1
|
Gallichotte EN, Fitzmeyer EA, Williams L, Spangler MC, Bosco-Lauth AM, Ebel GD. WNV and SLEV coinfection in avian and mosquito hosts: impact on viremia, antibody responses, and vector competence. J Virol 2024; 98:e0104124. [PMID: 39324792 PMCID: PMC11495067 DOI: 10.1128/jvi.01041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related flaviviruses that can cause encephalitis in humans and related diseases in animals. In nature, both are transmitted by Culex, with wild birds, including jays, sparrows, and robins, serving as vertebrate hosts. WNV and SLEV circulate in the same environments and have recently caused concurrent disease outbreaks in humans. The extent that coinfection of mosquitoes or birds may alter transmission dynamics, however, is not well characterized. We therefore sought to determine if coinfection alters infection kinetics and virus levels in birds and infection rates in mosquitoes. Accordingly, American robins (Turdus migratorius), two species of mosquitoes, and vertebrate and invertebrate cells were infected with WNV and/or SLEV to assess how simultaneous exposure may alter infection outcomes. There was variable impact of coinfection in vertebrate cells, with some evidence that SLEV can suppress WNV replication. However, robins had comparable viremia and antibody responses regardless of coinfection. Conversely, in Culex cells and mosquitoes, we saw a minimal impact of simultaneous exposure to both viruses on replication, with comparable infection, dissemination, and transmission rates in singly infected and coinfected mosquitoes. Importantly, while WNV and SLEV levels in coinfected mosquito midguts were positively correlated, we saw no correlation between them in salivary glands and saliva. These results reveal that while coinfection can occur in both avian and mosquito hosts, the viruses minimally impact one another. The potential for coinfection to alter virus population structure or the likelihood of rare genotypes emerging remains unknown.IMPORTANCEWest Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related viruses that are transmitted by the same mosquitoes and infect the same birds in nature. Both viruses circulate in the same regions and have caused concurrent outbreaks in humans. It is possible that mosquitoes, birds, and/or humans could be infected with both WNV and SLEV simultaneously, as has been observed with Zika, chikungunya, and dengue viruses. To study the impact of coinfection, we experimentally infected vertebrate and invertebrate cells, American robins, and two Culex species with WNV and/or SLEV. Robins were efficiently coinfected, with no impact of coinfection on virus levels or immune response. Similarly, in mosquitoes, coinfection did not impact infection rates, and mosquitoes could transmit both WNV and SLEV together. These results reveal that WNV and SLEV coinfection in birds and mosquitoes can occur in nature, which may impact public health and human disease risk.
Collapse
Affiliation(s)
- Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Landon Williams
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mark Cole Spangler
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Angela M. Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
da Rocha NC, Amorim LDSC, Won-Held Rabelo V, da Silva CO, Silva LS, Barboza GKP, Carlos MFLP, Neves Lima AEA, Palmer Paixão ICND. β-enaminoester derivatives exhibit promising in vitro and in silico antiviral potential against Mayaro virus. Arch Microbiol 2024; 206:406. [PMID: 39292269 DOI: 10.1007/s00203-024-04135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Mayaro virus (MAYV) is the causative agent of Mayaro fever, which is characterized mainly by acute fever and long-term severe arthralgia, common manifestations of other arbovirus infections, making the correct diagnosis a challenge. Besides, MAYV infections have been reported in South America, especially in Brazil. However, the lack of vaccines or specific antiviral drugs to control these infections makes the search for new antivirals an urgent need. Herein, we evaluated the antiviral potential of synthetic β-enaminoesters derivatives against MAYV replication and their pharmacokinetic and toxicological (ADMET) properties using in vitro and in silico strategies. For this purpose, Vero cells were infected with MAYV at an MOI of 0.1, treated with compounds (50 µM) for 24 h, and virus titers were quantified by plaque reduction assays. Compounds 2b (83.33%) and 2d (77.53%) exhibited the highest activity with inhibition rates of 83.33% and 77.53%, respectively. The most active compounds 2b (EC50 = 18.92 µM; SI > 52.85), and 2d (EC50 = 14.52 µM; SI > 68.87) exhibited higher potency and selectivity than the control drug suramin (EC50 = 38.97 µM; SI > 25.66). Then, we investigated the mechanism of action of the most active compounds. None of the compounds showed virucidal activity, neither inhibited virus adsorption, but compound 2b inhibited virus entry (62.64%). Also, compounds 2b and 2d inhibited some processes involved with the release of new virus particles. Finally, in silico results indicated good ADMET parameters of the most active compounds and reinforced their promising profile as drug candidates against MAYV.
Collapse
Affiliation(s)
- Natasha Cristina da Rocha
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Leonardo Dos Santos Corrêa Amorim
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Gerência de Desenvolvimento Tecnológico, Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - Vitor Won-Held Rabelo
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Carolina Oliveira da Silva
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luciene Soares Silva
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Geicy Kelly Pires Barboza
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Aurea Echevarria Aznar Neves Lima
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Laboratório de Virologia Molecular e Biotecnologia Marinha, Programa de Pós-graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
3
|
Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. Parasit Vectors 2024; 17:73. [PMID: 38374048 PMCID: PMC10877814 DOI: 10.1186/s13071-023-06109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. METHODS Here, we examine single and co-infection of Mayaro virus (D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27 °C) and hot (32 °C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. RESULTS Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes with a tendency for higher titers in co-infected mosquitoes at both temperatures, and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs. single infections and was more evident at earlier time points (7 vs. 14 days post infection) for Mayaro. The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. CONCLUSIONS Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses. However, more studies are necessary to clarify the role of co-infection at different temperature regimes, including under more natural temperature settings.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Chiara Vanalli
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kristine Werling
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Isabella M Cattadori
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
4
|
Carrera JP, Galué J, de Souza WM, Torres-Cosme R, Lezcano-Coba C, Cumbrera A, Vasilakis N, Tesh RB, Guzman H, Weaver SC, Vittor AY, Samudio R, Miguel Pascale J, Valderrama A, Cáceres Carrera L, Donnelly CA, Faria NR. Madariaga and Venezuelan equine encephalitis virus seroprevalence in rodent enzootic hosts in Eastern and Western Panama. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555226. [PMID: 37693579 PMCID: PMC10491141 DOI: 10.1101/2023.08.28.555226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
While rodents are primary reservoirs of Venezuelan equine encephalitis virus (VEEV), their role in Madariaga virus (MADV) transmission remains uncertain, particularly given their overlapping geographic distribution. This study explores the interplay of alphavirus prevalence, rodent diversity, and land use within Darien and Western Panama provinces. A total of three locations were selected for rodent sampling in Darien province: Los Pavitos, El Real de Santa Maria and Santa Librada. Two sites were selected in Western Panama province: El Cacao and Cirí Grande. We used plaque reduction neutralization tests to assess MADV and VEEV seroprevalences in 599 rodents of 16 species across five study sites. MADV seroprevalence was observed at higher rates in Los Pavitos (Darien province), 9.0%, 95% CI: 3.6-17.6, while VEEV seroprevalence was elevated in El Cacao (Western Panama province), 27.3%, 95% CI: 16.1-40.9, and El Real de Santa María (Darien province), 20.4%, 95% CI: 12.6-29.7. Species like Oryzomys coesi, 23.1%, 95% CI: 5.0-53.8, and Transandinomys bolivaris, 20.0%, 95% CI: 0.5-71.6 displayed higher MADV seroprevalences than other species, whereas Transandinomys bolivaris, 80.0%, 95% CI: 28.3-99.4, and Proechimys semispinosus, 27.3%, 95% CI: 17.0-39.6, exhibited higher VEEV seroprevalences. Our findings provide support to the notion that rodents are vertebrate reservoirs of MADV and reveal spatial variations in alphavirus seropositivity among rodent species, with different provinces exhibiting distinct rates for MADV and VEEV. Moreover, specific rodent species are linked to unique seroprevalence patterns for these viruses, suggesting that rodent diversity and environmental conditions might play a significant role in shaping alphavirus distribution.
