1
|
Messa GAM, Korhonen MT, Degens H. No ageing-related increase in fibre type grouping in sprint-trained masters runners: A 10-year follow-up study. J Cachexia Sarcopenia Muscle 2024; 15:552-561. [PMID: 38228574 PMCID: PMC10995270 DOI: 10.1002/jcsm.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Previous research suggests that an ageing-associated remodelling and loss of motor units due to motor neuron death contributes significantly to muscle weakness in old age. In histological sections, motor unit remodelling is reflected by increased fibre type grouping. While regular exercise may not attenuate the loss of motor units during ageing, it has been suggested to facilitate reinnervation resulting in larger motor units, and a higher number and larger fibre type groups in histological sections of muscles from aged individuals. METHODS In a 10-year follow-up study, we assessed changes in the prevalence and size of fibre type groups in the vastus lateralis muscle from 34 male masters sprinters (40-85 years at start). RESULTS Over the 10 years, there was an ageing-related reduction in performance in the 60-m sprint (P < 0.001) without significant changes in fibre type composition and fibre cross-sectional area. Neither the number of fibre type groups, defined as a fibre surrounded exclusively by fibres of the same type, nor the group size changed significantly in the 10-year period. CONCLUSIONS These histological data show that there is limited to no significant fibre type grouping over a 10-year period in masters athletes who continued sprint run training. This observation challenges the paradigm that ageing, at least in systematically trained sprinters, is associated with motor unit remodelling.
Collapse
Affiliation(s)
- Guy Anselme Mpaka Messa
- Higher Institute of Medical TechnologyISTM‐KinshasaKinshasaDemocratic Republic of Congo
- Faculty of MedicineUniversity Kasa‐Vubu (UKV)BomaDemocratic Republic of Congo
- Faculty of MedicineUniversity de Bandundu (UNIBAND)BandunduDemocratic Republic of Congo
| | - Marko T. Korhonen
- Gerontology Research Center, Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Hans Degens
- Department of Life Sciences, Institute of SportManchester Metropolitan UniversityManchesterUK
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| |
Collapse
|
2
|
Grassi M, Von Der Straten F, Pearce C, Lee J, Mider M, Mittag U, Sies W, Mulder E, Daumer M, Rittweger J. Changes in real-world walking speed following 60-day bed-rest. NPJ Microgravity 2024; 10:6. [PMID: 38216584 PMCID: PMC10786829 DOI: 10.1038/s41526-023-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/11/2023] [Indexed: 01/14/2024] Open
Abstract
The aim of this work was to explore whether real-world walking speed (RWS) would change as a consequence of 60-day bed-rest. The main hypothesis was that daily RWS would decrease after the bed-rest, with a subsequent recovery during the first days of re-ambulation. Moreover, an exploratory analysis was done in order to understand whether there is an agreement between the loss in RWS after bed-rest and the loss in the maximum oxygen uptake capacity (VO2max), or the loss in maximal vertical jump power (JUMP) respectively. Twenty-four subjects were randomly assigned to one of three groups: a continuous artificial gravity group, an intermittent artificial gravity group, or a control group. The fitted linear mixed effects model showed a significant decrease (p < 0.001) of RWS after the 60-day bed-rest and a subsequent increase (p < 0.001) of RWS during the 14-day recovery period in the study facility. No or little agreement was found between the loss in RWS and the loss in VO2max capacity or the loss in maximal vertical jumping power (RWS vs. VO2max: p = 0.81, RWS vs. JUMP: p = 0.173). Decreased RWS after bed-rest, with a follow-up recovery was observed for all three groups, regardless of the training intervention. This suggests that RWS, also in these settings, was able to reflect a de-conditioning and follow-up recovery process.
Collapse
Affiliation(s)
- Marcello Grassi
- Sylvia Lawry Center for Multiple Sclerosis Research e.V., Munich, Germany
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | - Fiona Von Der Straten
- TUM School for Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Charlotte Pearce
- TUM School for Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Jessica Lee
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | | | - Uwe Mittag
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | - Wolfram Sies
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany
| | - Martin Daumer
- Sylvia Lawry Center for Multiple Sclerosis Research e.V., Munich, Germany
- TUM School for Computation, Information and Technology, Technical University of Munich, Munich, Germany
- Trium Analysis Online GmbH, Munich, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, Department of Muscle and Bone Metabolism, German Aerospace Center, Cologne, Germany.
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Fukumoto Y, Wakisaka T, Misawa K, Hibi M, Suzuki T. Decreased nerve conduction velocity may be a predictor of fingertip dexterity and subjective complaints. Exp Brain Res 2023; 241:661-675. [PMID: 36662264 PMCID: PMC9894957 DOI: 10.1007/s00221-023-06556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
We examined the causes of decreased fingertip dexterity in elderly individuals with an aim to improve their quality of life by improving their activities of daily living. We calculated nerve conduction velocity, absolute error during force adjustment tasks, and fingertip dexterity test scores for 30 young (21-34 years old) and 30 elderly (60-74 years old) participants to identify age-related changes. We also assessed subjective complaints of pain, motor function, and numbness. Motor nerve (young: 55.8 ± 3.7 m/s; elderly: 52.2 ± 5.0 m/s) and sensory nerve (young: 59.4 ± 3.4 m/s; elderly: 55.5 ± 5.3 m/s) conduction velocities decreased in an age-dependent manner. Moreover, the decrease of motor nerve conduction velocity was associated with decreased fingertip dexterity (objective index), while the decrease of sensory nerve conduction velocity was associated with subjective complaints of pain and motor function (subjective index).
Collapse
Affiliation(s)
- Yuki Fukumoto
- Graduate School of Health Sciences, Graduate School of Kansai University of Health Sciences, 2-11-1 Wakaba, Sennan-gun, Kumatori, Osaka, 590-0482, Japan.
| | - Takuya Wakisaka
- grid.419719.30000 0001 0816 944XBiological Science Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501 Japan
| | - Koichi Misawa
- grid.419719.30000 0001 0816 944XBiological Science Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501 Japan
| | - Masanobu Hibi
- grid.419719.30000 0001 0816 944XBiological Science Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501 Japan
| | - Toshiaki Suzuki
- grid.412013.50000 0001 2185 3035Graduate School of Health Sciences, Graduate School of Kansai University of Health Sciences, 2-11-1 Wakaba, Sennan-gun, Kumatori, Osaka, 590-0482 Japan
| |
Collapse
|
4
|
Verschueren A, Palminha C, Delmont E, Attarian S. Changes in neuromuscular function in elders: Novel techniques for assessment of motor unit loss and motor unit remodeling with aging. Rev Neurol (Paris) 2022; 178:780-787. [PMID: 35863917 DOI: 10.1016/j.neurol.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
Functional muscle fiber denervation is a major contributor to the decline in physical function observed with aging and is now a recognized cause of sarcopenia, a muscle disorder characterized by progressive and generalized degenerative loss of skeletal muscle mass, quality, and strength. There is an interrelationship between muscle strength, motor unit (MU) number, and aging, which suggests that a portion of muscle weakness in seniors may be attributable to the loss of functional MUs. During normal aging, there is a time-related progression of MU loss, an adaptive sprouting followed by a maladaptive sprouting, and continuing recession of terminal Schwann cells leading to a reduced capacity for compensatory reinnervation in elders. In amyotrophic lateral sclerosis, increasing age at onset predicts worse survival ALS and it is possible that age-related depletion of the motor neuron pool may worsen motor neuron disease. MUNE methods are used to estimate the number of functional MU, data from MUNIX arguing for motor neuron loss with aging will be reviewed. Recently, a new MRI technique MU-MRI could be used to assess the MU recruitment or explore the activity of a single MU. This review presents published studies on the changes of neuromuscular function with aging, then focusing on these two novel techniques for assessment of MU loss and MU remodeling.
Collapse
Affiliation(s)
- A Verschueren
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France.
| | - C Palminha
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| | - E Delmont
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| | - S Attarian
- Reference Centre for Neuromuscular Disorders and ALS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13005 Marseille, France
| |
Collapse
|
5
|
Younis G, El Sawy N, Elnemr R, Madkour D. Differences between diaphragmatic compound muscle action potentials recorded from over the sternum and lateral chest wall in healthy subjects. Sci Rep 2022; 12:8925. [PMID: 35624292 PMCID: PMC9142496 DOI: 10.1038/s41598-022-11930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 01/15/2023] Open
Abstract
To report normative data for diaphragmatic compound muscle action potentials (DCMAPs) recorded from over the sternum and lateral chest wall (LCW) and highlight factors that may contribute to variations in DCMAP parameters at the two sites. The phrenic nerve of seventy-three healthy subjects was bilaterally stimulated at the posterior border of the sternocleidomastoid muscle. DCMAPs from over the sternum and LCW were recorded (inspiration/expiration). Normative values of sternal and LCW DCMAPs were presented. The mean values of latency of LCW DCMAPs, duration of sternal DCMAPs and area from both recording sites are close to values reported by other studies. The mean values of latency of sternal DCMAPs are higher than that reported by other studies. Significant differences were found between sternal and LCW potentials in the mean latency, amplitude, and area (p < 0.001). The duration did not differ between the two sites. Differences were found between inspiration and expiration, right and left sides, and men and women. Regression analysis showed a relation between latency of sternal and LCW potentials and age. Latency (LCW potentials) and amplitude and area (sternal/LCW potentials) were related to gender. Amplitude (LCW potentials/inspiration) and area (sternal potentials/inspiration) were related to chest circumference (p = 0.023 and 0.013 respectively). Area (sternal potentials/expiration) was related to the BMI (p = 0.019). Our normative values for sternal and LCW DCMAPs are provided. Notable differences in the DCMAPs parameters were detected between the two recording sites, inspiration and expiration, right and left, and men and women. The technique of phrenic nerve should be standardized.
