1
|
Zaunseder E, Mütze U, Okun JG, Hoffmann GF, Kölker S, Heuveline V, Thiele I. Personalized metabolic whole-body models for newborns and infants predict growth and biomarkers of inherited metabolic diseases. Cell Metab 2024; 36:1882-1897.e7. [PMID: 38834070 DOI: 10.1016/j.cmet.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Comprehensive whole-body models (WBMs) accounting for organ-specific dynamics have been developed to simulate adult metabolism, but such models do not exist for infants. Here, we present a resource of 360 organ-resolved, sex-specific models of newborn and infant metabolism (infant-WBMs) spanning the first 180 days of life. These infant-WBMs were parameterized to represent the distinct metabolic characteristics of newborns and infants, including nutrition, energy requirements, and thermoregulation. We demonstrate that the predicted infant growth was consistent with the recommendation by the World Health Organization. We assessed the infant-WBMs' reliability and capabilities for personalization by simulating 10,000 newborns based on their blood metabolome and birth weight. Furthermore, the infant-WBMs accurately predicted changes in known biomarkers over time and metabolic responses to treatment strategies for inherited metabolic diseases. The infant-WBM resource holds promise for personalized medicine, as the infant-WBMs could be a first step to digital metabolic twins for newborn and infant metabolism.
Collapse
Affiliation(s)
- Elaine Zaunseder
- School of Medicine, University of Galway, Galway, Ireland; Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany; Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Jürgen G Okun
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Vincent Heuveline
- School of Medicine, University of Galway, Galway, Ireland; Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland; Discipline of Microbiology, University of Galway, Galway, Ireland; Digital Metabolic Twin Centre, University of Galway, Ireland; Ryan Institute, University of Galway, Galway, Ireland; APC Microbiome Ireland, Cork, Ireland.
| |
Collapse
|
2
|
Wu G, Bazer FW, Johnson GA, Satterfield MC, Washburn SE. Metabolism and Nutrition of L-Glutamate and L-Glutamine in Ruminants. Animals (Basel) 2024; 14:1788. [PMID: 38929408 PMCID: PMC11201166 DOI: 10.3390/ani14121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Although both L-glutamate (Glu) and L-glutamine (Gln) have long been considered nutritionally nonessential in ruminants, these two amino acids have enormous nutritional and physiological importance. Results of recent studies revealed that extracellular Gln is extensively degraded by ruminal microbes, but extracellular Glu undergoes little catabolism by these cells due to the near absence of its uptake. Ruminal bacteria hydrolyze Gln to Glu plus ammonia and, intracellularly, use both amino acids for protein synthesis. Microbial proteins and dietary Glu enter the small intestine in ruminants. Both Glu and Gln are the major metabolic fuels and building blocks of proteins, as well as substrates for the syntheses of glutathione and amino acids (alanine, ornithine, citrulline, arginine, proline, and aspartate) in the intestinal mucosa. In addition, Gln and aspartate are essential for purine and pyrimidine syntheses, whereas arginine and proline are necessary for the production of nitric oxide (a major vasodilator) and collagen (the most abundant protein in the body), respectively. Under normal feeding conditions, all diet- and rumen-derived Glu and Gln are extensively utilized by the small intestine and do not enter the portal circulation. Thus, de novo synthesis (e.g., from branched-chain amino acids and α-ketoglutarate) plays a crucial role in the homeostasis of Glu and Gln in the whole body but may be insufficient for maximal growth performance, production (e.g., lactation and pregnancy), and optimal health (particularly intestinal health) in ruminants. This applies to all types of feeding systems used around the world (e.g., rearing on a milk replacer before weaning, pasture-based production, and total mixed rations). Dietary supplementation with the appropriate doses of Glu or Gln [e.g., 0.5 or 1 g/kg body weight (BW)/day, respectively] can safely improve the digestive, endocrine, and reproduction functions of ruminants to enhance their productivity. Both Glu and Gln are truly functional amino acids in the nutrition of ruminants and hold great promise for improving their health and productivity.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Gregory A. Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA;
| | - M. Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (F.W.B.); (M.C.S.)
| | - Shannon E. Washburn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
3
|
Wang F, Cheng Y, Yin L, Liu S, Li X, Xie M, Li J, Chen J, Fu C. Dietary supplementation with ellagic acid improves the growth performance, meat quality, and metabolomics profile of yellow-feathered broiler chickens. Poult Sci 2024; 103:103700. [PMID: 38631231 PMCID: PMC11036095 DOI: 10.1016/j.psj.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The aim of this research was to explore the effects of ellagic acid (EA) on growth performance, meat quality, and metabolomics profile of broiler chickens. 240 healthy yellow-feathered broilers were randomly divided into 4 groups (6 replicates/group and 10 broilers /replicate): 1) a standard diet (CON); 2) CON+0.01% EA; 3) CON+0.02% EA; 4) CON+0.04% EA. Compared with the CON group, dietary 0.02% EA increased linearly and quadratically the ADG and lowered F/G ratio from 29 to 56 d and from 1 to 56 d of age (P < 0.05). The EA groups had higher spleen index and showed linear and quadratic improve thymus index (P < 0.05). A total of 0.02% EA linearly and quadratically increased the leg muscle percentage and quadratically increased the breast muscle percentage (P < 0.05). Compared to the control diet, 0.02% EA decreased quadratically the L* and increased a* of breast muscle at 45 min postslaughter (P < 0.05), and quadratically decreased (P < 0.05) the b* and increased linearly and quadratically (P < 0.05) drip loss. Additionally, EA improved linearly and quadratically (P < 0.05) serum total protein concentration and reduced linearly and quadratically (P < 0.05) serum blood urea nitrogen concentration. A total of 0.02% EA quadratically increased catalase activity and decreased malondialdehyde concentration in breast muscle compared with the control diet (P < 0.05). 0.02% and 0.04% EA could linearly and quadratically increase (P < 0.05) the concentrations of histidine, leucine and essential amino acids (EAA), 0.02% EA could linearly and quadratically increase (P < 0.05) the concentrations of threonine, glutamate, and flavored amino acids in breast muscle. 0.02% EA linearly and quadratically improved the C20:3n6, C22:6n3, polyunsaturated fatty acid (PUFA) concentrations, and the ratio of PUFA to saturated fatty acids (SFA), but reduced the C16:0 and the SFA concentrations in breast muscle than the CON group (P < 0.05). The EA diet linearly increased (P = 0.035) and quadratically tended (P = 0.068) to regulate the C18:2n6c concentration of breast muscle. Metabolomics showed that alanine metabolism, aspartate and glutamate metabolism, arginine and proline metabolism, taurine and hypotaurine metabolism, and glycerophospholipid metabolism were the most differentially abundant. These results showed that EA supported moderate positive effects on growth performance, meat quality, and metabolomics profile of broilers.
Collapse
Affiliation(s)
- Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shida Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xinrui Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Meizhu Xie
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiayang Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
4
|
Le H, Nguyen M, Manso HECCC, Wang MD, Watford M. Adipocytes Are the Only Site of Glutamine Synthetase Expression Within the Lactating Mouse Mammary Gland. Curr Dev Nutr 2024; 8:102168. [PMID: 38813479 PMCID: PMC11130672 DOI: 10.1016/j.cdnut.2024.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Background Glutamine in milk is believed to play an important role in neonatal intestinal maturation and immune function. For lactating mothers, glutamine utilization is increased to meet the demands of the enlarged intestine and milk production. However, the source of such glutamine during lactation has not been studied. Objectives We aimed to assess the effects of lactation on the expression of glutamine synthetase (GS) in the mammary gland and other tissues of lactating mice. Methods Mouse tissues were sampled at 4 time points: 8-wk-old (virgin, control), post-delivery day 5 (PD5, early lactation), PD15 (peak lactation), and involution (4 days after weaning at PD21). We examined the gene expression and protein concentrations of GS and the first 2 enzymes of branched-chain amino acid catabolism: branched-chain aminotransferase 2 (BCAT2) and branched-chain ketoacid dehydrogenase subunit E1α (BCKDHA). Results The messenger RNA (mRNA) expression and protein concentrations of GS in mammary glands were significantly lower at PD5 and PD15 compared with the control but were restored at involution. Within the mammary gland, GS protein was only detected in adipocytes with no evidence of presence in mammary epithelial cells. Compared with the control, mRNA and protein concentrations of BCAT2 and BCKDHA in mammary glands significantly decreased during lactation and involution. No changes in GS protein concentrations during lactation were found in the liver, skeletal muscle, and lung. In non-mammary adipose tissue, GS protein abundance was higher during lactation compared with the virgin. Conclusions This work shows that, within the mouse mammary gland, GS is only expressed in adipocytes and that the relative GS abundance in mammary gland sections is lower during lactation. This suggests that mammary adipocytes may be a site of glutamine synthesis in the lactating mouse. Identifying the sources of glutamine production during lactation is important for optimizing milk glutamine concentration to enhance neonatal and maternal health.