Collapse
Affiliation(s)
- Jean-Paul Carrera
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford United Kingdom
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
| | - Josefrancisco Galué
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
| | - William M. de Souza
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Rolando Torres-Cosme
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Carlos Lezcano-Coba
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
| | - Alberto Cumbrera
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Nikos Vasilakis
- Institute for Human infection and Immunity, University of Texas Medical Branch, Texas, USA
- Geographic System Information Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert B. Tesh
- Geographic System Information Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hilda Guzman
- Geographic System Information Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human infection and Immunity, University of Texas Medical Branch, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Amy Y. Vittor
- Department of Medicine, Division of Infectious Disease and Global Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Juan Miguel Pascale
- Clinical Research Unit, Gorgas Memorial Institute of health Studies, Panama City, Panama
| | - Anayansi Valderrama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Lorenzo Cáceres Carrera
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Christl A. Donnelly
- Pandemic Sciences Institute, University of Oxford, Oxford United Kingdom
- Department of Statistics, University of Oxford, Oxford United Kingdom
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK
| | - Nuno R. Faria
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK
| |
Collapse
|
5
|
Silva-Ramos CR, Faccini-Martínez ÁA, Serna-Rivera CC, Mattar S, Hidalgo M. Etiologies of Zoonotic Tropical Febrile Illnesses That Are Not Part of the Notifiable Diseases in Colombia. Microorganisms 2023; 11:2154. [PMID: 37763998 PMCID: PMC10535066 DOI: 10.3390/microorganisms11092154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 09/29/2023] Open
Abstract
In Colombia, tropical febrile illnesses represent one of the most important causes of clinical attention. Febrile illnesses in the tropics are mainly zoonotic and have a broad etiology. The Colombian surveillance system monitors some notifiable diseases. However, several etiologies are not monitored by this system. In the present review, we describe eleven different etiologies of zoonotic tropical febrile illnesses that are not monitored by the Colombian surveillance system but have scientific, historical, and contemporary data that confirm or suggest their presence in different regions of the country: Anaplasma, Arenavirus, Bartonella, relapsing fever group Borrelia, Coxiella burnetii, Ehrlichia, Hantavirus, Mayaro virus, Orientia, Oropouche virus, and Rickettsia. These could generate a risk for the local population, travelers, and immigrants, due to which they should be included in the mandatory notification system, considering their importance for Colombian public health.
Collapse
Affiliation(s)
- Carlos Ramiro Silva-Ramos
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Álvaro A. Faccini-Martínez
- Servicio de Infectología, Hospital Militar Central, Bogotá 110110, Colombia;
- Servicios y Asesorías en Infectología—SAI, Bogotá 110110, Colombia
| | - Cristian C. Serna-Rivera
- Grupo de Investigación en Ciencias Veterinarias (CENTAURO), Línea de Investigación Zoonosis Emergentes y Re-Emergentes, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín 050034, Colombia;
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales 170004, Colombia
| | - Salim Mattar
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Montería 230001, Colombia;
| | - Marylin Hidalgo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| |
Collapse
|
6
|
Darby CS, Featherston KM, Lin J, Franz AWE. Detection of La Crosse Virus In Situ and in Individual Progeny to Assess the Vertical Transmission Potential in Aedes albopictus and Aedes aegypti. INSECTS 2023; 14:601. [PMID: 37504607 PMCID: PMC10380845 DOI: 10.3390/insects14070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
La Crosse virus (LACV) is circulating in the midwestern and southeastern states of the United States and can cause human encephalitis. The main vector of the virus is the eastern tree-hole mosquito, Aedes triseriatus. Ae. albopictus has been also described as a natural LACV vector, while Ae. aegypti has been infected with the virus under laboratory conditions. Here, we compare the vertical transmission potential of LACV in Ae. albopictus and Ae. aegypti, with emphasis given to the ovarian infection patterns that the virus generates in both species. Both mosquito species received artificial bloodmeals containing LACV. At defined time points post-infection/bloodmeal, midguts, head tissue, and ovaries were analyzed for the presence of virus. Viral infection patterns in the ovaries were visualized via immunofluorescence confocal microscopy and immunohistopathology assays using an LACV-specific monoclonal antibody. In Ae. aegypti, LACV was confronted with midgut infection and escape barriers, which were much less pronounced in Ae. albopictus, resulting in a significantly higher prevalence of infection in the latter. Following the ingestion of a single virus-containing bloodmeal, no progeny larvae were found to be virus-infected. Regardless, females of both species showed the presence of LACV antigen in their ovariole sheaths. Furthermore, in a single Ae. albopictus female, viral antigen was associated with the nurse cells inside the primary follicles. Following the ingestion of a second non-infectious bloodmeal at 7- or 10-days post-ingestion of an LACV-containing bloodmeal, more progeny larvae of Ae. albopictus than of Ae. aegypti were virus-infected. LACV antigen was detected in the egg chambers and ovariole sheaths of both mosquito species. Traces of viral antigen were also detected in a few oocytes from Ae. albopictus. The low level of vertical transmission and the majority of the ovarian infection patterns suggested the transovum rather than transovarial transmission (TOT) of the virus in both vector species. However, based on the detection of LACV antigen in follicular tissue and oocytes, there was the potential for TOT among several Ae. albopictus females. Thus, TOT is not a general feature of LACV infection in mosquitoes. Instead, the TOT of LACV seems to be dependent on its particular interaction with the reproductive tissues of a female.
