic Chemistry and Toxicology Laboratory, National Institute of Legal Medicine and Forensic Sciences, Polo das Ciências da Saúde (Polo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - Francisco Corte-Real
- Forensic Chemistry and Toxicology Laboratory, National Institute of Legal Medicine and Forensic Sciences, Polo das Ciências da Saúde (Polo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
- Faculty of Medicine, University of Coimbra, Polo das Ciências da Saúde (Polo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| |
Collapse
|
7
|
Antunes M, Barroso M, Gallardo E. Analysis of Cannabinoids in Biological Specimens: An Update. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2312. [PMID: 36767678 PMCID: PMC9915035 DOI: 10.3390/ijerph20032312] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Cannabinoids are still the most consumed drugs of abuse worldwide. Despite being considered less harmful to human health, particularly if compared with opiates or cocaine, cannabis consumption has important medico-legal and public health consequences. For this reason, the development and optimization of sensitive analytical methods that allow the determination of these compounds in different biological specimens is important, involving relevant efforts from laboratories. This paper will discuss cannabis consumption; toxicokinetics, the most detected compounds in biological samples; and characteristics of the latter. In addition, a comprehensive review of extraction methods and analytical tools available for cannabinoid detection in selected biological specimens will be reviewed. Important issues such as pitfalls and cut-off values will be considered.
Collapse
Affiliation(s)
- Mónica Antunes
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilha, Portugal
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, Rua Manuel Bento de Sousa 3, 1169-201 Lisboa, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, Rua Manuel Bento de Sousa 3, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilha, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-284 Covilha, Portugal
| |
Collapse
|
8
|
Automation System for the Flexible Sample Preparation for Quantification of Δ9-THC-D3, THC-OH and THC-COOH from Serum, Saliva and Urine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the life sciences, automation solutions are primarily established in the field of drug discovery. However, there is also an increasing need for automated solutions in the field of medical diagnostics, e.g., for the determination of vitamins, medication or drug abuse. While the actual metrological determination is highly automated today, the necessary sample preparation processes are still mainly carried out manually. In the laboratory, flexible solutions are required that can be used to determine different target substances in different matrices. A suitable system based on an automated liquid handler was implemented. It has been tested and validated for the determination of three cannabinoid metabolites in blood, urine and saliva. To extract Δ9-tetrahydrocannabinol-D3 (Δ9-THC-D3), 11-hydroxy-Δ9-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) from serum, urine and saliva both rapidly and cost-effectively, three sample preparation methods automated with a liquid handling robot are presented in this article, the basic framework of which is an identical SPE method so that they can be quickly exchanged against each other when the matrix is changed. If necessary, the three matrices could also be prepared in parallel. For the sensitive detection of analytes, protein precipitation is used when preparing serum before SPE and basic hydrolysis is used for urine to cleave the glucuronide conjugate. Recoveries of developed methods are >77%. Coefficients of variation are <4%. LODs are below 1 ng/mL and a comparison with the manual process shows a significant cost reduction.
Collapse
|
9
|
Ye L, Budge SM. Sample preparation for the analysis of key metabolites from cannabinoids biosynthesis in phytoplankton using gas chromatography–mass spectrometry. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liyun Ye
- Department of Process Engineering and Applied Science Dalhousie University Halifax Nova Scotia Canada
| | - Suzanne M. Budge
- Department of Process Engineering and Applied Science Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
10
|
Abstract
Introduction: Cannabis is a valuable plant, cultivated by humans for millennia. However, it has only been in the past several decades that biologists have begun to clarify the interesting Cannabis biosynthesis details, especially the production of its fascinating natural products termed acidic cannabinoids. Discussion: Acidic cannabinoids can experience a common organic chemistry reaction known as decarboxylation, transforming them into structural analogues referred to as neutral cannabinoids with far different pharmacology. This review addresses acidic and neutral cannabinoid structural pairs, when and where acidic cannabinoid decarboxylation occurs, the kinetics and mechanism of the decarboxylation reaction as well as possible future directions for this topic. Conclusions: Acidic cannabinoid decarboxylation is a unique transformation that has been increasingly investigated over the past several decades. Understanding how acidic cannabinoid decarboxylation occurs naturally as well as how it can be promoted or prevented during harvesting or storage is important for the various stakeholders in Cannabis cultivation.