Collapse
Affiliation(s)
- Gihan Younis
- grid.7155.60000 0001 2260 6941Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of Medicine, Alexandria University, El-Khartoom Square, Alexandria, 21526 Egypt
| | - Noha El Sawy
- grid.7155.60000 0001 2260 6941Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of Medicine, Alexandria University, El-Khartoom Square, Alexandria, 21526 Egypt
| | - Rehab Elnemr
- grid.7155.60000 0001 2260 6941Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of Medicine, Alexandria University, El-Khartoom Square, Alexandria, 21526 Egypt
| | - Doaa Madkour
- grid.7155.60000 0001 2260 6941Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of Medicine, Alexandria University, El-Khartoom Square, Alexandria, 21526 Egypt
| |
Collapse
|
6
|
Wang ZM, Messi ML, Rodrigues ACZ, Delbono O. Skeletal muscle sympathetic denervation disrupts the neuromuscular junction postterminal organization: A single-cell quantitative approach. Mol Cell Neurosci 2022; 120:103730. [PMID: 35489637 PMCID: PMC9793435 DOI: 10.1016/j.mcn.2022.103730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
The sympathetic nervous system (SNS) regulates skeletal muscle motor innervation and stabilizes the NMJ in health, disease and aging. Previous studies using both chemical (6-hydroxydopamine, 6-OHDA) and microsurgically-induced sympathetic denervation examined the NMJ organization and transmission in the mouse; however, a detailed quantification of the postterminal on larger hindlimb muscles involved in gait mechanics and posture is lacking. The purpose of this study was to determine whether targets of the sympathetic neuron (SN) exhibiting different intrinsic composition such as the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus muscles differ in their response to SN deprivation, and to develop a strategy to accurately quantify the impact of sympathectomy on the NMJ postterminal including those fibers located deeper in the muscle. This approach included muscle fixed ex vivo or through transcardial perfusion in mice treated with 6-OHDA or control ascorbic acid. We measured NMJ postterminal mean terminal total area, number of postterminal fragments, mean fragment area, and mean distance between fragments in free-floating alpha-bungarotoxin-stained in 1038 isolated muscle fibers. We found that muscle fiber sympathetic innervation plays a crucial role in the structural organization of the motorneuron-myofiber synapse postterminal and its deprivation leads to AChR cluster dispersion or shrinking as described in various neuromuscular diseases and aging.
Collapse
Affiliation(s)
- Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Anna Carolina Zaia Rodrigues
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America,the Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America,the Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America,Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America,Corresponding author at: Wake Forest School of Medicine, Department of Internal Medicine, Gerontology, Medical Center Boulevard, Winston-Salem, NC 27157, United States of America. (O. Delbono)
| |
Collapse
|
7
|
Priyadarsini N, Nanda P, Devi S, Mohapatra S. Sarcopenia: An Age-Related Multifactorial Disorder. Curr Aging Sci 2022; 15:209-217. [PMID: 35249518 DOI: 10.2174/1874609815666220304194539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Sarcopenia is an emerging clinical entity characterized by a gradual decline in skeletal muscle mass and strength that accompanies the normal aging process. It has been noted that sarcopenia is associated with various adverse health outcomes in the geriatric population like prolonged hospital admission, disability, poor quality of life, frailty, and mortality. Factors involved in the development of age-related sarcopenia include anorexia, alteration in the hormone levels, decreased neural innervation, low blood flow to the muscles, cytokine dysregulation, altered mitochondrial activity, genomic instability, intracellular proteolysis, and insulin resistance. Understanding the mechanism may help develop efficient preventive and therapeutic strategies which can improve the quality of life in elderly individuals. Thus, the objective of the present article is to review the literature regarding the mechanism involved in the development of sarcopenia in aged individuals.
Collapse
Affiliation(s)
- Nibedita Priyadarsini
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pranati Nanda
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sujata Devi
- Department of Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Subarna Mohapatra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
8
|
Phu S, Sturnieks DL, Lord SR, Okubo Y. Impact of ageing, fall history and exercise on postural reflexes following unpredictable perturbations: A systematic review and meta-analyses. Mech Ageing Dev 2022; 203:111634. [DOI: 10.1016/j.mad.2022.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
9
|
The Role of Satellite Cells in Skeletal Muscle Regeneration-The Effect of Exercise and Age. BIOLOGY 2021; 10:biology10101056. [PMID: 34681155 PMCID: PMC8533525 DOI: 10.3390/biology10101056] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Studies describing the effects of various forms of exercise and age on muscle regeneration were reviewed. Satellite cells are a heterogeneous group of cells that includes stem cells and skeletal muscle progenitor cells. Each skeletal muscle fiber has its own pool of satellite cells that remain inactive until the muscle is damaged. Minor damage within the cell membrane of muscle fibers is patched by fusing intracellular vesicles with the damaged sarcolemma. More severe muscle damage initiates a multistep regeneration process in which satellite cells play an essential role. The condition that initiates the cascade of reactions is the formation of inflammation at the structural discontinuity site, resulting in satellite cell activation. The multitude of reactions and pathways occurring during this process means that many different substances are involved in it and control it. Not all of them are well-understood yet. In parallel, the body’s own population of satellite cells is being rebuilt so that more fibers can be regenerated in the future. Athletes and the elderly are primarily at risk for muscle damage, and pathologies in muscle fiber regeneration cause serious diseases. Abstract The population of satellite cells (mSCs) is highly diversified. The cells comprising it differ in their ability to regenerate their own population and differentiate, as well as in the properties they exhibit. The heterogeneity of this group of cells is evidenced by multiple differentiating markers that enable their recognition, classification, labeling, and characterization. One of the main tasks of satellite cells is skeletal muscle regeneration. Myofibers are often damaged during vigorous exercise in people who participate in sports activities. The number of satellite cells and the speed of the regeneration processes that depend on them affect the time structure of an athlete’s training. This process depends on inflammatory cells. The multitude of reactions and pathways that occur during the regeneration process results in the participation and control of many factors that are activated and secreted during muscle fiber damage and at different stages of its regeneration. However, not all of them are well understood yet. This paper presents the current state of knowledge on satellite cell-dependent skeletal muscle regeneration. Studies describing the effects of various forms of exercise and age on this process were reviewed.
Collapse
|
10
|
Su Y, Claflin DR, Huang M, Davis CS, Macpherson PCD, Richardson A, Van Remmen H, Brooks SV. Deletion of Neuronal CuZnSOD Accelerates Age-Associated Muscle Mitochondria and Calcium Handling Dysfunction That Is Independent of Denervation and Precedes Sarcopenia. Int J Mol Sci 2021; 22:ijms221910735. [PMID: 34639076 PMCID: PMC8509582 DOI: 10.3390/ijms221910735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle suffers atrophy and weakness with aging. Denervation, oxidative stress, and mitochondrial dysfunction are all proposed as contributors to age-associated muscle loss, but connections between these factors have not been established. We examined contractility, mitochondrial function, and intracellular calcium transients (ICTs) in muscles of mice throughout the life span to define their sequential relationships. We performed these same measures and analyzed neuromuscular junction (NMJ) morphology in mice with postnatal deletion of neuronal Sod1 (i-mn-Sod1-/- mice), previously shown to display accelerated age-associated muscle loss and exacerbation of denervation in old age, to test relationships between neuronal redox homeostasis, NMJ degeneration and mitochondrial function. In control mice, the amount and rate of the decrease in mitochondrial NADH during contraction was greater in middle than young age although force was not reduced, suggesting decreased efficiency of NADH utilization prior to the onset of weakness. Declines in both the peak of the ICT and force were observed in old age. Muscles of i-mn-Sod1-/- mice showed degeneration of mitochondrial and calcium handling functions in middle-age and a decline in force generation to a level not different from the old control mice, with maintenance of NMJ morphology. Together, the findings support the conclusion that muscle mitochondrial function decreases during aging and in response to altered neuronal redox status prior to NMJ deterioration or loss of mass and force suggesting mitochondrial defects contribute to sarcopenia independent of denervation.
Collapse
Affiliation(s)
- Yu Su
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dennis R Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meixiang Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Carol S Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter C D Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlan Richardson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- VA Medical Center, Oklahoma City, OK 73104, USA
| | - Holly Van Remmen
- VA Medical Center, Oklahoma City, OK 73104, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Physiology, Health Science Center, Oklahoma University, Oklahoma City, OK 73104, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
McDermott MM, Dayanidhi S, Kosmac K, Saini S, Slysz J, Leeuwenburgh C, Hartnell L, Sufit R, Ferrucci L. Walking Exercise Therapy Effects on Lower Extremity Skeletal Muscle in Peripheral Artery Disease. Circ Res 2021; 128:1851-1867. [PMID: 34110902 DOI: 10.1161/circresaha.121.318242] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Walking exercise is the most effective noninvasive therapy that improves walking ability in peripheral artery disease (PAD). Biologic mechanisms by which exercise improves walking in PAD are unclear. This review summarizes evidence regarding effects of walking exercise on lower extremity skeletal muscle in PAD. In older people without PAD, aerobic exercise improves mitochondrial activity, muscle mass, capillary density, and insulin sensitivity in skeletal muscle. However, walking exercise increases lower extremity ischemia in people with PAD, and therefore, mechanisms by which this exercise improves walking may differ between people with and without PAD. Compared with people without PAD, gastrocnemius muscle in people with PAD has greater mitochondrial impairment, increased reactive oxygen species, and increased fibrosis. In multiple small trials, walking exercise therapy did not consistently improve mitochondrial activity in people with PAD. In one 12-week randomized trial of people with PAD randomized to supervised exercise or control, supervised treadmill exercise increased treadmill walking time from 9.3 to 15.1 minutes, but simultaneously increased the proportion of angular muscle fibers, consistent with muscle denervation (from 7.6% to 15.6%), while angular myofibers did not change in the control group (from 9.1% to 9.1%). These findings suggest an adaptive response to exercise in PAD that includes denervation and reinnervation, an adaptive process observed in skeletal muscle of people without PAD during aging. Small studies have not shown significant effects of exercise on increased capillary density in lower extremity skeletal muscle of participants with PAD, and there are no data showing that exercise improves microcirculatory delivery of oxygen and nutrients in patients with PAD. However, the effects of supervised exercise on increased plasma nitrite abundance after a treadmill walking test in people with PAD may be associated with improved lower extremity skeletal muscle perfusion and may contribute to improved walking performance in response to exercise in people with PAD. Randomized trials with serial, comprehensive measures of muscle biology, and physiology are needed to clarify mechanisms by which walking exercise interventions improve mobility in PAD.