Collapse
Affiliation(s)
| | | | | | - Alexander W. E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (C.S.D.); (K.M.F.); (J.L.)
| |
Collapse
|
7
|
Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541186. [PMID: 37292724 PMCID: PMC10245717 DOI: 10.1101/2023.05.17.541186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. Here, we examine single and co-infection of Mayaro virus (-D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27°C) and hot (32°C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes, with a tendency for higher titers in co-infected mosquitoes at both temperatures and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs single infections and was more evident at earlier timepoints (7 vs 14 days post infection). The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses, but further studies are necessary to clarify the role of co-infection at different and variable temperature regimes.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chiara Vanalli
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristine Werling
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Isabella M Cattadori
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Krokovsky L, Lins CRB, Guedes DRD, Wallau GDL, Ayres CFJ, Paiva MHS. Dynamic of Mayaro Virus Transmission in Aedes aegypti, Culex quinquefasciatus Mosquitoes, and a Mice Model. Viruses 2023; 15:v15030799. [PMID: 36992508 PMCID: PMC10053307 DOI: 10.3390/v15030799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/31/2023] Open
Abstract
Mayaro virus (MAYV) is transmitted by Haemagogus spp. mosquitoes and has been circulating in Amazon areas in the North and Central West regions of Brazil since the 1980s, with an increase in human case notifications in the last 10 years. MAYV introduction in urban areas is a public health concern as infections can cause severe symptoms similar to other alphaviruses. Studies with Aedes aegypti have demonstrated the potential vector competence of the species and the detection of MAYV in urban populations of mosquitoes. Considering the two most abundant urban mosquito species in Brazil, we investigated the dynamics of MAYV transmission by Ae. aegypti and Culex quinquefasciatus in a mice model. Mosquito colonies were artificially fed with blood containing MAYV and infection (IR) and dissemination rates (DR) were evaluated. On the 7th day post-infection (dpi), IFNAR BL/6 mice were made available as a blood source to both mosquito species. After the appearance of clinical signs of infection, a second blood feeding was performed with a new group of non-infected mosquitoes. RT-qPCR and plaque assays were carried out with animal and mosquito tissues to determine IR and DR. For Ae. aegypti, we found an IR of 97.5-100% and a DR reached 100% in both 7 and 14 dpi. While IR and DR for Cx. quinquefasciatus was 13.1-14.81% and 60% to 80%, respectively. A total of 18 mice were used (test = 12 and control = 6) for Ae. aegypti and 12 (test = 8 and control = 4) for Cx. quinquefasciatus to evaluate the mosquito-mice transmission rate. All mice that were bitten by infected Ae. aegypti showed clinical signs of infection while all mice exposed to infected Cx. quinquefasciatus mosquitoes remained healthy. Viremia in the mice from Ae. aegypti group ranged from 2.5 × 108 to 5 × 109 PFU/mL. Ae. aegypti from the second blood feeding showed a 50% IR. Our study showed the applicability of an efficient model to complete arbovirus transmission cycle studies and suggests that the Ae. aegypti population evaluated is a competent vector for MAYV, while highlighting the vectorial capacity of Ae. aegypti and the possible introduction into urban areas. The mice model employed here is an important tool for arthropod-vector transmission studies with laboratory and field mosquito populations, as well as with other arboviruses.
Collapse
Affiliation(s)
- Larissa Krokovsky
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Carlos Ralph Batista Lins
- Biotério de Criação, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Duschinka Ribeiro Duarte Guedes
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Gabriel da Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Constância Flávia Junqueira Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Professor Moraes Rego, S/N, Campus da UFPE, Cidade Universitária, Recife 50740-465, PE, Brazil
- Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco (UFPE), Rodovia BR-104, km 59-Nova Caruaru, Caruaru 55002-970, PE, Brazil
| |
Collapse
|
9
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
10
|
Garcia GA, Lord AR, Santos LMB, Kariyawasam TN, David MR, Couto-Lima D, Tátila-Ferreira A, Pavan MG, Sikulu-Lord MT, Maciel-de-Freitas R. Rapid and Non-Invasive Detection of Aedes aegypti Co-Infected with Zika and Dengue Viruses Using Near Infrared Spectroscopy. Viruses 2022; 15:11. [PMID: 36680052 PMCID: PMC9863061 DOI: 10.3390/v15010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The transmission of dengue (DENV) and Zika (ZIKV) has been continuously increasing worldwide. An efficient arbovirus surveillance system is critical to designing early-warning systems to increase preparedness of future outbreaks in endemic countries. The Near Infrared Spectroscopy (NIRS) is a promising high throughput technique to detect arbovirus infection in Ae. aegypti with remarkable advantages such as cost and time effectiveness, reagent-free, and non-invasive nature over existing molecular tools for similar purposes, enabling timely decision making through rapid detection of potential disease. Our aim was to determine whether NIRS can differentiate Ae. aegypti females infected with either ZIKV or DENV single infection, and those coinfected with ZIKV/DENV from uninfected ones. Using 200 Ae. aegypti females reared and infected in laboratory conditions, the training model differentiated mosquitoes into the four treatments with 100% accuracy. DENV-, ZIKV-, and ZIKV/DENV-coinfected mosquitoes that were used to validate the model could be correctly classified into their actual infection group with a predictive accuracy of 100%, 84%, and 80%, respectively. When compared with mosquitoes from the uninfected group, the three infected groups were predicted as belonging to the infected group with 100%, 97%, and 100% accuracy for DENV-infected, ZIKV-infected, and the co-infected group, respectively. Preliminary lab-based results are encouraging and indicate that NIRS should be tested in field settings to evaluate its potential role to monitor natural infection in field-caught mosquitoes.
Collapse
Affiliation(s)
- Gabriela A. Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Anton R. Lord
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
- Spectroscopy and Data Consultants Pty Ltd., Brisbane, QLD 4035, Australia
| | - Lilha M. B. Santos
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | | | - Mariana R. David
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Aline Tátila-Ferreira
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Márcio G. Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Maggy T. Sikulu-Lord
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
11
|
AG129 Mice as a Comprehensive Model for the Experimental Assessment of Mosquito Vector Competence for Arboviruses. Pathogens 2022; 11:pathogens11080879. [PMID: 36015000 PMCID: PMC9412449 DOI: 10.3390/pathogens11080879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Arboviruses (an acronym for “arthropod-borne virus”), such as dengue, yellow fever, Zika, and Chikungunya, are important human pathogens transmitted by mosquitoes. These viruses impose a growing burden on public health. Despite laboratory mice having been used for decades for understanding the basic biological phenomena of these viruses, it was only recently that researchers started to develop immunocompromised animals to study the pathogenesis of arboviruses and their transmission in a way that parallels natural cycles. Here, we show that the AG129 mouse (IFN α/β/γ R−/−) is a suitable and comprehensive vertebrate model for studying the mosquito vector competence for the major arboviruses of medical importance, namely the dengue virus (DENV), yellow fever virus (YFV), Zika virus (ZIKV), Mayaro virus (MAYV), and Chikungunya virus (CHIKV). We found that, after intraperitoneal injection, AG129 mice developed a transient viremia lasting several days, peaking on day two or three post infection, for all five arboviruses tested in this study. Furthermore, we found that the observed viremia was ample enough to infect Aedes aegypti during a blood meal from the AG129 infected mice. Finally, we demonstrated that infected mosquitoes could transmit each of the tested arboviruses back to naïve AG129 mice, completing a full transmission cycle of these vector-borne viruses. Together, our data show that A129 mice are a simple and comprehensive vertebrate model for studies of vector competence, as well as investigations into other aspects of mosquito biology that can affect virus–host interactions.