Collapse
Affiliation(s)
- Huyen Le
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| | - Mai Nguyen
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| | - Helena Emilia CCC Manso
- Universidade Federal Rural de Pernambuco, Departamento de Zootecnia Rua Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE Brazil
| | - Michelle D Wang
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| | - Malcolm Watford
- Department of Nutritional Sciences, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, Rutgers—The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
5
|
Li P, Wu G. Characteristics of Nutrition and Metabolism in Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:55-98. [PMID: 38625525 DOI: 10.1007/978-3-031-54192-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Domestic dogs and cats have evolved differentially in some aspects of nutrition, metabolism, chemical sensing, and feeding behavior. The dogs have adapted to omnivorous diets containing taurine-abundant meat and starch-rich plant ingredients. By contrast, domestic cats must consume animal-sourced foods for survival, growth, and development. Both dogs and cats synthesize vitamin C and many amino acids (AAs, such as alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine), but have a limited ability to form de novo arginine and vitamin D3. Compared with dogs, cats have greater endogenous nitrogen losses and higher dietary requirements for AAs (particularly arginine, taurine, and tyrosine), B-complex vitamins (niacin, thiamin, folate, and biotin), and choline; exhibit greater rates of gluconeogenesis; are less sensitive to AA imbalances and antagonism; are more capable of concentrating urine through renal reabsorption of water; and cannot tolerate high levels of dietary starch due to limited pancreatic α-amylase activity. In addition, dogs can form sufficient taurine from cysteine (for most breeds); arachidonic acid from linoleic acid; eicosapentaenoic acid and docosahexaenoic acid from α-linolenic acid; all-trans-retinol from β-carotene; and niacin from tryptophan. These synthetic pathways, however, are either absent or limited in all cats due to (a) no or low activities of key enzymes (including pyrroline-5-carboxylate synthase, cysteine dioxygenase, ∆6-desaturase, β-carotene dioxygenase, and quinolinate phosphoribosyltransferase) and (b) diversion of intermediates to other metabolic pathways. Dogs can thrive on one large meal daily, select high-fat over low-fat diets, and consume sweet substances. By contrast, cats eat more frequently during light and dark periods, select high-protein over low-protein diets, refuse dry food, enjoy a consistent diet, and cannot taste sweetness. This knowledge guides the feeding and care of dogs and cats, as well as the manufacturing of their foods. As abundant sources of essential nutrients, animal-derived foodstuffs play important roles in optimizing the growth, development, and health of the companion animals.
Collapse
Affiliation(s)
- Peng Li
- North American Renderers Association, Alexandria, VA, 22314, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Hodgkinson SM, Xiong X, Yan Y, Wu Y, Szeto IMY, Li R, Wescombe P, Duan S, Liu H, Yin Y, Lim WXJ, Moughan PJ. An Accurate Estimate of the Amino Acid Content of Human Milk Collected from Chinese Women Adjusted for Differences in Amino Acid Digestibility. J Nutr 2023; 153:3439-3447. [PMID: 37863267 DOI: 10.1016/j.tjnut.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The amino acid (AA) composition of human milk is used to define the AA requirements of the infant. Thus, it is important that estimates of composition be as complete and accurate as possible. When determining AA composition using standard hydrolysis methods, some AAs are progressively destroyed while others are incompletely released. For accuracy, AA composition needs to be determined using multiple hydrolysis times. The true ileal digestibility of AAs also needs to be taken into consideration. OBJECTIVE The objective was to bring together AA compositional (determined using multiple hydrolysis intervals) and digestibility data determined using the piglet to give an estimate of the absorbed AA profile of human milk with reference in particular to Asian females. METHODS Mature milk was collected from Chinese females. AA analysis using multiple hydrolysis intervals and a nonlinear regression model was used to accurately estimate AA composition. Human milk, as well as a protein-free diet, were fed to piglets (n = 6), and ileal digesta were collected (piglet age, 21 d) to determine the true ileal AA digestibility of AAs in human milk. RESULTS True ileal AA digestibility coefficients ranged from (mean ± standard error of the mean) 0.61 ± 0.081 for tyrosine to 1.01 ± 0.030 for tryptophan, with a digestibility for total nitrogen of 0.90 ± 0.013. Convergence criteria were met for the modeling for each AA, and the model had a level of significance of P < 0.0001 for each AA. The amount of available AAs (total AA content as per the model prediction multiplied by the true ileal AA digestibility coefficient determined in the piglet) are reported. CONCLUSIONS An estimate of the absorbed AA profile of mature milk collected from Chinese females is provided. For the first time, data is presented for cysteine.
Collapse
Affiliation(s)
| | - Xia Xiong
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Beijing, China
| | - Yalu Yan
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
| | - Yuliang Wu
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Beijing, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China; National Center of Technology Innovation for Dairy, Hohhot, China
| | - Rui Li
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Beijing, China
| | - Philip Wescombe
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China; Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
| | - Hongnan Liu
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Human Health and Key Laboratory of Agro-ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Beijing, China
| | | | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Hu S, He W, Bazer FW, Johnson GA, Wu G. Synthesis of glycine from 4-hydroxyproline in tissues of neonatal pigs with intrauterine growth restriction. Exp Biol Med (Maywood) 2023; 248:1446-1458. [PMID: 37837389 PMCID: PMC10666732 DOI: 10.1177/15353702231199080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 10/16/2023] Open
Abstract
This study tested the hypothesis that the synthesis of glycine from 4-hydroxyproline (an abundant amino acid in milk and neonatal blood) was impaired in tissues of piglets with intrauterine growth restriction (IUGR), thereby contributing to a severe glycine deficiency in these compromised neonates. At 0, 7, 14, and 21 days of age, IUGR piglets were euthanized, and tissues (liver, small intestine, kidney, pancreas, stomach, skeletal muscle, and heart) were obtained for metabolic studies, as well as the determination of enzymatic activities, cell-specific localization, and expression of mRNAs for glycine-synthetic enzymes. The results indicated relatively low enzymatic activities for 4-hydroxyproline oxidase (OH-POX), proline oxidase, serine hydroxymethyltransferase, threonine dehydrogenase (TDH), alanine: glyoxylate transaminase, and 4-hydroxy-2-oxoglutarate aldolase in the kidneys and liver from 0- to 21-day-old IUGR pigs, in the pancreas of 7- to 21-day-old IUGR pigs, and in the small intestine and skeletal muscle (except TDH) of 21-day-old IUGR pigs. Accordingly, the rates of conversion of 4-hydroxyproline into glycine were relatively low in tissues of IUGR piglets. The expression of mRNAs for glycine-synthetic enzymes followed the patterns of enzymatic activities and was also low. Immunohistochemical analyses revealed the relatively low abundance of OH-POX protein in the liver, kidney, and small intestine of IUGR piglets, and the lack of OH-POX zonation in their livers. These novel results provide a metabolic basis to explain why the endogenous synthesis of glycine is insufficient for optimum growth of IUGR piglets and have important implications for improving the nutrition and health of other mammalian neonates including humans with IUGR.
Collapse
Affiliation(s)
- Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Hu S, He W, Bazer FW, Johnson GA, Wu G. Synthesis of glycine from 4-hydroxyproline in tissues of neonatal pigs. Exp Biol Med (Maywood) 2023; 248:1206-1220. [PMID: 37632196 PMCID: PMC10621473 DOI: 10.1177/15353702231181360] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/01/2023] [Indexed: 08/27/2023] Open
Abstract
Glycine from sow's milk only meets 20% of the requirement of suckling piglets. However, how glycine is synthesized endogenously in neonates is not known. This study determined glycine synthesis from 4-hydroxyproline (an abundant amino acid in milk and neonatal blood) in tissues of sow-reared piglets with normal birth weights. Piglets were euthanized at 0, 7, 14 and 21 days of age, and their tissues were used to determine glycine synthesis from 0 to 5 mM 4-hydroxyproline, activities and mRNA expression of key glycine-synthetic enzymes, and their cell-specific localization. Activities of 4-hydroxyproline oxidase (OH-POX), proline oxidase (POX), serine hydroxymethyltransferase (SHMT), threonine dehydrogenase (TDH), alanine:glyoxylate transaminase (AGT), and 4-hydroxy-2-oxoglutarate aldolase (HOA) occurred in the kidneys and liver from all age groups of piglets, and in the pancreas of 7- to 21-day-old piglets. Activities of OH-POX and HOA were absent from the small intestine of newborn pigs but present in the small intestine of 7- to 21-day-old piglets and in the skeletal muscle of 14- to 21-day-old piglets. Between days 0 and 21 of age, the enzymatic activities of OH-POX, AGT, and HOA decreased in the liver and kidneys but increased in the pancreas and small intestine with age. The mRNA levels of these three enzymes changed in a manner similar to their enzymatic activities. In contrast to OH-POX, AGT, and HOA, the enzymatic activities of POX, SHMT, and TDH were present in the kidneys, liver, and intestine of all age groups of piglets. Glycine was synthesized from 0.1 to 5 mM 4-hydroxyproline in the liver and kidney from 0- to 21-day-old piglets, as well as the pancreas, small intestine, and skeletal muscle from 14- to 21-day-old piglets in a concentration-dependent manner. Collectively, our findings indicate that 4-hydroxyproline is used for the synthesis of glycine in tissues of piglets to compensate for the deficiency of glycine in milk.