Collapse
Affiliation(s)
- Mary M McDermott
- Department of Medicine and Preventive Medicine (M.M.M., J.S.), Northwestern University Feinberg School of Medicine
| | - Sudarshan Dayanidhi
- Shirley Ryan Ability Laboratory (S.D.), Northwestern University Feinberg School of Medicine
| | - Kate Kosmac
- Center for Muscle Biology, University of Kentucky (K.K.)
| | - Sunil Saini
- Jawaharlal Nehru University, School of Biotechnology, New Delhi, India (S.S.)
| | - Joshua Slysz
- Department of Medicine and Preventive Medicine (M.M.M., J.S.), Northwestern University Feinberg School of Medicine
| | | | - Lisa Hartnell
- Division of Intramural Research, National Institute on Aging (L.H., L.F.)
| | - Robert Sufit
- Department of Neurology (R.S.), Northwestern University Feinberg School of Medicine
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging (L.H., L.F.)
| |
Collapse
|
12
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
13
|
Monti E, Reggiani C, Franchi MV, Toniolo L, Sandri M, Armani A, Zampieri S, Giacomello E, Sarto F, Sirago G, Murgia M, Nogara L, Marcucci L, Ciciliot S, Šimunic B, Pišot R, Narici MV. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J Physiol 2021; 599:3037-3061. [PMID: 33881176 PMCID: PMC8359852 DOI: 10.1113/jp281365] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Key points Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Abstract Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)‐positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C‐terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross‐sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation–contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading. Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, 35124, Italy
| | - Emiliana Giacomello
- Clinical Department of Medical, Surgical and Health Sciences, Strada di Fiume, 447, Trieste, 34149, Italy
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Stefano Ciciliot
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Boštjan Šimunic
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Rado Pišot
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia.,CIR-MYO Myology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
14
|
Rodrigues ACZ, Wang ZM, Messi ML, Bonilla HJ, Liu L, Freeman WM, Delbono O. Heart and neural crest derivative 2-induced preservation of sympathetic neurons attenuates sarcopenia with aging. J Cachexia Sarcopenia Muscle 2021; 12:91-108. [PMID: 33258279 PMCID: PMC7890150 DOI: 10.1002/jcsm.12644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sarcopenia, or age-dependent decline in muscle force and power, impairs mobility, increasing the risk of falls, institutionalization, co-morbidity, and premature death. The discovery of adrenoceptors, which mediate the effects of the sympathetic nervous system (SNS) neurotransmitter norepinephrine on specific tissues, sparked the development of sympathomimetics that have profound influence on skeletal muscle mass. However, chronic administration has serious side effects that preclude their use for muscle-wasting conditions. Interventions that can adjust neurotransmitter release to changing physiological demands depend on understanding how the SNS affects neuromuscular transmission, muscle motor innervation, and muscle mass. METHODS We examined age-dependent expression of the heart and neural crest derivative 2 (Hand2), a critical transcription factor for SN maintenance, and we tested the possibility that inducing its expression exclusively in sympathetic neurons (SN) will prevent (i) motor denervation, (ii) impaired neuromuscular junction (NMJ) transmission, and (iii) loss of muscle mass and function in old mice. To test this hypothesis, we delivered a viral vector carrying Hand2 expression or an empty vector exclusively in SNs by vein injection in 16-month-old C57BL/6 mice that were sacrificed 6 months later. Techniques include RNA-sequencing, real-time PCR, genomic DNA methylation, viral vector construct, tissue immunohistochemistry, immunoblot, confocal microscopy, electrophysiology, and in vivo mouse physical performance. RESULTS Hand2 expression declines throughout life, but inducing its expression increased (i) the number and size of SNs, (ii) muscle sympathetic innervation, (iii) muscle weight and force and whole-body strength, (iv) myofiber size but not muscle fibre-type composition, (v) NMJ transmission and nerve-evoked muscle force, and (vi) motor innervation in old mice. Additionally, the SN controls a set of genes to reduce inflammation and to promote transcription factor activity, cell signalling, and synapse in the skeletal muscle. Hand2 DNA methylation may contribute, at least partially, to gene silencing. CONCLUSIONS Selective expression of Hand2 in the mouse SNs from middle age through old age increases muscle mass and force by (i) regulating skeletal muscle sympathetic and motor innervation; (ii) improving acetylcholine receptor stability and NMJ transmission; (iii) preventing inflammation and myofibrillar protein degradation; (iv) increasing autophagy; and (v) probably enhancing protein synthesis.
Collapse
Affiliation(s)
- Anna Carolina Zaia Rodrigues
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Henry Jacob Bonilla
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Liang Liu
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
15
|
Lanza MB, Ryan AS, Gray V, Perez WJ, Addison O. Intramuscular Fat Influences Neuromuscular Activation of the Gluteus Medius in Older Adults. Front Physiol 2020; 11:614415. [PMID: 33362586 PMCID: PMC7758409 DOI: 10.3389/fphys.2020.614415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022] Open
Abstract
The amount of tissue between the muscle and surface electromyography (sEMG) electrode influences the sEMG signals. Increased intramuscular adipose tissue (IMAT) of the hip abductor muscles negatively impacts balance in older individuals, but it is unknown if this is related to the ability to activate the muscles. The aim of this preliminary study was to investigate the influence of gluteus medius (GM) IMAT on sEMG amplitude during maximal voluntary isometric contractions (MVIC) of the hip abductors in older adults. We recruited 12 healthy community-dwelling older adults that underwent a spiral computerized tomography scan. High density lean (HDL), IMAT, and subcutaneous adipose tissue (SUBFAT) cross-sectional area of the GM were assessed. sEMG signal from the GM was recorded while participants performed an MVIC of the hip abductors. There was a negative correlation between GM activation and IMAT (r = -0.58, P = 0.046), and also SUBFAT (r = -0.78, P = 0.002) and a positive correlation with HDL (r = 0.73, P = 0.006). When controlling for SUBFAT, the partial correlations demonstrated a consistent negative correlation between GM activation and IMAT (r = -0.60, P = 0.050) but no relationship with HDL. The current results are important for helping to interpret the results from sEMG by accounting for IMAT. In conclusion, the neuromuscular activation of the GM may be reduced by the quantity of IMAT.
Collapse
Affiliation(s)
- Marcel B. Lanza
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alice S. Ryan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Geriatric Research, Education, and Clinical Center (GRECC), The Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| | - Vicki Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - William J. Perez
- Baltimore Geriatric Research, Education, and Clinical Center (GRECC), The Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| | - Odessa Addison
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Geriatric Research, Education, and Clinical Center (GRECC), The Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
16
|
Anton SD, Cruz-Almeida Y, Singh A, Alpert J, Bensadon B, Cabrera M, Clark DJ, Ebner NC, Esser KA, Fillingim RB, Goicolea SM, Han SM, Kallas H, Johnson A, Leeuwenburgh C, Liu AC, Manini TM, Marsiske M, Moore F, Qiu P, Mankowski RT, Mardini M, McLaren C, Ranka S, Rashidi P, Saini S, Sibille KT, Someya S, Wohlgemuth S, Tucker C, Xiao R, Pahor M. Innovations in Geroscience to enhance mobility in older adults. Exp Gerontol 2020; 142:111123. [PMID: 33191210 PMCID: PMC7581361 DOI: 10.1016/j.exger.2020.111123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Aging is the primary risk factor for functional decline; thus, understanding and preventing disability among older adults has emerged as an important public health challenge of the 21st century. The science of gerontology - or geroscience - has the practical purpose of "adding life to the years." The overall goal of geroscience is to increase healthspan, which refers to extending the portion of the lifespan in which the individual experiences enjoyment, satisfaction, and wellness. An important facet of this goal is preserving mobility, defined as the ability to move independently. Despite this clear purpose, this has proven to be a challenging endeavor as mobility and function in later life are influenced by a complex interaction of factors across multiple domains. Moreover, findings over the past decade have highlighted the complexity of walking and how targeting multiple systems, including the brain and sensory organs, as well as the environment in which a person lives, can have a dramatic effect on an older person's mobility and function. For these reasons, behavioral interventions that incorporate complex walking tasks and other activities of daily living appear to be especially helpful for improving mobility function. Other pharmaceutical interventions, such as oxytocin, and complementary and alternative interventions, such as massage therapy, may enhance physical function both through direct effects on biological mechanisms related to mobility, as well as indirectly through modulation of cognitive and socioemotional processes. Thus, the purpose of the present review is to describe evolving interventional approaches to enhance mobility and maintain healthspan in the growing population of older adults in the United States and countries throughout the world. Such interventions are likely to be greatly assisted by technological advances and the widespread adoption of virtual communications during and after the COVID-19 era.