Collapse
Affiliation(s)
- Crist N Filer
- PerkinElmer Health Sciences Inc., Waltham, Massachusetts, USA
| |
Collapse
|
11
|
Hansen JS, Hansen RM, Petersen T, Gustavsen S, Oturai AB, Sellebjerg F, Sædder EA, Kasch H, Rasmussen PV, Finnerup NB, Svendsen KB. The Effect of Cannabis-Based Medicine on Neuropathic Pain and Spasticity in Patients with Multiple Sclerosis and Spinal Cord Injury: Study Protocol of a National Multicenter Double-Blinded, Placebo-Controlled Trial. Brain Sci 2021; 11:brainsci11091212. [PMID: 34573231 PMCID: PMC8465969 DOI: 10.3390/brainsci11091212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Disease or acquired damage to the central nervous system frequently causes disabling spasticity and central neuropathic pain (NP), both of which are frequent in multiple sclerosis (MS) and spinal cord injury (SCI). Patients with MS and SCI often request treatment with cannabis-based medicine (CBM). However, knowledge about effects, side effects, choice of active cannabinoids (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) alone or in combination), and doses of CBM remains limited. Using a double-blind, parallel design in a national multicenter cohort, this study examines the effect of CBM on spasticity and NP. Patients are randomized to treatment with capsules containing either THC, CBD, THC and CBD, or placebo. Primary endpoints are patient-reported pain and spasticity on a numerical rating scale. Other endpoints include quality of life and sleep, depression and anxiety, and relief of pain and spasticity. Side-effects of CBM are described. In a sub-study, the pharmacodynamics (PD) and pharmacokinetics (PK) of oral capsule CBM are examined. We expect that the study will contribute to the literature by providing information on the effects and side-effects of CBD, THC, and the combination of the two for central neuropathic pain and spasticity. Furthermore, we will describe the PD/PK of THC and CBD in a patient population.
Collapse
Affiliation(s)
- Julie Schjødtz Hansen
- Department of Neurology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark; (P.V.R.); (N.B.F.); (K.B.S.)
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark;
- Correspondence:
| | - Rikke Middelhede Hansen
- Spinal Cord Injury Centre of Western Denmark Viborg Regional Hospital, DK-8800 Viborg, Denmark;
| | - Thor Petersen
- Department of Neurology, Hospital of Southern Jutland and Research Unit in Neurology, Department of Regional Health Research, University of Southern Denmark, DK-5000 Odense, Denmark;
| | - Stefan Gustavsen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, DK-2600 Glostrup, Denmark; (S.G.); (A.B.O.); (F.S.)
| | - Annette Bang Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, DK-2600 Glostrup, Denmark; (S.G.); (A.B.O.); (F.S.)
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, DK-2600 Glostrup, Denmark; (S.G.); (A.B.O.); (F.S.)
| | - Eva Aggerholm Sædder
- Department of Clinical Pharmacology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark;
| | - Helge Kasch
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark;
- Department of Neurology, Viborg Regional Hospital, DK-8800 Viborg, Denmark
| | - Peter Vestergaard Rasmussen
- Department of Neurology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark; (P.V.R.); (N.B.F.); (K.B.S.)
| | - Nanna Brix Finnerup
- Department of Neurology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark; (P.V.R.); (N.B.F.); (K.B.S.)
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Kristina Bacher Svendsen
- Department of Neurology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark; (P.V.R.); (N.B.F.); (K.B.S.)
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark;
| |
Collapse
|
12
|
Analysis of cannabinoids in conventional and alternative biological matrices by liquid chromatography: Applications and challenges. J Chromatogr A 2021; 1651:462277. [PMID: 34091369 DOI: 10.1016/j.chroma.2021.462277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022]
Abstract
Cannabis is by far the most widely abused illicit drug globe wide. The analysis of its main psychoactive components in conventional and non-conventional biological matrices has recently gained a great attention in forensic toxicology. Literature states that its abuse causes neurocognitive impairment in the domains of attention and memory, possible macrostructural brain alterations and abnormalities of neural functioning. This suggests the necessity for the development of a sensitive and a reliable analytical method for the detection and quantification of cannabinoids in human biological specimens. In this review, we focus on a number of analytical methods that have, so far, been developed and validated, with particular attention to the new "golden standard" method of forensic analysis, liquid chromatography mass spectrometry or tandem mass spectrometry. In addition, this review provides an overview of the effective and selective methods used for the extraction and isolation of cannabinoids from (i) conventional matrices, such as blood, urine and oral fluid and (ii) alternative biological matrices, such as hair, cerumen and meconium.