Collapse
Affiliation(s)
- Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Ji Y, Sun Y, Liu N, Jia H, Dai Z, Yang Y, Wu Z. l-Leucine supplementation reduces growth performance accompanied by changed profiles of plasma amino acids and expression of jejunal amino acid transporters in breast-fed intra-uterine growth-retarded piglets. Br J Nutr 2023; 129:2025-2035. [PMID: 36047051 DOI: 10.1017/s0007114522002823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previously, we provided an evidence that l-Leucine supplementation facilitates growth performance in suckling piglets with normal birth weight. However, it remains hitherto obscure weather breast-fed piglets displaying intra-uterine growth restriction (IUGR) show a similar effect in response to l-Leucine provision. In this study, 7-d-old sow-reared IUGR piglets were orally administrated with l-Leucine (0, 0·7, 1·4 or 2·1 g/kg BW) twice daily for 2 weeks. Increasing leucine levels hampered the growth performance of suckling IUGR piglets. The average daily gain of IUGR piglets was significantly reduced in 1·4 g/kg BW and 2·1 g/kg BW l-Leucine supplementation groups (P < 0·05). Except for ornithine and glutamine, the plasma concentrations of other amino acids were abated as l-Leucine levels increased (P < 0·05). Leucine supplementation led to reduction in the levels of urea, blood ammonia, blood glucose, TAG and total cholesterol, as well as an elevation in the level of LDL-cholesterol in suckling IUGR piglets (P < 0·05). In addition, 1·4 g/kg BW of l-Leucine enhanced the mRNA expression of ATB0,+, whereas decreased the mRNA abundances of CAT1, y + LAT1, ASCT2 and b0,+AT in the jejunum (P < 0·05). Concomitantly, the jejunum of IUGR piglets in l-Leucine group contains more ATB0,+ and less SNAT2 protein than in the control (P < 0·05). Collectively, l-Leucine supplementation impairs growth performance in breast-fed IUGR piglets, which may be associated with depressed nutritional conditions and alterations in the uptake of amino acids and the expression of amino acid transporters in the small intestine.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Yang G, Zhang J, Dai R, Ma X, Huang C, Ren W, Ma X, Lu J, Zhao X, Renqing J, Zha L, Guo X, Chu M, La Y, Bao P, Liang C. Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan. Foods 2023; 12:foods12112172. [PMID: 37297417 DOI: 10.3390/foods12112172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed to investigate the nutritional properties of yak milk in various areas of Gannan. The milk composition analyzer, automatic amino acid analyzer, and flavor analyzer were used to detect the conventional nutrients, amino acids, and volatile flavor substances of 249 yak milks in Meiren grassland, Xiahe grassland, and Maqu grassland (hereinafter referred to as Meiren yak, Xiahe yak, and Maqu yak) in the Gannan area. The results showed that the fat content of Meiren yak milk was significantly higher than that of Maqu yak and Xiahe yak (p < 0.05). The protein content of Meiren yak milk was significantly higher than that of Xiahe yak (p < 0.05), but not significantly different from that of Maqu yak (p > 0.05). The casein content in the milk of Maqu yak was significantly higher than that of Meiren yak and Xiahe yak (p < 0.05). There was no significant difference in the lactose content of yak milk in the three regions (p > 0.05). The content of glutamic acid in the milk of Meiren yak, Xiahe yak, and Maqu yak was noticeably high, which was 1.03 g/100 g, 1.07 g/100 g, and 1.10 g/100 g, respectively. The total amino acid (TAA) content was 4.78 g/100 g, 4.87 g/100 g, and 5.0 g/100 g, respectively. The ratios of essential amino acids (EAA) and total amino acids (TAA) in the milk of Meiren yak, Xiahe yak, and Maqu yak were 42.26%, 41.27%, and 41.39%, respectively, and the ratios of essential amino acids (EAA) and nonessential amino acids (NEAA) were 73.19%, 70.28%, and 70.61%, respectively. In the yak milk samples collected from three different regions, a total of 34 volatile flavor compounds were detected, including 10 aldehydes, five esters, six ketones, four alcohols, two acids, and seven others. The main flavor substances qualitatively obtained from Meiren yak milk were ethyl acetate, n-valeraldehyde, acetic acid, heptanal, and n-hexanal. Xiahe yak milk mainly contains ethyl acetate, isoamyl alcohol, n-valeraldehyde, heptanal, and ethyl butyrate. Maqu yak milk mainly contains ethyl acetate, n-valeraldehyde, isoamyl alcohol, heptanal, ethyl butyrate, and n-hexanal. Principal component analysis showed that the flavor difference between Xiahe yak and Maqu yak was small, while the flavor difference between Xiahe yak, Maqu yak, and Meiren yak was large. The findings of this research can serve as a foundation for the future advancement and application of yak milk.
Collapse
Affiliation(s)
- Guowu Yang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Juanxiang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoyong Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Jianwei Lu
- Zogaidoma Township Animal Husbandry Station of Hezuo City, Hezuo 747003, China
| | - Xue Zhao
- Quality and Safety Inspection Center of Agricultural and Livestock Products in Hezuo, Hezuo 747099, China
| | - Ji Renqing
- Zogemanma Town Animal Husbandry and Veterinary Station, Hezuo 747099, China
| | - Lao Zha
- Zogaidoma Township Animal Husbandry Station of Hezuo City, Hezuo 747003, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| |
Collapse
|
11
|
Lachica M, Rodríguez-López JM, González-Valero L, Fernández-Fígares I. Net Portal Appearance of Amino Acids in Iberian and Landrace Pigs Fed Different Protein Content in the Diet. Animals (Basel) 2023; 13:ani13071263. [PMID: 37048518 PMCID: PMC10092945 DOI: 10.3390/ani13071263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Iberian pigs have low rates of muscle protein deposition compared with modern breeds. Differences in net portal appearance (NPA) of amino acids (AA) might partially explain that. NPA of AA was measured in six Iberian and six Landrace gilts (28 kg) fitted with catheters in portal and mesenteric (para-aminohippuric acid infusion) veins, and carotid artery. Blood samples from porta and artery were simultaneously taken at 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, and 6-h after feeding two isoenergetic diets (14-14.5 MJ metabolizable energy/kg dry matter) with different crude protein (145 (LCP) and 187 (HCP) g/kg dry matter) content. NPA of essential AA (EAA) and non-essential AA (NEAA) was lower (p < 0.05) in Iberian than Landrace pigs, and in LCP than HCP diet. Fractional absorption (NPA/AA intake) of EAA, NEAA, and total AA was, respectively, 36, 49, and 44% lower in LCP than HCP diet in Iberian pigs; and 8, 2, and 4% greater in Landrace pigs. Fractional absorption of EAA, NEAA, and total AA was 42, 68, and 60% lower in Iberian than Landrace pigs fed LPC diet; and 1, 36, and 26% when fed the HCP diet. NPA of AA may partially explain the low growth rate of Iberian pigs.
Collapse
Affiliation(s)
- Manuel Lachica
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armillla, 18100 Granada, Spain
| | - José Miguel Rodríguez-López
- Départment Sciences Agronomiques et Animales, Institut Polytechnique LaSalle Beauvais-Esitpa, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| | - Lucrecia González-Valero
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armillla, 18100 Granada, Spain
| | - Ignacio Fernández-Fígares
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armillla, 18100 Granada, Spain
| |
Collapse
|
12
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
13
|
Mamet T, Xu BJ, Li X, Zhang J, Li C, Wang L. Chemical and nutritional composition of Pamir yak milk from Xinjiang. J Anim Physiol Anim Nutr (Berl) 2023; 107:350-356. [PMID: 35522695 DOI: 10.1111/jpn.13717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/16/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
Abstract
Pamir yak milk is considered to be ideal food for local people, but its nutritional profile has not yet been reported. This study investigated the chemical and nutritional composition of Pamir yak milk, and compared the results with reference composition of goat and cow milk. We found that the Pamir yak milk had higher contents of protein (4.30%), fat (4.63), lactose (5.21%) and total solid (14.84%) than that of goat and cow milk. The predominant amino acids were glutamate (20%), proline (10%), lysine (10%) and leucine (10%), of which the essential amino acids accounted for 48% of the total amino acids. Meanwhile, Pamir yak milk was rich in minerals such as Ca, Fe, Zn and Mg and thiamine (B1 ), niacin (B3 ), Pyridoxine (B6 ) and cobalamin (B12 ) were higher than those of cow and goat milk. Also, medium-chain fatty acids (C12-C16) exhibited the highest level. However, The α -linolenic acid (C18:3), eicosapentaenoic acid and docosahexaenoic acid were found in yak milk. All of the above-mentioned differences were demonstrated by the fact that the yak milk quality may be affecting by pasture production, animal species and nutritive value of the herbage. Therefore, Pamir yak milk is a promising alternative food that may contribute to human health.
Collapse
Affiliation(s)
- Torkun Mamet
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Bing-Jie Xu
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, China
| | - Xiaotong Li
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, China
| | - Jin Zhang
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, China
| | - Caihong Li
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, China
| | - Liang Wang
- Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, China.,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
14
|
Amino acid nutrition and metabolism in domestic cats and dogs. J Anim Sci Biotechnol 2023; 14:19. [PMID: 36803865 PMCID: PMC9942351 DOI: 10.1186/s40104-022-00827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/21/2022] [Indexed: 02/22/2023] Open
Abstract
Domestic cats and dogs are carnivores that have evolved differentially in the nutrition and metabolism of amino acids. This article highlights both proteinogenic and nonproteinogenic amino acids. Dogs inadequately synthesize citrulline (the precursor of arginine) from glutamine, glutamate, and proline in the small intestine. Although most breeds of dogs have potential for adequately converting cysteine into taurine in the liver, a small proportion (1.3%-2.5%) of the Newfoundland dogs fed commercially available balanced diets exhibit a deficiency of taurine possibly due to gene mutations. Certain breeds of dogs (e.g., golden retrievers) are more prone to taurine deficiency possibly due to lower hepatic activities of cysteine dioxygenase and cysteine sulfinate decarboxylase. De novo synthesis of arginine and taurine is very limited in cats. Thus, concentrations of both taurine and arginine in feline milk are the greatest among domestic mammals. Compared with dogs, cats have greater endogenous nitrogen losses and higher dietary requirements for many amino acids (e.g., arginine, taurine, cysteine, and tyrosine), and are less sensitive to amino acid imbalances and antagonisms. Throughout adulthood, cats and dogs may lose 34% and 21% of their lean body mass, respectively. Adequate intakes of high-quality protein (i.e., 32% and 40% animal protein in diets of aging dogs and cats, respectively; dry matter basis) are recommended to alleviate aging-associated reductions in the mass and function of skeletal muscles and bones. Pet-food grade animal-sourced foodstuffs are excellent sources of both proteinogenic amino acids and taurine for cats and dogs, and can help to optimize their growth, development, and health.
Collapse
|
15
|
Nutritional Profile, Processing and Potential Products: A Comparative Review of Goat Milk. DAIRY 2022. [DOI: 10.3390/dairy3030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Goat milk contains an abundance of different macro and micro-nutrients. Compared with other milk, goat milk is a viable option due to its low allergy levels and is preferred for infants with cow milk allergies. A wide variety of goat milk-based products, including yoghurt, ice cream, fermented milk, and cheese, are available on the market. They are produced using effective processing technology and are known to exhibit numerous health benefits after consumption. However, goat milk consumption is limited in many nations (compared with cow, buffalo, camel, and sheep milk) due to a lack of awareness of its nutritional composition and the significance of its different byproducts. This review provides a detailed explanation of the various macronutrients that may be present, with special attention paid to each component, its purpose, and the health benefits it offers. It also compares goat milk with milk from other species in terms of its superiority and nutritional content, as well as the types, production methods, health advantages, and other beneficial properties of the various goat milk products that are currently available on the market.