Collapse
|
12
|
Temperature-Mediated Effects on Mayaro Virus Vector Competency of Florida Aedes aegypti Mosquito Vectors. Viruses 2022; 14:v14050880. [PMID: 35632622 PMCID: PMC9144726 DOI: 10.3390/v14050880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging mosquito-borne arbovirus and public health concern. We evaluated the influence of temperature on Aedes aegypti responses to MAYV oral infection and transmission at two constant temperatures (20 °C and 30 °C). Infection of mosquito tissues (bodies and legs) and salivary secretions with MAYV was determined at 3, 9, 15, 21, and 27 days post ingestion. At both temperatures, we observed a trend of increase in progression of MAYV infection and replication kinetics over time, followed by a decline during later periods. Peaks of MAYV infection, titer, and dissemination from the midgut were detected at 15 and 21 days post ingestion at 30 °C and 20 °C, respectively. Mosquitoes were able to transmit MAYV as early as day 3 at 30 °C, but MAYV was not detectable in salivary secretions until day 15 at 20 °C. Low rates of MAYV in salivary secretions collected from infected mosquitoes provided evidence supporting the notion that a substantial salivary gland barrier(s) in Florida Ae. aegypti can limit the risk of MAYV transmission. Our results provide insights into the effects of temperature and time on the progression of infection and replication of MAYV in Ae. aegypti vectors.
Collapse
|
13
|
Investigation of Biological Factors Contributing to Individual Variation in Viral Titer after Oral Infection of Aedes aegypti Mosquitoes by Sindbis Virus. Viruses 2022; 14:v14010131. [PMID: 35062335 PMCID: PMC8780610 DOI: 10.3390/v14010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/21/2022] Open
Abstract
The mechanisms involved in determining arbovirus vector competence, or the ability of an arbovirus to infect and be transmitted by an arthropod vector, are still incompletely understood. It is well known that vector competence for a particular arbovirus can vary widely among different populations of a mosquito species, which is generally attributed to genetic differences between populations. What is less understood is the considerable variability (up to several logs) that is routinely observed in the virus titer between individual mosquitoes in a single experiment, even in mosquitoes from highly inbred lines. This extreme degree of variation in the virus titer between individual mosquitoes has been largely ignored in past studies. We investigated which biological factors can affect titer variation between individual mosquitoes of a laboratory strain of Aedes aegypti, the Orlando strain, after Sindbis virus infection. Greater titer variation was observed after oral versus intrathoracic infection, suggesting that the midgut barrier contributes to titer variability. Among the other factors tested, only the length of the incubation period affected the degree of titer variability, while virus strain, mosquito strain, mosquito age, mosquito weight, amount of blood ingested, and virus concentration in the blood meal had no discernible effect. We also observed differences in culture adaptability and in the ability to orally infect mosquitoes between virus populations obtained from low and high titer mosquitoes, suggesting that founder effects may affect the virus titer in individual mosquitoes, although other explanations also remain possible.
Collapse
|
14
|
de Curcio JS, Salem-Izacc SM, Pereira Neto LM, Nunes EB, Anunciação CE, de Paula Silveira-Lacerda E. Detection of Mayaro virus in Aedes aegypti mosquitoes circulating in Goiânia-Goiás-Brazil. Microbes Infect 2022; 24:104948. [DOI: 10.1016/j.micinf.2022.104948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
15
|
Molecular epidemiological investigation of Mayaro virus in febrile patients from Goiania City, 2017-2018. INFECTION GENETICS AND EVOLUTION 2021; 95:104981. [PMID: 34197917 DOI: 10.1016/j.meegid.2021.104981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
Mayaro virus (MAYV) has historically been associated with sylvatic transmission; however, urban outbreaks have been reported in Brazil, including cases of co-detection with dengue virus (DENV). Therefore, we performed a molecular survey to investigate MAYV circulation and cocirculation with DENV within Goiania, a major city in Central-West Brazil. Among 375 subjects with arbovirus-like symptoms, 259 were positive for DENV and 26 for MAYV. Of these, 17 were coinfected with DENV-2, suggesting co-transmission of the viruses. The most common complaints at the time of inclusion were myalgia, headache, fever, arthralgia, retro-orbital pain, and skin rash. No specific symptoms were associated with MAYV when either detected alone or co-detected with DENV, compared to that when DENV was detected alone. Most MAYV-infected subjects were women with no recent travel history to rural/sylvatic areas. Phylogenetic reconstruction indicated that the MAYV identified in this study is closely related with a lineage observed in Peru, belonging to genotype D. Our results corroborate the growing circulation of MAYV in urban environments in Brazil and reinforce the need to implement laboratory diagnosis in the Unified Health System, considering that the clinical manifestations of Mayaro fever are similar to those of other arboviruses, particularly dengue. Furthermore, most cases occurred in association with DENV-2. Further phylogenetic studies are needed to evaluate MAYV, which has not been widely examined.
Collapse
|
16
|
Abdelkrim O, Samia B, Said Z, Souad L. Modeling and mapping the habitat suitability and the potential distribution of Arboviruses vectors in Morocco. Parasite 2021; 28:37. [PMID: 33861197 PMCID: PMC8051322 DOI: 10.1051/parasite/2021030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/13/2021] [Indexed: 12/14/2022] Open
Abstract
Mosquitoes transmit several agents of diseases and the presence of different species represents a threat to animal and public health. Aedes and Culex mosquitoes are of particular concern giving their potential vector competence for Arbovirus transmission. In Morocco, the lack of detailed information related to their spatial distribution raises major concerns and hampers effective vector surveillance and control. Using maximum entropy (Maxent) modeling, we generated prediction models for the potential distribution of Arboviruses vectors (Aedes aegypti, Ae. vexans, Ae. caspius, Ae. detritus, and Culex pipiens) in Morocco, under current climatic conditions. Also, we investigated the habitat suitability for the potential occurrence and establishment of Ae. albopictus and Ae. vittatus recorded only once in the country. Prediction models for these last two species were generated considering occurrence datasets from close countries of the Mediterranean Basin, where Ae. albopictus is well established, and from a worldwide database for the case of Ae. vittatus (model transferability). With the exception of Ae. vittatus, the results identify potential habitat suitability in Morocco for all mosquitos considered. Existing areas with maximum risk of establishment and high potential distribution were mainly located in the northwestern and central parts of Morocco. Our results essentially underline the assumption that Ae. albopictus, if not quickly controlled, might find suitable habitats and has the potential to become established, especially in the northwest of the country. These findings may help to better understand the potential distribution of each species and enhance surveillance efforts in areas identified as high risk.