Collapse
|
13
|
Nicolaou AG, Stavrou IJ, Louppis AP, Constantinou MS, Kapnissi-Christodoulou C. Application of an ultra-performance liquid chromatography-tandem mass spectrometric method for the detection and quantification of cannabis in cerumen samples. J Chromatogr A 2021; 1642:462035. [PMID: 33725496 DOI: 10.1016/j.chroma.2021.462035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/14/2022]
Abstract
In this study, cerumen, a non-conventional biological secretion, was examined as an alternative matrix for forensic analyzis. A fully validated analytical UPLC-MS/MS method was developed for the detection and quantification of the most prevalent psychoactive illicit drug globe wide, Δ9-tethrahydrocannabinol, commonly known as THC, and four major cannabinoids found in cannabis Sativa. The method was validated, and standard external calibration curves were established with correlation coefficients > 0.99. A validated experimental procedure, along with a direct extraction of cannabinoids with acidified acetonitrile resulted in a short total analyzis time and a good extraction efficiency for all the analytes under study. LOD and LOQ values were determined to be 0.01-0.08 pg/mg and 0.04-0.23 pg/mg, respectively. To prove applicability of the proposed assay, volunteers were selected, and cerumen samples were examined for cannabis. The analyzis by use of UPLC-MS/MS indicated that all samples were positive, reporting recent cannabis abuse. Surprisingly, both THC and Cannabinol (CBN) were detected, and quantification was possible in 75% of the cases.
Collapse
Affiliation(s)
| | - Ioannis J Stavrou
- Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | | | | | | |
Collapse
|
14
|
Brighenti V, Protti M, Anceschi L, Zanardi C, Mercolini L, Pellati F. Emerging challenges in the extraction, analysis and bioanalysis of cannabidiol and related compounds. J Pharm Biomed Anal 2020; 192:113633. [PMID: 33039911 DOI: 10.1016/j.jpba.2020.113633] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Cannabidiol (CBD) is a bioactive terpenophenolic compound isolated from Cannabis sativa L. It is known to possess several properties of pharmaceutical interest, such as antioxidant, anti-inflammatory, anti-microbial, neuroprotective and anti-convulsant, being it active as a multi-target compound. From a therapeutic point of view, CBD is most commonly used for seizure disorder in children. CBD is present in both medical and fiber-type C. sativa plants, but, unlike Δ9-tetrahydrocannabinol (THC), it is a non-psychoactive compound. Non-psychoactive or fiber-type C. sativa (also known as hemp) differs from the medical one, since it contains only low levels of THC and high levels of CBD and related non-psychoactive cannabinoids. In addition to medical Cannabis, which is used for many different therapeutic purposes, a great expansion of the market of hemp plant material and related products has been observed in recent years, due to its usage in many fields, including food, cosmetics and electronic cigarettes liquids (commonly known as e-liquids). In this view, this work is focused on recent advances on sample preparation strategies and analytical methods for the chemical analysis of CBD and related compounds in both C. sativa plant material, its derived products and biological samples. Since sample preparation is considered to be a crucial step in the development of reliable analytical methods for the determination of natural compounds in complex matrices, different extraction methods are discussed. As regards the analysis of CBD and related compounds, the application of both separation and non-separation methods is discussed in detail. The advantages, disadvantages and applicability of the different methodologies currently available are evaluated. The scientific interest in the development of portable devices for the reliable analysis of CBD in vegetable and biological samples is also highlighted.