Collapse
Affiliation(s)
- Stephen D Anton
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Yenisel Cruz-Almeida
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Arashdeep Singh
- University of Florida, Department of Pharmacodynamics, College of Pharmacy, 1345 Center Drive, Gainesville, FL 32610, United States.
| | - Jordan Alpert
- University of Florida, College of Journalism and Communications, Gainesville, FL 32610, United States.
| | - Benjamin Bensadon
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Melanie Cabrera
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - David J Clark
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Natalie C Ebner
- University of Florida, Department of Psychology, 945 Center Drive, Gainesville, FL 32611, United States.
| | - Karyn A Esser
- University of Florida, Department of Physiology and Functional Genomics, 1345 Center Drive, Gainesville, FL, United States.
| | - Roger B Fillingim
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Soamy Montesino Goicolea
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Sung Min Han
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Henrique Kallas
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Alisa Johnson
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Christiaan Leeuwenburgh
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Andrew C Liu
- University of Florida, Department of Physiology and Functional Genomics, 1345 Center Drive, Gainesville, FL, United States.
| | - Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Michael Marsiske
- University of Florida, Department of Clinical & Health Psychology, 1225 Center Drive, Gainesville, FL 32610, United States.
| | - Frederick Moore
- University of Florida, Department of Surgery, Gainesville, FL 32610, United States.
| | - Peihua Qiu
- University of Florida, Department of Biostatistics, Gainesville, FL 32611, United States.
| | - Robert T Mankowski
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Mamoun Mardini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Christian McLaren
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Sanjay Ranka
- University of Florida, Department of Computer & Information Science & Engineering, Gainesville, FL 32611, United States.
| | - Parisa Rashidi
- University of Florida, Department of Biomedical Engineering. P.O. Box 116131. Gainesville, FL 32610, United States.
| | - Sunil Saini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Kimberly T Sibille
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Shinichi Someya
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Stephanie Wohlgemuth
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Carolyn Tucker
- University of Florida, Department of Psychology, 945 Center Drive, Gainesville, FL 32611, United States.
| | - Rui Xiao
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Marco Pahor
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| |
Collapse
|
17
|
Bonilla HJ, Messi ML, Sadieva KA, Hamilton CA, Buchman AS, Delbono O. Semiautomatic morphometric analysis of skeletal muscle obtained by needle biopsy in older adults. GeroScience 2020; 42:1431-1443. [PMID: 32946050 DOI: 10.1007/s11357-020-00266-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 01/06/2023] Open
Abstract
Analysis of skeletal muscle mass and composition is essential for studying the biology of age-related sarcopenia, loss of muscle mass, and function. Muscle immunohistochemistry (IHC) allows for simultaneous visualization of morphological characteristics and determination of fiber type composition. The information gleaned from myosin heavy chain (MHC) isoform, and morphological measurements offer a more complete assessment of muscle health and properties than classical techniques such as SDS-PAGE and ATPase immunostaining; however, IHC quantification is a time-consuming and tedious method. We developed a semiautomatic method to account for issues frequently encountered in aging tissue. We analyzed needle-biopsied vastus lateralis (VL) of the quadriceps from a cohort of 14 volunteers aged 74.9 ± 2.2 years. We found a high correlation between manual quantification and semiautomatic analyses for the total number of fibers detected (r2 = 0.989) and total fiber cross-sectional area (r2 = 0.836). The analysis of the VL fiber subtype composition and the cross-sectional area also did not show statistically significant differences. The semiautomatic approach was completed in 10-15% of the time required for manual quantification. The results from these analyses highlight some of the specific issues which commonly occur in aged muscle. Our methods which address these issues underscore the importance of developing efficient, accurate, and reliable methods for quantitatively analyzing the skeletal muscle and the standardization of collection protocols to maximize the likelihood of preserving tissue quality in older adults. Utilizing IHC as a means of exploring the progression of disease, aging, and injury in the skeletal muscle allows for the practical study of muscle tissue down to the fiber level. By adding editing modules to our semiautomatic approach, we accurately quantified the aging muscle and addressed common technical issues.
Collapse
Affiliation(s)
- Henry J Bonilla
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Khalima A Sadieva
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Craig A Hamilton
- Department of Internal Medicine, Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Internal Medicine, The Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Internal Medicine, The Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Internal Medicine, The Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
18
|
Messa GAM, Piasecki M, Rittweger J, McPhee JS, Koltai E, Radak Z, Simunic B, Heinonen A, Suominen H, Korhonen MT, Degens H. Absence of an aging‐related increase in fiber type grouping in athletes and non‐athletes. Scand J Med Sci Sports 2020; 30:2057-2069. [DOI: 10.1111/sms.13778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Guy A. M. Messa
- Department of Life Sciences Research Centre for Musculoskeletal Science and Sports Medicine Manchester Metropolitan University Manchester UK
| | - Mathew Piasecki
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre University of Nottingham Nottingham UK
| | - Jörn Rittweger
- Division Space Physiology Institute of Aerospace Medicine German Aerospace Center Cologne Germany
- Department of Paediatric and Adolescent Medicine University of Cologne Cologne Germany
| | - Jamie S. McPhee
- Department of Sport and Exercise Sciences Manchester Metropolitan University Manchester UK
| | - Erika Koltai
- Research Institute of Sport Science University of Physical Education Budapest Hungary
| | - Zsolt Radak
- Research Institute of Sport Science University of Physical Education Budapest Hungary
| | - Bostjan Simunic
- Science and Research Centre Koper Institute for Kinesiology Research Koper Sloveni
| | - Ari Heinonen
- Gerontology Research Centre Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Harri Suominen
- Gerontology Research Centre Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Marko T. Korhonen
- Gerontology Research Centre Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä Finland
| | - Hans Degens
- Department of Life Sciences Research Centre for Musculoskeletal Science and Sports Medicine Manchester Metropolitan University Manchester UK
- Institute of Sport Science and Innovations Lithuanian Sports University Kaunas Lithuania
- University of Medicine and Pharmacy of Targu Mures Targu Mures Rumania
| |
Collapse
|
19
|
Van Roie E, Walker S, Van Driessche S, Delabastita T, Vanwanseele B, Delecluse C. An age-adapted plyometric exercise program improves dynamic strength, jump performance and functional capacity in older men either similarly or more than traditional resistance training. PLoS One 2020; 15:e0237921. [PMID: 32841300 PMCID: PMC7447006 DOI: 10.1371/journal.pone.0237921] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/05/2020] [Indexed: 01/09/2023] Open
Abstract
Power declines at a greater rate during ageing and is more relevant for functional deterioration than either loss of maximum strength or muscle mass. Human movement typically consists of stretch-shortening cycle action. Therefore, plyometric exercises, using an eccentric phase quickly followed by a concentric phase to optimize power production, should resemble daily function more than traditional resistance training, which primarily builds force production capacity in general. However, it is unclear whether older adults can sustain such high-impact training. This study compared the effects of plyometric exercise (PLYO) on power, force production, jump and functional performance to traditional resistance training (RT) and walking (WALK) in older men. Importantly, feasibility was investigated. Forty men (69.5 ± 3.9 years) were randomized to 12-weeks of PLYO (N = 14), RT (N = 12) or WALK (N = 14). Leg press one-repetition maximum (1-RM), leg-extensor isometric maximum voluntary contraction (MVC) and rate of force development (RFD), jump and functional performance were evaluated pre- and post-intervention. One subject in RT (low back pain) and three in PLYO (2 muscle strains, 1 knee pain) dropped out. Adherence to (91.2 ± 4.4%) and acceptability of (≥ 7/10) PLYO was high. 1-RM improved more in RT (25.0 ± 10.0%) and PLYO (23.0 ± 13.6%) than in WALK (2.9 ± 13.7%) (p < 0.001). PLYO improved more on jump height, jump power, contraction time of jumps and stair climbing performance compared to WALK and/or RT (p < 0.05). MVC improved in RT only (p = 0.028) and RFD did not improve (p > 0.05). To conclude, PLYO is beneficial over RT for improving power, jump and stair climbing performance without compromising gains in strength. This form of training seems feasible, but contains an inherent higher risk for injuries, which should be taken into account when designing programs for older adults.
Collapse
Affiliation(s)
- Evelien Van Roie
- Physical Activity, Sports and Health Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Simon Walker
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Stijn Van Driessche
- Physical Activity, Sports and Health Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Tijs Delabastita
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Christophe Delecluse
- Physical Activity, Sports and Health Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Jin B, Qu Y, Zhang L, Gao Z. Diagnosing Parkinson Disease Through Facial Expression Recognition: Video Analysis. J Med Internet Res 2020; 22:e18697. [PMID: 32673247 PMCID: PMC7382014 DOI: 10.2196/18697] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The number of patients with neurological diseases is currently increasing annually, which presents tremendous challenges for both patients and doctors. With the advent of advanced information technology, digital medical care is gradually changing the medical ecology. Numerous people are exploring new ways to receive a consultation, track their diseases, and receive rehabilitation training in more convenient and efficient ways. In this paper, we explore the use of facial expression recognition via artificial intelligence to diagnose a typical neurological system disease, Parkinson disease (PD). OBJECTIVE This study proposes methods to diagnose PD through facial expression recognition. METHODS We collected videos of facial expressions of people with PD and matched controls. We used relative coordinates and positional jitter to extract facial expression features (facial expression amplitude and shaking of small facial muscle groups) from the key points returned by Face++. Algorithms from traditional machine learning and advanced deep learning were utilized to diagnose PD. RESULTS The experimental results showed our models can achieve outstanding facial expression recognition ability for PD diagnosis. Applying a long short-term model neural network to the positions of the key features, precision and F1 values of 86% and 75%, respectively, can be reached. Further, utilizing a support vector machine algorithm for the facial expression amplitude features and shaking of the small facial muscle groups, an F1 value of 99% can be achieved. CONCLUSIONS This study contributes to the digital diagnosis of PD based on facial expression recognition. The disease diagnosis model was validated through our experiment. The results can help doctors understand the real-time dynamics of the disease and even conduct remote diagnosis.