Collapse
|
16
|
Rezaei R, Gabriel AS, Wu G. Dietary supplementation with branched-chain amino acids enhances milk production by lactating sows and the growth of suckling piglets. J Anim Sci Biotechnol 2022; 13:65. [PMID: 35710489 PMCID: PMC9205058 DOI: 10.1186/s40104-022-00718-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Under current dietary regimens, milk production by lactating sows is insufficient to sustain the maximal growth of their piglets. As precursors of glutamate and glutamine as well as substrates and activators of protein synthesis, branched-chain amino acids (BCAAs) have great potential for enhancing milk production by sows. Methods Thirty multiparous sows were assigned randomly into one of three groups: control (a corn- and soybean meal-based diet), the basal diet + 1.535% BCAAs; and the basal diet + 3.07% BCAAs. The ratio (g/g) among the supplemental L-isoleucine, L-leucine and L-valine was 1.00:2.56:1.23. Diets were made isonitrogenous by the addition of appropriate amounts of L-alanine. Lactating sows had free access to drinking water and their respective diets. The number of live-born piglets was standardized to 9 per sow at d 0 of lactation (the day of parturition). On d 3, 15 and 29 of lactation, body weights and milk consumption of piglets were measured, and blood samples were obtained from sows and piglets 2 h and 1 h after feeding and nursing, respectively. Results Feed intake did not differ among the three groups of sows. Concentrations of asparagine, glutamate, glutamine, citrulline, arginine, proline, BCAAs, and many other amino acids were greater (P < 0.05) in the plasma of BCAA-supplemented sows and their piglets than those in the control group. Compared with the control, dietary supplementation with 1.535% and 3.07% BCAAs increased (P < 0.05) concentrations of free and protein-bound BCAAs, glutamate plus glutamine, aspartate plus asparagine, and many other amino acids in milk; milk production by 14% and 21%, respectively; daily weight gains of piglets by 19% and 28%, respectively, while reducing preweaning mortality rates by 50% and 70%, respectively. Conclusion Dietary supplementation with up to 3.07% BCAAs enhanced milk production by lactating sows, and the growth and survival of their piglets.
Collapse
Affiliation(s)
- Reza Rezaei
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Ana San Gabriel
- Ajinomoto Co., Inc, 1-15-1 Kyobashi, Chuoku, Tokyo, 104-8315, Japan
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
17
|
Kaczmarczyk A, Baker M, Diddle J, Yuzyuk T, Valle D, Lindstrom K. A neonate with ornithine aminotransferase deficiency; insights on the hyperammonemia-associated biochemical phenotype of gyrate atrophy. Mol Genet Metab Rep 2022; 31:100857. [PMID: 35782604 PMCID: PMC9248225 DOI: 10.1016/j.ymgmr.2022.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Aneta Kaczmarczyk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Institute for Clinical and Experimental Pathology®, Salt Lake City, UT, USA
- Corresponding author at: ARUP Laboratories, 500 Chipeta Way, MS115, Salt Lake City, UT 84108, USA.
| | - Mark Baker
- Phoenix Children's Pediatric Residency Program Alliance, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Julianna Diddle
- Phoenix Children's Pediatric Residency Program Alliance, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Institute for Clinical and Experimental Pathology®, Salt Lake City, UT, USA
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
18
|
Martinez RE, Leatherwood JL, Bradbery AN, Silvers BL, Fridley J, Arnold CE, Posey EA, He W, Bazer FW, Wu G. Equine enterocytes actively oxidize l-glutamine, but do not synthesize l-citrulline or l-arginine from l-glutamine or l-proline in vitro. J Anim Sci 2022; 100:skac077. [PMID: 35275603 PMCID: PMC9030134 DOI: 10.1093/jas/skac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
In livestock species, the enterocytes of the small intestine are responsible for the synthesis of citrulline and arginine from glutamine and proline. At present, little is known about de novo synthesis of citrulline and arginine in horses. To test the hypothesis that horses of different age groups can utilize glutamine and proline for the de novo synthesis of citrulline and arginine, jejunal enterocytes from 19 horses of three different age groups: neonates (n = 4; 7.54 ± 2.36 d of age), adults (n = 9; 6.4 ± 0.35 yr), and aged (n = 6; 22.9 ± 1.0 yr) with healthy gastrointestinal tracts were used in the present study. Enterocytes were isolated from the jejunum and incubated at 37 °C for 30 min in oxygenated (95% O2/5% CO2) Krebs bicarbonate buffer (pH 7.4) containing 5 mM D-glucose and 0 mM, 2-mM L-[U-14C]glutamine, or 2 mM L-[U-14C]proline plus 2 mM L-glutamine. Concentrations of arginine, citrulline, and ornithine in cells plus medium were determined using high-performance liquid chromatography. Results indicate that the rate of oxidation of glutamine to CO2 was high in enterocytes from neonatal horses, but low in cells from adult and aged horses. Enterocytes from all age groups of horses did not degrade proline into CO2. Regardless of age, equine enterocytes formed ornithine from glutamine and proline, but failed to convert ornithine into citrulline and arginine. Because arginine is an essential substrate for the synthesis of not only proteins, but also nitrogenous metabolites (e.g., nitric oxide, polyamines, and creatine), our novel findings have important implications for the nutrition, performance, and health of horses.
Collapse
Affiliation(s)
- Rafael E Martinez
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Jessica L Leatherwood
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Amanda N Bradbery
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Brittany L Silvers
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Jennifer Fridley
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Carolyn E Arnold
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Erin A Posey
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
19
|
Carlson Z, Hafner H, El Habbal N, Harman E, Liu S, Botezatu N, Alharastani M, Rivet C, Reynolds H, Both N, Sun H, Bridges D, Gregg B. Short Term Changes in Dietary Fat Content and Metformin Treatment During Lactation Impact Milk Composition and Mammary Gland Morphology. J Mammary Gland Biol Neoplasia 2022; 27:1-18. [PMID: 35137304 DOI: 10.1007/s10911-022-09512-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Maternal health and diet can have important consequences for offspring nutrition and metabolic health. During lactation, signals are communicated from the mother to the infant through milk via macronutrients, hormones, and bioactive molecules. In this study we designed experiments to probe the mother-milk-infant triad in the condition of normal maternal health and upon exposure to high fat diet (HFD) with or without concurrent metformin exposure. We examined maternal characteristics, milk composition and offspring metabolic parameters on postnatal day 16, prior to offspring weaning. We found that lactational HFD increased maternal adipose tissue weight, mammary gland adipocyte size, and altered milk lipid composition causing a higher amount of omega-6 (n6) long chain fatty acids and lower omega-3 (n3). Offspring of HFD dams were heavier with more body fat during suckling. Metformin (Met) exposure decreased maternal blood glucose and several milk amino acids. Offspring of met dams were smaller during suckling. Gene expression in the lactating mammary glands was impacted to a greater extent by metformin than HFD, but both metformin and HFD altered genes related to muscle contraction, indicating that these genes may be more susceptible to lactational stressors. Our study demonstrates the impact of common maternal exposures during lactation on milk composition, mammary gland function and offspring growth with metformin having little capacity to rescue the offspring from the effects of a maternal HFD during lactation.
Collapse
Affiliation(s)
- Zach Carlson
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Hannah Hafner
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Noura El Habbal
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Emma Harman
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Liu
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Nathalie Botezatu
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | | | - Cecilia Rivet
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Holly Reynolds
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Nyahon Both
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Haijing Sun
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Brigid Gregg
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA.
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Chen Y, Callanan M, Giblin L, Tobin J, Brodkorb A. Comparison of conventional heat-treated and membrane filtered infant formula using an in vitro semi-dynamic digestion method. Food Funct 2022; 13:8158-8167. [DOI: 10.1039/d2fo00342b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing membrane filtration steps into infant milk formula (IMF) manufacture can partly preserve native whey proteins in the final products. In this study, IMF produced by membrane filtration (MEM-IMF) and...
Collapse
|
21
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
22
|
Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids 2021; 54:513-528. [PMID: 34342708 DOI: 10.1007/s00726-021-03056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
trans-4-Hydroxy-L-proline is highly abundant in collagen (accounting for about one-third of body proteins in humans and other animals). This imino acid (loosely called amino acid) and its minor analogue trans-3-hydroxy-L-proline in their ratio of approximately 100:1 are formed from the post-translational hydroxylation of proteins (primarily collagen and, to a much lesser extent, non-collagen proteins). Besides their structural and physiological significance in the connective tissue, both trans-4-hydroxy-L-proline and trans-3-hydroxy-L-proline can scavenge reactive oxygen species and have both structural and physiological significance in animals. The formation of trans-4-hydroxy-L-proline residues in protein kinases B and DYRK1A, eukaryotic elongation factor 2 activity, and hypoxia-inducible transcription factor plays an important role in regulating their phosphorylation and catalytic activation as well as cell signaling in animal cells. These biochemical events contribute to the modulation of cell metabolism, growth, development, responses to nutritional and physiological changes (e.g., dietary protein intake and hypoxia), and survival. Milk, meat, skin hydrolysates, and blood, as well as whole-body collagen degradation provide a large amount of trans-4-hydroxy-L-proline. In animals, most (nearly 90%) of the collagen-derived trans-4-hydroxy-L-proline is catabolized to glycine via the trans-4-hydroxy-L-proline oxidase pathway, and trans-3-hydroxy-L-proline is degraded via the trans-3-hydroxy-L-proline dehydratase pathway to ornithine and glutamate, thereby conserving dietary and endogenously synthesized proline and arginine. Supplementing trans-4-hydroxy-L-proline or its small peptides to plant-based diets can alleviate oxidative stress, while increasing collagen synthesis and accretion in the body. New knowledge of hydroxyproline biochemistry and nutrition aids in improving the growth, health and well-being of humans and other animals.