Collapse
Affiliation(s)
- Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Lisa Anceschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 103/287, 41125 Modena, Italy
| | - Chiara Zanardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|
15
|
Silva CP, Dalpiaz LPP, Gerbase FE, Muller VV, Cezimbra da Silva A, Lizot LF, Hahn RZ, Costa JL, Antunes MV, Linden R. Determination of cannabinoids in plasma using salting‐out‐assisted liquid–liquid extraction followed by LC–MS/MS analysis. Biomed Chromatogr 2020; 34:e4952. [DOI: 10.1002/bmc.4952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Cristiane Pires Silva
- Laboratory of Analytical Toxicology Feevale University Novo Hamburgo Brazil
- National Institute of Forensic Science and Technology Brazil
- Graduate Program on Toxicology and Analytical Toxicology Universidade Feevale Novo Hamburgo RS Brazil
| | | | - Fernando Engel Gerbase
- Laboratory of Analytical Toxicology Feevale University Novo Hamburgo Brazil
- National Institute of Forensic Science and Technology Brazil
| | - Victoria Vendramini Muller
- Laboratory of Analytical Toxicology Feevale University Novo Hamburgo Brazil
- National Institute of Forensic Science and Technology Brazil
- Graduate Program on Toxicology and Analytical Toxicology Universidade Feevale Novo Hamburgo RS Brazil
| | - Anne Cezimbra da Silva
- Laboratory of Analytical Toxicology Feevale University Novo Hamburgo Brazil
- Graduate Program on Toxicology and Analytical Toxicology Universidade Feevale Novo Hamburgo RS Brazil
| | - Lilian Feltraco Lizot
- Laboratory of Analytical Toxicology Feevale University Novo Hamburgo Brazil
- National Institute of Forensic Science and Technology Brazil
- Graduate Program on Toxicology and Analytical Toxicology Universidade Feevale Novo Hamburgo RS Brazil
| | | | - José Luiz Costa
- Faculty of Pharmaceutical Sciences University of Campinas Campinas SP Brazil
- Campinas Poison Control Center, Faculty of Medical Sciences University of Campinas Campinas SP Brazil
| | - Marina Venzon Antunes
- Laboratory of Analytical Toxicology Feevale University Novo Hamburgo Brazil
- Graduate Program on Toxicology and Analytical Toxicology Universidade Feevale Novo Hamburgo RS Brazil
| | - Rafael Linden
- Laboratory of Analytical Toxicology Feevale University Novo Hamburgo Brazil
- National Institute of Forensic Science and Technology Brazil
- Graduate Program on Toxicology and Analytical Toxicology Universidade Feevale Novo Hamburgo RS Brazil
| |
Collapse
|
16
|
Nahar L, Onder A, Sarker SD. A review on the recent advances in HPLC, UHPLC and UPLC analyses of naturally occurring cannabinoids (2010-2019). PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:413-457. [PMID: 31849137 DOI: 10.1002/pca.2906] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Organic molecules that bind to cannabinoid receptors are called cannabinoids, and they have similar pharmacological properties like the plant, Cannabis sativa L. Hyphenated liquid chromatography (LC), incorporating high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography (UPLC, also known as ultrahigh-performance liquid chromatography, UHPLC), usually coupled to an ultraviolet (UV), UV-photodiode array (PDA) or mass spectrometry (MS) detector, has become a popular analytical tool for the analysis of naturally occurring cannabinoids in various matrices. OBJECTIVE To review literature on the use of various LC-based analytical methods for the analysis of naturally occurring cannabinoids published since 2010. METHODOLOGY A comprehensive literature search was performed utilising several databases, like Web of Knowledge, PubMed and Google Scholar, and other relevant published materials including published books. The keywords used, in various combinations, with cannabinoids being present in all combinations, in the search were Cannabis, hemp, cannabinoids, Cannabis sativa, marijuana, analysis, HPLC, UHPLC, UPLC, quantitative, qualitative and quality control. RESULTS Since 2010, several LC methods for the analysis of naturally occurring cannabinoids have been reported. While simple HPLC-UV or HPLC-UV-PDA-based methods were common in cannabinoids analysis, HPLC-MS, HPLC-MS/MS, UPLC (or UHPLC)-UV-PDA, UPLC (or UHPLC)-MS and UPLC (or UHPLC)-MS/MS, were also used frequently. Applications of mathematical and computational models for optimisation of different protocols were observed, and pre-analyses included various environmentally friendly extraction protocols. CONCLUSIONS LC-based analysis of naturally occurring cannabinoids has dominated the cannabinoids analysis during the last 10 years, and UPLC and UHPLC methods have been shown to be superior to conventional HPLC methods.