Collapse
Affiliation(s)
- Bo Jin
- Dalian University of Technology, Dalian, China
| | - Yue Qu
- Dalian University of Technology, Dalian, China
| | - Liang Zhang
- Dongbei University of Finance and Economics, Dalian, China
| | - Zhan Gao
- Beijing Haoyisheng Cloud Hospital Management Technology Ltd, Beijing, China
| |
Collapse
|
21
|
Burianová H, Marstaller L, Rich AN, Williams MA, Savage G, Ryan M, Sowman PF. Motor neuroplasticity: A MEG-fMRI study of motor imagery and execution in healthy ageing. Neuropsychologia 2020; 146:107539. [PMID: 32629033 DOI: 10.1016/j.neuropsychologia.2020.107539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
Age-related decline in motor function is associated with over-activation of the sensorimotor circuitry. Using a multimodal MEG-fMRI paradigm, we investigated whether this neural over-recruitment in old age would be related to changes in movement-related beta desynchronization (MRBD), a correlate of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), and whether it would characterize compensatory recruitment or a reduction in neural specialization (dedifferentiation). We used MEG to assess age-related changes in beta band oscillations in primary motor cortices, fMRI to localize age-related changes in brain activity, and the Finger Configuration Task to measure task performance during overt and covert motor processing: motor execution (ME) and motor imagery (MI). The results are threefold: first, showing age-related neuroplasticity during ME of older adults, compared to young adults, as evidenced by increased MRBD in motor cortices and over-recruitment of sensorimotor areas; second, showing similar age-related neuroplastic changes during MI; and finally, showing signs of dedifferentiation during ME in older adults whose performance negatively correlated with connectivity to bilateral primary motor cortex. Together, these findings demonstrate that elevated MRBD levels, reflecting greater GABAergic inhibitory activity, and over-activation of the sensorimotor network during ME may not be compensatory, but rather might reflect an age-related decline of the quality of the underlying neural signal.
Collapse
Affiliation(s)
- Hana Burianová
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia.
| | - Lars Marstaller
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Science of Learning Research Centre, University of Queensland, Brisbane, Australia
| | - Anina N Rich
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| | - Mark A Williams
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| | - Greg Savage
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Psychology, Macquarie University, Sydney, Australia
| | - Margaret Ryan
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia
| | - Paul F Sowman
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
22
|
Haynes EMK, Neubauer NA, Cornett KMD, O'Connor BP, Jones GR, Jakobi JM. Age and sex-related decline of muscle strength across the adult lifespan: a scoping review of aggregated data. Appl Physiol Nutr Metab 2020; 45:1185-1196. [PMID: 32598857 DOI: 10.1139/apnm-2020-0081] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Muscle strength is sex-related and declines with advancing age; yet, a comprehensive comparative evaluation of age-related strength loss in human females and males has not been undertaken. To do so, segmented piecewise regression analysis was performed on aggregated data from studies published from 1990 to 2018 and are available in CINAHL, EMBASE, MEDLINE, and PsycINFO databases. The search identified 5613 articles that were reviewed for physical assessment results stratified by sex and age. Maximal isometric and isokinetic 60°·s-1 knee extension (KE) and knee flexion (KF) contractions from 57 studies and 15 283 subjects (N = 7918 females) had sufficient data reported on females and males for meaningful statistical evaluation to be undertaken. The analysis revealed that isometric KE and KF strength undergo similar rapid declines in both sexes late in the sixth decade of life. Yet, there is an abrupt age-related decline in KE 60°·s-1 peak torque earlier in females (aged 41.8 years) than males (aged 66.7 years). In the assessment of KF peak torque, an age-related acceleration in strength loss was only identified in males (aged 49.3 years). The results suggest that age-related isometric strength loss is similar between sexes while the characteristics of KE and KF peak torque decline are sex-related, which likely explains the differential rate of age-related functional decline. Novelty Inclusion of muscle strength and torque of KE and KF data from >15 000 subjects. Isometric KE and KF strength loss are similar between sexes. Isokinetic 60°·s-1 KE torque decline accelerates 25 years earlier in females and female age-related KF peak torque decline does not accelerate with age.
Collapse
Affiliation(s)
- E M K Haynes
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - N A Neubauer
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - K M D Cornett
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - B P O'Connor
- Psychology, School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - G R Jones
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - J M Jakobi
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
23
|
Thalacker-Mercer A, Riddle E, Barre L. Protein and amino acids for skeletal muscle health in aging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:29-64. [PMID: 32035599 DOI: 10.1016/bs.afnr.2019.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins and its building blocks, amino acids, have many physiological roles in the body. While some amino acids can be synthesized endogenously, exogenous protein and amino acids are necessary to maintain homeostasis. Because skeletal muscle contains a large portion of endogenous protein and plays important roles in movement, regulation, and metabolism, imbalanced protein and amino acid availability may result in clinical conditions including skeletal muscle atrophy, impaired muscle growth or regrowth, and functional decline. Aging is associated with changes in protein metabolism and multiple physiological and functional alterations in the skeletal muscle that are accentuated by decreased dietary protein intake and impaired anabolic responses to stimuli. Inactivity and chronically elevated inflammation of the skeletal muscle can initiate and/or augment pathological remodeling of the tissue (i.e., increase of fat and fibrotic tissues and atrophy of the muscle). Defining an adequate amount of dietary protein that is appropriate to maintain the availability of amino acids for biological needs is necessary but is still widely debated for older adults. This chapter will provide (i) an overview of dietary protein and amino acids and their role in skeletal muscle health; (ii) an overview of skeletal muscle structure and function and the deterioration of muscle that occurs with advancing age; (iii) a discussion of the relationship between protein/amino acid metabolism and skeletal muscle decline with aging; and (iv) a brief discussion of optimal protein intakes for older adults to maintain skeletal muscle health in aging.
Collapse
Affiliation(s)
| | | | - Laura Barre
- Cornell University, Ithaca, NY, United States
| |
Collapse
|
24
|
Casati M, Costa AS, Capitanio D, Ponzoni L, Ferri E, Agostini S, Lori E. The Biological Foundations of Sarcopenia: Established and Promising Markers. Front Med (Lausanne) 2019; 6:184. [PMID: 31457015 PMCID: PMC6700259 DOI: 10.3389/fmed.2019.00184] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, the progressive loss of muscle mass and strength, is one of the major health issues in older adults, given its high prevalence accompanied by huge clinical and socioeconomic implications. Age-related changes in skeletal muscle can be attributed to mechanisms both directly and indirectly related to muscle homeostasis. Indeed, a wide spectrum of age-related modifications in the organism was shown to play a key role in the pathogenesis of sarcopenia. Not surprisingly, sarcopenia has sometimes been indicated as a syndrome stemming from the aging process, and not as univocal standalone disease. Due to the multidimensionality of sarcopenia, a single biomarker approach is not enough to explain the biology of this condition. The aim of this review is to suggest innovative and promising sarcopenia markers investigating the link between skeletal muscle and brain. Indeed, as a neurological origin of sarcopenia has been hypothesized, a new perspective on sarcopenia biomarkers may focus on the dysfunction of the neuromuscular junctions (NMJs). The core SNARE synaptosomal-associated protein of 25 kDa (SNAP25) accumulates in the plasma membrane of nerve terminals at NMJs and regulates exocytosis at peripheral and central synapses. Interestingly, mice studies have shown that SNAP25 affects the neuromuscular function. SNARE complex and, in particular, SNAP25 may represent a promising pathway to explore the molecular and cellular mechanisms regulating muscular homeostasis and concur at profiling the sarcopenia biological background.
Collapse
Affiliation(s)
- Martina Casati
- Geriatric Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elisa Lori
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Wu R, Delahunt E, Ditroilo M, Lowery MM, Segurado R, De Vito G. Changes in knee joint angle affect torque steadiness differently in young and older individuals. J Electromyogr Kinesiol 2019; 47:49-56. [DOI: 10.1016/j.jelekin.2019.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022] Open
|
26
|
Valdez G. Effects of disease-afflicted and aging neurons on the musculoskeletal system. Bone 2019; 122:31-37. [PMID: 30695738 PMCID: PMC6444351 DOI: 10.1016/j.bone.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/09/2023]
Abstract
The musculoskeletal system includes skeletal muscles, bones and innervating axons from neurons in the central and peripheral nervous systems. Together, they form the largest structure in the body. They also initiate and coordinate locomotion, provide structural stability, and contribute to metabolism and homeostasis. Because of these functions, much effort has been devoted to ascertaining the impact of acute and chronic stress, such as disease, injury and aging, on the musculoskeletal system. This review will examine the role of the nervous system in the deleterious changes that accrue in skeletal muscles and bones during the progression of neurologic diseases and with advancing age.
Collapse
Affiliation(s)
- Gregorio Valdez
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
27
|
Van Roie E, Van Driessche S, Huijben B, Baggen R, van Lummel RC, Delecluse C. A body-fixed-sensor-based analysis of stair ascent and sit-to-stand to detect age-related differences in leg-extensor power. PLoS One 2019; 14:e0210653. [PMID: 30653542 PMCID: PMC6336282 DOI: 10.1371/journal.pone.0210653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/28/2018] [Indexed: 11/18/2022] Open
Abstract
Human ageing is accompanied by a progressive decline in leg-extensor power (LEP). LEP is typically measured with specialized and expensive equipment, which limits the large-scale applicability. Previously, sensor-based trunk kinematics have been used to estimate the vertical power required to elevate the body’s center of mass during functional tests, but the link with LEP and age remains to be investigated. Therefore, we investigated whether a body-fixed sensor-based analysis of power during stair ascent (SA) and sit-to-stand (STS) is positively related to LEP and whether its ability to detect age-related declines is similar. In addition, the effect of load during SA and STS was investigated. 98 adults (20–70 years) performed a leg press to assess LEP, SA and 5-repetition STS tests. In SA and STS, two conditions were tested: unloaded and loaded (+10% body mass). An inertial measurement unit was used to analyze (sub)-durations and vertical power. SA and STS power were more related to LEP than duration parameters (i.e. 0.80–0.81 for power and -0.41 –-0.66 for duration parameters, p < 0.05). The average annual age-related percent change was higher in SA power (-1.38%) than in LEP (-0.86%) and STS power (-0.38%) (p < 0.05). Age explained 29% in SA power (p < 0.001), as opposed to 14% in LEP (p < 0.001) and a non-significant 2% in STS power (p = 0.102). The addition of 10% load did not influence the age-related decline of SA and STS power nor the relationship with LEP. These results demonstrate the potential of SA tests to detect age-related deterioration in neuromuscular function. SA seems more sensitive to detect age-related changes than LEP, probably because of the additional balance component and plantar- and dorsiflexor activity. On the contrary, STS is less sensitive to age-related changes because of a ceiling effect in well-functioning adults.