Collapse
|
23
|
Cortisol enhances citrulline synthesis from proline in enterocytes of suckling piglets. Amino Acids 2021; 53:1957-1966. [PMID: 34244859 DOI: 10.1007/s00726-021-03039-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
There are marked decreases in plasma concentrations of cortisol and arginine (an essential amino acid for neonates) as well as intestinal citrulline synthesis in piglets during the first 14 days of life. The objective of this study was to test the hypothesis that increasing plasma cortisol concentrations by cortisol administration may prevent the decline in intestinal citrulline and arginine synthesis from proline, thereby possibly increasing plasma arginine concentration in suckling piglets and their growth. Seven-day-old pigs reared by sows received daily intramuscular injections of hydrocortisone 21-acetate (25 mg/kg) or vehicle solution (saline) (n = 10/group). At 14 days of age, piglets were used to prepare jejunal enterocytes. Cells were incubated at 37 °C for 30 min in oxygenated Krebs buffer containing 5 mM glucose, 2 mM [U-14C]proline, and 2 mM glutamine. Cortisol treatment increased plasma cortisol concentration, mitochondrial proline oxidase and N-acetylglutamate synthase activities, cytosolic argininosuccinate lyase activity, and the intracellular concentrations of N-acetylglutamate and carbamoyl phosphate for citrulline and arginine synthesis. However, cortisol treatment induced the expression of intestinal arginase-II for arginine hydrolysis, resulting in no change in plasma arginine concentration. Administration of cortisol had no effect on milk consumption or the whole-body growth rate of piglets, but increased villus height in the jejunum and ileum. Collectively, these results suggest an important role for proline oxidase and N-acetylglutamate in regulating citrulline and arginine synthesis from proline in pig enterocytes. Because proline catabolism plays an important role in modulating protein synthesis, cell proliferation, and arginine production, our findings may have important implications for understanding the role of proline oxidase in the growth and health of the mammalian small intestine.
Collapse
|
24
|
A combined targeted/untargeted screening based on GC/MS to detect low-molecular-weight compounds in different milk samples of different species and as affected by processing. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Che D, Nyingwa PS, Ralinala KM, Maswanganye GMT, Wu G. Amino Acids in the Nutrition, Metabolism, and Health of Domestic Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:217-231. [PMID: 33770409 DOI: 10.1007/978-3-030-54462-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Domestic cats (carnivores) require high amounts of dietary amino acids (AAs) for normal growth, development, and reproduction. Amino acids had been traditionally categorised as nutritionally essential (EAAs) or nonessential (NEAAs), depending on whether they are synthesized de novo in the body. This review will focus on AA nutrition and metabolism in cats. Like other mammals, cats do not synthesize the carbon skeletons of twelve proteinogenic AAs: Arg, Cys, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val. Like other feline carnivores but unlike many mammals, cats do not synthesize citrulline and have a very limited ability to produce taurine from Cys. Except for Leu and Lys that are strictly ketogenic AAs, most EAAs are both glucogenic and ketogenic AAs. All the EAAs (including taurine) must be provided in diets for cats. These animals are sensitive to dietary deficiencies of Arg and taurine, which rapidly result in life-threatening hyperammonemia and retinal damage, respectively. Although the National Research Council (NCR, Nutrient requirements of dogs and cats. National Academies Press, Washington, DC, 2006) does not recommend dietary requirements of cats for NEAAs, much attention should be directed to this critical issue of nutrition. Cats can synthesize de novo eight proteinogenic AAs: Ala, Asn, Asp, Gln, Glu, Gly, Pro, and Ser, as well as some nonproteinogenic AAs, such as γ-aminobutyrate, ornithine, and β-alanine with important physiological functions. Some of these AAs (e.g., Gln, Glu, Pro, and Gly) are crucial for intestinal integrity and health. Except for Gln, AAs in the arterial blood of cats may not be available to the mucosa of the small intestine. Plant-source foodstuffs lack taurine and generally contain inadequate Met and Cys and, therefore, should not be fed to cats in any age group. Besides meat, animal-source foodstuffs (including ruminant meat & bone meal, poultry by-product meal, porcine mucosal protein, and chicken visceral digest) are good sources of proteinogenic AAs and taurine for cats. Meeting dietary requirements for both EAAs and NEAAs in proper amounts and balances is crucial for improving the health, wellbeing, longevity, and reproduction of cats.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Pakama S Nyingwa
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Khakhathi M Ralinala
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gwen M T Maswanganye
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
26
|
Lachica M, Rojas-Cano M, Lara L, Haro A, Fernández-Fígares I. Net portal appearance of proteinogenic amino acids in Iberian pigs fed betaine and conjugated linoleic acid supplemented diets. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Prosser CG. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J Food Sci 2021; 86:257-265. [DOI: 10.1111/1750-3841.15574] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Colin G Prosser
- Dairy Goat Co‐operative (N.Z.) Ltd. 18 Gallagher Drive Hamilton 3240 New Zealand
| |
Collapse
|
28
|
Beaumont M, Cauquil L, Bertide A, Ahn I, Barilly C, Gil L, Canlet C, Zemb O, Pascal G, Samson A, Combes S. Gut Microbiota-Derived Metabolite Signature in Suckling and Weaned Piglets. J Proteome Res 2020; 20:982-994. [PMID: 33289566 DOI: 10.1021/acs.jproteome.0c00745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiota plays a key role in intestinal development at the suckling-to-weaning transition. The objective of this study was to analyze the production of metabolites by the gut microbiota in suckling and weaned piglets. We studied piglets raised in two separate maternity farms and weaned at postnatal day 21 in the same farm. The fecal metabolome (1H nuclear magnetic resonance) and the microbiota composition (16S rRNA gene amplicon sequencing) and its predicted functions (PICRUSt2) were analyzed in the same piglets during the suckling period (postnatal day 13) and 2 days after weaning (postnatal day 23). The relative concentrations of the bacterial metabolites methylamine, dimethylamine, cadaverine, tyramine, putrescine, 5-aminovalerate, succinate, and 3-(4-hydroxyphenylpropionate) were higher during the suckling period than after weaning. In contrast, the relative concentrations of the short-chain fatty acids acetate and propionate were higher after weaning than during the suckling period. The maternity of origin of piglets also influenced the level of some bacterial metabolites (propionate and isobutyrate). The fecal metabolome signatures observed in suckling and weaned piglets were associated with specific microbiota-predicted functionalities, structure, and diversity. Gut microbiota-derived metabolites, which are differentially abundant between suckling and weaned piglets (e.g., short-chain fatty acids and biogenic amines), are known to regulate gut health. Thus, identification of metabolome signatures in suckling and weaned piglets paves the way for the development of health-promoting nutritional strategies, targeting the production of bacterial metabolites in early life.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France
| | - Allan Bertide
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France.,Neovia-ADM, Rue de l'Eglise, 02402 Château-Thierry Cedex, France
| | - Ingrid Ahn
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France
| | - Céline Barilly
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France
| | - Lisa Gil
- GeT-PlaGe, Genotoul, INRAE, F-31326 Castanet-Tolosan, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France
| | - Géraldine Pascal
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France
| | - Arnaud Samson
- Neovia-ADM, Rue de l'Eglise, 02402 Château-Thierry Cedex, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France
| |
Collapse
|
29
|
Macronutrients, total aerobic bacteria counts and serum proteome of human milk during refrigerated storage. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Carlin G, Chaumontet C, Blachier F, Barbillon P, Darcel N, Delteil C, van der Beek EM, Kodde A, van de Heijning BJM, Tomé D, Davila AM. Perinatal exposure of rats to a maternal diet with varying protein quantity and quality affects the risk of overweight in female adult offspring. J Nutr Biochem 2020; 79:108333. [PMID: 32045724 DOI: 10.1016/j.jnutbio.2019.108333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/30/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022]
Abstract
The maternal protein diet during the perinatal period can program the health of adult offspring. This study in rats evaluated the effects of protein quantity and quality in the maternal diet during gestation and lactation on weight and adiposity in female offspring. Six groups of dams were fed a high-protein (HP; 47% protein) or normal-protein (NP; 19% protein) isocaloric diet during gestation (G) using either cow's milk (M), pea (P) or turkey (T) proteins. During lactation, all dams received the NP diet (protein source unchanged). From postnatal day (PND) 28 until PND70, female pups (n=8) from the dam milk groups were exposed to either an NP milk diet (NPMW) or to dietary self-selection (DSS). All other pups were only exposed to DSS. The DSS design was a choice between five food cups containing HPM, HPP, HPT, carbohydrates or lipids. The weights and food intakes of the animals were recorded throughout the study, and samples from offspring were collected on PND70. During the lactation and postweaning periods, body weight was lower in the pea and turkey groups (NPG and HPG) versus the milk group (P<.0001). DSS groups increased their total energy and fat intakes compared to the NPMW group (P<.0001). In all HPG groups, total adipose tissue was increased (P=.03) associated with higher fasting plasma leptin (P<.05). These results suggest that the maternal protein source impacted offspring body weight and that protein excess during gestation, irrespective of its source, increased the risk of adiposity development in female adult offspring.
Collapse
Affiliation(s)
- Gabrielle Carlin
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | | | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Pierre Barbillon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - Nicolas Darcel
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Corine Delteil
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, the Netherlands; Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrea Kodde
- Danone Nutricia Research, Utrecht, the Netherlands
| | | | - Daniel Tomé
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Anne-Marie Davila
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France.
| |
Collapse
|
31
|
Brestenský M, Nitrayová S, Patráš P, Nitray J. Dietary Requirements for Proteins and Amino Acids in Human Nutrition. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180507123506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background:
An optimal dietary Amino Acid (AA) intake is necessary for the growth of
body proteins. A new method for protein quality evaluation called Digestible Indispensable AA Score
(DIAAS) was established. Despite that the information about dietary AA requirements are available
for different stages of life, in practical conditions, most people deal only with the dietary proteins, if
ever.
Objective:
The aim of this mini-review was to analyze the protein quality of protein sources by DIAAS
and to find AA and protein dietary requirements in human nutrition.
Methods:
A literature research was performed using the keyword “amino acid”, “diet”, “nutrition”,
“human”, “muscle” and “requirement” individually or all together, in Scopus, Web of Science and
Pubmed.