Collapse
Affiliation(s)
- Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
| | - Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
17
|
Lee JH, Min AY, Han JH, Yang YJ, Kim H, Shin D. Development and validation of LC-MS/MS method with QuEChERS clean-up for detecting cannabinoids in foods and dietary supplements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1413-1424. [PMID: 32530793 DOI: 10.1080/19440049.2020.1769200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
a rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) using a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) clean-up for a variety of foods and dietary supplements (DS). QuEChERS is widely used in extraction or clean-up procedures to eliminate interference of matrices such as sugars, organic acids, lipids, and fatty acids. The samples were categorised into three types, and various pretreatment methods were compared for each type. In all types, the QuEChERS was superior and selected as the final pretreatment method. The optimised method was validated for specificity, limit of detection (LOD), limit of quantification (LOQ), linearity, recovery, precision and accuracy. All of the validation results met the requirements of the international guidelines for all types of samples. The validated method was applied to 30 commercial food samples, CBD was detected in 17 samples, with 2 of them detected below the LOQ level and the rest detected in a range of 70 μg/kg to 31305 mg/kg (3.1%, w/w). Meanwhile, THC was detected in 14 samples; 2 of them were detected below the LOQ level and the rest detected in a 0.08-98.62 μg/g range. These results indicated that the validated method can be successfully applied for the determination of cannabinoids in a variety of samples. Furthermore, it will be useful for controlling the illegal distribution of cannabinoids.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Division of Advanced Analysis, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Cheongju-si, Republic of Korea
| | - A Young Min
- Division of Advanced Analysis, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Cheongju-si, Republic of Korea
| | - Ji Hye Han
- Division of Advanced Analysis, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Cheongju-si, Republic of Korea
| | - Yoon Ji Yang
- Division of Advanced Analysis, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Cheongju-si, Republic of Korea
| | - Hyungil Kim
- Division of Advanced Analysis, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Cheongju-si, Republic of Korea
| | - Dongwoo Shin
- Division of Advanced Analysis, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Cheongju-si, Republic of Korea
| |
Collapse
|
18
|
Chan WS, Wong GF, Hung CW, Wong YN, Fung KM, Lee WK, Dao KL, Leung CW, Lo KM, Lee WM, Cheung BKK. Interpol review of toxicology 2016-2019. Forensic Sci Int Synerg 2020; 2:563-607. [PMID: 33385147 PMCID: PMC7770452 DOI: 10.1016/j.fsisyn.2020.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
This review paper covers the forensic-relevant literature in toxicology from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20.Papers%202019.pdf.
Collapse
|
19
|
Hubbard JA, Smith BE, Sobolesky PM, Kim S, Hoffman MA, Stone J, Huestis MA, Grelotti DJ, Grant I, Marcotte TD, Fitzgerald RL. Validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) method to detect cannabinoids in whole blood and breath. ACTA ACUST UNITED AC 2020; 58:673-681. [DOI: 10.1515/cclm-2019-0600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/21/2019] [Indexed: 11/15/2022]
Abstract
AbstractBackgroundThe widespread availability of cannabis raises concerns regarding its effect on driving performance and operation of complex equipment. Currently, there are no established safe driving limits regarding ∆9-tetrahydrocannabinol (THC) concentrations in blood or breath. Daily cannabis users build up a large body burden of THC with residual excretion for days or weeks after the start of abstinence. Therefore, it is critical to have a sensitive and specific analytical assay that quantifies THC, the main psychoactive component of cannabis, and multiple metabolites to improve interpretation of cannabinoids in blood; some analytes may indicate recent use.MethodsA liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to quantify THC, cannabinol (CBN), cannabidiol (CBD), 11-hydroxy-THC (11-OH-THC), (±)-11-nor-9-carboxy-Δ9-THC (THCCOOH), (+)-11-nor-Δ9-THC-9-carboxylic acid glucuronide (THCCOOH-gluc), cannabigerol (CBG), and tetrahydrocannabivarin (THCV) in whole blood (WB). WB samples were prepared by solid-phase extraction (SPE) and quantified by LC-MS/MS. A rapid and simple method involving methanol elution of THC in breath collected in SensAbues® devices was optimized.ResultsLower limits of quantification ranged from 0.5 to 2 μg/L in WB. An LLOQ of 80 pg/pad was achieved for THC concentrations in breath. Calibration curves were linear (R2>0.995) with calibrator concentrations within ±15% of their target and quality control (QC) bias and imprecision ≤15%. No major matrix effects or drug interferences were observed.ConclusionsThe methods were robust and adequately quantified cannabinoids in biological blood and breath samples. These methods will be used to identify cannabinoid concentrations in an upcoming study of the effects of cannabis on driving.