Collapse
Affiliation(s)
- Evelien Van Roie
- Department of Movement Sciences, Physical Activity, Sports and Health Research Group, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Stijn Van Driessche
- Department of Movement Sciences, Physical Activity, Sports and Health Research Group, KU Leuven, Leuven, Belgium
| | | | - Remco Baggen
- Department of Movement Sciences, Physical Activity, Sports and Health Research Group, KU Leuven, Leuven, Belgium
| | | | - Christophe Delecluse
- Department of Movement Sciences, Physical Activity, Sports and Health Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Fujishima I, Fujiu-Kurachi M, Arai H, Hyodo M, Kagaya H, Maeda K, Mori T, Nishioka S, Oshima F, Ogawa S, Ueda K, Umezaki T, Wakabayashi H, Yamawaki M, Yoshimura Y. Sarcopenia and dysphagia: Position paper by four professional organizations. Geriatr Gerontol Int 2019; 19:91-97. [DOI: 10.1111/ggi.13591] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ichiro Fujishima
- Department of Rehabilitation Medicine; Hamamatsu City Rehabilitation Hospital; Hamamatsu Japan
| | - Masako Fujiu-Kurachi
- Department of Speech and Hearing Sciences; International University of Health and Welfare; Narita Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology; Obu Japan
| | - Masamitsu Hyodo
- Department of Otolaryngology; Kochi Medical School; Kochi Japan
| | - Hitoshi Kagaya
- Department of Rehabilitation Medicine I, School of Medicine; Fujita Health University; Toyoake Japan
| | - Keisuke Maeda
- Palliative Care Center; Aichi Medical University; Nagakute Japan
| | - Takashi Mori
- Department of Oral and Maxillofacial Surgery; Southern Tohoku General Hospital; Koriyama Japan
| | - Shinta Nishioka
- Department of Clinical Nutrition and Food Services; Nagasaki Rehabilitation Hospital; Nagasaki Japan
| | - Fumiko Oshima
- Department of Rehabilitation; Japanese Red Cross Society Suwa Hospital; Suwa Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Koichiro Ueda
- Department of Dysphagia Rehabilitation; Nihon University School of Dentistry; Tokyo Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences; International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital; Fukuoka Japan
| | - Hidetaka Wakabayashi
- Department of Rehabilitation Medicine; Yokohama City University Medical Center; Yokohama Japan
| | - Masanaga Yamawaki
- Department of General Medicine; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Yoshihiro Yoshimura
- Department of Rehabilitation Medicine; Kumamoto Rehabilitation Hospital; Kumamoto Japan
| |
Collapse
|
29
|
Li XY, Lu SB, Sun XY, Kong C, Guo MC, Sun SY, Ding JZ, Yang YM. Clinical and magnetic resonance imaging predictors of the surgical outcomes of patients with cervical spondylotic myelopathy. Clin Neurol Neurosurg 2018; 174:137-143. [DOI: 10.1016/j.clineuro.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Accepted: 09/01/2018] [Indexed: 11/16/2022]
|
30
|
Van Roie E, Van Driessche S, Inglis AJ, Thomis M, Delecluse C. Rate of power development of the knee extensors across the adult life span: A cross-sectional study in 1387 Flemish Caucasians. Exp Gerontol 2018; 110:260-266. [DOI: 10.1016/j.exger.2018.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/16/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023]
|
31
|
Krishnan VS, Shavlakadze T, Grounds MD, Hodgetts SI, Harvey AR. Age-related loss of VGLUT1 excitatory, but not VGAT inhibitory, immunoreactive terminals on motor neurons in spinal cords of old sarcopenic male mice. Biogerontology 2018; 19:385-399. [DOI: 10.1007/s10522-018-9765-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022]
|
32
|
Tillman M, Ambike S. Expectation of movement generates contrasting changes in multifinger synergies in young and older adults. Exp Brain Res 2018; 236:2765-2780. [PMID: 30022260 DOI: 10.1007/s00221-018-5333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/14/2018] [Indexed: 12/28/2022]
Abstract
Anticipatory synergy adjustment (ASA) is a feed-forward control mechanism that describes a continuous decrease in the stability of the current motor state beginning about 150 ms prior to a state transition. Recently, we described an associated phenomenon in which the system stability was reduced solely in response to a cue that generates an expectation of a state change, independent of whether the state change actually occurs. Both phenomena are of the same kind (stability reduction), but evoked by distinct antecedent conditions. Since, logically, cuing for movement must occur before the initiation of that movement, we named this new phenomenon 'Stage-1 ASA' and rechristened the well-established version 'Stage-2 ASA'. Here, we used a four-finger, isometric force production task to explore (1) the effect of healthy aging on Stage-1 ASA, and (2) if Stage-1 ASA resulted in a more rapid state change. Young and older adult participants produced 10% of their maximal force when they did not expect to produce any change in the force, and when they expected to change their force in an unknown direction and at an unknown time. In the latter condition, the 10% constant-force phase was followed by a choice reaction time task, in which the participants rapidly changed their force to follow a moving target presented on a computer monitor. Both young and older adults displayed equivalent amount of Stage-1 ASA. This was driven by a 42% reduction in finger-force variability in young adults. In contrast, it was driven by a 38% increase in finger-force variability in older adults. We speculate that the reduction in finger force variability assists the young adults in rapid state changes via two mechanisms: (1) the finger forces occupy a restricted set of states that are optimal for quick state transitions, and (2) lower variability during steady state translates into lower self-motion during state transition. Self-motion is the covariation between finger forces that fails to change the total force. The older adults are unable to adopt this strategy, and the increase in finger-force variability arises from (1) the adoption of an alternative strategy of destabilizing the attractor associated with the current state to facilitate state transitions and (2) the inability to coordinate multiple finger forces. Finally, older adults displayed longer reaction times than young adults, but a clear relation between Stage-1 ASA and consequent behavioral benefit in terms of reduced reaction time remained elusive.
Collapse
Affiliation(s)
- Mitchell Tillman
- Department of Health and Kinesiology, Purdue University, 800 West Stadium Ave, West Lafayette, IN, 47907, USA
| | - Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, 800 West Stadium Ave, West Lafayette, IN, 47907, USA.
| |
Collapse
|
33
|
Sheth KA, Iyer CC, Wier CG, Crum AE, Bratasz A, Kolb SJ, Clark BC, Burghes AHM, Arnold WD. Muscle strength and size are associated with motor unit connectivity in aged mice. Neurobiol Aging 2018; 67:128-136. [PMID: 29656012 PMCID: PMC5981861 DOI: 10.1016/j.neurobiolaging.2018.03.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
In older adults, the loss of muscle strength (dynapenia) and the loss of muscle mass (sarcopenia) are important contributors to the loss of physical function. We sought to investigate dynapenia, sarcopenia, and the loss of motor unit function in aging mice. C57BL/6J mice were analyzed with cross-sectional (males: 3 vs. 27 months; males and females: 8 vs. 12 vs. 20 months) and longitudinal studies (males: 10-25 months) using in vivo electrophysiological measures of motor unit connectivity (triceps surae compound muscle action potential and motor unit number estimation), in vivo measures of plantar flexion torque, magnetic resonance imaging of hind limb muscle volume, and grip strength. Compound muscle action potential amplitude, motor unit number estimation, and plantar flexion torque were decreased at 20 months. In contrast, grip strength was reduced at 24 months. Motor unit number estimates correlated with muscle torque and hind limb muscle volume. Our results demonstrate that the loss of motor unit connectivity is an early finding in aging male and female mice and that muscle size and contractility are both associated with motor unit number.
Collapse
Affiliation(s)
- Kajri A Sheth
- Department of Neurology, Ohio State University, Columbus, OH, USA
| | - Chitra C Iyer
- Department of Neurology, Ohio State University, Columbus, OH, USA; Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Christopher G Wier
- Department of Neurology, Ohio State University, Columbus, OH, USA; Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Alexander E Crum
- Department of Neurology, Ohio State University, Columbus, OH, USA
| | - Anna Bratasz
- Small Animal Imaging Core, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, Ohio State University, Columbus, OH, USA; Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA
| | - Arthur H M Burghes
- Department of Neurology, Ohio State University, Columbus, OH, USA; Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - W David Arnold
- Department of Neurology, Ohio State University, Columbus, OH, USA; Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
34
|
Venturelli M, Reggiani C, Richardson RS, Schena F. Skeletal Muscle Function in the Oldest-Old: The Role of Intrinsic and Extrinsic Factors. Exerc Sport Sci Rev 2018; 46:188-194. [PMID: 29672349 PMCID: PMC6005743 DOI: 10.1249/jes.0000000000000155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although skeletal muscle function is diminished with advanced age, single muscle fiber function seems to be preserved. Therefore, this review examines the hypothesis that the skeletal muscle fiber, per se, is not the predominant factor responsible for the reduction in force-generating capacity in the oldest-old, but, rather, is attributable to a combination of factors external to the muscle fibers.
Collapse
Affiliation(s)
- Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences. University of Verona, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Institute for Kinesiology Research, Science and Research Center of Koper, Koper, Slovenia
| | - Russell S. Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences. University of Verona, Italy
| |
Collapse
|
35
|
Gillon A, Nielsen K, Steel C, Cornwall J, Sheard P. Exercise attenuates age-associated changes in motoneuron number, nucleocytoplasmic transport proteins and neuromuscular health. GeroScience 2018; 40:177-192. [PMID: 29736782 DOI: 10.1007/s11357-018-0020-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Life expectancy continues to extend, although frailty caused by loss of skeletal muscle mass continues unimpeded. Muscle atrophy caused by withdrawal of motor nerves is a feature of old age, as it is in amyotrophic lateral sclerosis (ALS) in which skeletal muscle denervation results from motoneuron death. In ALS, direct links have been established between motoneuron death and altered nucleocytoplasmic transport, so we ask whether similar defects accompany motoneuron death in normal ageing. We used immunohistochemistry on mouse tissues to explore potential links between neuromuscular junction (NMJ) degeneration, motoneuron death and nucleocytoplasmic transport regulatory proteins. Old age brought neuromuscular degeneration, motoneuron loss and reductions in immunodetectable levels of key nucleocytoplasmic transport proteins in lumbar motoneurons. We then asked whether exercise inhibited these changes and found that active elderly mice experienced less motoneuron death, improved neuromuscular junction morphology and retention of key nucleocytoplasmic transport proteins in lumbar motoneurons. Our results suggest that emergent defects in nucleocytoplasmic transport may contribute to motoneuron death and age-related loss of skeletal muscle mass, and that these defects may be reduced by exercise.