Collapse
Affiliation(s)
- Outammassine Abdelkrim
-
Laboratory of Microbiology and Virology, Department of Medical Biology, Faculty of Medicine and Pharmacy, Cadi Ayyad University PO Box 7010 40000 Marrakech Morocco
| | - Boussaa Samia
-
ISPITS-Higher Institute of Nursing and Health Technology 40000 Marrakech Morocco
-
Ecology and the Environment Laboratory L2E (URAC 32, CNRST ERACNERS 06), Faculty of Sciences Semlalia, Cadi Ayyad University 2390-40080 Marrakech Morocco
| | - Zouhair Said
-
Laboratory of Microbiology and Virology, Department of Medical Biology, Faculty of Medicine and Pharmacy, Cadi Ayyad University PO Box 7010 40000 Marrakech Morocco
-
Laboratory of Bacteriology–Virology, Avicienne Hospital Military 40000 Marrakech Morocco
| | - Loqman Souad
-
Laboratory of Microbiology and Virology, Department of Medical Biology, Faculty of Medicine and Pharmacy, Cadi Ayyad University PO Box 7010 40000 Marrakech Morocco
| |
Collapse
|
17
|
Petrone ME, Earnest R, Lourenço J, Kraemer MUG, Paulino-Ramirez R, Grubaugh ND, Tapia L. Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nat Commun 2021; 12:151. [PMID: 33420058 PMCID: PMC7794562 DOI: 10.1038/s41467-020-20391-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Mosquito-borne viruses threaten the Caribbean due to the region's tropical climate and seasonal reception of international tourists. Outbreaks of chikungunya and Zika have demonstrated the rapidity with which these viruses can spread. Concurrently, dengue fever cases have climbed over the past decade. Sustainable disease control measures are urgently needed to quell virus transmission and prevent future outbreaks. Here, to improve upon current control methods, we analyze temporal and spatial patterns of chikungunya, Zika, and dengue outbreaks reported in the Dominican Republic between 2012 and 2018. The viruses that cause these outbreaks are transmitted by Aedes mosquitoes, which are sensitive to seasonal climatological variability. We evaluate whether climate and the spatio-temporal dynamics of dengue outbreaks could explain patterns of emerging disease outbreaks. We find that emerging disease outbreaks were robust to the climatological and spatio-temporal constraints defining seasonal dengue outbreak dynamics, indicating that constant surveillance is required to prevent future health crises.
Collapse
Affiliation(s)
- Mary E Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Robert Paulino-Ramirez
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, Santo Domingo, Dominican Republic
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Leandro Tapia
- Instituto de Medicina Tropical & Salud Global, Universidad Iberoamericana, Santo Domingo, Dominican Republic.
| |
Collapse
|
18
|
Dieme C, Ciota AT, Kramer LD. Transmission potential of Mayaro virus by Aedes albopictus, and Anopheles quadrimaculatus from the USA. Parasit Vectors 2020; 13:613. [PMID: 33298165 PMCID: PMC7724717 DOI: 10.1186/s13071-020-04478-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mayaro virus (MAYV; Alphavirus, Togaviridae) is an emerging pathogen endemic in South American countries. The increase in intercontinental travel and tourism-based forest excursions has resulted in an increase in MAYV spread, with imported cases observed in Europe and North America. Intriguingly, no local transmission of MAYV has been reported outside South America, despite the presence of potential vectors. METHODS We assessed the vector competence of Aedes albopictus from New York and Anopheles quadrimaculatus for MAYV. RESULTS The results show that Ae. albopictus from New York and An. quadrimaculatus are competent vectors for MAYV. However, Ae. albopictus was more susceptible to infection. Transmission rates increased with time for both species, with rates of 37.16 and 64.44% for Ae. albopictus, and of 25.15 and 48.44% for An. quadrimaculatus, respectively, at 7 and 14 days post-infection. CONCLUSIONS Our results suggest there is a risk of further MAYV spread throughout the Americas and autochthonous transmission in the USA. Preventive measures, such as mosquito surveillance of MAYV, will be essential for early detection.
Collapse
Affiliation(s)
- Constentin Dieme
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA.
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| |
Collapse
|
19
|
Valencia-Marín BS, Gandica ID, Aguirre-Obando OA. The Mayaro virus and its potential epidemiological consequences in Colombia: an exploratory biomathematics analysis. Parasit Vectors 2020; 13:508. [PMID: 33032645 PMCID: PMC7542739 DOI: 10.1186/s13071-020-04354-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 09/11/2020] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Mayaro virus (Togaviridae) is an endemic arbovirus of the Americas with epidemiological similarities with the agents of other more prominent diseases such as dengue (Flaviviridae), Zika (Flaviviridae), and chikungunya (Togaviridae). It is naturally transmitted in a sylvatic/rural cycle by Haemagogus spp., but, potentially, it could be incorporated and transmitted in an urban cycle by Aedes aegypti, a vector widely disseminated in the Americas.
Methods
The Mayaro arbovirus dynamics was simulated mathematically in the colombian population in the eight biogeographical provinces, bearing in mind the vector’s population movement between provinces through passive transport via truck cargo. The parameters involved in the virus epidemiological dynamics, as well as the vital rates of Ae. aegypti in each of the biogeographical provinces were obtained from the literature. These data were included in a meta-population model in differential equations, represented by a model structured by age for the dynamic population of Ae. aegypti combined with an epidemiological SEI/SEIR-type model. In addition, the model was incorporated with a term of migration to represent the connectivity between the biogeographical provinces.
Results
The vital rates and the development cycle of Ae. aegypti varied between provinces, having greater biological potential between 23 °C and 28 °C in provinces of Imerí, biogeographical Chocó, and Magdalena, with respect to the North-Andean Moorland (9.33–21.38 °C). Magdalena and Maracaibo had the highest flow of land cargo. The results of the simulations indicate that Magdalena, Imerí, and biogeographical Chocó would be the most affected regarding the number of cases of people infected by Mayaro virus over time.