Collapse
Affiliation(s)
| | | | - Philip M. Sobolesky
- Department of Pathology and Laboratory Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Sollip Kim
- Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Ilsan Seo-gu, Goyang, Republic of Korea
| | - Melissa A. Hoffman
- Department of Pathology, University of California, San Diego, CA 92121, USA
| | - Judith Stone
- University of California, San Francisco Medical Center, Laboratory Medicine, Parnassus Chemistry, San Francisco, CA, USA
| | - Marilyn A. Huestis
- The Lambert Center for the Study of Medicinal Cannabis and Hemp, Institute for Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - David J. Grelotti
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Igor Grant
- Department of Psychiatry, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
20
|
Toxicological screening in the Amsterdam acute setting becomes more relevant if the standard panel of the drugs-of-abuse point-of-care test is expanded with GHB and ketamine. Toxicol Rep 2020; 7:539-546. [PMID: 32368504 PMCID: PMC7184233 DOI: 10.1016/j.toxrep.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022] Open
Abstract
Objective For diagnosis and treatment in the acute setting, it is crucial to know whether the clinical status of patients might be explained by the effects of drugs.The objective of this study was to determine how many drugs were detected by comprehensive toxicological screening, that could not be detected with a routine drugs-of-abuse point-of-care test (DOA-POCT) and which drugs of abuse (DOA) were relevant. A secondary objective was to determine in how many patients comprehensive toxicological screening provided additional clinically relevant information. Methods In this prospective study, patients were included in whom a DOA-POCT was performed and residual urine and serum samples were available.DOA-POCT were performed using the Triage® TOX Drug Screen. Comprehensive toxicological screening was performed using 1) the Toxtyper™ LC-MSN method and 2) two GC-FID methods for alcohols and GHB respectively.The clinical relevance of the comprehensive toxicological screening results regarding diagnosis and patient management was quantified. Results A total of 100 patients were included. In 91 of these patients, comprehensive toxicological screening identified 234 drugs that were not identified by DOA-POCT. However, DOA-POCT identified 34 DOA that were not identified by comprehensive toxicological screening.Seven percent of comprehensive toxicological screening results were found to be clinically relevant, all with regard to diagnosis. GHB and ketamine were the drugs involved. Another 38 % strengthened confidence in diagnosis and patient care decisions. Conclusion GHB and ketamine should be added to the panel of drugs we screen at the point of care in the Amsterdam acute setting.
Collapse
|
21
|
Effect of combined doses of Δ 9-tetrahydrocannabinol and cannabidiol or tetrahydrocannabinolic acid and cannabidiolic acid on acute nausea in male Sprague-Dawley rats. Psychopharmacology (Berl) 2020; 237:901-914. [PMID: 31897571 DOI: 10.1007/s00213-019-05428-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022]
Abstract
RATIONALE This study evaluated the potential of combined cannabis constituents to reduce nausea. OBJECTIVES Using the lithium chloride (LiCl)-induced conditioned gaping model of nausea in male rats, we aimed to: 1) Determine effective anti-nausea doses of cannabidiol (CBD) 2) Determine effectiveness and the mechanism of action of combined subthreshold doses of CBD and Δ9-tetrahydrocannabinol (THC) 3) Determine effective doses of synthetic cannabidiolic acid (CBDA) 4) Determine effective doses of synthetic tetrahydrocannabinolic acid (THCA) 5) Determine the mechanism of action for THCA 6) Determine effectiveness and the mechanism of action of combined subthreshold doses of CBDA and THCA RESULTS: CBD (0.5-5 mg/kg, intraperitoneal [i.p.]) reduces LiCl-induced conditioned gaping (but 0.1, 20, 40 mg/kg are ineffective). Combined subthreshold doses of CBD (0.1 mg/kg, i.p.) and THC (0.1 mg/kg, i.p.) produce suppression of conditioned gaping, and this effect is blocked by administration of either WAY100635 (a serotonin 1A [5-HT1A]) receptor antagonist or SR141716 (SR; a CB1 receptor antagonist). THCA (0.01 mg/kg, i.p.) reduces conditioned gaping and administration of MK886 (a peroxisome proliferator-activated receptor alpha [PPARα] antagonist) blocked THCA's anti-nausea effect. Combined subthreshold doses of CBDA (0.00001 mg/kg, i.p.) and THCA (0.001 mg/kg, i.p.) produce suppression of conditioned gaping, and this effect is blocked by administration of WAY100635 or MK886. CONCLUSION Combinations of very low doses of CBD + THC or CBDA + THCA robustly reduce LiCl-induced conditioned gaping. Clinical trials are necessary to determine the efficacy of using single or combined cannabinoids as adjunct treatments with existing anti-emetic regimens to manage chemotherapy-induced nausea.