Results:
The optimum amount of dietary AA is necessary for AA utilization in the body and is limited
by AA which is present in the lowest amount; the surplus of other AA is not utilized in the body. Food
and Agriculture Organization reported requirements for dietary protein and AA intake for infants,
children, however for adults (over 18) for maintenance. Most of the studies which are dealing with the
dietary AA requirements in sports nutrition are aimed at the blends of AA and for branched-chain AA.
Concerning the protein quality, at this time, there is little information about the protein quality evaluated
by DIAAS method.
Conclusion:
Dietary intake of high-quality protein or a blend of different proteins will provide all AA
to the body. However, studies on protein quality evaluation by DIAAS method are necessary to perform.
Collapse
Affiliation(s)
| | | | - Peter Patráš
- Department of Nutrition, National Agricultural and Food Center, Luzianky, Slovakia
| | | |
Collapse
|
32
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Quantitation of the arginine family amino acids in the blood of full-term infants perinatally in relation to their birth weight. J Pediatr Endocrinol Metab 2019; 32:803-809. [PMID: 31246579 DOI: 10.1515/jpem-2019-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Arginine family amino acids (AFAAs) include glutamine (Gln) plus glutamate (Glu), ornithine (Orn), proline (Pro), citrulline (Cit) and arginine (Arg). We aimed to quantitate these amino acids in the blood of full-term infants in relation to their birth weight (BW) perinatally. Methods Breastfeeding full-term infants (n = 2000, 1000 males, 1000 females) with a BW of 2000-4000 g were divided into four equal groups: group A, 2000-2500 g; B, 2500-3000 g; C, 3000-3500 g and D, 3500-4000 g. Blood samples as dried blood spots (DBS) were collected on the third day of life and analyzed via a liquid chromatography tandem mass spectrometry (LC-MS/MS) protocol. Results Gln plus Glu mean values were found to be statistically significantly different between males and females in all studied groups. The highest values of these amino acids were detected in both males and females in group D. Orn mean values were found to be statistically significantly different between males and females of the same BW in all groups except the last one. The lower mean value was determined in group A, whereas the highest was determined in group D. Cit and Arg mean values were determined to be almost similar in all studied groups. Conclusions Gln plus Glu and Orn blood concentrations were directly related to infants' BW. Conversely, Cit and Arg did not vary significantly in all groups.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition and Dietetics, Agia Sofia Children's Hospital, Athens, Greece
| | | | - Yannis L Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece, Phone: +30 210 7274696, Fax: +30 210 7274039
| |
Collapse
|
33
|
Robles M, Couturier-Tarrade A, Derisoud E, Geeverding A, Dubois C, Dahirel M, Aioun J, Prezelin A, Calvez J, Richard C, Wimel L, Chavatte-Palmer P. Effects of dietary arginine supplementation in pregnant mares on maternal metabolism, placental structure and function and foal growth. Sci Rep 2019; 9:6461. [PMID: 31015538 PMCID: PMC6478728 DOI: 10.1038/s41598-019-42941-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
Foals born to primiparous mares are lighter and less mature than those born to multiparous dams. Factors driving this difference are not totally understood. Using 7 multiparous and 6 primiparous standardbred mares, we demonstrated that, in late gestation, primiparous mares were less insulin resistant compared to multiparous mares, and that their foals had reduced plasma amino-acid concentrations at birth compared to foals born to multiparous mares. Vascular development, as observed through structure and gene expression, and global DNA methylation were also reduced in primiparous placentas. Another group of 8 primiparous mares was orally supplemented with L-arginine (100 g/day, 210d to term). L-arginine improved pregnancy-induced insulin resistance and increased maternal L-arginine and L-ornithine plasma concentrations but foal plasma amino acid concentrations were not affected at birth. At birth, foal weight and placental biometry, structure, ultra-structure and DNA methylation were not modified. Placental expression of genes involved in glucose and fatty acid transfers was increased. In conclusion, maternal insulin resistance in response to pregnancy and placental function are reduced in primiparous pregnancies. Late-gestation L-arginine supplementation may help primiparous mares to metabolically adapt to pregnancy and improve placental function. More work is needed to confirm these effects and ascertain optimal treatment conditions.
Collapse
Affiliation(s)
- Morgane Robles
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | | | - Emilie Derisoud
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Audrey Geeverding
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Cedric Dubois
- IFCE, Station Expérimentale de la Valade, 19370 Chamberet, France
| | - Michele Dahirel
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Josiane Aioun
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Audrey Prezelin
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Juliane Calvez
- UMR PNCA, AgroParisTech, INRA, Université Paris Saclay, 75005 Paris, France
| | - Christophe Richard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Laurence Wimel
- IFCE, Station Expérimentale de la Valade, 19370 Chamberet, France
| | | |
Collapse
|
34
|
Liu N, Dai Z, Zhang Y, Jia H, Chen J, Sun S, Wu G, Wu Z. Maternal L-proline supplementation during gestation alters amino acid and polyamine metabolism in the first generation female offspring of C57BL/6J mice. Amino Acids 2019; 51:805-811. [PMID: 30879150 DOI: 10.1007/s00726-019-02717-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/28/2019] [Indexed: 01/29/2023]
Abstract
We recently reported that dietary supplementation with L-proline (proline) during gestation improved embryonic survival in C57BL/6J mice. The objective of the present study was to test the hypothesis that the effect of maternal proline supplementation on embryonic survival can be carried forward to the first generation female offspring. In the F0 generation, pregnant dams were fed a purified diet supplemented with 0 (control) or 5 g proline/kg diet. The F1 female adult offsprings were bred to fertile males. Fetal survival at embryonic day (E)12.5 and reproductive outcomes at term birth were recorded. The concentrations of amino acids, ammonia, and urea in plasma and amniotic fluid, as well as concentrations of polyamines in placental tissues and amniotic fluid at E12.5 were determined. Results showed that the F1 generation female offspring from proline-supplemented dams had higher (P < 0.05) concentrations of glutamate and taurine in plasma; of putrescine and spermidine in placental tissues; and of glycine, taurine, and spermidine in amniotic fluid at E12.5, as compared with F1 generation female offsprings from dams without proline supplementation. Concentration of proline in the plasma of offspring mice from proline-supplemented dams were lower (P < 0.05), as compared with the control group. No differences in fetal survival, reproductive outcomes, or concentrations of ammonia and urea in plasma and amniotic fluid were observed between the two groups of F1 female offspring. Collectively, our results indicate that the benefits of maternal proline supplementation during gestation on improving embryonic survival and fetal growth in F0 females are not transmitted to their F1 generation females.
Collapse
Affiliation(s)
- Ning Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.,Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yunchang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Jiangqing Chen
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Shiqiang Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Guoyao Wu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhenlong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China. .,Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
35
|
Xiong X, Tan B, Song M, Ji P, Kim K, Yin Y, Liu Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front Vet Sci 2019; 6:46. [PMID: 30847348 PMCID: PMC6393345 DOI: 10.3389/fvets.2019.00046] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/04/2019] [Indexed: 01/20/2023] Open
Abstract
Weaning imposes simultaneous stress, resulting in reduced feed intake, and growth rate, and increased morbidity and mortality of weaned pigs. Weaning impairs the intestinal integrity, disturbs digestive and absorptive capacity, and increases the intestinal oxidative stress, and susceptibility of diseases in piglets. The improvement of intestinal development and health is critically important for enhancing nutrient digestibility capacity and disease resistance of weaned pigs, therefore, increasing their survival rate at this most vulnerable stage, and overall productive performance during later stages. A healthy gut may include but not limited several important features: a healthy proliferation of intestinal epithelial cells, an integrated gut barrier function, a preferable or balanced gut microbiota, and a well-developed intestinal mucosa immunity. Burgeoning evidence suggested nutritional intervention are one of promising measures to enhance intestinal health of weaned pigs, although the exact protective mechanisms may vary and are still not completely understood. Previous research indicated that functional amino acids, such as arginine, cysteine, glutamine, or glutamate, may enhance intestinal mucosa immunity (i.e., increased sIgA secretion), reduce oxidative damage, stimulate proliferation of enterocytes, and enhance gut barrier function (i.e., enhanced expression of tight junction protein) of weaned pigs. A number of feed additives are marketed to assist in boosting intestinal immunity and regulating gut microbiota, therefore, reducing the negative impacts of weaning, and other environmental challenges on piglets. The promising results have been demonstrated in antimicrobial peptides, clays, direct-fed microbials, micro-minerals, milk components, oligosaccharides, organic acids, phytochemicals, and many other feed additives. This review summarizes our current understanding of nutritional intervention on intestinal health and development of weaned pigs and the importance of mechanistic studies focusing on this research area.