Conclusions
The temperature in each of the provinces influences the local population dynamics of Ae. aegypti and passive migration via transport of land cargo plays an important role on how the Mayaro virus would be disseminated in the human population. Once this arbovirus begins an urban cycle, the most-affected departments would be Antioquia, Santander, Norte de Santander, Cesar (Provinces of Magdalena), and Valle del Cauca, and Chocó (biogeographical province of Chocó), which is why vector control programmes must aim their efforts at these departments and include some type of vector control to the transport of land cargo to avoid a future Mayaro epidemic.
Collapse
|
20
|
Lello LS, Utt A, Bartholomeeusen K, Wang S, Rausalu K, Kendall C, Coppens S, Fragkoudis R, Tuplin A, Alphey L, Ariën KK, Merits A. Cross-utilisation of template RNAs by alphavirus replicases. PLoS Pathog 2020; 16:e1008825. [PMID: 32886709 PMCID: PMC7498090 DOI: 10.1371/journal.ppat.1008825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/17/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Most alphaviruses (family Togaviridae) including Sindbis virus (SINV) and other human pathogens, are transmitted by arthropods. The first open reading frame in their positive strand RNA genome encodes for the non-structural polyprotein, a precursor to four separate subunits of the replicase. The replicase interacts with cis-acting elements located near the intergenic region and at the ends of the viral RNA genome. A trans-replication assay was developed and used to analyse the template requirements for nine alphavirus replicases. Replicases of alphaviruses of the Semliki Forest virus complex were able to cross-utilize each other’s templates as well as those of outgroup alphaviruses. Templates of outgroup alphaviruses, including SINV and the mosquito-specific Eilat virus, were promiscuous; in contrast, their replicases displayed a limited capacity to use heterologous templates, especially in mosquito cells. The determinants important for efficient replication of template RNA were mapped to the 5' region of the genome. For SINV these include the extreme 5'- end of the genome and sequences corresponding to the first stem-loop structure in the 5' untranslated region. Mutations introduced in these elements drastically reduced infectivity of recombinant SINV genomes. The trans-replicase tools and approaches developed here can be instrumental in studying alphavirus recombination and evolution, but can also be applied to study other viruses such as picornaviruses, flaviviruses and coronaviruses. Alphaviruses are positive-strand RNA viruses, most of which use mosquitoes to spread between vertebrate hosts; many are human pathogens with potentially severe medical consequences. Some alphavirus species are believed to have resulted from the recombination between different members of the genus and there is evidence of movement of alphaviruses between continents. Here, a novel assay uncoupling viral replicase and template RNA production was developed and used to analyse cross-utilization of alphavirus template RNAs. We observed that replicases of closely related alphaviruses belonging to the Semliki Forest virus complex can generally use each other’s template RNAs as well as those of distantly related outgroup viruses. In contrast, replicases of outgroup viruses clearly preferred homologous template RNAs. These trends were observed in both mammalian and mosquito cells, with template preferences generally more pronounced in mosquito cells. Interestingly, the template RNA of the mosquito-specific Eilat virus was efficiently used by other alphavirus replicases while Eilat replicase could not use heterologous templates. Determinants for template selectivity were mapped to the beginning of the RNA genome and template recognition was more likely based on the recognition of RNA sequences than recognition of structural elements formed by the RNAs.
Collapse
Affiliation(s)
| | - Age Utt
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Koen Bartholomeeusen
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Sainan Wang
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Catherine Kendall
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sandra Coppens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Rennos Fragkoudis
- University of Nottingham, School of Veterinary Medicine and Science, Loughborough, United Kingdom
| | - Andrew Tuplin
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Luke Alphey
- The Pirbright Institute, Woking, United Kingdom
| | - Kevin K. Ariën
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
21
|
Queiroz JADS, Botelho-Souza LF, Nogueira-Lima FS, Rampazzo RDCP, Krieger MA, Zambenedetti MR, Marchini FK, Borghetti IA, Pereira DB, Salcedo JMV, Vieira DS, dos Santos ADO. Phylogenetic Characterization of Arboviruses in Patients Suffering from Acute Fever in Rondônia, Brazil. Viruses 2020; 12:v12080889. [PMID: 32823806 PMCID: PMC7472125 DOI: 10.3390/v12080889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of the study was to classify, through phylogenetic analyses, the main arboviruses that have been isolated in the metropolitan region of Porto Velho, Rondônia, Brazil. Serum samples from patients with symptoms suggesting arboviruses were collected and tested by One Step RT-qPCR for Zika, Dengue (serotypes 1–4), Chikungunya, Mayaro and Oropouche viruses. Positive samples were amplified by conventional PCR and sequenced utilizing the Sanger method. The obtained sequences were aligned, and an evolutionary analysis was carried out using Bayesian inference. A total of 308 samples were tested. Of this total, 20 had a detectable viral load for Dengue, being detected DENV1 (18/20), co-infection DENV1 and DENV2 (1/20) and DENV4 (1/20). For Dengue serotype 3 and for the CHIKV, ZIKV, MAYV and OROV viruses, no individuals with a detectable viral load were found. A total of 9 of these samples were magnified by conventional PCR for sequencing. Of these, 6 were successfully sequenced and, according to the evolutionary profile, 5 corresponded to serotype DENV-1 genotype V, and 1 to serotype DENV-4 genotype II. In the study, we demonstrate co-circulation of the DENV-1 genotype V and the DENV-4 genotype II. Co-circulation of several DENV serotypes in the same city poses a risk to the population and is correlated with the increase of the most severe forms of the disease. Similarly, co-circulation of genetically distinct DENV and the occurrence of simultaneous infections can affect recombination events and lead to the emergence of more virulent isolates.
Collapse
Affiliation(s)
- Jackson Alves da Silva Queiroz
- Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil; (J.A.d.S.Q.); (L.F.B.-S.); (F.S.N.-L.); (J.M.V.S.); (D.S.V.)
- Postgraduate Program in Experimental Biology of Federal University of Rondônia—PGBIOEXP, Porto Velho RO 76801 059, Rondônia, Brazil
- National Institute of Epidemiology of Western Amazonia—INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil
| | - Luan Felipo Botelho-Souza
- Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil; (J.A.d.S.Q.); (L.F.B.-S.); (F.S.N.-L.); (J.M.V.S.); (D.S.V.)
- National Institute of Epidemiology of Western Amazonia—INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil
- Aparício Carvalho University Center, Porto Velho RO 76811-678, Rondônia, Brazil
| | - Felipe Souza Nogueira-Lima
- Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil; (J.A.d.S.Q.); (L.F.B.-S.); (F.S.N.-L.); (J.M.V.S.); (D.S.V.)