Collapse
|
22
|
Abd-Elsalam WH, Alsherbiny MA, Kung JY, Pate DW, Löbenberg R. LC–MS/MS quantitation of phytocannabinoids and their metabolites in biological matrices. Talanta 2019; 204:846-867. [PMID: 31357374 DOI: 10.1016/j.talanta.2019.06.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022]
|
23
|
Moorthy GS, Vedar C, DiLiberto MA, Zuppa AF. A patient-centric liquid chromatography-tandem mass spectrometry microsampling assay for analysis of cannabinoids in human whole blood: Application to pediatric pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1130-1131:121828. [PMID: 31670108 DOI: 10.1016/j.jchromb.2019.121828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/07/2023]
Abstract
Medical cannabis is increasingly used for the treatment of various ailments in children and adults. Three major cannabinoids in cannabis are delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN). There is a growing need to develop and utilize a patient-centric blood microsampling methodology to enable clinical trials and facilitate therapeutic drug monitoring. We have employed the volumetric absorptive microsampling (VAMS™) devices that enables accurate and precise collection of a fixed volume (20 µL) of blood, minimizing the impact of hematocriton accurate quantitation. We developed an ultra-performance liquid chromatographic method with tandem mass spectrometry detection for the quantification of three cannabinoids (THC, CBD, and CBN) employing deuterium labelled internal standards (THC-D3, CBD-D3, and CBN-D3). Sample extraction of VAMS™ devices, followed by solid phase extraction, reverse phase chromatographic separation, and selective detection using tandem mass spectrometry with a 6-minute runtime per sample was developed. Standard curves were linear between 1 and 500 ng/mL for THC and 0.5-500 ng/mL for CBD and CBN. Intra-day accuracies were within 91.3-112% while inter-day accuracies were within 94.4-107% with both having precisions (CV (%)) of <13% based on quality control samples in a three day validation study for all three cannabinoids. Analytes were stable in human whole blood under assay conditions (60 h at room temperature and 24 h in autosampler post-extraction). Dried microsamples were stable for one week at 40 °C, two weeks (15 days) under different storage conditions (room temperature, 4, -20 and -78 °C), one month (29 days) at -20 and -78 °C and three months (68 days) at -78 °C. This assay provides an efficient quantitation of THC, CBD, and CBN in VAMS™ devices and is currently being implemented for pediatric clinical trials.
Collapse
Affiliation(s)
- Ganesh S Moorthy
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Christina Vedar
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mary Ann DiLiberto
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Athena F Zuppa
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
24
|
Vozella V, Zibardi C, Ahmed F, Piomelli D. Fast and Sensitive Quantification of Δ 9-Tetrahydrocannabinol and Its Main Oxidative Metabolites by Liquid Chromatography/Tandem Mass Spectrometry. Cannabis Cannabinoid Res 2019; 4:110-123. [PMID: 31236476 PMCID: PMC6590723 DOI: 10.1089/can.2018.0075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Few animal studies have evaluated the pharmacological effects of Δ9-tetrahydrocannabinol (THC) in relation to its pharmacokinetic properties. Understanding this relationship is essential, however, if comparisons are to be drawn across conditions-such as sex, age, and route of administration-which are associated with variations in the absorption, metabolism, and distribution of THC. As a first step toward addressing this gap, in this report, we describe a rapid, sensitive, and accurate method for the quantification of THC and its main oxidative metabolites, and apply it to representative rodent tissues. Materials and Methods: The sample workup procedure consisted of two steps: bulk protein precipitation with cold acetonitrile (ACN) followed by phospholipid removal by elution through Captiva-Enhanced Matrix Removal cartridges. The liquid chromatography/tandem mass spectrometry (LC/MS-MS) protocol utilized a commercially available C18 reversed-phase column and a simple methanol/water gradient system. The new method was validated following Food and Drug Administration (FDA) guidelines, and was applied to the quantification of THC and its main oxidative metabolites-11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (11-COOH-THC)-in plasma and brain of mice treated with a single intraperitoneal dose of THC (10 mg/kg). Results: ACN precipitation and column elution effectively depleted matrix