Collapse
Affiliation(s)
- Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
36
|
Wu G, Bazer FW, Johnson GA, Hou Y. BOARD-INVITED REVIEW: Arginine nutrition and metabolism in growing, gestating, and lactating swine. J Anim Sci 2019; 96:5035-5051. [PMID: 30445424 DOI: 10.1093/jas/sky377] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Arginine (Arg) has traditionally not been considered as a deficient nutrient in diets for gestating or lactating swine due to the assumption that these animals can synthesize sufficient amounts of Arg to meet their physiological needs. The lack of full knowledge about Arg nutrition has contributed to suboptimal efficiency of pork production. Over the past 25 yr, there has been growing interest in Arg metabolism in the pig, which is an agriculturally important species and a useful model for studying human biology. Arginine is a highly abundant amino acid in tissues of pigs, a major amino acid in allantoic fluid, and a key regulator of gene expression, cell signaling, and antioxidative reactions. Emerging evidence suggests that dietary supplementation with 0.5% to 1% Arg maintains gut health and prevents intestinal dysfunction in weanling piglets, while enhancing their growth performance and survival. Also, the inclusion of 1% Arg in diets is required to maximize skeletal muscle accretion and feed efficiency in growing pigs, whereas dietary supplementation with 1% Arg reduces muscle loss in endotoxin-challenged pigs. Furthermore, supplementing 0.83% Arg to corn- and soybean meal-based diets promotes embryonic/fetal survival in swine and milk production by lactating sows. Thus, an adequate amount of dietary Arg as a quantitatively major nutrient is necessary to support maximum growth, lactation, and reproduction performance of swine. These results also have important implications for improving the nutrition and health of humans and other animals.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX.,Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| | - Fuller W Bazer
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Gregory A Johnson
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
37
|
Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, Li X, Zhan L, White E, Anthony TG, Rabinowitz JD, Arany Z. Quantitative Analysis of the Whole-Body Metabolic Fate of Branched-Chain Amino Acids. Cell Metab 2019; 29:417-429.e4. [PMID: 30449684 PMCID: PMC6365191 DOI: 10.1016/j.cmet.2018.10.013] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/25/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023]
Abstract
Elevations in branched-chain amino acids (BCAAs) associate with numerous systemic diseases, including cancer, diabetes, and heart failure. However, an integrated understanding of whole-body BCAA metabolism remains lacking. Here, we employ in vivo isotopic tracing to systemically quantify BCAA oxidation in healthy and insulin-resistant mice. We find that most tissues rapidly oxidize BCAAs into the tricarboxylic acid (TCA) cycle, with the greatest quantity occurring in muscle, brown fat, liver, kidneys, and heart. Notably, pancreas supplies 20% of its TCA carbons from BCAAs. Genetic and pharmacologic suppression of branched-chain alpha-ketoacid dehydrogenase kinase, a clinically targeted regulatory kinase, induces BCAA oxidation primarily in skeletal muscle of healthy mice. While insulin acutely increases BCAA oxidation in cardiac and skeletal muscle, chronically insulin-resistant mice show blunted BCAA oxidation in adipose tissues and liver, shifting BCAA oxidation toward muscle. Together, this work provides a quantitative framework for understanding systemic BCAA oxidation in health and insulin resistance.
Collapse
Affiliation(s)
- Michael D Neinast
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Cholsoon Jang
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA; Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sheng Hui
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Danielle S Murashige
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Qingwei Chu
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Raphael J Morscher
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Xiaoxuan Li
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Le Zhan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Trottier NL, Tedeschi LO. Dietary nitrogen utilisation and prediction of amino acid requirements in equids. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an19304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The equine population represents an important sector of animal agriculture and, thus, contributes to environmental contamination. The horse industry lags behind other livestock industries in developing prediction models to estimate N and amino acid (AA) requirements aimed at precision feeding and management to optimise animal health and performance while mitigating nutrient excretion. Effective predictions of N utilisation and excretion are based on knowledge of ingredient protein quality and the determinants of N and AA requirements. Protein quality is evaluated on the basis of N and AA digestibility and AA composition. Amino acid composition of grains, pulses and oil seeds is extensive, but there is large deficit on that of forages. Several studies have reported on pre- and post-caecal N digestibility in horses, demonstrating that a large proportion of N from forages is metabolised post-caecally. Few have reported on AA digestibility. It is proposed that whole-tract (i.e. faecal) N and AA digestibility be used in evaluating feed-ingredient protein quality in equids to begin designing predictive models of N and AA requirements. Nitrogen gain and AA composition in deposited tissues and their corresponding efficiency of utilisation are the key determinants for a prediction model. We estimated that N utilisation for maintenance is 0.74. Maintenance requirements for N and AA were derived from faecal N and AA losses in horses and expressed as a function of dry-matter intake and from integument losses in swine. Relative to our factorial model, the NRC (2007) requirement for lysine and N is overestimated when based on a segmented curve and a breakpoint. When based on N equilibrium, lysine NRC (2007) requirement estimate agrees with our factorial model estimate, while N requirement is underestimated. The pool of AA profile used to express requirements of other essential AA has a large impact on requirement, as shown, in particular, for threonine. Threonine requirement based on faecal endogenous AA profile is higher than is lysine requirement for maintenance and lactation.
Collapse
|
39
|
Lachica M, Rodríguez-López JM, González-Valero L, Fernández-Fígares I. Iberian pig adaptation to acorn consumption: II. Net portal appearance of amino acids. PeerJ 2018; 6:e6137. [PMID: 30588411 PMCID: PMC6302897 DOI: 10.7717/peerj.6137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022] Open
Abstract
In Iberian pig outdoor production, pigs are fed equilibrated diets until the final fattening period when grazing pigs consume mainly acorns from oak trees. Acorns are rich in energy but poor in crude protein where lysine is the first limiting amino acid (AA). Net portal appearance (NPA) is very useful to ascertain AA available for liver and peripheral tissues. The aim of this study was to determine NPA of AA in Iberian gilts fed with acorns and to ascertain if there was an effect of acorn feeding over time. Two sampling periods were carried out (after one day and after one week of acorn feeding) with six gilts (34 kg average BW) set up with three catheters: in carotid artery and portal vein for blood sampling, and ileal vein for a marker infusion to measure portal plasma flow (PPF). Pigs were fed at 2.5 × ME for maintenance a standard diet in two meals, at 09:00 (0.25) and 15:00 h (the remaining 0.75). The day previous to first sampling, pig diet was replaced by 2.4 kg of acorn. A serial blood collection was done at -5 min, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5 and 6 h after feeding 0.25 of total daily acorn ration. Following identical protocol, one week later the second sampling was done. NPA of sum of essential AA (EAA) was poor. Although increased NPA of histidine (P < 0.001), leucine, phenylalanine and valine (0.05 < P < 0.08) was found after one week of acorn consumption, the sum of EAA did not change. Furthermore, fractional absorption (NPA/AA intake) of EAA, non-essential AA (NEAA) and total AA was 97, 44 and 49% lower, respectively, at the beginning of eating acorn than a week later. Supplementation, with some of the EAA and NEAA to Iberian pigs during the grazing period would be beneficial to overcome the increased portal-drained viscera (PDV) utilization of AA observed in the present study.
Collapse
Affiliation(s)
- Manuel Lachica
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | - Lucrecia González-Valero
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Ignacio Fernández-Fígares
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
40
|
Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of Human Breast Milk-A Comprehensive Review of the Composition and Role of Milk Metabolites in Child Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11881-11896. [PMID: 30247884 DOI: 10.1021/acs.jafc.8b04031] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Early nutrition has an enormous influence on a child's physiological function, immune system maturation, and cognitive development. Human breast milk (HBM) is recognized as the gold standard for human infant nutrition. According to a WHO report, breastfeeding is considered as an unequaled way of providing ideal food to the infant, which is required for his healthy growth and development. HBM contains various macronutrients (carbohydrates, proteins, lipids, and vitamins) as well as numerous bioactive compounds and interactive elements (growth factors, hormones, cytokines, chemokines, and antimicrobial compounds. The aim of this review is to summarize and discuss the current knowledge about metabolites, which are the least understood components of HBM, and their potential role in infant development. We focus on small metabolites (<1500 Da) and characterize the chemical structure and biological function of polar metabolites such as human milk oligosaccharides, nonprotein molecules containing nitrogen (creatine, amino acids, nucleotides, polyamines), and nonpolar lipids. We believe that this manuscript will provide a comprehensive insight into a HBM metabolite composition, chemical structure, and their role in a child's early life nutrition.
Collapse
Affiliation(s)
- Dorota Garwolińska
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Agata Kot-Wasik
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| |
Collapse
|
41
|
Tan C, Zhai Z, Ni X, Wang H, Ji Y, Tang T, Ren W, Long H, Deng B, Deng J, Yin Y. Metabolomic Profiles Reveal Potential Factors that Correlate with Lactation Performance in Sow Milk. Sci Rep 2018; 8:10712. [PMID: 30013051 PMCID: PMC6048051 DOI: 10.1038/s41598-018-28793-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
Sow milk contains necessary nutrients for piglets; however, the relationship between the levels of metabolites in sow milk and lactation performance has not been thoroughly elucidated to date. In this study, we analysed the metabolites in sow milk from Yorkshire sows with high lactation (HL) or low lactation (LL) performance; these categories were assigned based on the weight gain of piglets during the entire lactation period (D1 to D21). The concentration of milk fat in the colostrum tended to be higher in the HL group (P = 0.05), the level of mannitol was significantly lower in the HL group (P < 0.05) and the level of glucuronic acid lactone was significantly higher in the HL group (P < 0.05) compared to those in LL group. In mature milk, the levels of lactose, creatine, glutamine, glutamate, 4-hydroxyproline, alanine, asparagine, and glycine were significantly higher (P < 0.05) in the HL group than those in LL group. The level of fatty acids showed no significant difference between the two groups in both the colostrum and mature milk. This study suggested that lactation performance may be associated with the levels of lactose and several amino acids in sow milk, and these results can be used to develop new feed additives to improve lactation performance in sows.