- Postgraduate Program in Experimental Biology of Federal University of Rondônia—PGBIOEXP, Porto Velho RO 76801 059, Rondônia, Brazil
- National Institute of Epidemiology of Western Amazonia—INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil
| | - Rita de Cássia Pontello Rampazzo
- Institute of Molecular Biology of Paraná -IBMP, Curitiba PR 81350-010, Rondônia, Brazil; (R.d.C.P.R.); (M.A.K.); (M.R.Z.); (F.K.M.); (I.A.B.)
| | - Marco Aurélio Krieger
- Institute of Molecular Biology of Paraná -IBMP, Curitiba PR 81350-010, Rondônia, Brazil; (R.d.C.P.R.); (M.A.K.); (M.R.Z.); (F.K.M.); (I.A.B.)
| | - Miriam Ribas Zambenedetti
- Institute of Molecular Biology of Paraná -IBMP, Curitiba PR 81350-010, Rondônia, Brazil; (R.d.C.P.R.); (M.A.K.); (M.R.Z.); (F.K.M.); (I.A.B.)
| | - Fabricio Klerinton Marchini
- Institute of Molecular Biology of Paraná -IBMP, Curitiba PR 81350-010, Rondônia, Brazil; (R.d.C.P.R.); (M.A.K.); (M.R.Z.); (F.K.M.); (I.A.B.)
| | - Ivo Alberto Borghetti
- Institute of Molecular Biology of Paraná -IBMP, Curitiba PR 81350-010, Rondônia, Brazil; (R.d.C.P.R.); (M.A.K.); (M.R.Z.); (F.K.M.); (I.A.B.)
| | - Dhelio Batista Pereira
- Tropical Medicine of Rondônia Center Research—CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil;
| | - Juan Miguel Vilalobos Salcedo
- Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil; (J.A.d.S.Q.); (L.F.B.-S.); (F.S.N.-L.); (J.M.V.S.); (D.S.V.)
- National Institute of Epidemiology of Western Amazonia—INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil
- Tropical Medicine of Rondônia Center Research—CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil;
| | - Deusilene Souza Vieira
- Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil; (J.A.d.S.Q.); (L.F.B.-S.); (F.S.N.-L.); (J.M.V.S.); (D.S.V.)
- Postgraduate Program in Experimental Biology of Federal University of Rondônia—PGBIOEXP, Porto Velho RO 76801 059, Rondônia, Brazil
- National Institute of Epidemiology of Western Amazonia—INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil
| | - Alcione de Oliveira dos Santos
- Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil; (J.A.d.S.Q.); (L.F.B.-S.); (F.S.N.-L.); (J.M.V.S.); (D.S.V.)
- National Institute of Epidemiology of Western Amazonia—INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil
- Correspondence:
| |
Collapse
|
22
|
Chisenga CC, Bosomprah S, Musukuma K, Mubanga C, Chilyabanyama ON, Velu RM, Kim YC, Reyes-Sandoval A, Chilengi R. Sero-prevalence of arthropod-borne viral infections among Lukanga swamp residents in Zambia. PLoS One 2020; 15:e0235322. [PMID: 32609784 PMCID: PMC7329080 DOI: 10.1371/journal.pone.0235322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The re-emergence of vector borne diseases affecting millions of people in recent years has drawn attention to arboviruses globally. Here, we report on the sero-prevalence of chikungunya virus (CHIKV), dengue virus (DENV), mayaro virus (MAYV) and zika virus (ZIKV) in a swamp community in Zambia. METHODS We collected blood and saliva samples from residents of Lukanga swamps in 2016 during a mass-cholera vaccination campaign. Over 10,000 residents were vaccinated with two doses of Shanchol™ during this period. The biological samples were collected prior to vaccination (baseline) and at specified time points after vaccination. We tested a total of 214 baseline stored serum samples for IgG antibodies against NS1 of DENV and ZIKV and E2 of CHIKV and MAYV on ELISA. We defined sero-prevalence as the proportion of participants with optical density (OD) values above a defined cut-off value, determined using a finite mixture model. RESULTS Of the 214 participants, 79 (36.9%; 95% CI 30.5-43.8) were sero-positive for Chikungunya; 23 (10.8%; 95% CI 6.9-15.7) for Zika, 36 (16.8%; 95% CI 12.1-22.5) for Dengue and 42 (19.6%; 95% CI 14.5-25.6) for Mayaro. Older participants were more likely to have Zika virus whilst those involved with fishing activities were at greater risk of contracting Chikungunya virus. Among all the antigens tested, we also found that Chikungunya saliva antibody titres correlated with baseline serum titres (Spearman's correlation coefficient = 0.222; p = 0.03). CONCLUSION Arbovirus transmission is occurring in Zambia. This requires proper screening tools as well as surveillance data to accurately report on disease burden in Zambia.
Collapse
Affiliation(s)
| | - Samuel Bosomprah
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra
| | - Kalo Musukuma
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | - Cynthia Mubanga
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | | | - Rachel M. Velu
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| | - Young Chan Kim
- The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Oxford, England, United Kingdom
| | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Oxford, England, United Kingdom
| | - Roma Chilengi
- Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia
| |
Collapse
|
23
|
Pereira TN, Carvalho FD, De Mendonça SF, Rocha MN, Moreira LA. Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLoS Negl Trop Dis 2020; 14:e0007518. [PMID: 32287269 PMCID: PMC7182273 DOI: 10.1371/journal.pntd.0007518] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 04/24/2020] [Accepted: 03/22/2020] [Indexed: 11/23/2022] Open
Abstract
Newly emerging or re-emerging arthropod-borne viruses (arboviruses) are important causes of human morbidity and mortality worldwide. Arboviruses such as Dengue (DENV), Zika (ZIKV), Chikungunya (CHIKV), and West Nile virus (WNV) have undergone extensive geographic expansion in the tropical and sub-tropical regions of the world. In the Americas the main vectors of DENV, ZIKV, and CHIKV are mosquito species adapted to urban environments, namely Aedes aegypti and Aedes albopictus, whereas the main vector of WNV is Culex quinquefasciatus. Given the widespread distribution in the Americas and high permissiveness to arbovirus infection, these mosquito species may play a key role in the epidemiology of other arboviruses normally associated with sylvatic vectors. Here, we test this hypothesis by determining the vector competence of Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus to Mayaro (MAYV) virus, a sylvatic arbovirus transmitted mainly by Haemagogus janthinomys that has been causing an increasing number of outbreaks in South America, namely in Brazil. Using field mosquitoes from Brazil, female mosquitoes were experimentally infected, and their competence for infection and transmission rates of MAYV was evaluated. We found consistent infection rate for MAYV in Ae. aegypti (57.5%) and Ae. albopictus (61.6%), whereas very low rates were obtained for Cx. quinquefasciatus (2.5%). Concordantly, we observed high potential transmission ability in Ae. aegypti and Ae. albopictus (69.5% and 71.1% respectively), in contrast to Cx. quinquefasciatus, which could not transmit the MAYV. Notably, we found that very low quantities of virus present in the saliva (undetectable by RT-qPCR) were sufficiently virulent to guarantee transmission. Although Ae. aegypti and Ae. albopictus mosquitoes are not the main vectors for MAYV, our studies suggest that these mosquitoes could play a significant role in the transmission of this arbovirus, since both species showed significant vector competence for MAYV (Genotype D), under laboratory conditions.