constituents-most notably choline-containing phospholipids-which are known to interfere with THC analysis, with average recovery values of >85% for plasma and >80% for brain. The LC conditions yielded baseline separation of all analytes in a total run time of 7 min (including re-equilibration). The 10-point calibration curves showed excellent linearity (R 2>0.99) over a wide range of concentrations (1-1000 pmol/100 μL). Lowest limit of quantification was 2 pmol/100 μL for all analytes, and lowest limits of detection were 0.5 pmol/100 μL for THC and 11-OH-THC, and 1 pmol/100 μL for 11-COOH-THC. Intraday and interday accuracy and precision values were within the FDA-recommended range (±15% of nominal concentration). An application of the method to adult male mice is presented. Conclusions: We present a fast and sensitive method for the analysis of THC, which should facilitate studies aimed at linking the pharmacokinetics and pharmacodynamics of this compound in animal models.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Cristina Zibardi
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
- Department of Biological Chemistry, University of California, Irvine, Irvine, California
- Department of Pharmacology, University of California, Irvine, Irvine, California
- Center for the Study of Cannabis, University of California, Irvine, Irvine, California
| |
Collapse
|
25
|
Simultaneous Quantification of 13 Cannabinoids and Metabolites in Human Plasma by Liquid Chromatography Tandem Mass Spectrometry in Adult Epilepsy Patients. Ther Drug Monit 2019; 41:357-370. [DOI: 10.1097/ftd.0000000000000583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Palazzoli F, Citti C, Licata M, Vilella A, Manca L, Zoli M, Vandelli MA, Forni F, Cannazza G. Development of a simple and sensitive liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS) method for the determination of cannabidiol (CBD), Δ 9-tetrahydrocannabinol (THC) and its metabolites in rat whole blood after oral administration of a single high dose of CBD. J Pharm Biomed Anal 2017; 150:25-32. [PMID: 29202305 DOI: 10.1016/j.jpba.2017.11.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023]
Abstract
The investigation of the possible conversion of cannabidiol (CBD) into Δ9-tetrahydrocannabinol (THC) in vivo after oral administration of CBD is reported herein since recent publications suggested a rapid conversion in simulated gastric fluid. To this end, single high dose of CBD (50mg/kg) was administered orally to rats and their blood was collected after 3 and 6h. A highly sensitive and selective LC-MS/MS method was developed and fully validated in compliance with the Scientific Working Group of Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. This method also involved the optimization of cannabinoids and their metabolites extraction in order to remove co-eluting phospholipids and increase the sensitivity of the MS detection. Neither THC nor its metabolites were detected in rat whole blood after 3 or 6h from CBD administration. After oral administration, the amount of CBD dissolved in olive oil was higher than that absorbed from an ethanolic solution. This could be explained by the protection of lipid excipients towards CBD from acidic gastric juice.
Collapse
Affiliation(s)
- Federica Palazzoli
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Largo del pozzo 71, 41125 Modena, Italy
| | - Cinzia Citti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy; CNR NANOTEC, Campus Ecoteckne dell'Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Manuela Licata
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Largo del pozzo 71, 41125 Modena, Italy.
| | - Antonietta Vilella
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Letizia Manca
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Michele Zoli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Flavio Forni
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giuseppe Cannazza
- CNR NANOTEC, Campus Ecoteckne dell'Università del Salento, Via per Monteroni, 73100 Lecce, Italy; Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| |
Collapse
|
27
|
Sørensen LK, Hasselstrøm JB. The effect of antioxidants on the long-term stability of THC and related cannabinoids in sampled whole blood. Drug Test Anal 2017; 10:301-309. [DOI: 10.1002/dta.2221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Lambert K. Sørensen
- Section for Forensic Chemistry, Department of Forensic Medicine; Aarhus University; Aarhus N Denmark
| | - Jørgen B. Hasselstrøm
- Section for Forensic Chemistry, Department of Forensic Medicine; Aarhus University; Aarhus N Denmark
| |
Collapse
|