Collapse
Affiliation(s)
- Ashley Gillon
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | - Kathrine Nielsen
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Charlotte Steel
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jon Cornwall
- Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip Sheard
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| |
Collapse
|
36
|
Abstract
A substantial loss of muscle mass and strength (sarcopenia), a decreased regenerative capacity, and a compromised physical performance are hallmarks of aging skeletal muscle. These changes are typically accompanied by impaired muscle metabolism, including mitochondrial dysfunction and insulin resistance. A challenge in the field of muscle aging is to dissociate the effects of chronological aging per se on muscle characteristics from the secondary influence of lifestyle and disease processes. Remarkably, physical activity and exercise are well-established countermeasures against muscle aging, and have been shown to attenuate age-related decreases in muscle mass, strength, and regenerative capacity, and slow or prevent impairments in muscle metabolism. We posit that exercise and physical activity can influence many of the changes in muscle during aging, and thus should be emphasized as part of a lifestyle essential to healthy aging.
Collapse
Affiliation(s)
- Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| |
Collapse
|
37
|
Roberts BM, Lavin KM, Many GM, Thalacker-Mercer A, Merritt EK, Bickel CS, Mayhew DL, Tuggle SC, Cross JM, Kosek DJ, Petrella JK, Brown CJ, Hunter GR, Windham ST, Allman RM, Bamman MM. Human neuromuscular aging: Sex differences revealed at the myocellular level. Exp Gerontol 2018; 106:116-124. [PMID: 29481967 DOI: 10.1016/j.exger.2018.02.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 12/25/2022]
Abstract
Age-related muscle loss (sarcopenia) is a major clinical problem affecting both men and women - accompanied by muscle weakness, dysfunction, disability, and impaired quality of life. Current definitions of sarcopenia do not fully encompass the age-related changes in skeletal muscle. We therefore examined the influence of aging and sex on elements of skeletal muscle health using a thorough histopathological analysis of myocellular aging and assessments of neuromuscular performance. Two-hundred and twenty-one untrained males and females were separated into four age cohorts [mean age 25 y (n = 47), 37 y (n = 79), 61 y (n = 51), and 72 y (n = 44)]. Total (-12%), leg (-17%), and arm (-21%) lean mass were lower in both 61 y and 72 y than in 25 y or 37 y (P < 0.05). Knee extensor strength (-34%) and power (-43%) were lower (P < 0.05) in the older two groups, and explosive sit-to-stand power was lower by 37 y (P < 0.05). At the histological/myocellular level, type IIx atrophy was noted by 37 y and type IIa atrophy by 61 y (P < 0.05). These effects were driven by females, noted by substantial and progressive type IIa and IIx atrophy across age. Aged female muscle displayed greater within-type myofiber size heterogeneity and marked type I myofiber grouping (~5-fold greater) compared to males. These findings suggest the predominant mechanisms leading to whole muscle atrophy differ between aging males and females: myofiber atrophy in females vs. myofiber loss in males. Future studies will be important to better understand the mechanisms underlying sex differences in myocellular aging and optimize exercise prescriptions and adjunctive treatments to mitigate or reverse age-related changes.
Collapse
Affiliation(s)
- Brandon M Roberts
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kaleen M Lavin
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gina M Many
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Anna Thalacker-Mercer
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Edward K Merritt
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - C Scott Bickel
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Physical Therapy, Samford University, Birmingham, AL 35229, United States
| | - David L Mayhew
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - S Craig Tuggle
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - James M Cross
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - David J Kosek
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K Petrella
- Department of Kinesiology, Samford University, Birmingham, AL 35229, United States
| | - Cynthia J Brown
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Birmingham, AL, 35233, United States; UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Division of Geriatrics, Gerontology, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gary R Hunter
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Samuel T Windham
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Richard M Allman
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Birmingham, AL, 35233, United States; UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Division of Geriatrics, Gerontology, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Marcas M Bamman
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Birmingham, AL, 35233, United States; UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Division of Geriatrics, Gerontology, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
38
|
Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle 2018; 9:3-19. [PMID: 29151281 PMCID: PMC5803609 DOI: 10.1002/jcsm.12238] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023] Open
Abstract
The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing.
Collapse
Affiliation(s)
- Michael Tieland
- Faculty of Sports and NutritionAmsterdam University of Applied SciencesDr. Meurerlaan 81067 SMAmsterdamthe Netherlands
| | - Inez Trouwborst
- Faculty of Sports and NutritionAmsterdam University of Applied SciencesDr. Meurerlaan 81067 SMAmsterdamthe Netherlands
| | - Brian C. Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI)Ohio University250 Irvine HallAthensOH 45701USA
- Department of Biomedical SciencesOhio UniversityAthensOH 45701USA
- Department of Geriatric MedicineOhio UniversityAthensOH 45701USA
| |
Collapse
|
39
|
Ghai S, Ghai I, Schmitz G, Effenberg AO. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Sci Rep 2018; 8:506. [PMID: 29323122 PMCID: PMC5764963 DOI: 10.1038/s41598-017-16232-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023] Open
Abstract
The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany.
| | - Ishan Ghai
- School of Life Sciences, Jacobs University Bremen, Bremen, Germany
| | - Gerd Schmitz
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Alfred O Effenberg
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
40
|
Krause Neto W, Silva WDA, Ciena AP, de Souza RR, Anaruma CA, Gama EF. Aging Induces Changes in the Somatic Nerve and Postsynaptic Component without Any Alterations in Skeletal Muscles Morphology and Capacity to Carry Load of Wistar Rats. Front Neurosci 2017; 11:688. [PMID: 29326543 PMCID: PMC5741656 DOI: 10.3389/fnins.2017.00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to analyze the morphology of the peripheral nerve, postsynaptic compartment, skeletal muscles and weight-bearing capacity of Wistar rats at specific ages. Twenty rats were divided into groups: 10 months-old (ADULT) and 24 months-old (OLD). After euthanasia, we prepared and analyzed the tibial nerve using transmission electron microscopy and the soleus and plantaris muscles for cytofluorescence and histochemistry. For the comparison of the results between groups we used dependent and independent Student's t-test with level of significance set at p ≤ 0.05. For the tibial nerve, the OLD group presented the following alterations compared to the ADULT group: larger area and diameter of both myelinated fibers and axons, smaller area occupied by myelinated and unmyelinated axons, lower numerical density of myelinated fibers, and fewer myelinated fibers with normal morphology. Both aged soleus and plantaris end-plate showed greater total perimeter, stained perimeter, total area and stained area compared to ADULT group (p < 0.05). Yet, aged soleus end-plate presented greater dispersion than ADULT samples (p < 0.05). For the morphology of soleus and plantaris muscles, density of the interstitial volume was greater in the OLD group (p < 0.05). No statistical difference was found between groups in the weight-bearing tests. The results of the present study demonstrated that the aging process induces changes in the peripheral nerve and postsynaptic compartment without any change in skeletal muscles and ability to carry load in Wistar rats.
Collapse
Affiliation(s)
- Walter Krause Neto
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Wellington de Assis Silva
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Romeu R de Souza
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Carlos A Anaruma
- Laboratory of Morphology and Physical Activity, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Eliane F Gama
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| |
Collapse
|
41
|
Gerstner GR, Giuliani HK, Mota JA, Ryan ED. Age-related reductions in muscle quality influence the relative differences in strength and power. Exp Gerontol 2017; 99:27-34. [DOI: 10.1016/j.exger.2017.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/25/2022]
|
42
|
IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFα on myotube development. Sci Rep 2017; 7:12997. [PMID: 29021612 PMCID: PMC5636823 DOI: 10.1038/s41598-017-13479-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Studies in murine cell lines and in mouse models suggest that IL-15 promotes myogenesis and may protect against the inflammation-mediated skeletal muscle atrophy which occurs in sarcopenia and cachexia. The effects of IL-15 on human skeletal muscle growth and development remain largely uncharacterised. Myogenic cultures were isolated from the skeletal muscle of young and elderly subjects. Myoblasts were differentiated for 8 d, with or without the addition of recombinant cytokines (rIL-15, rTNFα) and an IL-15 receptor neutralising antibody. Although myotubes were 19% thinner in cultures derived from elderly subjects, rIL-15 increased the thickness of myotubes (MTT) from both age groups to a similar extent. Neutralisation of the high-affinity IL-15 receptor binding subunit, IL-15rα in elderly myotubes confirmed that autocrine concentrations of IL-15 also support myogenesis. Co-incubation of differentiating myoblasts with rIL-15 and rTNFα, limited the reduction in MTT and nuclear fusion index (NFI) associated with rTNFα stimulation alone. IL-15rα neutralisation and rTNFα decreased MTT and NFI further. This, coupled with our observation that myotubes secrete IL-15 in response to TNFα stimulation supports the notion that IL-15 serves to mitigate inflammatory skeletal muscle loss. IL-15 may be an effective therapeutic target for the attenuation of inflammation-mediated skeletal muscle atrophy.
Collapse
|
43
|
Vaughan SK, Stanley OL, Valdez G. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice. J Gerontol A Biol Sci Med Sci 2017; 72:771-779. [PMID: 27688482 DOI: 10.1093/gerona/glw175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis.