Collapse
Affiliation(s)
- Thiago Nunes Pereira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Fabiano Duarte Carvalho
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Silvana Faria De Mendonça
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Marcele Neves Rocha
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Luciano Andrade Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| |
Collapse
|
24
|
Dodero-Rojas E, Ferreira LG, Leite VBP, Onuchic JN, Contessoto VG. Modeling Chikungunya control strategies and Mayaro potential outbreak in the city of Rio de Janeiro. PLoS One 2020; 15:e0222900. [PMID: 31990920 PMCID: PMC6986714 DOI: 10.1371/journal.pone.0222900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
Mosquito-borne diseases have become a significant health issue in many regions around the world. For tropical countries, diseases such as Dengue, Zika, and Chikungunya, became epidemic in the last decades. Health surveillance reports during this period were crucial in providing scientific-based information to guide decision making and resources allocation to control outbreaks. In this work, we perform data analysis of the last Chikungunya epidemics in the city of Rio de Janeiro by applying a compartmental mathematical model. Sensitivity analyses were performed in order to describe the contribution of each parameter to the outbreak incidence. We estimate the "basic reproduction number" for those outbreaks and predict the potential epidemic outbreak of the Mayaro virus. We also simulated several scenarios with different public interventions to decrease the number of infected people. Such scenarios should provide insights about possible strategies to control future outbreaks.
Collapse
Affiliation(s)
- Esteban Dodero-Rojas
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- Theoretical and Computational Physics Laboratory, University of Costa Rica, San José, Costa Rica
| | - Luiza G. Ferreira
- Department of Chemistry, Rice University, Houston, TX, United States of America
| | - Vitor B. P. Leite
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- Department of Chemistry, Rice University, Houston, TX, United States of America
- Department of Physics & Astronomy, Rice University, Houston, TX, United States of America
- Department of Biosciences, Rice University, Houston, TX, United States of America
| | - Vinícius G. Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- Brazilian Biorenewables National Laboratory - LNBR, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
25
|
Pezzi L, Diallo M, Rosa-Freitas MG, Vega-Rua A, Ng LFP, Boyer S, Drexler JF, Vasilakis N, Lourenco-de-Oliveira R, Weaver SC, Kohl A, de Lamballerie X, Failloux AB. GloPID-R report on chikungunya, o'nyong-nyong and Mayaro virus, part 5: Entomological aspects. Antiviral Res 2019; 174:104670. [PMID: 31812638 DOI: 10.1016/j.antiviral.2019.104670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
The GloPID-R (Global Research Collaboration for Infectious Disease Preparedness) chikungunya (CHIKV), o'nyong-nyong (ONNV) and Mayaro virus (MAYV) Working Group has been established to investigate natural history, epidemiology and clinical aspects of infection by these viruses. Here, we present a report dedicated to entomological aspects of CHIKV, ONNV and MAYV. Recent global expansion of chikungunya virus has been possible because CHIKV established a transmission cycle in urban settings using anthropophilic vectors such as Aedes albopictus and Aedes aegypti. MAYV and ONNV have a more limited geographic distribution, being confined to Africa (ONNV) and central-southern America (MAYV). ONNV is probably maintained through an enzootic cycle that has not been characterized yet, with Anopheles species as main vectors and humans as amplification hosts during epidemics. MAYV is transmitted by Haemagogus species in an enzootic cycle using non-human primates as the main amplification and maintenance hosts, and humans becoming sporadically infected when venturing in or nearby forest habitats. Here, we focused on the transmission cycle and natural vectors that sustain circulation of these viruses in their respective locations. The knowledge of the natural ecology of transmission and the capacity of different vectors to transmit these viruses is crucial to understand CHIKV emergence, and to assess the risk that MAYV and ONNV will expand on wide scale using anthropophilic mosquito species not normally considered primary vectors. Finally, the experts identified knowledge gaps and provided adapted recommendations, in order to address future entomological investigations in the right direction.
Collapse
Affiliation(s)
- L Pezzi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France; EA7310, Laboratoire de Virologie, Université de Corse-Inserm, Corte, France.
| | - M Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - M G Rosa-Freitas
- Instituto Oswaldo Cruz-Fiocruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, Brazil
| | - A Vega-Rua
- Laboratory of Vector Control Research, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Guadeloupe
| | - L F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - S Boyer
- Medical Entomology Platform, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - J F Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117, Berlin, Germany; German Centre for Infection Research (DZIF), Germany
| | - N Vasilakis
- Department of Pathology, Institute of Human Infection and Immunity, University of Texas Medical Branch, Galveston, USA
| | - R Lourenco-de-Oliveira
- Instituto Oswaldo Cruz-Fiocruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, Brazil
| | - S C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - A Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - X de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - A-B Failloux
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | | |
Collapse
|
26
|
de O Mota MT, Avilla CMS, Nogueira ML. Mayaro virus: a neglected threat could cause the next worldwide viral epidemic. Future Virol 2019. [DOI: 10.2217/fvl-2019-0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mânlio T de O Mota
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Av. Brigadeiro Faria Lima 5416, São Paulo, SP 15090-000, Brazil
| | - Clarita MS Avilla
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Av. Brigadeiro Faria Lima 5416, São Paulo, SP 15090-000, Brazil
| | - Maurício L Nogueira
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Av. Brigadeiro Faria Lima 5416, São Paulo, SP 15090-000, Brazil
| |
Collapse
|
27
|
Levi LI, Vignuzzi M. Arthritogenic Alphaviruses: A Worldwide Emerging Threat? Microorganisms 2019; 7:microorganisms7050133. [PMID: 31091828 PMCID: PMC6560413 DOI: 10.3390/microorganisms7050133] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arthritogenic alphaviruses are responsible for a dengue-like syndrome associated with severe debilitating polyarthralgia that can persist for months or years and impact life quality. Chikungunya virus is the most well-known member of this family since it was responsible for two worldwide epidemics with millions of cases in the last 15 years. However, other arthritogenic alphaviruses that are as of yet restrained to specific territories are the cause of neglected tropical diseases: O'nyong'nyong virus in Sub-Saharan Africa, Mayaro virus in Latin America, and Ross River virus in Australia and the Pacific island countries and territories. This review evaluates their emerging potential in light of the current knowledge for each of them and in comparison to chikungunya virus.
Collapse
Affiliation(s)
- Laura I Levi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
- Ecole doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Marco Vignuzzi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
| |
Collapse
|