Collapse
Affiliation(s)
- Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Zhenya Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Xiaojun Ni
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Yongcheng Ji
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Tianyue Tang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Hongrong Long
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, P.R. China.
| |
Collapse
|
42
|
Correction to: Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother’s breast-milk protein. Amino Acids 2017; 50:201-204. [DOI: 10.1007/s00726-017-2506-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Ghaffari MH, MacPherson JAR, Berends H, Steele MA. Diurnal variation of NMR based blood metabolites in calves fed a high plane of milk replacer: a pilot study. BMC Vet Res 2017; 13:271. [PMID: 28836978 PMCID: PMC5569568 DOI: 10.1186/s12917-017-1185-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 08/10/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Blood profiles have been used to monitor herd health status, diagnose disorders, and predict the risk of diseases in cattle and calves. Characterizing plasma metabolites in dairy calves could provide further insight into daily metabolic variations and the mechanisms that lead to metabolic diseases. In addition, by understanding physiological ranges of plasma metabolites relative to meal and the time of feeding in healthy animals, veterinarians can accurately diagnose abnormalities with a blood test. For diagnostic purposes, nuclear magnetic resonance (NMR) spectroscopy shows promise as a new and reliable method to determine a large number of blood metabolites simultaneously. RESULTS Results demonstrated that the concentration of specific metabolites in plasma (i.e., lysine, isoleucine, leucine, tyrosine, glutamine, creatine, and 1-methylhistidine) fluctuated around meal times, while others (i.e., glutamic acid, methanol, formic acid, and acetic acid) maintained a stable temporal concentration. In addition to temporal changes in concentration, results also characterized differences for overall plasma metabolite concentrations; for example, methionine had the lowest (38 μM) while glutamine had the highest concentration (239 μM) amongst plasma AA. This is the first report describing how the plasma metabolome changes during 24-h period in young calves fed an elevated plane of milk replacer twice daily. CONCLUSIONS Data from this pilot study will help to establish reference standards for future metabolic diagnostics in dairy calves. In addition, this pilot study illustrated that feeding milk replacer may influence plasma metabolite concentrations. With the rapid implementation of blood metabolomics in monitoring animal health, it is then important to consider the time of feeding during the day when interpreting metabolomics analysis results.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Jayden A R MacPherson
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Harma Berends
- Trouw Nutrition R&D, P.O. Box 220, 5830 AE, Boxmeer, The Netherlands
| | - Michael A Steele
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada.
| |
Collapse
|
44
|
Takatsu Z, Tsuda M, Yamada A, Matsumoto H, Takai A, Takeda Y, Takase M. Elephant's breast milk contains large amounts of glucosamine. J Vet Med Sci 2016; 79:524-533. [PMID: 28049867 PMCID: PMC5383172 DOI: 10.1292/jvms.16-0450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hand-reared elephant calves that are nursed with milk substitutes sometimes suffer bone fractures, probably due to problems associated with nutrition,
exercise, sunshine levels and/or genetic factors. As we were expecting the birth of an Asian elephant (Elephas maximus), we analyzed elephant’s
breast milk to improve the milk substitutes for elephant calves. Although there were few nutritional differences between conventional substitutes and elephant’s
breast milk, we found a large unknown peak in the breast milk during high-performance liquid chromatography-based amino acid analysis and determined that it was
glucosamine (GlcN) using liquid chromatography/mass spectrometry. We detected the following GlcN concentrations [mean ± SD] (mg/100 g) in milk hydrolysates
produced by treating samples with 6M HCl for 24 hr at 110°C: four elephant’s breast milk samples: 516 ± 42, three cow’s milk mixtures: 4.0 ± 2.2, three mare’s
milk samples: 12 ± 1.2 and two human milk samples: 38. The GlcN content of the elephant’s milk was 128, 43 and 14 times greater than those of the cow’s, mare’s
and human milk, respectively. Then, we examined the degradation of GlcN during 0–24 hr hydrolyzation with HCl. We estimated that elephant’s milk contains
>880 mg/100 g GlcN, which is similar to the levels of major amino acids in elephant’s milk. We concluded that a novel GlcN-containing milk substitute should
be developed for elephant calves. The efficacy of GlcN supplements is disputed, and free GlcN is rare in bodily fluids; thus, the optimal molecular form of GlcN
requires a further study.
Collapse
Affiliation(s)
- Zenta Takatsu
- Morinyu Sunworld, Research & Information Center, Morinaga Milk, 5-1-83, Higashihara, Zama, Kanagawa 252-8583, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
O'Connell A, Kelly AL, Tobin J, Ruegg PL, Gleeson D. The effect of storage conditions on the composition and functional properties of blended bulk tank milk. J Dairy Sci 2016; 100:991-1003. [PMID: 27988127 DOI: 10.3168/jds.2016-11314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the effects of storage temperature and duration on the composition and functional properties of bulk tank milk when fresh milk was added to the bulk tank twice daily. The bulk tank milk temperature was set at each of 3 temperatures (2, 4, and 6°C) in each of 3 tanks on 2 occasions during two 6-wk periods. Period 1 was undertaken in August and September when all cows were in mid lactation, and period 2 was undertaken in October and November when all cows were in late lactation. Bulk tank milk stored at the 3 temperatures was sampled at 24-h intervals during storage periods of 0 to 96 h. Compositional parameters were measured for all bulk tank milk samples, including gross composition and quantification of nitrogen compounds, casein fractions, free amino acids, and Ca and P contents. The somatic cell count, heat stability, titratable acidity, and rennetability of bulk tank milk samples were also assessed. Almost all parameters differed between mid and late lactation; however, the interaction between lactation, storage temperature, and storage duration was significant for only 3 parameters: protein content and concentrations of free cysteic acid and free glutamic acid. The interaction between storage temperature and storage time was not significant for any parameter measured, and temperature had no effect on any parameter except lysine: lysine content was higher at 6°C than at 2°C. During 96 h of storage, the concentrations of some free amino acids (glutamic acid, lysine, and arginine) increased, which may indicate proteolytic activity during storage. Between 0 and 96 h, minimal deterioration was observed in functional properties (rennet coagulation time, curd firmness, and heat stability), which was most likely due to the dissociation of β-casein from the casein micelle, which can be reversed upon pasteurization. Thus, this study suggests that blended milk can be stored for up to 96 h at temperatures between 2°C and 6°C with little effect on its composition or functional properties.
Collapse
Affiliation(s)
- A O'Connell
- Teagasc, Livestock Systems Research Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland; Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - A L Kelly
- Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - J Tobin
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - P L Ruegg
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706
| | - D Gleeson
- Teagasc, Livestock Systems Research Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
46
|
Feng P, Gao M, Burgher A, Zhou TH, Pramuk K. A nine-country study of the protein content and amino acid composition of mature human milk. Food Nutr Res 2016; 60:31042. [PMID: 27569428 PMCID: PMC5002399 DOI: 10.3402/fnr.v60.31042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/15/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. OBJECTIVE Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. DESIGN Using a single, centralized laboratory, human milk samples from 220 women (30-188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. RESULTS Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. CONCLUSIONS Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and broad application of these findings.
Collapse
Affiliation(s)
| | - Ming Gao
- Wyeth Nutrition, King of Prussia, PA, USA
| | | | - Tian Hui Zhou
- Bio TX Clinical Research, Pfizer, Inc., Collegeville, PA, USA
| | | |
Collapse
|
47
|
Dietary methyl donors affect in vivo methionine partitioning between transmethylation and protein synthesis in the neonatal piglet. Amino Acids 2016; 48:2821-2830. [DOI: 10.1007/s00726-016-2317-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/17/2016] [Indexed: 12/31/2022]
|
48
|
Lönnerdal B, Erdmann P, Thakkar SK, Sauser J, Destaillats F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: a developmental perspective. J Nutr Biochem 2016; 41:1-11. [PMID: 27771491 DOI: 10.1016/j.jnutbio.2016.06.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
The protein content of breast milk provides a foundation for estimating protein requirements of infants. Because it serves as a guideline for regulatory agencies issuing regulations for infant formula composition, it is critical that information on the protein content of breast milk is reliable. We have therefore carried out a meta-analysis of the protein and amino acid contents of breast milk and how they evolve during lactation. As several bioactive proteins are not completely digested in the infant and therefore represent "non-utilizable" protein, we evaluated the quantity, mechanism of action and digestive fate of several major breast milk proteins. A better knowledge of the development of the protein contents of breast milk and to what extent protein utilization changes with age of the infant will help improve understanding of protein needs in infancy. It is also essential when designing the composition of infant formulas, particularly when the formula uses a "staging" approach in which the composition of the formula is modified in stages to reflect changes in breast milk and changing requirements as the infant ages.
Collapse
Affiliation(s)
- Bo Lönnerdal
- Department of Nutrition, University of California, Davis, USA.
| | - Peter Erdmann
- Nestlé Nutrition, Rue Entre-Deux-Villes 10, CH-1814, La Tour-de-Peilz, Switzerland
| | - Sagar K Thakkar
- Nestlé Research Center, Vers-chez-les-Blanc, P.O. Box 44, CH-1000, Lausanne, 26, Switzerland
| | - Julien Sauser
- Nestlé Research Center, Vers-chez-les-Blanc, P.O. Box 44, CH-1000, Lausanne, 26, Switzerland
| | - Frédéric Destaillats
- Nestlé Nutrition, Rue Entre-Deux-Villes 10, CH-1814, La Tour-de-Peilz, Switzerland
| |
Collapse
|
49
|
Catabolism and safety of supplemental L-arginine in animals. Amino Acids 2016; 48:1541-52. [PMID: 27156062 DOI: 10.1007/s00726-016-2245-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
Abstract
L-arginine (Arg) is utilized via multiple pathways to synthesize protein and low-molecular-weight bioactive substances (e.g., nitric oxide, creatine, and polyamines) with enormous physiological importance. Furthermore, Arg regulates cell signaling pathways and gene expression to improve cardiovascular function, augment insulin sensitivity, enhance lean tissue mass, and reduce obesity in humans. Despite its versatile roles, the use of Arg as a dietary supplement is limited due to the lack of data to address concerns over its safety in humans. Data from animal studies are reviewed to assess arginine catabolism and the safety of long-term Arg supplementation. The arginase pathway was responsible for catabolism of 76-85 and 81-96 % Arg in extraintestinal tissues of pigs and rats, respectively. Dietary supplementation with Arg-HCl or the Arg base [315- and 630-mg Arg/(kg BW d) for 91 d] had no adverse effects on male or female pigs. Similarly, no safety issues were observed for male or female rats receiving supplementation with 1.8- and 3.6-g Arg/(kg BW d) for at least 91 d. Intravenous administration of Arg-HCl to gestating sheep at 81 and 180 mg Arg/(kg BW d) is safe for at least 82 and 40 d, respectively. Animals fed conventional diets can well tolerate large amounts of supplemental Arg [up to 630-mg Arg/(kg BW d) in pigs or 3.6-g Arg/(kg BW d) in rats] for 91 d, which are equivalent to 573-mg Arg/(kg BW d) for humans. Collectively, these results can help guide studies to determine the safety of long-term oral administration of Arg in humans.
Collapse
|
50
|
Osorio JS, Lohakare J, Bionaz M. Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol Genomics 2016; 48:231-56. [DOI: 10.1152/physiolgenomics.00016.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.
Collapse
Affiliation(s)
| | - Jayant Lohakare
- Oregon State University, Corvallis, Oregon; and
- Kangwon National University, Chuncheon, South Korea
| | | |
Collapse
|