Collapse
Affiliation(s)
- Sydney K Vaughan
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke.,Graduate Program in Translational Biology, Medicine, and Health and
| | - Olivia L Stanley
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke.,Department of Biological Sciences, Virginia Tech, Blacksburg
| |
Collapse
|
44
|
GERSTNER GENAR, THOMPSON BRENNANJ, ROSENBERG JOSEPHG, SOBOLEWSKI ERICJ, SCHARVILLE MICHAELJ, RYAN ERICD. Neural and Muscular Contributions to the Age-Related Reductions in Rapid Strength. Med Sci Sports Exerc 2017; 49:1331-1339. [DOI: 10.1249/mss.0000000000001231] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Resistance wheel exercise from mid-life has minimal effect on sciatic nerves from old mice in which sarcopenia was prevented. Biogerontology 2017; 18:769-790. [PMID: 28597407 DOI: 10.1007/s10522-017-9714-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
The ability of resistance exercise, initiated from mid-life, to prevent age-related changes in old sciatic nerves, was investigated in male and female C57BL/6J mice. Aging is associated with cellular changes in old sciatic nerves and also loss of skeletal muscle mass and function (sarcopenia). Mature adult mice aged 15 months (M) were subjected to increasing voluntary resistance wheel exercise (RWE) over a period of 8 M until 23 M of age. This prevented sarcopenia in the old 23 M aged male and female mice. Nerves of control sedentary (SED) males at 3, 15 and 23 M of age, showed a decrease in the myelinated axon numbers at 15 and 23 M, a decreased g-ratio and a significantly increased proportion of myelinated nerves containing electron-dense aggregates at 23 M. Myelinated axon and nerve diameter, and axonal area, were increased at 15 M compared with 3 and 23 M. Exercise increased myelinated nerve profiles containing aggregates at 23 M. S100 protein, detected with immunoblotting was increased in sciatic nerves of 23 M old SED females, but not males, compared with 15 M, with no effect of exercise. Other neuronal proteins showed no significant alterations with age, gender or exercise. Overall the RWE had no cellular impact on the aging nerves, apart from an increased number of old nerves containing aggregates. Thus the relationship between cellular changes in aging nerves, and their sustained capacity for stimulation of old skeletal muscles to help maintain healthy muscle mass in response to exercise remains unclear.
Collapse
|
46
|
Hangelbroek RWJ, Fazelzadeh P, Tieland M, Boekschoten MV, Hooiveld GJEJ, van Duynhoven JPM, Timmons JA, Verdijk LB, de Groot LCPGM, van Loon LJC, Müller M. Expression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weakness. J Cachexia Sarcopenia Muscle 2016; 7:604-614. [PMID: 27239416 PMCID: PMC4863830 DOI: 10.1002/jcsm.12099] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/17/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The skeletal muscle system plays an important role in the independence of older adults. In this study we examine differences in the skeletal muscle transcriptome between healthy young and older subjects and (pre-)frail older adults. Additionally, we examine the effect of resistance-type exercise training on the muscle transcriptome in healthy older subjects and (pre-)frail older adults. METHODS Baseline transcriptome profiles were measured in muscle biopsies collected from 53 young, 73 healthy older subjects, and 61 frail older subjects. Follow-up samples from these frail older subjects (31 samples) and healthy older subjects (41 samples) were collected after 6 months of progressive resistance-type exercise training. Frail older subjects trained twice per week and the healthy older subjects trained three times per week. RESULTS At baseline genes related to mitochondrial function and energy metabolism were differentially expressed between older and young subjects, as well as between healthy and frail older subjects. Three hundred seven genes were differentially expressed after training in both groups. Training affected expression levels of genes related to extracellular matrix, glucose metabolism ,and vascularization. Expression of genes that were modulated by exercise training was indicative of muscle strength at baseline. Genes that strongly correlated with strength belonged to the protocadherin gamma gene cluster (r = -0.73). CONCLUSIONS Our data suggest significant remaining plasticity of ageing skeletal muscle to adapt to resistance-type exercise training. Some age-related changes in skeletal muscle gene expression appear to be partially reversed by prolonged resistance-type exercise training. The protocadherin gamma gene cluster may be related to muscle denervation and re-innervation in ageing muscle.
Collapse
Affiliation(s)
- Roland W J Hangelbroek
- Top Institute Food and Nutrition Wageningenthe Netherlands; Division of Human Nutrition Wageningen University Wageningenthe Netherlands
| | - Parastoo Fazelzadeh
- Top Institute Food and Nutrition Wageningenthe Netherlands; Division of Human Nutrition Wageningen University Wageningenthe Netherlands
| | - Michael Tieland
- Top Institute Food and Nutrition Wageningenthe Netherlands; Division of Human Nutrition Wageningen University Wageningenthe Netherlands
| | - Mark V Boekschoten
- Top Institute Food and Nutrition Wageningenthe Netherlands; Division of Human Nutrition Wageningen University Wageningenthe Netherlands
| | - Guido J E J Hooiveld
- Top Institute Food and Nutrition Wageningenthe Netherlands; Division of Human Nutrition Wageningen University Wageningenthe Netherlands
| | - John P M van Duynhoven
- Laboratory of Biophysics Wageningen University Wageningen the Netherlands; Netherlands Metabolomics Centre Leiden the Netherlands
| | | | - Lex B Verdijk
- Top Institute Food and Nutrition Wageningen the Netherlands; Department of Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Lisette C P G M de Groot
- Top Institute Food and Nutrition Wageningenthe Netherlands; Division of Human Nutrition Wageningen University Wageningenthe Netherlands
| | - Luc J C van Loon
- Top Institute Food and Nutrition Wageningen the Netherlands; Department of Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Michael Müller
- Top Institute Food and Nutrition Wageningen the Netherlands; Division of Human Nutrition Wageningen University Wageningen the Netherlands; Norwich Medical School University of East Anglia Norwich UK
| |
Collapse
|
47
|
Abstract
BACKGROUND: Skeletal muscle atrophy during aging, a process known as sarcopenia, is associated with muscle weakness, frailty, and the loss of independence in older adults. The mechanisms contributing to sarcopenia are not totally understood, but muscle fiber loss due to apoptosis, reduced stimulation of anabolic pathways, activation of catabolic pathways, denervation, and altered metabolism have been observed in muscle from old rodents and humans. OBJECTIVE: Recently, histone deacetylases (HDACs) have been implicated in muscle atrophy and dysfunction due to denervation, muscular dystrophy, and disuse, and HDACs play key roles in regulating metabolism in skeletal muscle. In this review, we will discuss the role of HDACs in muscle atrophy and the potential of HDAC inhibitors for the treatment of sarcopenia. CONCLUSIONS: Several HDAC isoforms are potential targets for intervention in sarcopenia. Inhibition of HDAC1 prevents muscle atrophy due to nutrient deprivation. HDAC3 regulates metabolism in skeletal muscle and may inhibit oxidative metabolism during aging. HDAC4 and HDAC5 have been implicated in muscle atrophy due to denervation, a process implicated in sarcopenia. HDAC inhibitors are already in use in the clinic, and there is promise in targeting HDACs for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Michael E Walsh
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich , Zurich, Switzerland
| | | |
Collapse
|
48
|
Liu JX, Eriksson PO, Thornell LE, Pedrosa-Domellöf F. Fiber Content and Myosin Heavy Chain Composition of Muscle Spindles in Aged Human Biceps Brachii. J Histochem Cytochem 2016; 53:445-54. [PMID: 15805419 DOI: 10.1369/jhc.4a6257.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated potential age-related changes in human muscle spindles with respect to the intrafusal fiber-type content and myosin heavy chain (MyHC) composition in biceps brachii muscle. The total number of intrafusal fibers per spindle decreased significantly with aging, due to a significant reduction in the number of nuclear chain fibers. Nuclear chain fibers in old spindles were short and some showed novel expression of MyHC α-cardiac. The expression of MyHC α-cardiac in bag1and bag2fibers was greatly decreased in the A region. The expression of slow MyHC was increased in nuclear bag1fibers and that of fetal MyHC decreased in bag2fibers whereas the patterns of distribution of the remaining MyHC isoforms were generally not affected by aging. We conclude that aging appears to have an important impact on muscle spindle composition. These changes in muscle spindle phenotype may reflect an age-related deterioration in sensory and motor innervation and are likely to have an impact in motor control in the elderly.
Collapse
Affiliation(s)
- Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
49
|
Perturbed cholesterol homeostasis in aging spinal cord. Neurobiol Aging 2016; 45:123-135. [PMID: 27459933 DOI: 10.1016/j.neurobiolaging.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/28/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.
Collapse
|
50
|
Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. J Physiol 2016; 594:4499-512. [PMID: 26921061 PMCID: PMC4983621 DOI: 10.1113/jp271212] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/14/2015] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscles undergo structural and functional decline with ageing, culminating in sarcopenia. The underlying neuromuscular mechanisms have been the subject of intense investigation, revealing mitochondrial abnormalities as potential culprits within both nerve and muscle cells. Implicated mechanisms involve impaired mitochondrial dynamics, reduced organelle biogenesis and quality control via mitophagy, accumulation of mitochondrial DNA (mtDNA) damage and respiratory chain defect, metabolic disturbance, pro-apoptotic signalling, and oxidative stress. This article provides an overview of the cellular mechanisms whereby mitochondria may promote maladaptive changes within motor neurons, the neuromuscular junction (NMJ) and muscle fibres. Lifelong physical activity, which promotes mitochondrial health across tissues, is emerging as an effective countermeasure for sarcopenia.
Collapse
Affiliation(s)
- Karolina A Rygiel
- Newcastle University Centre for Ageing and Vitality, Newcastle upon Tyne, UK.,Wellcome Trust Centre for Mitochondrial Research, Newcastle upon Tyne, UK
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, College of Physicians and Surgeons, Columbia University, Columbia University Medical Center, New York, NY, USA
| | - Doug M Turnbull
- Newcastle University Centre for Ageing and Vitality, Newcastle upon Tyne, UK.,Wellcome Trust Centre for Mitochondrial Research, Newcastle upon Tyne, UK
| |
Collapse
|